at v2.6.35 1350 lines 35 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning sub-system. 23 * 24 * This sub-system is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 */ 42 43#include <linux/err.h> 44#include <linux/slab.h> 45#include <linux/crc32.h> 46#include <linux/math64.h> 47#include "ubi.h" 48 49#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 50static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 51#else 52#define paranoid_check_si(ubi, si) 0 53#endif 54 55/* Temporary variables used during scanning */ 56static struct ubi_ec_hdr *ech; 57static struct ubi_vid_hdr *vidh; 58 59/** 60 * add_to_list - add physical eraseblock to a list. 61 * @si: scanning information 62 * @pnum: physical eraseblock number to add 63 * @ec: erase counter of the physical eraseblock 64 * @list: the list to add to 65 * 66 * This function adds physical eraseblock @pnum to free, erase, corrupted or 67 * alien lists. Returns zero in case of success and a negative error code in 68 * case of failure. 69 */ 70static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, 71 struct list_head *list) 72{ 73 struct ubi_scan_leb *seb; 74 75 if (list == &si->free) 76 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 77 else if (list == &si->erase) 78 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 79 else if (list == &si->corr) { 80 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 81 si->corr_count += 1; 82 } else if (list == &si->alien) 83 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 84 else 85 BUG(); 86 87 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 88 if (!seb) 89 return -ENOMEM; 90 91 seb->pnum = pnum; 92 seb->ec = ec; 93 list_add_tail(&seb->u.list, list); 94 return 0; 95} 96 97/** 98 * validate_vid_hdr - check volume identifier header. 99 * @vid_hdr: the volume identifier header to check 100 * @sv: information about the volume this logical eraseblock belongs to 101 * @pnum: physical eraseblock number the VID header came from 102 * 103 * This function checks that data stored in @vid_hdr is consistent. Returns 104 * non-zero if an inconsistency was found and zero if not. 105 * 106 * Note, UBI does sanity check of everything it reads from the flash media. 107 * Most of the checks are done in the I/O sub-system. Here we check that the 108 * information in the VID header is consistent to the information in other VID 109 * headers of the same volume. 110 */ 111static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 112 const struct ubi_scan_volume *sv, int pnum) 113{ 114 int vol_type = vid_hdr->vol_type; 115 int vol_id = be32_to_cpu(vid_hdr->vol_id); 116 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 117 int data_pad = be32_to_cpu(vid_hdr->data_pad); 118 119 if (sv->leb_count != 0) { 120 int sv_vol_type; 121 122 /* 123 * This is not the first logical eraseblock belonging to this 124 * volume. Ensure that the data in its VID header is consistent 125 * to the data in previous logical eraseblock headers. 126 */ 127 128 if (vol_id != sv->vol_id) { 129 dbg_err("inconsistent vol_id"); 130 goto bad; 131 } 132 133 if (sv->vol_type == UBI_STATIC_VOLUME) 134 sv_vol_type = UBI_VID_STATIC; 135 else 136 sv_vol_type = UBI_VID_DYNAMIC; 137 138 if (vol_type != sv_vol_type) { 139 dbg_err("inconsistent vol_type"); 140 goto bad; 141 } 142 143 if (used_ebs != sv->used_ebs) { 144 dbg_err("inconsistent used_ebs"); 145 goto bad; 146 } 147 148 if (data_pad != sv->data_pad) { 149 dbg_err("inconsistent data_pad"); 150 goto bad; 151 } 152 } 153 154 return 0; 155 156bad: 157 ubi_err("inconsistent VID header at PEB %d", pnum); 158 ubi_dbg_dump_vid_hdr(vid_hdr); 159 ubi_dbg_dump_sv(sv); 160 return -EINVAL; 161} 162 163/** 164 * add_volume - add volume to the scanning information. 165 * @si: scanning information 166 * @vol_id: ID of the volume to add 167 * @pnum: physical eraseblock number 168 * @vid_hdr: volume identifier header 169 * 170 * If the volume corresponding to the @vid_hdr logical eraseblock is already 171 * present in the scanning information, this function does nothing. Otherwise 172 * it adds corresponding volume to the scanning information. Returns a pointer 173 * to the scanning volume object in case of success and a negative error code 174 * in case of failure. 175 */ 176static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 177 int pnum, 178 const struct ubi_vid_hdr *vid_hdr) 179{ 180 struct ubi_scan_volume *sv; 181 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 182 183 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 184 185 /* Walk the volume RB-tree to look if this volume is already present */ 186 while (*p) { 187 parent = *p; 188 sv = rb_entry(parent, struct ubi_scan_volume, rb); 189 190 if (vol_id == sv->vol_id) 191 return sv; 192 193 if (vol_id > sv->vol_id) 194 p = &(*p)->rb_left; 195 else 196 p = &(*p)->rb_right; 197 } 198 199 /* The volume is absent - add it */ 200 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 201 if (!sv) 202 return ERR_PTR(-ENOMEM); 203 204 sv->highest_lnum = sv->leb_count = 0; 205 sv->vol_id = vol_id; 206 sv->root = RB_ROOT; 207 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 208 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 209 sv->compat = vid_hdr->compat; 210 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 211 : UBI_STATIC_VOLUME; 212 if (vol_id > si->highest_vol_id) 213 si->highest_vol_id = vol_id; 214 215 rb_link_node(&sv->rb, parent, p); 216 rb_insert_color(&sv->rb, &si->volumes); 217 si->vols_found += 1; 218 dbg_bld("added volume %d", vol_id); 219 return sv; 220} 221 222/** 223 * compare_lebs - find out which logical eraseblock is newer. 224 * @ubi: UBI device description object 225 * @seb: first logical eraseblock to compare 226 * @pnum: physical eraseblock number of the second logical eraseblock to 227 * compare 228 * @vid_hdr: volume identifier header of the second logical eraseblock 229 * 230 * This function compares 2 copies of a LEB and informs which one is newer. In 231 * case of success this function returns a positive value, in case of failure, a 232 * negative error code is returned. The success return codes use the following 233 * bits: 234 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the 235 * second PEB (described by @pnum and @vid_hdr); 236 * o bit 0 is set: the second PEB is newer; 237 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 238 * o bit 1 is set: bit-flips were detected in the newer LEB; 239 * o bit 2 is cleared: the older LEB is not corrupted; 240 * o bit 2 is set: the older LEB is corrupted. 241 */ 242static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 243 int pnum, const struct ubi_vid_hdr *vid_hdr) 244{ 245 void *buf; 246 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 247 uint32_t data_crc, crc; 248 struct ubi_vid_hdr *vh = NULL; 249 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 250 251 if (sqnum2 == seb->sqnum) { 252 /* 253 * This must be a really ancient UBI image which has been 254 * created before sequence numbers support has been added. At 255 * that times we used 32-bit LEB versions stored in logical 256 * eraseblocks. That was before UBI got into mainline. We do not 257 * support these images anymore. Well, those images will work 258 * still work, but only if no unclean reboots happened. 259 */ 260 ubi_err("unsupported on-flash UBI format\n"); 261 return -EINVAL; 262 } 263 264 /* Obviously the LEB with lower sequence counter is older */ 265 second_is_newer = !!(sqnum2 > seb->sqnum); 266 267 /* 268 * Now we know which copy is newer. If the copy flag of the PEB with 269 * newer version is not set, then we just return, otherwise we have to 270 * check data CRC. For the second PEB we already have the VID header, 271 * for the first one - we'll need to re-read it from flash. 272 * 273 * Note: this may be optimized so that we wouldn't read twice. 274 */ 275 276 if (second_is_newer) { 277 if (!vid_hdr->copy_flag) { 278 /* It is not a copy, so it is newer */ 279 dbg_bld("second PEB %d is newer, copy_flag is unset", 280 pnum); 281 return 1; 282 } 283 } else { 284 pnum = seb->pnum; 285 286 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 287 if (!vh) 288 return -ENOMEM; 289 290 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 291 if (err) { 292 if (err == UBI_IO_BITFLIPS) 293 bitflips = 1; 294 else { 295 dbg_err("VID of PEB %d header is bad, but it " 296 "was OK earlier", pnum); 297 if (err > 0) 298 err = -EIO; 299 300 goto out_free_vidh; 301 } 302 } 303 304 if (!vh->copy_flag) { 305 /* It is not a copy, so it is newer */ 306 dbg_bld("first PEB %d is newer, copy_flag is unset", 307 pnum); 308 err = bitflips << 1; 309 goto out_free_vidh; 310 } 311 312 vid_hdr = vh; 313 } 314 315 /* Read the data of the copy and check the CRC */ 316 317 len = be32_to_cpu(vid_hdr->data_size); 318 buf = vmalloc(len); 319 if (!buf) { 320 err = -ENOMEM; 321 goto out_free_vidh; 322 } 323 324 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 325 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 326 goto out_free_buf; 327 328 data_crc = be32_to_cpu(vid_hdr->data_crc); 329 crc = crc32(UBI_CRC32_INIT, buf, len); 330 if (crc != data_crc) { 331 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 332 pnum, crc, data_crc); 333 corrupted = 1; 334 bitflips = 0; 335 second_is_newer = !second_is_newer; 336 } else { 337 dbg_bld("PEB %d CRC is OK", pnum); 338 bitflips = !!err; 339 } 340 341 vfree(buf); 342 ubi_free_vid_hdr(ubi, vh); 343 344 if (second_is_newer) 345 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 346 else 347 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 348 349 return second_is_newer | (bitflips << 1) | (corrupted << 2); 350 351out_free_buf: 352 vfree(buf); 353out_free_vidh: 354 ubi_free_vid_hdr(ubi, vh); 355 return err; 356} 357 358/** 359 * ubi_scan_add_used - add physical eraseblock to the scanning information. 360 * @ubi: UBI device description object 361 * @si: scanning information 362 * @pnum: the physical eraseblock number 363 * @ec: erase counter 364 * @vid_hdr: the volume identifier header 365 * @bitflips: if bit-flips were detected when this physical eraseblock was read 366 * 367 * This function adds information about a used physical eraseblock to the 368 * 'used' tree of the corresponding volume. The function is rather complex 369 * because it has to handle cases when this is not the first physical 370 * eraseblock belonging to the same logical eraseblock, and the newer one has 371 * to be picked, while the older one has to be dropped. This function returns 372 * zero in case of success and a negative error code in case of failure. 373 */ 374int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 375 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 376 int bitflips) 377{ 378 int err, vol_id, lnum; 379 unsigned long long sqnum; 380 struct ubi_scan_volume *sv; 381 struct ubi_scan_leb *seb; 382 struct rb_node **p, *parent = NULL; 383 384 vol_id = be32_to_cpu(vid_hdr->vol_id); 385 lnum = be32_to_cpu(vid_hdr->lnum); 386 sqnum = be64_to_cpu(vid_hdr->sqnum); 387 388 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 389 pnum, vol_id, lnum, ec, sqnum, bitflips); 390 391 sv = add_volume(si, vol_id, pnum, vid_hdr); 392 if (IS_ERR(sv)) 393 return PTR_ERR(sv); 394 395 if (si->max_sqnum < sqnum) 396 si->max_sqnum = sqnum; 397 398 /* 399 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 400 * if this is the first instance of this logical eraseblock or not. 401 */ 402 p = &sv->root.rb_node; 403 while (*p) { 404 int cmp_res; 405 406 parent = *p; 407 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 408 if (lnum != seb->lnum) { 409 if (lnum < seb->lnum) 410 p = &(*p)->rb_left; 411 else 412 p = &(*p)->rb_right; 413 continue; 414 } 415 416 /* 417 * There is already a physical eraseblock describing the same 418 * logical eraseblock present. 419 */ 420 421 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 422 "EC %d", seb->pnum, seb->sqnum, seb->ec); 423 424 /* 425 * Make sure that the logical eraseblocks have different 426 * sequence numbers. Otherwise the image is bad. 427 * 428 * However, if the sequence number is zero, we assume it must 429 * be an ancient UBI image from the era when UBI did not have 430 * sequence numbers. We still can attach these images, unless 431 * there is a need to distinguish between old and new 432 * eraseblocks, in which case we'll refuse the image in 433 * 'compare_lebs()'. In other words, we attach old clean 434 * images, but refuse attaching old images with duplicated 435 * logical eraseblocks because there was an unclean reboot. 436 */ 437 if (seb->sqnum == sqnum && sqnum != 0) { 438 ubi_err("two LEBs with same sequence number %llu", 439 sqnum); 440 ubi_dbg_dump_seb(seb, 0); 441 ubi_dbg_dump_vid_hdr(vid_hdr); 442 return -EINVAL; 443 } 444 445 /* 446 * Now we have to drop the older one and preserve the newer 447 * one. 448 */ 449 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 450 if (cmp_res < 0) 451 return cmp_res; 452 453 if (cmp_res & 1) { 454 /* 455 * This logical eraseblock is newer than the one 456 * found earlier. 457 */ 458 err = validate_vid_hdr(vid_hdr, sv, pnum); 459 if (err) 460 return err; 461 462 if (cmp_res & 4) 463 err = add_to_list(si, seb->pnum, seb->ec, 464 &si->corr); 465 else 466 err = add_to_list(si, seb->pnum, seb->ec, 467 &si->erase); 468 if (err) 469 return err; 470 471 seb->ec = ec; 472 seb->pnum = pnum; 473 seb->scrub = ((cmp_res & 2) || bitflips); 474 seb->sqnum = sqnum; 475 476 if (sv->highest_lnum == lnum) 477 sv->last_data_size = 478 be32_to_cpu(vid_hdr->data_size); 479 480 return 0; 481 } else { 482 /* 483 * This logical eraseblock is older than the one found 484 * previously. 485 */ 486 if (cmp_res & 4) 487 return add_to_list(si, pnum, ec, &si->corr); 488 else 489 return add_to_list(si, pnum, ec, &si->erase); 490 } 491 } 492 493 /* 494 * We've met this logical eraseblock for the first time, add it to the 495 * scanning information. 496 */ 497 498 err = validate_vid_hdr(vid_hdr, sv, pnum); 499 if (err) 500 return err; 501 502 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 503 if (!seb) 504 return -ENOMEM; 505 506 seb->ec = ec; 507 seb->pnum = pnum; 508 seb->lnum = lnum; 509 seb->sqnum = sqnum; 510 seb->scrub = bitflips; 511 512 if (sv->highest_lnum <= lnum) { 513 sv->highest_lnum = lnum; 514 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 515 } 516 517 sv->leb_count += 1; 518 rb_link_node(&seb->u.rb, parent, p); 519 rb_insert_color(&seb->u.rb, &sv->root); 520 return 0; 521} 522 523/** 524 * ubi_scan_find_sv - find volume in the scanning information. 525 * @si: scanning information 526 * @vol_id: the requested volume ID 527 * 528 * This function returns a pointer to the volume description or %NULL if there 529 * are no data about this volume in the scanning information. 530 */ 531struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 532 int vol_id) 533{ 534 struct ubi_scan_volume *sv; 535 struct rb_node *p = si->volumes.rb_node; 536 537 while (p) { 538 sv = rb_entry(p, struct ubi_scan_volume, rb); 539 540 if (vol_id == sv->vol_id) 541 return sv; 542 543 if (vol_id > sv->vol_id) 544 p = p->rb_left; 545 else 546 p = p->rb_right; 547 } 548 549 return NULL; 550} 551 552/** 553 * ubi_scan_find_seb - find LEB in the volume scanning information. 554 * @sv: a pointer to the volume scanning information 555 * @lnum: the requested logical eraseblock 556 * 557 * This function returns a pointer to the scanning logical eraseblock or %NULL 558 * if there are no data about it in the scanning volume information. 559 */ 560struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 561 int lnum) 562{ 563 struct ubi_scan_leb *seb; 564 struct rb_node *p = sv->root.rb_node; 565 566 while (p) { 567 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 568 569 if (lnum == seb->lnum) 570 return seb; 571 572 if (lnum > seb->lnum) 573 p = p->rb_left; 574 else 575 p = p->rb_right; 576 } 577 578 return NULL; 579} 580 581/** 582 * ubi_scan_rm_volume - delete scanning information about a volume. 583 * @si: scanning information 584 * @sv: the volume scanning information to delete 585 */ 586void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 587{ 588 struct rb_node *rb; 589 struct ubi_scan_leb *seb; 590 591 dbg_bld("remove scanning information about volume %d", sv->vol_id); 592 593 while ((rb = rb_first(&sv->root))) { 594 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 595 rb_erase(&seb->u.rb, &sv->root); 596 list_add_tail(&seb->u.list, &si->erase); 597 } 598 599 rb_erase(&sv->rb, &si->volumes); 600 kfree(sv); 601 si->vols_found -= 1; 602} 603 604/** 605 * ubi_scan_erase_peb - erase a physical eraseblock. 606 * @ubi: UBI device description object 607 * @si: scanning information 608 * @pnum: physical eraseblock number to erase; 609 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 610 * 611 * This function erases physical eraseblock 'pnum', and writes the erase 612 * counter header to it. This function should only be used on UBI device 613 * initialization stages, when the EBA sub-system had not been yet initialized. 614 * This function returns zero in case of success and a negative error code in 615 * case of failure. 616 */ 617int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 618 int pnum, int ec) 619{ 620 int err; 621 struct ubi_ec_hdr *ec_hdr; 622 623 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 624 /* 625 * Erase counter overflow. Upgrade UBI and use 64-bit 626 * erase counters internally. 627 */ 628 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 629 return -EINVAL; 630 } 631 632 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 633 if (!ec_hdr) 634 return -ENOMEM; 635 636 ec_hdr->ec = cpu_to_be64(ec); 637 638 err = ubi_io_sync_erase(ubi, pnum, 0); 639 if (err < 0) 640 goto out_free; 641 642 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 643 644out_free: 645 kfree(ec_hdr); 646 return err; 647} 648 649/** 650 * ubi_scan_get_free_peb - get a free physical eraseblock. 651 * @ubi: UBI device description object 652 * @si: scanning information 653 * 654 * This function returns a free physical eraseblock. It is supposed to be 655 * called on the UBI initialization stages when the wear-leveling sub-system is 656 * not initialized yet. This function picks a physical eraseblocks from one of 657 * the lists, writes the EC header if it is needed, and removes it from the 658 * list. 659 * 660 * This function returns scanning physical eraseblock information in case of 661 * success and an error code in case of failure. 662 */ 663struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 664 struct ubi_scan_info *si) 665{ 666 int err = 0, i; 667 struct ubi_scan_leb *seb; 668 669 if (!list_empty(&si->free)) { 670 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 671 list_del(&seb->u.list); 672 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 673 return seb; 674 } 675 676 for (i = 0; i < 2; i++) { 677 struct list_head *head; 678 struct ubi_scan_leb *tmp_seb; 679 680 if (i == 0) 681 head = &si->erase; 682 else 683 head = &si->corr; 684 685 /* 686 * We try to erase the first physical eraseblock from the @head 687 * list and pick it if we succeed, or try to erase the 688 * next one if not. And so forth. We don't want to take care 689 * about bad eraseblocks here - they'll be handled later. 690 */ 691 list_for_each_entry_safe(seb, tmp_seb, head, u.list) { 692 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 693 seb->ec = si->mean_ec; 694 695 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 696 if (err) 697 continue; 698 699 seb->ec += 1; 700 list_del(&seb->u.list); 701 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 702 return seb; 703 } 704 } 705 706 ubi_err("no eraseblocks found"); 707 return ERR_PTR(-ENOSPC); 708} 709 710/** 711 * process_eb - read, check UBI headers, and add them to scanning information. 712 * @ubi: UBI device description object 713 * @si: scanning information 714 * @pnum: the physical eraseblock number 715 * 716 * This function returns a zero if the physical eraseblock was successfully 717 * handled and a negative error code in case of failure. 718 */ 719static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, 720 int pnum) 721{ 722 long long uninitialized_var(ec); 723 int err, bitflips = 0, vol_id, ec_corr = 0; 724 725 dbg_bld("scan PEB %d", pnum); 726 727 /* Skip bad physical eraseblocks */ 728 err = ubi_io_is_bad(ubi, pnum); 729 if (err < 0) 730 return err; 731 else if (err) { 732 /* 733 * FIXME: this is actually duty of the I/O sub-system to 734 * initialize this, but MTD does not provide enough 735 * information. 736 */ 737 si->bad_peb_count += 1; 738 return 0; 739 } 740 741 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 742 if (err < 0) 743 return err; 744 else if (err == UBI_IO_BITFLIPS) 745 bitflips = 1; 746 else if (err == UBI_IO_PEB_EMPTY) 747 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); 748 else if (err == UBI_IO_BAD_EC_HDR) { 749 /* 750 * We have to also look at the VID header, possibly it is not 751 * corrupted. Set %bitflips flag in order to make this PEB be 752 * moved and EC be re-created. 753 */ 754 ec_corr = 1; 755 ec = UBI_SCAN_UNKNOWN_EC; 756 bitflips = 1; 757 } 758 759 si->is_empty = 0; 760 761 if (!ec_corr) { 762 int image_seq; 763 764 /* Make sure UBI version is OK */ 765 if (ech->version != UBI_VERSION) { 766 ubi_err("this UBI version is %d, image version is %d", 767 UBI_VERSION, (int)ech->version); 768 return -EINVAL; 769 } 770 771 ec = be64_to_cpu(ech->ec); 772 if (ec > UBI_MAX_ERASECOUNTER) { 773 /* 774 * Erase counter overflow. The EC headers have 64 bits 775 * reserved, but we anyway make use of only 31 bit 776 * values, as this seems to be enough for any existing 777 * flash. Upgrade UBI and use 64-bit erase counters 778 * internally. 779 */ 780 ubi_err("erase counter overflow, max is %d", 781 UBI_MAX_ERASECOUNTER); 782 ubi_dbg_dump_ec_hdr(ech); 783 return -EINVAL; 784 } 785 786 /* 787 * Make sure that all PEBs have the same image sequence number. 788 * This allows us to detect situations when users flash UBI 789 * images incorrectly, so that the flash has the new UBI image 790 * and leftovers from the old one. This feature was added 791 * relatively recently, and the sequence number was always 792 * zero, because old UBI implementations always set it to zero. 793 * For this reasons, we do not panic if some PEBs have zero 794 * sequence number, while other PEBs have non-zero sequence 795 * number. 796 */ 797 image_seq = be32_to_cpu(ech->image_seq); 798 if (!ubi->image_seq && image_seq) 799 ubi->image_seq = image_seq; 800 if (ubi->image_seq && image_seq && 801 ubi->image_seq != image_seq) { 802 ubi_err("bad image sequence number %d in PEB %d, " 803 "expected %d", image_seq, pnum, ubi->image_seq); 804 ubi_dbg_dump_ec_hdr(ech); 805 return -EINVAL; 806 } 807 } 808 809 /* OK, we've done with the EC header, let's look at the VID header */ 810 811 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 812 if (err < 0) 813 return err; 814 else if (err == UBI_IO_BITFLIPS) 815 bitflips = 1; 816 else if (err == UBI_IO_BAD_VID_HDR || 817 (err == UBI_IO_PEB_FREE && ec_corr)) { 818 /* VID header is corrupted */ 819 err = add_to_list(si, pnum, ec, &si->corr); 820 if (err) 821 return err; 822 goto adjust_mean_ec; 823 } else if (err == UBI_IO_PEB_FREE) { 824 /* No VID header - the physical eraseblock is free */ 825 err = add_to_list(si, pnum, ec, &si->free); 826 if (err) 827 return err; 828 goto adjust_mean_ec; 829 } 830 831 vol_id = be32_to_cpu(vidh->vol_id); 832 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 833 int lnum = be32_to_cpu(vidh->lnum); 834 835 /* Unsupported internal volume */ 836 switch (vidh->compat) { 837 case UBI_COMPAT_DELETE: 838 ubi_msg("\"delete\" compatible internal volume %d:%d" 839 " found, remove it", vol_id, lnum); 840 err = add_to_list(si, pnum, ec, &si->corr); 841 if (err) 842 return err; 843 break; 844 845 case UBI_COMPAT_RO: 846 ubi_msg("read-only compatible internal volume %d:%d" 847 " found, switch to read-only mode", 848 vol_id, lnum); 849 ubi->ro_mode = 1; 850 break; 851 852 case UBI_COMPAT_PRESERVE: 853 ubi_msg("\"preserve\" compatible internal volume %d:%d" 854 " found", vol_id, lnum); 855 err = add_to_list(si, pnum, ec, &si->alien); 856 if (err) 857 return err; 858 si->alien_peb_count += 1; 859 return 0; 860 861 case UBI_COMPAT_REJECT: 862 ubi_err("incompatible internal volume %d:%d found", 863 vol_id, lnum); 864 return -EINVAL; 865 } 866 } 867 868 if (ec_corr) 869 ubi_warn("valid VID header but corrupted EC header at PEB %d", 870 pnum); 871 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 872 if (err) 873 return err; 874 875adjust_mean_ec: 876 if (!ec_corr) { 877 si->ec_sum += ec; 878 si->ec_count += 1; 879 if (ec > si->max_ec) 880 si->max_ec = ec; 881 if (ec < si->min_ec) 882 si->min_ec = ec; 883 } 884 885 return 0; 886} 887 888/** 889 * ubi_scan - scan an MTD device. 890 * @ubi: UBI device description object 891 * 892 * This function does full scanning of an MTD device and returns complete 893 * information about it. In case of failure, an error code is returned. 894 */ 895struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 896{ 897 int err, pnum; 898 struct rb_node *rb1, *rb2; 899 struct ubi_scan_volume *sv; 900 struct ubi_scan_leb *seb; 901 struct ubi_scan_info *si; 902 903 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 904 if (!si) 905 return ERR_PTR(-ENOMEM); 906 907 INIT_LIST_HEAD(&si->corr); 908 INIT_LIST_HEAD(&si->free); 909 INIT_LIST_HEAD(&si->erase); 910 INIT_LIST_HEAD(&si->alien); 911 si->volumes = RB_ROOT; 912 si->is_empty = 1; 913 914 err = -ENOMEM; 915 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 916 if (!ech) 917 goto out_si; 918 919 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 920 if (!vidh) 921 goto out_ech; 922 923 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 924 cond_resched(); 925 926 dbg_gen("process PEB %d", pnum); 927 err = process_eb(ubi, si, pnum); 928 if (err < 0) 929 goto out_vidh; 930 } 931 932 dbg_msg("scanning is finished"); 933 934 /* Calculate mean erase counter */ 935 if (si->ec_count) 936 si->mean_ec = div_u64(si->ec_sum, si->ec_count); 937 938 if (si->is_empty) 939 ubi_msg("empty MTD device detected"); 940 941 /* 942 * Few corrupted PEBs are not a problem and may be just a result of 943 * unclean reboots. However, many of them may indicate some problems 944 * with the flash HW or driver. Print a warning in this case. 945 */ 946 if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) { 947 ubi_warn("%d PEBs are corrupted", si->corr_count); 948 printk(KERN_WARNING "corrupted PEBs are:"); 949 list_for_each_entry(seb, &si->corr, u.list) 950 printk(KERN_CONT " %d", seb->pnum); 951 printk(KERN_CONT "\n"); 952 } 953 954 /* 955 * In case of unknown erase counter we use the mean erase counter 956 * value. 957 */ 958 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 959 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 960 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 961 seb->ec = si->mean_ec; 962 } 963 964 list_for_each_entry(seb, &si->free, u.list) { 965 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 966 seb->ec = si->mean_ec; 967 } 968 969 list_for_each_entry(seb, &si->corr, u.list) 970 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 971 seb->ec = si->mean_ec; 972 973 list_for_each_entry(seb, &si->erase, u.list) 974 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 975 seb->ec = si->mean_ec; 976 977 err = paranoid_check_si(ubi, si); 978 if (err) 979 goto out_vidh; 980 981 ubi_free_vid_hdr(ubi, vidh); 982 kfree(ech); 983 984 return si; 985 986out_vidh: 987 ubi_free_vid_hdr(ubi, vidh); 988out_ech: 989 kfree(ech); 990out_si: 991 ubi_scan_destroy_si(si); 992 return ERR_PTR(err); 993} 994 995/** 996 * destroy_sv - free the scanning volume information 997 * @sv: scanning volume information 998 * 999 * This function destroys the volume RB-tree (@sv->root) and the scanning 1000 * volume information. 1001 */ 1002static void destroy_sv(struct ubi_scan_volume *sv) 1003{ 1004 struct ubi_scan_leb *seb; 1005 struct rb_node *this = sv->root.rb_node; 1006 1007 while (this) { 1008 if (this->rb_left) 1009 this = this->rb_left; 1010 else if (this->rb_right) 1011 this = this->rb_right; 1012 else { 1013 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 1014 this = rb_parent(this); 1015 if (this) { 1016 if (this->rb_left == &seb->u.rb) 1017 this->rb_left = NULL; 1018 else 1019 this->rb_right = NULL; 1020 } 1021 1022 kfree(seb); 1023 } 1024 } 1025 kfree(sv); 1026} 1027 1028/** 1029 * ubi_scan_destroy_si - destroy scanning information. 1030 * @si: scanning information 1031 */ 1032void ubi_scan_destroy_si(struct ubi_scan_info *si) 1033{ 1034 struct ubi_scan_leb *seb, *seb_tmp; 1035 struct ubi_scan_volume *sv; 1036 struct rb_node *rb; 1037 1038 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1039 list_del(&seb->u.list); 1040 kfree(seb); 1041 } 1042 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1043 list_del(&seb->u.list); 1044 kfree(seb); 1045 } 1046 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1047 list_del(&seb->u.list); 1048 kfree(seb); 1049 } 1050 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1051 list_del(&seb->u.list); 1052 kfree(seb); 1053 } 1054 1055 /* Destroy the volume RB-tree */ 1056 rb = si->volumes.rb_node; 1057 while (rb) { 1058 if (rb->rb_left) 1059 rb = rb->rb_left; 1060 else if (rb->rb_right) 1061 rb = rb->rb_right; 1062 else { 1063 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1064 1065 rb = rb_parent(rb); 1066 if (rb) { 1067 if (rb->rb_left == &sv->rb) 1068 rb->rb_left = NULL; 1069 else 1070 rb->rb_right = NULL; 1071 } 1072 1073 destroy_sv(sv); 1074 } 1075 } 1076 1077 kfree(si); 1078} 1079 1080#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1081 1082/** 1083 * paranoid_check_si - check the scanning information. 1084 * @ubi: UBI device description object 1085 * @si: scanning information 1086 * 1087 * This function returns zero if the scanning information is all right, and a 1088 * negative error code if not or if an error occurred. 1089 */ 1090static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1091{ 1092 int pnum, err, vols_found = 0; 1093 struct rb_node *rb1, *rb2; 1094 struct ubi_scan_volume *sv; 1095 struct ubi_scan_leb *seb, *last_seb; 1096 uint8_t *buf; 1097 1098 /* 1099 * At first, check that scanning information is OK. 1100 */ 1101 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1102 int leb_count = 0; 1103 1104 cond_resched(); 1105 1106 vols_found += 1; 1107 1108 if (si->is_empty) { 1109 ubi_err("bad is_empty flag"); 1110 goto bad_sv; 1111 } 1112 1113 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1114 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1115 sv->data_pad < 0 || sv->last_data_size < 0) { 1116 ubi_err("negative values"); 1117 goto bad_sv; 1118 } 1119 1120 if (sv->vol_id >= UBI_MAX_VOLUMES && 1121 sv->vol_id < UBI_INTERNAL_VOL_START) { 1122 ubi_err("bad vol_id"); 1123 goto bad_sv; 1124 } 1125 1126 if (sv->vol_id > si->highest_vol_id) { 1127 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1128 si->highest_vol_id, sv->vol_id); 1129 goto out; 1130 } 1131 1132 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1133 sv->vol_type != UBI_STATIC_VOLUME) { 1134 ubi_err("bad vol_type"); 1135 goto bad_sv; 1136 } 1137 1138 if (sv->data_pad > ubi->leb_size / 2) { 1139 ubi_err("bad data_pad"); 1140 goto bad_sv; 1141 } 1142 1143 last_seb = NULL; 1144 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1145 cond_resched(); 1146 1147 last_seb = seb; 1148 leb_count += 1; 1149 1150 if (seb->pnum < 0 || seb->ec < 0) { 1151 ubi_err("negative values"); 1152 goto bad_seb; 1153 } 1154 1155 if (seb->ec < si->min_ec) { 1156 ubi_err("bad si->min_ec (%d), %d found", 1157 si->min_ec, seb->ec); 1158 goto bad_seb; 1159 } 1160 1161 if (seb->ec > si->max_ec) { 1162 ubi_err("bad si->max_ec (%d), %d found", 1163 si->max_ec, seb->ec); 1164 goto bad_seb; 1165 } 1166 1167 if (seb->pnum >= ubi->peb_count) { 1168 ubi_err("too high PEB number %d, total PEBs %d", 1169 seb->pnum, ubi->peb_count); 1170 goto bad_seb; 1171 } 1172 1173 if (sv->vol_type == UBI_STATIC_VOLUME) { 1174 if (seb->lnum >= sv->used_ebs) { 1175 ubi_err("bad lnum or used_ebs"); 1176 goto bad_seb; 1177 } 1178 } else { 1179 if (sv->used_ebs != 0) { 1180 ubi_err("non-zero used_ebs"); 1181 goto bad_seb; 1182 } 1183 } 1184 1185 if (seb->lnum > sv->highest_lnum) { 1186 ubi_err("incorrect highest_lnum or lnum"); 1187 goto bad_seb; 1188 } 1189 } 1190 1191 if (sv->leb_count != leb_count) { 1192 ubi_err("bad leb_count, %d objects in the tree", 1193 leb_count); 1194 goto bad_sv; 1195 } 1196 1197 if (!last_seb) 1198 continue; 1199 1200 seb = last_seb; 1201 1202 if (seb->lnum != sv->highest_lnum) { 1203 ubi_err("bad highest_lnum"); 1204 goto bad_seb; 1205 } 1206 } 1207 1208 if (vols_found != si->vols_found) { 1209 ubi_err("bad si->vols_found %d, should be %d", 1210 si->vols_found, vols_found); 1211 goto out; 1212 } 1213 1214 /* Check that scanning information is correct */ 1215 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1216 last_seb = NULL; 1217 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1218 int vol_type; 1219 1220 cond_resched(); 1221 1222 last_seb = seb; 1223 1224 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1225 if (err && err != UBI_IO_BITFLIPS) { 1226 ubi_err("VID header is not OK (%d)", err); 1227 if (err > 0) 1228 err = -EIO; 1229 return err; 1230 } 1231 1232 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1233 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1234 if (sv->vol_type != vol_type) { 1235 ubi_err("bad vol_type"); 1236 goto bad_vid_hdr; 1237 } 1238 1239 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1240 ubi_err("bad sqnum %llu", seb->sqnum); 1241 goto bad_vid_hdr; 1242 } 1243 1244 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1245 ubi_err("bad vol_id %d", sv->vol_id); 1246 goto bad_vid_hdr; 1247 } 1248 1249 if (sv->compat != vidh->compat) { 1250 ubi_err("bad compat %d", vidh->compat); 1251 goto bad_vid_hdr; 1252 } 1253 1254 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1255 ubi_err("bad lnum %d", seb->lnum); 1256 goto bad_vid_hdr; 1257 } 1258 1259 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1260 ubi_err("bad used_ebs %d", sv->used_ebs); 1261 goto bad_vid_hdr; 1262 } 1263 1264 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1265 ubi_err("bad data_pad %d", sv->data_pad); 1266 goto bad_vid_hdr; 1267 } 1268 } 1269 1270 if (!last_seb) 1271 continue; 1272 1273 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1274 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1275 goto bad_vid_hdr; 1276 } 1277 1278 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1279 ubi_err("bad last_data_size %d", sv->last_data_size); 1280 goto bad_vid_hdr; 1281 } 1282 } 1283 1284 /* 1285 * Make sure that all the physical eraseblocks are in one of the lists 1286 * or trees. 1287 */ 1288 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1289 if (!buf) 1290 return -ENOMEM; 1291 1292 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1293 err = ubi_io_is_bad(ubi, pnum); 1294 if (err < 0) { 1295 kfree(buf); 1296 return err; 1297 } else if (err) 1298 buf[pnum] = 1; 1299 } 1300 1301 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1302 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1303 buf[seb->pnum] = 1; 1304 1305 list_for_each_entry(seb, &si->free, u.list) 1306 buf[seb->pnum] = 1; 1307 1308 list_for_each_entry(seb, &si->corr, u.list) 1309 buf[seb->pnum] = 1; 1310 1311 list_for_each_entry(seb, &si->erase, u.list) 1312 buf[seb->pnum] = 1; 1313 1314 list_for_each_entry(seb, &si->alien, u.list) 1315 buf[seb->pnum] = 1; 1316 1317 err = 0; 1318 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1319 if (!buf[pnum]) { 1320 ubi_err("PEB %d is not referred", pnum); 1321 err = 1; 1322 } 1323 1324 kfree(buf); 1325 if (err) 1326 goto out; 1327 return 0; 1328 1329bad_seb: 1330 ubi_err("bad scanning information about LEB %d", seb->lnum); 1331 ubi_dbg_dump_seb(seb, 0); 1332 ubi_dbg_dump_sv(sv); 1333 goto out; 1334 1335bad_sv: 1336 ubi_err("bad scanning information about volume %d", sv->vol_id); 1337 ubi_dbg_dump_sv(sv); 1338 goto out; 1339 1340bad_vid_hdr: 1341 ubi_err("bad scanning information about volume %d", sv->vol_id); 1342 ubi_dbg_dump_sv(sv); 1343 ubi_dbg_dump_vid_hdr(vidh); 1344 1345out: 1346 ubi_dbg_dump_stack(); 1347 return -EINVAL; 1348} 1349 1350#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */