at v2.6.35-rc6 5983 lines 148 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/slab.h> 84#include <linux/sched.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <linux/rtnetlink.h> 101#include <linux/proc_fs.h> 102#include <linux/seq_file.h> 103#include <linux/stat.h> 104#include <linux/if_bridge.h> 105#include <linux/if_macvlan.h> 106#include <net/dst.h> 107#include <net/pkt_sched.h> 108#include <net/checksum.h> 109#include <net/xfrm.h> 110#include <linux/highmem.h> 111#include <linux/init.h> 112#include <linux/kmod.h> 113#include <linux/module.h> 114#include <linux/netpoll.h> 115#include <linux/rcupdate.h> 116#include <linux/delay.h> 117#include <net/wext.h> 118#include <net/iw_handler.h> 119#include <asm/current.h> 120#include <linux/audit.h> 121#include <linux/dmaengine.h> 122#include <linux/err.h> 123#include <linux/ctype.h> 124#include <linux/if_arp.h> 125#include <linux/if_vlan.h> 126#include <linux/ip.h> 127#include <net/ip.h> 128#include <linux/ipv6.h> 129#include <linux/in.h> 130#include <linux/jhash.h> 131#include <linux/random.h> 132#include <trace/events/napi.h> 133#include <linux/pci.h> 134 135#include "net-sysfs.h" 136 137/* Instead of increasing this, you should create a hash table. */ 138#define MAX_GRO_SKBS 8 139 140/* This should be increased if a protocol with a bigger head is added. */ 141#define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143/* 144 * The list of packet types we will receive (as opposed to discard) 145 * and the routines to invoke. 146 * 147 * Why 16. Because with 16 the only overlap we get on a hash of the 148 * low nibble of the protocol value is RARP/SNAP/X.25. 149 * 150 * NOTE: That is no longer true with the addition of VLAN tags. Not 151 * sure which should go first, but I bet it won't make much 152 * difference if we are running VLANs. The good news is that 153 * this protocol won't be in the list unless compiled in, so 154 * the average user (w/out VLANs) will not be adversely affected. 155 * --BLG 156 * 157 * 0800 IP 158 * 8100 802.1Q VLAN 159 * 0001 802.3 160 * 0002 AX.25 161 * 0004 802.2 162 * 8035 RARP 163 * 0005 SNAP 164 * 0805 X.25 165 * 0806 ARP 166 * 8137 IPX 167 * 0009 Localtalk 168 * 86DD IPv6 169 */ 170 171#define PTYPE_HASH_SIZE (16) 172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 173 174static DEFINE_SPINLOCK(ptype_lock); 175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 176static struct list_head ptype_all __read_mostly; /* Taps */ 177 178/* 179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 180 * semaphore. 181 * 182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 183 * 184 * Writers must hold the rtnl semaphore while they loop through the 185 * dev_base_head list, and hold dev_base_lock for writing when they do the 186 * actual updates. This allows pure readers to access the list even 187 * while a writer is preparing to update it. 188 * 189 * To put it another way, dev_base_lock is held for writing only to 190 * protect against pure readers; the rtnl semaphore provides the 191 * protection against other writers. 192 * 193 * See, for example usages, register_netdevice() and 194 * unregister_netdevice(), which must be called with the rtnl 195 * semaphore held. 196 */ 197DEFINE_RWLOCK(dev_base_lock); 198EXPORT_SYMBOL(dev_base_lock); 199 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201{ 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204} 205 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207{ 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209} 210 211static inline void rps_lock(struct softnet_data *sd) 212{ 213#ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215#endif 216} 217 218static inline void rps_unlock(struct softnet_data *sd) 219{ 220#ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222#endif 223} 224 225/* Device list insertion */ 226static int list_netdevice(struct net_device *dev) 227{ 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 return 0; 239} 240 241/* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244static void unlist_netdevice(struct net_device *dev) 245{ 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254} 255 256/* 257 * Our notifier list 258 */ 259 260static RAW_NOTIFIER_HEAD(netdev_chain); 261 262/* 263 * Device drivers call our routines to queue packets here. We empty the 264 * queue in the local softnet handler. 265 */ 266 267DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 268EXPORT_PER_CPU_SYMBOL(softnet_data); 269 270#ifdef CONFIG_LOCKDEP 271/* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 291 ARPHRD_VOID, ARPHRD_NONE}; 292 293static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 309 "_xmit_VOID", "_xmit_NONE"}; 310 311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315{ 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323} 324 325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327{ 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333} 334 335static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336{ 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343} 344#else 345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347{ 348} 349static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350{ 351} 352#endif 353 354/******************************************************************************* 355 356 Protocol management and registration routines 357 358*******************************************************************************/ 359 360/* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376/** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389void dev_add_pack(struct packet_type *pt) 390{ 391 int hash; 392 393 spin_lock_bh(&ptype_lock); 394 if (pt->type == htons(ETH_P_ALL)) 395 list_add_rcu(&pt->list, &ptype_all); 396 else { 397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 398 list_add_rcu(&pt->list, &ptype_base[hash]); 399 } 400 spin_unlock_bh(&ptype_lock); 401} 402EXPORT_SYMBOL(dev_add_pack); 403 404/** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417void __dev_remove_pack(struct packet_type *pt) 418{ 419 struct list_head *head; 420 struct packet_type *pt1; 421 422 spin_lock_bh(&ptype_lock); 423 424 if (pt->type == htons(ETH_P_ALL)) 425 head = &ptype_all; 426 else 427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437out: 438 spin_unlock_bh(&ptype_lock); 439} 440EXPORT_SYMBOL(__dev_remove_pack); 441 442/** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454void dev_remove_pack(struct packet_type *pt) 455{ 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459} 460EXPORT_SYMBOL(dev_remove_pack); 461 462/****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466*******************************************************************************/ 467 468/* Boot time configuration table */ 469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471/** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480static int netdev_boot_setup_add(char *name, struct ifmap *map) 481{ 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496} 497 498/** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507int netdev_boot_setup_check(struct net_device *dev) 508{ 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523} 524EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527/** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537unsigned long netdev_boot_base(const char *prefix, int unit) 538{ 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556} 557 558/* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561int __init netdev_boot_setup(char *str) 562{ 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583} 584 585__setup("netdev=", netdev_boot_setup); 586 587/******************************************************************************* 588 589 Device Interface Subroutines 590 591*******************************************************************************/ 592 593/** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605struct net_device *__dev_get_by_name(struct net *net, const char *name) 606{ 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616} 617EXPORT_SYMBOL(__dev_get_by_name); 618 619/** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632{ 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642} 643EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645/** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657struct net_device *dev_get_by_name(struct net *net, const char *name) 658{ 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667} 668EXPORT_SYMBOL(dev_get_by_name); 669 670/** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683{ 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693} 694EXPORT_SYMBOL(__dev_get_by_index); 695 696/** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708{ 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718} 719EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722/** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733struct net_device *dev_get_by_index(struct net *net, int ifindex) 734{ 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743} 744EXPORT_SYMBOL(dev_get_by_index); 745 746/** 747 * dev_getbyhwaddr - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. The caller must hold the 754 * rtnl semaphore. The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 * BUGS: 758 * If the API was consistent this would be __dev_get_by_hwaddr 759 */ 760 761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 762{ 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 767 for_each_netdev(net, dev) 768 if (dev->type == type && 769 !memcmp(dev->dev_addr, ha, dev->addr_len)) 770 return dev; 771 772 return NULL; 773} 774EXPORT_SYMBOL(dev_getbyhwaddr); 775 776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 777{ 778 struct net_device *dev; 779 780 ASSERT_RTNL(); 781 for_each_netdev(net, dev) 782 if (dev->type == type) 783 return dev; 784 785 return NULL; 786} 787EXPORT_SYMBOL(__dev_getfirstbyhwtype); 788 789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 790{ 791 struct net_device *dev, *ret = NULL; 792 793 rcu_read_lock(); 794 for_each_netdev_rcu(net, dev) 795 if (dev->type == type) { 796 dev_hold(dev); 797 ret = dev; 798 break; 799 } 800 rcu_read_unlock(); 801 return ret; 802} 803EXPORT_SYMBOL(dev_getfirstbyhwtype); 804 805/** 806 * dev_get_by_flags - find any device with given flags 807 * @net: the applicable net namespace 808 * @if_flags: IFF_* values 809 * @mask: bitmask of bits in if_flags to check 810 * 811 * Search for any interface with the given flags. Returns NULL if a device 812 * is not found or a pointer to the device. The device returned has 813 * had a reference added and the pointer is safe until the user calls 814 * dev_put to indicate they have finished with it. 815 */ 816 817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 818 unsigned short mask) 819{ 820 struct net_device *dev, *ret; 821 822 ret = NULL; 823 rcu_read_lock(); 824 for_each_netdev_rcu(net, dev) { 825 if (((dev->flags ^ if_flags) & mask) == 0) { 826 dev_hold(dev); 827 ret = dev; 828 break; 829 } 830 } 831 rcu_read_unlock(); 832 return ret; 833} 834EXPORT_SYMBOL(dev_get_by_flags); 835 836/** 837 * dev_valid_name - check if name is okay for network device 838 * @name: name string 839 * 840 * Network device names need to be valid file names to 841 * to allow sysfs to work. We also disallow any kind of 842 * whitespace. 843 */ 844int dev_valid_name(const char *name) 845{ 846 if (*name == '\0') 847 return 0; 848 if (strlen(name) >= IFNAMSIZ) 849 return 0; 850 if (!strcmp(name, ".") || !strcmp(name, "..")) 851 return 0; 852 853 while (*name) { 854 if (*name == '/' || isspace(*name)) 855 return 0; 856 name++; 857 } 858 return 1; 859} 860EXPORT_SYMBOL(dev_valid_name); 861 862/** 863 * __dev_alloc_name - allocate a name for a device 864 * @net: network namespace to allocate the device name in 865 * @name: name format string 866 * @buf: scratch buffer and result name string 867 * 868 * Passed a format string - eg "lt%d" it will try and find a suitable 869 * id. It scans list of devices to build up a free map, then chooses 870 * the first empty slot. The caller must hold the dev_base or rtnl lock 871 * while allocating the name and adding the device in order to avoid 872 * duplicates. 873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 874 * Returns the number of the unit assigned or a negative errno code. 875 */ 876 877static int __dev_alloc_name(struct net *net, const char *name, char *buf) 878{ 879 int i = 0; 880 const char *p; 881 const int max_netdevices = 8*PAGE_SIZE; 882 unsigned long *inuse; 883 struct net_device *d; 884 885 p = strnchr(name, IFNAMSIZ-1, '%'); 886 if (p) { 887 /* 888 * Verify the string as this thing may have come from 889 * the user. There must be either one "%d" and no other "%" 890 * characters. 891 */ 892 if (p[1] != 'd' || strchr(p + 2, '%')) 893 return -EINVAL; 894 895 /* Use one page as a bit array of possible slots */ 896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 897 if (!inuse) 898 return -ENOMEM; 899 900 for_each_netdev(net, d) { 901 if (!sscanf(d->name, name, &i)) 902 continue; 903 if (i < 0 || i >= max_netdevices) 904 continue; 905 906 /* avoid cases where sscanf is not exact inverse of printf */ 907 snprintf(buf, IFNAMSIZ, name, i); 908 if (!strncmp(buf, d->name, IFNAMSIZ)) 909 set_bit(i, inuse); 910 } 911 912 i = find_first_zero_bit(inuse, max_netdevices); 913 free_page((unsigned long) inuse); 914 } 915 916 if (buf != name) 917 snprintf(buf, IFNAMSIZ, name, i); 918 if (!__dev_get_by_name(net, buf)) 919 return i; 920 921 /* It is possible to run out of possible slots 922 * when the name is long and there isn't enough space left 923 * for the digits, or if all bits are used. 924 */ 925 return -ENFILE; 926} 927 928/** 929 * dev_alloc_name - allocate a name for a device 930 * @dev: device 931 * @name: name format string 932 * 933 * Passed a format string - eg "lt%d" it will try and find a suitable 934 * id. It scans list of devices to build up a free map, then chooses 935 * the first empty slot. The caller must hold the dev_base or rtnl lock 936 * while allocating the name and adding the device in order to avoid 937 * duplicates. 938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 939 * Returns the number of the unit assigned or a negative errno code. 940 */ 941 942int dev_alloc_name(struct net_device *dev, const char *name) 943{ 944 char buf[IFNAMSIZ]; 945 struct net *net; 946 int ret; 947 948 BUG_ON(!dev_net(dev)); 949 net = dev_net(dev); 950 ret = __dev_alloc_name(net, name, buf); 951 if (ret >= 0) 952 strlcpy(dev->name, buf, IFNAMSIZ); 953 return ret; 954} 955EXPORT_SYMBOL(dev_alloc_name); 956 957static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 958{ 959 struct net *net; 960 961 BUG_ON(!dev_net(dev)); 962 net = dev_net(dev); 963 964 if (!dev_valid_name(name)) 965 return -EINVAL; 966 967 if (fmt && strchr(name, '%')) 968 return dev_alloc_name(dev, name); 969 else if (__dev_get_by_name(net, name)) 970 return -EEXIST; 971 else if (dev->name != name) 972 strlcpy(dev->name, name, IFNAMSIZ); 973 974 return 0; 975} 976 977/** 978 * dev_change_name - change name of a device 979 * @dev: device 980 * @newname: name (or format string) must be at least IFNAMSIZ 981 * 982 * Change name of a device, can pass format strings "eth%d". 983 * for wildcarding. 984 */ 985int dev_change_name(struct net_device *dev, const char *newname) 986{ 987 char oldname[IFNAMSIZ]; 988 int err = 0; 989 int ret; 990 struct net *net; 991 992 ASSERT_RTNL(); 993 BUG_ON(!dev_net(dev)); 994 995 net = dev_net(dev); 996 if (dev->flags & IFF_UP) 997 return -EBUSY; 998 999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1000 return 0; 1001 1002 memcpy(oldname, dev->name, IFNAMSIZ); 1003 1004 err = dev_get_valid_name(dev, newname, 1); 1005 if (err < 0) 1006 return err; 1007 1008rollback: 1009 ret = device_rename(&dev->dev, dev->name); 1010 if (ret) { 1011 memcpy(dev->name, oldname, IFNAMSIZ); 1012 return ret; 1013 } 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_del(&dev->name_hlist); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 synchronize_rcu(); 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1026 ret = notifier_to_errno(ret); 1027 1028 if (ret) { 1029 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1030 if (err >= 0) { 1031 err = ret; 1032 memcpy(dev->name, oldname, IFNAMSIZ); 1033 goto rollback; 1034 } else { 1035 printk(KERN_ERR 1036 "%s: name change rollback failed: %d.\n", 1037 dev->name, ret); 1038 } 1039 } 1040 1041 return err; 1042} 1043 1044/** 1045 * dev_set_alias - change ifalias of a device 1046 * @dev: device 1047 * @alias: name up to IFALIASZ 1048 * @len: limit of bytes to copy from info 1049 * 1050 * Set ifalias for a device, 1051 */ 1052int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1053{ 1054 ASSERT_RTNL(); 1055 1056 if (len >= IFALIASZ) 1057 return -EINVAL; 1058 1059 if (!len) { 1060 if (dev->ifalias) { 1061 kfree(dev->ifalias); 1062 dev->ifalias = NULL; 1063 } 1064 return 0; 1065 } 1066 1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1068 if (!dev->ifalias) 1069 return -ENOMEM; 1070 1071 strlcpy(dev->ifalias, alias, len+1); 1072 return len; 1073} 1074 1075 1076/** 1077 * netdev_features_change - device changes features 1078 * @dev: device to cause notification 1079 * 1080 * Called to indicate a device has changed features. 1081 */ 1082void netdev_features_change(struct net_device *dev) 1083{ 1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1085} 1086EXPORT_SYMBOL(netdev_features_change); 1087 1088/** 1089 * netdev_state_change - device changes state 1090 * @dev: device to cause notification 1091 * 1092 * Called to indicate a device has changed state. This function calls 1093 * the notifier chains for netdev_chain and sends a NEWLINK message 1094 * to the routing socket. 1095 */ 1096void netdev_state_change(struct net_device *dev) 1097{ 1098 if (dev->flags & IFF_UP) { 1099 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1101 } 1102} 1103EXPORT_SYMBOL(netdev_state_change); 1104 1105int netdev_bonding_change(struct net_device *dev, unsigned long event) 1106{ 1107 return call_netdevice_notifiers(event, dev); 1108} 1109EXPORT_SYMBOL(netdev_bonding_change); 1110 1111/** 1112 * dev_load - load a network module 1113 * @net: the applicable net namespace 1114 * @name: name of interface 1115 * 1116 * If a network interface is not present and the process has suitable 1117 * privileges this function loads the module. If module loading is not 1118 * available in this kernel then it becomes a nop. 1119 */ 1120 1121void dev_load(struct net *net, const char *name) 1122{ 1123 struct net_device *dev; 1124 1125 rcu_read_lock(); 1126 dev = dev_get_by_name_rcu(net, name); 1127 rcu_read_unlock(); 1128 1129 if (!dev && capable(CAP_NET_ADMIN)) 1130 request_module("%s", name); 1131} 1132EXPORT_SYMBOL(dev_load); 1133 1134static int __dev_open(struct net_device *dev) 1135{ 1136 const struct net_device_ops *ops = dev->netdev_ops; 1137 int ret; 1138 1139 ASSERT_RTNL(); 1140 1141 /* 1142 * Is it even present? 1143 */ 1144 if (!netif_device_present(dev)) 1145 return -ENODEV; 1146 1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1148 ret = notifier_to_errno(ret); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * Call device private open method 1154 */ 1155 set_bit(__LINK_STATE_START, &dev->state); 1156 1157 if (ops->ndo_validate_addr) 1158 ret = ops->ndo_validate_addr(dev); 1159 1160 if (!ret && ops->ndo_open) 1161 ret = ops->ndo_open(dev); 1162 1163 /* 1164 * If it went open OK then: 1165 */ 1166 1167 if (ret) 1168 clear_bit(__LINK_STATE_START, &dev->state); 1169 else { 1170 /* 1171 * Set the flags. 1172 */ 1173 dev->flags |= IFF_UP; 1174 1175 /* 1176 * Enable NET_DMA 1177 */ 1178 net_dmaengine_get(); 1179 1180 /* 1181 * Initialize multicasting status 1182 */ 1183 dev_set_rx_mode(dev); 1184 1185 /* 1186 * Wakeup transmit queue engine 1187 */ 1188 dev_activate(dev); 1189 } 1190 1191 return ret; 1192} 1193 1194/** 1195 * dev_open - prepare an interface for use. 1196 * @dev: device to open 1197 * 1198 * Takes a device from down to up state. The device's private open 1199 * function is invoked and then the multicast lists are loaded. Finally 1200 * the device is moved into the up state and a %NETDEV_UP message is 1201 * sent to the netdev notifier chain. 1202 * 1203 * Calling this function on an active interface is a nop. On a failure 1204 * a negative errno code is returned. 1205 */ 1206int dev_open(struct net_device *dev) 1207{ 1208 int ret; 1209 1210 /* 1211 * Is it already up? 1212 */ 1213 if (dev->flags & IFF_UP) 1214 return 0; 1215 1216 /* 1217 * Open device 1218 */ 1219 ret = __dev_open(dev); 1220 if (ret < 0) 1221 return ret; 1222 1223 /* 1224 * ... and announce new interface. 1225 */ 1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1227 call_netdevice_notifiers(NETDEV_UP, dev); 1228 1229 return ret; 1230} 1231EXPORT_SYMBOL(dev_open); 1232 1233static int __dev_close(struct net_device *dev) 1234{ 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 ASSERT_RTNL(); 1238 might_sleep(); 1239 1240 /* 1241 * Tell people we are going down, so that they can 1242 * prepare to death, when device is still operating. 1243 */ 1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1245 1246 clear_bit(__LINK_STATE_START, &dev->state); 1247 1248 /* Synchronize to scheduled poll. We cannot touch poll list, 1249 * it can be even on different cpu. So just clear netif_running(). 1250 * 1251 * dev->stop() will invoke napi_disable() on all of it's 1252 * napi_struct instances on this device. 1253 */ 1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1255 1256 dev_deactivate(dev); 1257 1258 /* 1259 * Call the device specific close. This cannot fail. 1260 * Only if device is UP 1261 * 1262 * We allow it to be called even after a DETACH hot-plug 1263 * event. 1264 */ 1265 if (ops->ndo_stop) 1266 ops->ndo_stop(dev); 1267 1268 /* 1269 * Device is now down. 1270 */ 1271 1272 dev->flags &= ~IFF_UP; 1273 1274 /* 1275 * Shutdown NET_DMA 1276 */ 1277 net_dmaengine_put(); 1278 1279 return 0; 1280} 1281 1282/** 1283 * dev_close - shutdown an interface. 1284 * @dev: device to shutdown 1285 * 1286 * This function moves an active device into down state. A 1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1289 * chain. 1290 */ 1291int dev_close(struct net_device *dev) 1292{ 1293 if (!(dev->flags & IFF_UP)) 1294 return 0; 1295 1296 __dev_close(dev); 1297 1298 /* 1299 * Tell people we are down 1300 */ 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1302 call_netdevice_notifiers(NETDEV_DOWN, dev); 1303 1304 return 0; 1305} 1306EXPORT_SYMBOL(dev_close); 1307 1308 1309/** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317void dev_disable_lro(struct net_device *dev) 1318{ 1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1320 dev->ethtool_ops->set_flags) { 1321 u32 flags = dev->ethtool_ops->get_flags(dev); 1322 if (flags & ETH_FLAG_LRO) { 1323 flags &= ~ETH_FLAG_LRO; 1324 dev->ethtool_ops->set_flags(dev, flags); 1325 } 1326 } 1327 WARN_ON(dev->features & NETIF_F_LRO); 1328} 1329EXPORT_SYMBOL(dev_disable_lro); 1330 1331 1332static int dev_boot_phase = 1; 1333 1334/* 1335 * Device change register/unregister. These are not inline or static 1336 * as we export them to the world. 1337 */ 1338 1339/** 1340 * register_netdevice_notifier - register a network notifier block 1341 * @nb: notifier 1342 * 1343 * Register a notifier to be called when network device events occur. 1344 * The notifier passed is linked into the kernel structures and must 1345 * not be reused until it has been unregistered. A negative errno code 1346 * is returned on a failure. 1347 * 1348 * When registered all registration and up events are replayed 1349 * to the new notifier to allow device to have a race free 1350 * view of the network device list. 1351 */ 1352 1353int register_netdevice_notifier(struct notifier_block *nb) 1354{ 1355 struct net_device *dev; 1356 struct net_device *last; 1357 struct net *net; 1358 int err; 1359 1360 rtnl_lock(); 1361 err = raw_notifier_chain_register(&netdev_chain, nb); 1362 if (err) 1363 goto unlock; 1364 if (dev_boot_phase) 1365 goto unlock; 1366 for_each_net(net) { 1367 for_each_netdev(net, dev) { 1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1369 err = notifier_to_errno(err); 1370 if (err) 1371 goto rollback; 1372 1373 if (!(dev->flags & IFF_UP)) 1374 continue; 1375 1376 nb->notifier_call(nb, NETDEV_UP, dev); 1377 } 1378 } 1379 1380unlock: 1381 rtnl_unlock(); 1382 return err; 1383 1384rollback: 1385 last = dev; 1386 for_each_net(net) { 1387 for_each_netdev(net, dev) { 1388 if (dev == last) 1389 break; 1390 1391 if (dev->flags & IFF_UP) { 1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1393 nb->notifier_call(nb, NETDEV_DOWN, dev); 1394 } 1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1397 } 1398 } 1399 1400 raw_notifier_chain_unregister(&netdev_chain, nb); 1401 goto unlock; 1402} 1403EXPORT_SYMBOL(register_netdevice_notifier); 1404 1405/** 1406 * unregister_netdevice_notifier - unregister a network notifier block 1407 * @nb: notifier 1408 * 1409 * Unregister a notifier previously registered by 1410 * register_netdevice_notifier(). The notifier is unlinked into the 1411 * kernel structures and may then be reused. A negative errno code 1412 * is returned on a failure. 1413 */ 1414 1415int unregister_netdevice_notifier(struct notifier_block *nb) 1416{ 1417 int err; 1418 1419 rtnl_lock(); 1420 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1421 rtnl_unlock(); 1422 return err; 1423} 1424EXPORT_SYMBOL(unregister_netdevice_notifier); 1425 1426/** 1427 * call_netdevice_notifiers - call all network notifier blocks 1428 * @val: value passed unmodified to notifier function 1429 * @dev: net_device pointer passed unmodified to notifier function 1430 * 1431 * Call all network notifier blocks. Parameters and return value 1432 * are as for raw_notifier_call_chain(). 1433 */ 1434 1435int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1436{ 1437 ASSERT_RTNL(); 1438 return raw_notifier_call_chain(&netdev_chain, val, dev); 1439} 1440 1441/* When > 0 there are consumers of rx skb time stamps */ 1442static atomic_t netstamp_needed = ATOMIC_INIT(0); 1443 1444void net_enable_timestamp(void) 1445{ 1446 atomic_inc(&netstamp_needed); 1447} 1448EXPORT_SYMBOL(net_enable_timestamp); 1449 1450void net_disable_timestamp(void) 1451{ 1452 atomic_dec(&netstamp_needed); 1453} 1454EXPORT_SYMBOL(net_disable_timestamp); 1455 1456static inline void net_timestamp_set(struct sk_buff *skb) 1457{ 1458 if (atomic_read(&netstamp_needed)) 1459 __net_timestamp(skb); 1460 else 1461 skb->tstamp.tv64 = 0; 1462} 1463 1464static inline void net_timestamp_check(struct sk_buff *skb) 1465{ 1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1467 __net_timestamp(skb); 1468} 1469 1470/** 1471 * dev_forward_skb - loopback an skb to another netif 1472 * 1473 * @dev: destination network device 1474 * @skb: buffer to forward 1475 * 1476 * return values: 1477 * NET_RX_SUCCESS (no congestion) 1478 * NET_RX_DROP (packet was dropped, but freed) 1479 * 1480 * dev_forward_skb can be used for injecting an skb from the 1481 * start_xmit function of one device into the receive queue 1482 * of another device. 1483 * 1484 * The receiving device may be in another namespace, so 1485 * we have to clear all information in the skb that could 1486 * impact namespace isolation. 1487 */ 1488int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1489{ 1490 skb_orphan(skb); 1491 1492 if (!(dev->flags & IFF_UP) || 1493 (skb->len > (dev->mtu + dev->hard_header_len))) { 1494 kfree_skb(skb); 1495 return NET_RX_DROP; 1496 } 1497 skb_set_dev(skb, dev); 1498 skb->tstamp.tv64 = 0; 1499 skb->pkt_type = PACKET_HOST; 1500 skb->protocol = eth_type_trans(skb, dev); 1501 return netif_rx(skb); 1502} 1503EXPORT_SYMBOL_GPL(dev_forward_skb); 1504 1505/* 1506 * Support routine. Sends outgoing frames to any network 1507 * taps currently in use. 1508 */ 1509 1510static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1511{ 1512 struct packet_type *ptype; 1513 1514#ifdef CONFIG_NET_CLS_ACT 1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1516 net_timestamp_set(skb); 1517#else 1518 net_timestamp_set(skb); 1519#endif 1520 1521 rcu_read_lock(); 1522 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1523 /* Never send packets back to the socket 1524 * they originated from - MvS (miquels@drinkel.ow.org) 1525 */ 1526 if ((ptype->dev == dev || !ptype->dev) && 1527 (ptype->af_packet_priv == NULL || 1528 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1530 if (!skb2) 1531 break; 1532 1533 /* skb->nh should be correctly 1534 set by sender, so that the second statement is 1535 just protection against buggy protocols. 1536 */ 1537 skb_reset_mac_header(skb2); 1538 1539 if (skb_network_header(skb2) < skb2->data || 1540 skb2->network_header > skb2->tail) { 1541 if (net_ratelimit()) 1542 printk(KERN_CRIT "protocol %04x is " 1543 "buggy, dev %s\n", 1544 skb2->protocol, dev->name); 1545 skb_reset_network_header(skb2); 1546 } 1547 1548 skb2->transport_header = skb2->network_header; 1549 skb2->pkt_type = PACKET_OUTGOING; 1550 ptype->func(skb2, skb->dev, ptype, skb->dev); 1551 } 1552 } 1553 rcu_read_unlock(); 1554} 1555 1556/* 1557 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1558 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1559 */ 1560void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1561{ 1562 unsigned int real_num = dev->real_num_tx_queues; 1563 1564 if (unlikely(txq > dev->num_tx_queues)) 1565 ; 1566 else if (txq > real_num) 1567 dev->real_num_tx_queues = txq; 1568 else if (txq < real_num) { 1569 dev->real_num_tx_queues = txq; 1570 qdisc_reset_all_tx_gt(dev, txq); 1571 } 1572} 1573EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1574 1575static inline void __netif_reschedule(struct Qdisc *q) 1576{ 1577 struct softnet_data *sd; 1578 unsigned long flags; 1579 1580 local_irq_save(flags); 1581 sd = &__get_cpu_var(softnet_data); 1582 q->next_sched = NULL; 1583 *sd->output_queue_tailp = q; 1584 sd->output_queue_tailp = &q->next_sched; 1585 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1586 local_irq_restore(flags); 1587} 1588 1589void __netif_schedule(struct Qdisc *q) 1590{ 1591 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1592 __netif_reschedule(q); 1593} 1594EXPORT_SYMBOL(__netif_schedule); 1595 1596void dev_kfree_skb_irq(struct sk_buff *skb) 1597{ 1598 if (atomic_dec_and_test(&skb->users)) { 1599 struct softnet_data *sd; 1600 unsigned long flags; 1601 1602 local_irq_save(flags); 1603 sd = &__get_cpu_var(softnet_data); 1604 skb->next = sd->completion_queue; 1605 sd->completion_queue = skb; 1606 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1607 local_irq_restore(flags); 1608 } 1609} 1610EXPORT_SYMBOL(dev_kfree_skb_irq); 1611 1612void dev_kfree_skb_any(struct sk_buff *skb) 1613{ 1614 if (in_irq() || irqs_disabled()) 1615 dev_kfree_skb_irq(skb); 1616 else 1617 dev_kfree_skb(skb); 1618} 1619EXPORT_SYMBOL(dev_kfree_skb_any); 1620 1621 1622/** 1623 * netif_device_detach - mark device as removed 1624 * @dev: network device 1625 * 1626 * Mark device as removed from system and therefore no longer available. 1627 */ 1628void netif_device_detach(struct net_device *dev) 1629{ 1630 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1631 netif_running(dev)) { 1632 netif_tx_stop_all_queues(dev); 1633 } 1634} 1635EXPORT_SYMBOL(netif_device_detach); 1636 1637/** 1638 * netif_device_attach - mark device as attached 1639 * @dev: network device 1640 * 1641 * Mark device as attached from system and restart if needed. 1642 */ 1643void netif_device_attach(struct net_device *dev) 1644{ 1645 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1646 netif_running(dev)) { 1647 netif_tx_wake_all_queues(dev); 1648 __netdev_watchdog_up(dev); 1649 } 1650} 1651EXPORT_SYMBOL(netif_device_attach); 1652 1653static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1654{ 1655 return ((features & NETIF_F_GEN_CSUM) || 1656 ((features & NETIF_F_IP_CSUM) && 1657 protocol == htons(ETH_P_IP)) || 1658 ((features & NETIF_F_IPV6_CSUM) && 1659 protocol == htons(ETH_P_IPV6)) || 1660 ((features & NETIF_F_FCOE_CRC) && 1661 protocol == htons(ETH_P_FCOE))); 1662} 1663 1664static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1665{ 1666 if (can_checksum_protocol(dev->features, skb->protocol)) 1667 return true; 1668 1669 if (skb->protocol == htons(ETH_P_8021Q)) { 1670 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1671 if (can_checksum_protocol(dev->features & dev->vlan_features, 1672 veh->h_vlan_encapsulated_proto)) 1673 return true; 1674 } 1675 1676 return false; 1677} 1678 1679/** 1680 * skb_dev_set -- assign a new device to a buffer 1681 * @skb: buffer for the new device 1682 * @dev: network device 1683 * 1684 * If an skb is owned by a device already, we have to reset 1685 * all data private to the namespace a device belongs to 1686 * before assigning it a new device. 1687 */ 1688#ifdef CONFIG_NET_NS 1689void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1690{ 1691 skb_dst_drop(skb); 1692 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1693 secpath_reset(skb); 1694 nf_reset(skb); 1695 skb_init_secmark(skb); 1696 skb->mark = 0; 1697 skb->priority = 0; 1698 skb->nf_trace = 0; 1699 skb->ipvs_property = 0; 1700#ifdef CONFIG_NET_SCHED 1701 skb->tc_index = 0; 1702#endif 1703 } 1704 skb->dev = dev; 1705} 1706EXPORT_SYMBOL(skb_set_dev); 1707#endif /* CONFIG_NET_NS */ 1708 1709/* 1710 * Invalidate hardware checksum when packet is to be mangled, and 1711 * complete checksum manually on outgoing path. 1712 */ 1713int skb_checksum_help(struct sk_buff *skb) 1714{ 1715 __wsum csum; 1716 int ret = 0, offset; 1717 1718 if (skb->ip_summed == CHECKSUM_COMPLETE) 1719 goto out_set_summed; 1720 1721 if (unlikely(skb_shinfo(skb)->gso_size)) { 1722 /* Let GSO fix up the checksum. */ 1723 goto out_set_summed; 1724 } 1725 1726 offset = skb->csum_start - skb_headroom(skb); 1727 BUG_ON(offset >= skb_headlen(skb)); 1728 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1729 1730 offset += skb->csum_offset; 1731 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1732 1733 if (skb_cloned(skb) && 1734 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1735 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1736 if (ret) 1737 goto out; 1738 } 1739 1740 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1741out_set_summed: 1742 skb->ip_summed = CHECKSUM_NONE; 1743out: 1744 return ret; 1745} 1746EXPORT_SYMBOL(skb_checksum_help); 1747 1748/** 1749 * skb_gso_segment - Perform segmentation on skb. 1750 * @skb: buffer to segment 1751 * @features: features for the output path (see dev->features) 1752 * 1753 * This function segments the given skb and returns a list of segments. 1754 * 1755 * It may return NULL if the skb requires no segmentation. This is 1756 * only possible when GSO is used for verifying header integrity. 1757 */ 1758struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1759{ 1760 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1761 struct packet_type *ptype; 1762 __be16 type = skb->protocol; 1763 int err; 1764 1765 skb_reset_mac_header(skb); 1766 skb->mac_len = skb->network_header - skb->mac_header; 1767 __skb_pull(skb, skb->mac_len); 1768 1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1770 struct net_device *dev = skb->dev; 1771 struct ethtool_drvinfo info = {}; 1772 1773 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1774 dev->ethtool_ops->get_drvinfo(dev, &info); 1775 1776 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1777 "ip_summed=%d", 1778 info.driver, dev ? dev->features : 0L, 1779 skb->sk ? skb->sk->sk_route_caps : 0L, 1780 skb->len, skb->data_len, skb->ip_summed); 1781 1782 if (skb_header_cloned(skb) && 1783 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1784 return ERR_PTR(err); 1785 } 1786 1787 rcu_read_lock(); 1788 list_for_each_entry_rcu(ptype, 1789 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1790 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1791 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1792 err = ptype->gso_send_check(skb); 1793 segs = ERR_PTR(err); 1794 if (err || skb_gso_ok(skb, features)) 1795 break; 1796 __skb_push(skb, (skb->data - 1797 skb_network_header(skb))); 1798 } 1799 segs = ptype->gso_segment(skb, features); 1800 break; 1801 } 1802 } 1803 rcu_read_unlock(); 1804 1805 __skb_push(skb, skb->data - skb_mac_header(skb)); 1806 1807 return segs; 1808} 1809EXPORT_SYMBOL(skb_gso_segment); 1810 1811/* Take action when hardware reception checksum errors are detected. */ 1812#ifdef CONFIG_BUG 1813void netdev_rx_csum_fault(struct net_device *dev) 1814{ 1815 if (net_ratelimit()) { 1816 printk(KERN_ERR "%s: hw csum failure.\n", 1817 dev ? dev->name : "<unknown>"); 1818 dump_stack(); 1819 } 1820} 1821EXPORT_SYMBOL(netdev_rx_csum_fault); 1822#endif 1823 1824/* Actually, we should eliminate this check as soon as we know, that: 1825 * 1. IOMMU is present and allows to map all the memory. 1826 * 2. No high memory really exists on this machine. 1827 */ 1828 1829static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1830{ 1831#ifdef CONFIG_HIGHMEM 1832 int i; 1833 if (!(dev->features & NETIF_F_HIGHDMA)) { 1834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1835 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1836 return 1; 1837 } 1838 1839 if (PCI_DMA_BUS_IS_PHYS) { 1840 struct device *pdev = dev->dev.parent; 1841 1842 if (!pdev) 1843 return 0; 1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1845 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1846 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1847 return 1; 1848 } 1849 } 1850#endif 1851 return 0; 1852} 1853 1854struct dev_gso_cb { 1855 void (*destructor)(struct sk_buff *skb); 1856}; 1857 1858#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1859 1860static void dev_gso_skb_destructor(struct sk_buff *skb) 1861{ 1862 struct dev_gso_cb *cb; 1863 1864 do { 1865 struct sk_buff *nskb = skb->next; 1866 1867 skb->next = nskb->next; 1868 nskb->next = NULL; 1869 kfree_skb(nskb); 1870 } while (skb->next); 1871 1872 cb = DEV_GSO_CB(skb); 1873 if (cb->destructor) 1874 cb->destructor(skb); 1875} 1876 1877/** 1878 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1879 * @skb: buffer to segment 1880 * 1881 * This function segments the given skb and stores the list of segments 1882 * in skb->next. 1883 */ 1884static int dev_gso_segment(struct sk_buff *skb) 1885{ 1886 struct net_device *dev = skb->dev; 1887 struct sk_buff *segs; 1888 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1889 NETIF_F_SG : 0); 1890 1891 segs = skb_gso_segment(skb, features); 1892 1893 /* Verifying header integrity only. */ 1894 if (!segs) 1895 return 0; 1896 1897 if (IS_ERR(segs)) 1898 return PTR_ERR(segs); 1899 1900 skb->next = segs; 1901 DEV_GSO_CB(skb)->destructor = skb->destructor; 1902 skb->destructor = dev_gso_skb_destructor; 1903 1904 return 0; 1905} 1906 1907/* 1908 * Try to orphan skb early, right before transmission by the device. 1909 * We cannot orphan skb if tx timestamp is requested, since 1910 * drivers need to call skb_tstamp_tx() to send the timestamp. 1911 */ 1912static inline void skb_orphan_try(struct sk_buff *skb) 1913{ 1914 struct sock *sk = skb->sk; 1915 1916 if (sk && !skb_tx(skb)->flags) { 1917 /* skb_tx_hash() wont be able to get sk. 1918 * We copy sk_hash into skb->rxhash 1919 */ 1920 if (!skb->rxhash) 1921 skb->rxhash = sk->sk_hash; 1922 skb_orphan(skb); 1923 } 1924} 1925 1926int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1927 struct netdev_queue *txq) 1928{ 1929 const struct net_device_ops *ops = dev->netdev_ops; 1930 int rc = NETDEV_TX_OK; 1931 1932 if (likely(!skb->next)) { 1933 if (!list_empty(&ptype_all)) 1934 dev_queue_xmit_nit(skb, dev); 1935 1936 /* 1937 * If device doesnt need skb->dst, release it right now while 1938 * its hot in this cpu cache 1939 */ 1940 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1941 skb_dst_drop(skb); 1942 1943 skb_orphan_try(skb); 1944 1945 if (netif_needs_gso(dev, skb)) { 1946 if (unlikely(dev_gso_segment(skb))) 1947 goto out_kfree_skb; 1948 if (skb->next) 1949 goto gso; 1950 } 1951 1952 rc = ops->ndo_start_xmit(skb, dev); 1953 if (rc == NETDEV_TX_OK) 1954 txq_trans_update(txq); 1955 return rc; 1956 } 1957 1958gso: 1959 do { 1960 struct sk_buff *nskb = skb->next; 1961 1962 skb->next = nskb->next; 1963 nskb->next = NULL; 1964 1965 /* 1966 * If device doesnt need nskb->dst, release it right now while 1967 * its hot in this cpu cache 1968 */ 1969 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1970 skb_dst_drop(nskb); 1971 1972 rc = ops->ndo_start_xmit(nskb, dev); 1973 if (unlikely(rc != NETDEV_TX_OK)) { 1974 if (rc & ~NETDEV_TX_MASK) 1975 goto out_kfree_gso_skb; 1976 nskb->next = skb->next; 1977 skb->next = nskb; 1978 return rc; 1979 } 1980 txq_trans_update(txq); 1981 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1982 return NETDEV_TX_BUSY; 1983 } while (skb->next); 1984 1985out_kfree_gso_skb: 1986 if (likely(skb->next == NULL)) 1987 skb->destructor = DEV_GSO_CB(skb)->destructor; 1988out_kfree_skb: 1989 kfree_skb(skb); 1990 return rc; 1991} 1992 1993static u32 hashrnd __read_mostly; 1994 1995u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1996{ 1997 u32 hash; 1998 1999 if (skb_rx_queue_recorded(skb)) { 2000 hash = skb_get_rx_queue(skb); 2001 while (unlikely(hash >= dev->real_num_tx_queues)) 2002 hash -= dev->real_num_tx_queues; 2003 return hash; 2004 } 2005 2006 if (skb->sk && skb->sk->sk_hash) 2007 hash = skb->sk->sk_hash; 2008 else 2009 hash = (__force u16) skb->protocol ^ skb->rxhash; 2010 hash = jhash_1word(hash, hashrnd); 2011 2012 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2013} 2014EXPORT_SYMBOL(skb_tx_hash); 2015 2016static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2017{ 2018 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2019 if (net_ratelimit()) { 2020 pr_warning("%s selects TX queue %d, but " 2021 "real number of TX queues is %d\n", 2022 dev->name, queue_index, dev->real_num_tx_queues); 2023 } 2024 return 0; 2025 } 2026 return queue_index; 2027} 2028 2029static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2030 struct sk_buff *skb) 2031{ 2032 int queue_index; 2033 struct sock *sk = skb->sk; 2034 2035 queue_index = sk_tx_queue_get(sk); 2036 if (queue_index < 0) { 2037 const struct net_device_ops *ops = dev->netdev_ops; 2038 2039 if (ops->ndo_select_queue) { 2040 queue_index = ops->ndo_select_queue(dev, skb); 2041 queue_index = dev_cap_txqueue(dev, queue_index); 2042 } else { 2043 queue_index = 0; 2044 if (dev->real_num_tx_queues > 1) 2045 queue_index = skb_tx_hash(dev, skb); 2046 2047 if (sk) { 2048 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2049 2050 if (dst && skb_dst(skb) == dst) 2051 sk_tx_queue_set(sk, queue_index); 2052 } 2053 } 2054 } 2055 2056 skb_set_queue_mapping(skb, queue_index); 2057 return netdev_get_tx_queue(dev, queue_index); 2058} 2059 2060static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2061 struct net_device *dev, 2062 struct netdev_queue *txq) 2063{ 2064 spinlock_t *root_lock = qdisc_lock(q); 2065 int rc; 2066 2067 spin_lock(root_lock); 2068 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2069 kfree_skb(skb); 2070 rc = NET_XMIT_DROP; 2071 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2072 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2073 /* 2074 * This is a work-conserving queue; there are no old skbs 2075 * waiting to be sent out; and the qdisc is not running - 2076 * xmit the skb directly. 2077 */ 2078 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2079 skb_dst_force(skb); 2080 __qdisc_update_bstats(q, skb->len); 2081 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2082 __qdisc_run(q); 2083 else 2084 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2085 2086 rc = NET_XMIT_SUCCESS; 2087 } else { 2088 skb_dst_force(skb); 2089 rc = qdisc_enqueue_root(skb, q); 2090 qdisc_run(q); 2091 } 2092 spin_unlock(root_lock); 2093 2094 return rc; 2095} 2096 2097/* 2098 * Returns true if either: 2099 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2100 * 2. skb is fragmented and the device does not support SG, or if 2101 * at least one of fragments is in highmem and device does not 2102 * support DMA from it. 2103 */ 2104static inline int skb_needs_linearize(struct sk_buff *skb, 2105 struct net_device *dev) 2106{ 2107 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2108 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2109 illegal_highdma(dev, skb))); 2110} 2111 2112/** 2113 * dev_queue_xmit - transmit a buffer 2114 * @skb: buffer to transmit 2115 * 2116 * Queue a buffer for transmission to a network device. The caller must 2117 * have set the device and priority and built the buffer before calling 2118 * this function. The function can be called from an interrupt. 2119 * 2120 * A negative errno code is returned on a failure. A success does not 2121 * guarantee the frame will be transmitted as it may be dropped due 2122 * to congestion or traffic shaping. 2123 * 2124 * ----------------------------------------------------------------------------------- 2125 * I notice this method can also return errors from the queue disciplines, 2126 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2127 * be positive. 2128 * 2129 * Regardless of the return value, the skb is consumed, so it is currently 2130 * difficult to retry a send to this method. (You can bump the ref count 2131 * before sending to hold a reference for retry if you are careful.) 2132 * 2133 * When calling this method, interrupts MUST be enabled. This is because 2134 * the BH enable code must have IRQs enabled so that it will not deadlock. 2135 * --BLG 2136 */ 2137int dev_queue_xmit(struct sk_buff *skb) 2138{ 2139 struct net_device *dev = skb->dev; 2140 struct netdev_queue *txq; 2141 struct Qdisc *q; 2142 int rc = -ENOMEM; 2143 2144 /* GSO will handle the following emulations directly. */ 2145 if (netif_needs_gso(dev, skb)) 2146 goto gso; 2147 2148 /* Convert a paged skb to linear, if required */ 2149 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2150 goto out_kfree_skb; 2151 2152 /* If packet is not checksummed and device does not support 2153 * checksumming for this protocol, complete checksumming here. 2154 */ 2155 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2156 skb_set_transport_header(skb, skb->csum_start - 2157 skb_headroom(skb)); 2158 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2159 goto out_kfree_skb; 2160 } 2161 2162gso: 2163 /* Disable soft irqs for various locks below. Also 2164 * stops preemption for RCU. 2165 */ 2166 rcu_read_lock_bh(); 2167 2168 txq = dev_pick_tx(dev, skb); 2169 q = rcu_dereference_bh(txq->qdisc); 2170 2171#ifdef CONFIG_NET_CLS_ACT 2172 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2173#endif 2174 if (q->enqueue) { 2175 rc = __dev_xmit_skb(skb, q, dev, txq); 2176 goto out; 2177 } 2178 2179 /* The device has no queue. Common case for software devices: 2180 loopback, all the sorts of tunnels... 2181 2182 Really, it is unlikely that netif_tx_lock protection is necessary 2183 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2184 counters.) 2185 However, it is possible, that they rely on protection 2186 made by us here. 2187 2188 Check this and shot the lock. It is not prone from deadlocks. 2189 Either shot noqueue qdisc, it is even simpler 8) 2190 */ 2191 if (dev->flags & IFF_UP) { 2192 int cpu = smp_processor_id(); /* ok because BHs are off */ 2193 2194 if (txq->xmit_lock_owner != cpu) { 2195 2196 HARD_TX_LOCK(dev, txq, cpu); 2197 2198 if (!netif_tx_queue_stopped(txq)) { 2199 rc = dev_hard_start_xmit(skb, dev, txq); 2200 if (dev_xmit_complete(rc)) { 2201 HARD_TX_UNLOCK(dev, txq); 2202 goto out; 2203 } 2204 } 2205 HARD_TX_UNLOCK(dev, txq); 2206 if (net_ratelimit()) 2207 printk(KERN_CRIT "Virtual device %s asks to " 2208 "queue packet!\n", dev->name); 2209 } else { 2210 /* Recursion is detected! It is possible, 2211 * unfortunately */ 2212 if (net_ratelimit()) 2213 printk(KERN_CRIT "Dead loop on virtual device " 2214 "%s, fix it urgently!\n", dev->name); 2215 } 2216 } 2217 2218 rc = -ENETDOWN; 2219 rcu_read_unlock_bh(); 2220 2221out_kfree_skb: 2222 kfree_skb(skb); 2223 return rc; 2224out: 2225 rcu_read_unlock_bh(); 2226 return rc; 2227} 2228EXPORT_SYMBOL(dev_queue_xmit); 2229 2230 2231/*======================================================================= 2232 Receiver routines 2233 =======================================================================*/ 2234 2235int netdev_max_backlog __read_mostly = 1000; 2236int netdev_tstamp_prequeue __read_mostly = 1; 2237int netdev_budget __read_mostly = 300; 2238int weight_p __read_mostly = 64; /* old backlog weight */ 2239 2240/* Called with irq disabled */ 2241static inline void ____napi_schedule(struct softnet_data *sd, 2242 struct napi_struct *napi) 2243{ 2244 list_add_tail(&napi->poll_list, &sd->poll_list); 2245 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2246} 2247 2248#ifdef CONFIG_RPS 2249 2250/* One global table that all flow-based protocols share. */ 2251struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2252EXPORT_SYMBOL(rps_sock_flow_table); 2253 2254/* 2255 * get_rps_cpu is called from netif_receive_skb and returns the target 2256 * CPU from the RPS map of the receiving queue for a given skb. 2257 * rcu_read_lock must be held on entry. 2258 */ 2259static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2260 struct rps_dev_flow **rflowp) 2261{ 2262 struct ipv6hdr *ip6; 2263 struct iphdr *ip; 2264 struct netdev_rx_queue *rxqueue; 2265 struct rps_map *map; 2266 struct rps_dev_flow_table *flow_table; 2267 struct rps_sock_flow_table *sock_flow_table; 2268 int cpu = -1; 2269 u8 ip_proto; 2270 u16 tcpu; 2271 u32 addr1, addr2, ihl; 2272 union { 2273 u32 v32; 2274 u16 v16[2]; 2275 } ports; 2276 2277 if (skb_rx_queue_recorded(skb)) { 2278 u16 index = skb_get_rx_queue(skb); 2279 if (unlikely(index >= dev->num_rx_queues)) { 2280 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet " 2281 "on queue %u, but number of RX queues is %u\n", 2282 dev->name, index, dev->num_rx_queues); 2283 goto done; 2284 } 2285 rxqueue = dev->_rx + index; 2286 } else 2287 rxqueue = dev->_rx; 2288 2289 if (!rxqueue->rps_map && !rxqueue->rps_flow_table) 2290 goto done; 2291 2292 if (skb->rxhash) 2293 goto got_hash; /* Skip hash computation on packet header */ 2294 2295 switch (skb->protocol) { 2296 case __constant_htons(ETH_P_IP): 2297 if (!pskb_may_pull(skb, sizeof(*ip))) 2298 goto done; 2299 2300 ip = (struct iphdr *) skb->data; 2301 ip_proto = ip->protocol; 2302 addr1 = (__force u32) ip->saddr; 2303 addr2 = (__force u32) ip->daddr; 2304 ihl = ip->ihl; 2305 break; 2306 case __constant_htons(ETH_P_IPV6): 2307 if (!pskb_may_pull(skb, sizeof(*ip6))) 2308 goto done; 2309 2310 ip6 = (struct ipv6hdr *) skb->data; 2311 ip_proto = ip6->nexthdr; 2312 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2313 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2314 ihl = (40 >> 2); 2315 break; 2316 default: 2317 goto done; 2318 } 2319 switch (ip_proto) { 2320 case IPPROTO_TCP: 2321 case IPPROTO_UDP: 2322 case IPPROTO_DCCP: 2323 case IPPROTO_ESP: 2324 case IPPROTO_AH: 2325 case IPPROTO_SCTP: 2326 case IPPROTO_UDPLITE: 2327 if (pskb_may_pull(skb, (ihl * 4) + 4)) { 2328 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4)); 2329 if (ports.v16[1] < ports.v16[0]) 2330 swap(ports.v16[0], ports.v16[1]); 2331 break; 2332 } 2333 default: 2334 ports.v32 = 0; 2335 break; 2336 } 2337 2338 /* get a consistent hash (same value on both flow directions) */ 2339 if (addr2 < addr1) 2340 swap(addr1, addr2); 2341 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2342 if (!skb->rxhash) 2343 skb->rxhash = 1; 2344 2345got_hash: 2346 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2347 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2348 if (flow_table && sock_flow_table) { 2349 u16 next_cpu; 2350 struct rps_dev_flow *rflow; 2351 2352 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2353 tcpu = rflow->cpu; 2354 2355 next_cpu = sock_flow_table->ents[skb->rxhash & 2356 sock_flow_table->mask]; 2357 2358 /* 2359 * If the desired CPU (where last recvmsg was done) is 2360 * different from current CPU (one in the rx-queue flow 2361 * table entry), switch if one of the following holds: 2362 * - Current CPU is unset (equal to RPS_NO_CPU). 2363 * - Current CPU is offline. 2364 * - The current CPU's queue tail has advanced beyond the 2365 * last packet that was enqueued using this table entry. 2366 * This guarantees that all previous packets for the flow 2367 * have been dequeued, thus preserving in order delivery. 2368 */ 2369 if (unlikely(tcpu != next_cpu) && 2370 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2371 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2372 rflow->last_qtail)) >= 0)) { 2373 tcpu = rflow->cpu = next_cpu; 2374 if (tcpu != RPS_NO_CPU) 2375 rflow->last_qtail = per_cpu(softnet_data, 2376 tcpu).input_queue_head; 2377 } 2378 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2379 *rflowp = rflow; 2380 cpu = tcpu; 2381 goto done; 2382 } 2383 } 2384 2385 map = rcu_dereference(rxqueue->rps_map); 2386 if (map) { 2387 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2388 2389 if (cpu_online(tcpu)) { 2390 cpu = tcpu; 2391 goto done; 2392 } 2393 } 2394 2395done: 2396 return cpu; 2397} 2398 2399/* Called from hardirq (IPI) context */ 2400static void rps_trigger_softirq(void *data) 2401{ 2402 struct softnet_data *sd = data; 2403 2404 ____napi_schedule(sd, &sd->backlog); 2405 sd->received_rps++; 2406} 2407 2408#endif /* CONFIG_RPS */ 2409 2410/* 2411 * Check if this softnet_data structure is another cpu one 2412 * If yes, queue it to our IPI list and return 1 2413 * If no, return 0 2414 */ 2415static int rps_ipi_queued(struct softnet_data *sd) 2416{ 2417#ifdef CONFIG_RPS 2418 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2419 2420 if (sd != mysd) { 2421 sd->rps_ipi_next = mysd->rps_ipi_list; 2422 mysd->rps_ipi_list = sd; 2423 2424 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2425 return 1; 2426 } 2427#endif /* CONFIG_RPS */ 2428 return 0; 2429} 2430 2431/* 2432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2433 * queue (may be a remote CPU queue). 2434 */ 2435static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2436 unsigned int *qtail) 2437{ 2438 struct softnet_data *sd; 2439 unsigned long flags; 2440 2441 sd = &per_cpu(softnet_data, cpu); 2442 2443 local_irq_save(flags); 2444 2445 rps_lock(sd); 2446 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2447 if (skb_queue_len(&sd->input_pkt_queue)) { 2448enqueue: 2449 __skb_queue_tail(&sd->input_pkt_queue, skb); 2450 input_queue_tail_incr_save(sd, qtail); 2451 rps_unlock(sd); 2452 local_irq_restore(flags); 2453 return NET_RX_SUCCESS; 2454 } 2455 2456 /* Schedule NAPI for backlog device 2457 * We can use non atomic operation since we own the queue lock 2458 */ 2459 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2460 if (!rps_ipi_queued(sd)) 2461 ____napi_schedule(sd, &sd->backlog); 2462 } 2463 goto enqueue; 2464 } 2465 2466 sd->dropped++; 2467 rps_unlock(sd); 2468 2469 local_irq_restore(flags); 2470 2471 kfree_skb(skb); 2472 return NET_RX_DROP; 2473} 2474 2475/** 2476 * netif_rx - post buffer to the network code 2477 * @skb: buffer to post 2478 * 2479 * This function receives a packet from a device driver and queues it for 2480 * the upper (protocol) levels to process. It always succeeds. The buffer 2481 * may be dropped during processing for congestion control or by the 2482 * protocol layers. 2483 * 2484 * return values: 2485 * NET_RX_SUCCESS (no congestion) 2486 * NET_RX_DROP (packet was dropped) 2487 * 2488 */ 2489 2490int netif_rx(struct sk_buff *skb) 2491{ 2492 int ret; 2493 2494 /* if netpoll wants it, pretend we never saw it */ 2495 if (netpoll_rx(skb)) 2496 return NET_RX_DROP; 2497 2498 if (netdev_tstamp_prequeue) 2499 net_timestamp_check(skb); 2500 2501#ifdef CONFIG_RPS 2502 { 2503 struct rps_dev_flow voidflow, *rflow = &voidflow; 2504 int cpu; 2505 2506 rcu_read_lock(); 2507 2508 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2509 if (cpu < 0) 2510 cpu = smp_processor_id(); 2511 2512 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2513 2514 rcu_read_unlock(); 2515 } 2516#else 2517 { 2518 unsigned int qtail; 2519 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2520 put_cpu(); 2521 } 2522#endif 2523 return ret; 2524} 2525EXPORT_SYMBOL(netif_rx); 2526 2527int netif_rx_ni(struct sk_buff *skb) 2528{ 2529 int err; 2530 2531 preempt_disable(); 2532 err = netif_rx(skb); 2533 if (local_softirq_pending()) 2534 do_softirq(); 2535 preempt_enable(); 2536 2537 return err; 2538} 2539EXPORT_SYMBOL(netif_rx_ni); 2540 2541static void net_tx_action(struct softirq_action *h) 2542{ 2543 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2544 2545 if (sd->completion_queue) { 2546 struct sk_buff *clist; 2547 2548 local_irq_disable(); 2549 clist = sd->completion_queue; 2550 sd->completion_queue = NULL; 2551 local_irq_enable(); 2552 2553 while (clist) { 2554 struct sk_buff *skb = clist; 2555 clist = clist->next; 2556 2557 WARN_ON(atomic_read(&skb->users)); 2558 __kfree_skb(skb); 2559 } 2560 } 2561 2562 if (sd->output_queue) { 2563 struct Qdisc *head; 2564 2565 local_irq_disable(); 2566 head = sd->output_queue; 2567 sd->output_queue = NULL; 2568 sd->output_queue_tailp = &sd->output_queue; 2569 local_irq_enable(); 2570 2571 while (head) { 2572 struct Qdisc *q = head; 2573 spinlock_t *root_lock; 2574 2575 head = head->next_sched; 2576 2577 root_lock = qdisc_lock(q); 2578 if (spin_trylock(root_lock)) { 2579 smp_mb__before_clear_bit(); 2580 clear_bit(__QDISC_STATE_SCHED, 2581 &q->state); 2582 qdisc_run(q); 2583 spin_unlock(root_lock); 2584 } else { 2585 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2586 &q->state)) { 2587 __netif_reschedule(q); 2588 } else { 2589 smp_mb__before_clear_bit(); 2590 clear_bit(__QDISC_STATE_SCHED, 2591 &q->state); 2592 } 2593 } 2594 } 2595 } 2596} 2597 2598static inline int deliver_skb(struct sk_buff *skb, 2599 struct packet_type *pt_prev, 2600 struct net_device *orig_dev) 2601{ 2602 atomic_inc(&skb->users); 2603 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2604} 2605 2606#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2607 2608#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2609/* This hook is defined here for ATM LANE */ 2610int (*br_fdb_test_addr_hook)(struct net_device *dev, 2611 unsigned char *addr) __read_mostly; 2612EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2613#endif 2614 2615/* 2616 * If bridge module is loaded call bridging hook. 2617 * returns NULL if packet was consumed. 2618 */ 2619struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2620 struct sk_buff *skb) __read_mostly; 2621EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2622 2623static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2624 struct packet_type **pt_prev, int *ret, 2625 struct net_device *orig_dev) 2626{ 2627 struct net_bridge_port *port; 2628 2629 if (skb->pkt_type == PACKET_LOOPBACK || 2630 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2631 return skb; 2632 2633 if (*pt_prev) { 2634 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2635 *pt_prev = NULL; 2636 } 2637 2638 return br_handle_frame_hook(port, skb); 2639} 2640#else 2641#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2642#endif 2643 2644#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2645struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p, 2646 struct sk_buff *skb) __read_mostly; 2647EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2648 2649static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2650 struct packet_type **pt_prev, 2651 int *ret, 2652 struct net_device *orig_dev) 2653{ 2654 struct macvlan_port *port; 2655 2656 port = rcu_dereference(skb->dev->macvlan_port); 2657 if (!port) 2658 return skb; 2659 2660 if (*pt_prev) { 2661 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2662 *pt_prev = NULL; 2663 } 2664 return macvlan_handle_frame_hook(port, skb); 2665} 2666#else 2667#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2668#endif 2669 2670#ifdef CONFIG_NET_CLS_ACT 2671/* TODO: Maybe we should just force sch_ingress to be compiled in 2672 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2673 * a compare and 2 stores extra right now if we dont have it on 2674 * but have CONFIG_NET_CLS_ACT 2675 * NOTE: This doesnt stop any functionality; if you dont have 2676 * the ingress scheduler, you just cant add policies on ingress. 2677 * 2678 */ 2679static int ing_filter(struct sk_buff *skb) 2680{ 2681 struct net_device *dev = skb->dev; 2682 u32 ttl = G_TC_RTTL(skb->tc_verd); 2683 struct netdev_queue *rxq; 2684 int result = TC_ACT_OK; 2685 struct Qdisc *q; 2686 2687 if (MAX_RED_LOOP < ttl++) { 2688 printk(KERN_WARNING 2689 "Redir loop detected Dropping packet (%d->%d)\n", 2690 skb->skb_iif, dev->ifindex); 2691 return TC_ACT_SHOT; 2692 } 2693 2694 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2695 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2696 2697 rxq = &dev->rx_queue; 2698 2699 q = rxq->qdisc; 2700 if (q != &noop_qdisc) { 2701 spin_lock(qdisc_lock(q)); 2702 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2703 result = qdisc_enqueue_root(skb, q); 2704 spin_unlock(qdisc_lock(q)); 2705 } 2706 2707 return result; 2708} 2709 2710static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2711 struct packet_type **pt_prev, 2712 int *ret, struct net_device *orig_dev) 2713{ 2714 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2715 goto out; 2716 2717 if (*pt_prev) { 2718 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2719 *pt_prev = NULL; 2720 } else { 2721 /* Huh? Why does turning on AF_PACKET affect this? */ 2722 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2723 } 2724 2725 switch (ing_filter(skb)) { 2726 case TC_ACT_SHOT: 2727 case TC_ACT_STOLEN: 2728 kfree_skb(skb); 2729 return NULL; 2730 } 2731 2732out: 2733 skb->tc_verd = 0; 2734 return skb; 2735} 2736#endif 2737 2738/* 2739 * netif_nit_deliver - deliver received packets to network taps 2740 * @skb: buffer 2741 * 2742 * This function is used to deliver incoming packets to network 2743 * taps. It should be used when the normal netif_receive_skb path 2744 * is bypassed, for example because of VLAN acceleration. 2745 */ 2746void netif_nit_deliver(struct sk_buff *skb) 2747{ 2748 struct packet_type *ptype; 2749 2750 if (list_empty(&ptype_all)) 2751 return; 2752 2753 skb_reset_network_header(skb); 2754 skb_reset_transport_header(skb); 2755 skb->mac_len = skb->network_header - skb->mac_header; 2756 2757 rcu_read_lock(); 2758 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2759 if (!ptype->dev || ptype->dev == skb->dev) 2760 deliver_skb(skb, ptype, skb->dev); 2761 } 2762 rcu_read_unlock(); 2763} 2764 2765static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2766 struct net_device *master) 2767{ 2768 if (skb->pkt_type == PACKET_HOST) { 2769 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2770 2771 memcpy(dest, master->dev_addr, ETH_ALEN); 2772 } 2773} 2774 2775/* On bonding slaves other than the currently active slave, suppress 2776 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2777 * ARP on active-backup slaves with arp_validate enabled. 2778 */ 2779int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2780{ 2781 struct net_device *dev = skb->dev; 2782 2783 if (master->priv_flags & IFF_MASTER_ARPMON) 2784 dev->last_rx = jiffies; 2785 2786 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) { 2787 /* Do address unmangle. The local destination address 2788 * will be always the one master has. Provides the right 2789 * functionality in a bridge. 2790 */ 2791 skb_bond_set_mac_by_master(skb, master); 2792 } 2793 2794 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2795 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2796 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2797 return 0; 2798 2799 if (master->priv_flags & IFF_MASTER_ALB) { 2800 if (skb->pkt_type != PACKET_BROADCAST && 2801 skb->pkt_type != PACKET_MULTICAST) 2802 return 0; 2803 } 2804 if (master->priv_flags & IFF_MASTER_8023AD && 2805 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2806 return 0; 2807 2808 return 1; 2809 } 2810 return 0; 2811} 2812EXPORT_SYMBOL(__skb_bond_should_drop); 2813 2814static int __netif_receive_skb(struct sk_buff *skb) 2815{ 2816 struct packet_type *ptype, *pt_prev; 2817 struct net_device *orig_dev; 2818 struct net_device *master; 2819 struct net_device *null_or_orig; 2820 struct net_device *orig_or_bond; 2821 int ret = NET_RX_DROP; 2822 __be16 type; 2823 2824 if (!netdev_tstamp_prequeue) 2825 net_timestamp_check(skb); 2826 2827 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2828 return NET_RX_SUCCESS; 2829 2830 /* if we've gotten here through NAPI, check netpoll */ 2831 if (netpoll_receive_skb(skb)) 2832 return NET_RX_DROP; 2833 2834 if (!skb->skb_iif) 2835 skb->skb_iif = skb->dev->ifindex; 2836 2837 /* 2838 * bonding note: skbs received on inactive slaves should only 2839 * be delivered to pkt handlers that are exact matches. Also 2840 * the deliver_no_wcard flag will be set. If packet handlers 2841 * are sensitive to duplicate packets these skbs will need to 2842 * be dropped at the handler. The vlan accel path may have 2843 * already set the deliver_no_wcard flag. 2844 */ 2845 null_or_orig = NULL; 2846 orig_dev = skb->dev; 2847 master = ACCESS_ONCE(orig_dev->master); 2848 if (skb->deliver_no_wcard) 2849 null_or_orig = orig_dev; 2850 else if (master) { 2851 if (skb_bond_should_drop(skb, master)) { 2852 skb->deliver_no_wcard = 1; 2853 null_or_orig = orig_dev; /* deliver only exact match */ 2854 } else 2855 skb->dev = master; 2856 } 2857 2858 __get_cpu_var(softnet_data).processed++; 2859 2860 skb_reset_network_header(skb); 2861 skb_reset_transport_header(skb); 2862 skb->mac_len = skb->network_header - skb->mac_header; 2863 2864 pt_prev = NULL; 2865 2866 rcu_read_lock(); 2867 2868#ifdef CONFIG_NET_CLS_ACT 2869 if (skb->tc_verd & TC_NCLS) { 2870 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2871 goto ncls; 2872 } 2873#endif 2874 2875 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2876 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2877 ptype->dev == orig_dev) { 2878 if (pt_prev) 2879 ret = deliver_skb(skb, pt_prev, orig_dev); 2880 pt_prev = ptype; 2881 } 2882 } 2883 2884#ifdef CONFIG_NET_CLS_ACT 2885 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2886 if (!skb) 2887 goto out; 2888ncls: 2889#endif 2890 2891 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2892 if (!skb) 2893 goto out; 2894 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2895 if (!skb) 2896 goto out; 2897 2898 /* 2899 * Make sure frames received on VLAN interfaces stacked on 2900 * bonding interfaces still make their way to any base bonding 2901 * device that may have registered for a specific ptype. The 2902 * handler may have to adjust skb->dev and orig_dev. 2903 */ 2904 orig_or_bond = orig_dev; 2905 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2906 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2907 orig_or_bond = vlan_dev_real_dev(skb->dev); 2908 } 2909 2910 type = skb->protocol; 2911 list_for_each_entry_rcu(ptype, 2912 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2913 if (ptype->type == type && (ptype->dev == null_or_orig || 2914 ptype->dev == skb->dev || ptype->dev == orig_dev || 2915 ptype->dev == orig_or_bond)) { 2916 if (pt_prev) 2917 ret = deliver_skb(skb, pt_prev, orig_dev); 2918 pt_prev = ptype; 2919 } 2920 } 2921 2922 if (pt_prev) { 2923 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2924 } else { 2925 kfree_skb(skb); 2926 /* Jamal, now you will not able to escape explaining 2927 * me how you were going to use this. :-) 2928 */ 2929 ret = NET_RX_DROP; 2930 } 2931 2932out: 2933 rcu_read_unlock(); 2934 return ret; 2935} 2936 2937/** 2938 * netif_receive_skb - process receive buffer from network 2939 * @skb: buffer to process 2940 * 2941 * netif_receive_skb() is the main receive data processing function. 2942 * It always succeeds. The buffer may be dropped during processing 2943 * for congestion control or by the protocol layers. 2944 * 2945 * This function may only be called from softirq context and interrupts 2946 * should be enabled. 2947 * 2948 * Return values (usually ignored): 2949 * NET_RX_SUCCESS: no congestion 2950 * NET_RX_DROP: packet was dropped 2951 */ 2952int netif_receive_skb(struct sk_buff *skb) 2953{ 2954 if (netdev_tstamp_prequeue) 2955 net_timestamp_check(skb); 2956 2957#ifdef CONFIG_RPS 2958 { 2959 struct rps_dev_flow voidflow, *rflow = &voidflow; 2960 int cpu, ret; 2961 2962 rcu_read_lock(); 2963 2964 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2965 2966 if (cpu >= 0) { 2967 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2968 rcu_read_unlock(); 2969 } else { 2970 rcu_read_unlock(); 2971 ret = __netif_receive_skb(skb); 2972 } 2973 2974 return ret; 2975 } 2976#else 2977 return __netif_receive_skb(skb); 2978#endif 2979} 2980EXPORT_SYMBOL(netif_receive_skb); 2981 2982/* Network device is going away, flush any packets still pending 2983 * Called with irqs disabled. 2984 */ 2985static void flush_backlog(void *arg) 2986{ 2987 struct net_device *dev = arg; 2988 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2989 struct sk_buff *skb, *tmp; 2990 2991 rps_lock(sd); 2992 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 2993 if (skb->dev == dev) { 2994 __skb_unlink(skb, &sd->input_pkt_queue); 2995 kfree_skb(skb); 2996 input_queue_head_incr(sd); 2997 } 2998 } 2999 rps_unlock(sd); 3000 3001 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3002 if (skb->dev == dev) { 3003 __skb_unlink(skb, &sd->process_queue); 3004 kfree_skb(skb); 3005 input_queue_head_incr(sd); 3006 } 3007 } 3008} 3009 3010static int napi_gro_complete(struct sk_buff *skb) 3011{ 3012 struct packet_type *ptype; 3013 __be16 type = skb->protocol; 3014 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3015 int err = -ENOENT; 3016 3017 if (NAPI_GRO_CB(skb)->count == 1) { 3018 skb_shinfo(skb)->gso_size = 0; 3019 goto out; 3020 } 3021 3022 rcu_read_lock(); 3023 list_for_each_entry_rcu(ptype, head, list) { 3024 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3025 continue; 3026 3027 err = ptype->gro_complete(skb); 3028 break; 3029 } 3030 rcu_read_unlock(); 3031 3032 if (err) { 3033 WARN_ON(&ptype->list == head); 3034 kfree_skb(skb); 3035 return NET_RX_SUCCESS; 3036 } 3037 3038out: 3039 return netif_receive_skb(skb); 3040} 3041 3042static void napi_gro_flush(struct napi_struct *napi) 3043{ 3044 struct sk_buff *skb, *next; 3045 3046 for (skb = napi->gro_list; skb; skb = next) { 3047 next = skb->next; 3048 skb->next = NULL; 3049 napi_gro_complete(skb); 3050 } 3051 3052 napi->gro_count = 0; 3053 napi->gro_list = NULL; 3054} 3055 3056enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3057{ 3058 struct sk_buff **pp = NULL; 3059 struct packet_type *ptype; 3060 __be16 type = skb->protocol; 3061 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3062 int same_flow; 3063 int mac_len; 3064 enum gro_result ret; 3065 3066 if (!(skb->dev->features & NETIF_F_GRO)) 3067 goto normal; 3068 3069 if (skb_is_gso(skb) || skb_has_frags(skb)) 3070 goto normal; 3071 3072 rcu_read_lock(); 3073 list_for_each_entry_rcu(ptype, head, list) { 3074 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3075 continue; 3076 3077 skb_set_network_header(skb, skb_gro_offset(skb)); 3078 mac_len = skb->network_header - skb->mac_header; 3079 skb->mac_len = mac_len; 3080 NAPI_GRO_CB(skb)->same_flow = 0; 3081 NAPI_GRO_CB(skb)->flush = 0; 3082 NAPI_GRO_CB(skb)->free = 0; 3083 3084 pp = ptype->gro_receive(&napi->gro_list, skb); 3085 break; 3086 } 3087 rcu_read_unlock(); 3088 3089 if (&ptype->list == head) 3090 goto normal; 3091 3092 same_flow = NAPI_GRO_CB(skb)->same_flow; 3093 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3094 3095 if (pp) { 3096 struct sk_buff *nskb = *pp; 3097 3098 *pp = nskb->next; 3099 nskb->next = NULL; 3100 napi_gro_complete(nskb); 3101 napi->gro_count--; 3102 } 3103 3104 if (same_flow) 3105 goto ok; 3106 3107 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3108 goto normal; 3109 3110 napi->gro_count++; 3111 NAPI_GRO_CB(skb)->count = 1; 3112 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3113 skb->next = napi->gro_list; 3114 napi->gro_list = skb; 3115 ret = GRO_HELD; 3116 3117pull: 3118 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3119 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3120 3121 BUG_ON(skb->end - skb->tail < grow); 3122 3123 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3124 3125 skb->tail += grow; 3126 skb->data_len -= grow; 3127 3128 skb_shinfo(skb)->frags[0].page_offset += grow; 3129 skb_shinfo(skb)->frags[0].size -= grow; 3130 3131 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3132 put_page(skb_shinfo(skb)->frags[0].page); 3133 memmove(skb_shinfo(skb)->frags, 3134 skb_shinfo(skb)->frags + 1, 3135 --skb_shinfo(skb)->nr_frags); 3136 } 3137 } 3138 3139ok: 3140 return ret; 3141 3142normal: 3143 ret = GRO_NORMAL; 3144 goto pull; 3145} 3146EXPORT_SYMBOL(dev_gro_receive); 3147 3148static gro_result_t 3149__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3150{ 3151 struct sk_buff *p; 3152 3153 if (netpoll_rx_on(skb)) 3154 return GRO_NORMAL; 3155 3156 for (p = napi->gro_list; p; p = p->next) { 3157 NAPI_GRO_CB(p)->same_flow = 3158 (p->dev == skb->dev) && 3159 !compare_ether_header(skb_mac_header(p), 3160 skb_gro_mac_header(skb)); 3161 NAPI_GRO_CB(p)->flush = 0; 3162 } 3163 3164 return dev_gro_receive(napi, skb); 3165} 3166 3167gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3168{ 3169 switch (ret) { 3170 case GRO_NORMAL: 3171 if (netif_receive_skb(skb)) 3172 ret = GRO_DROP; 3173 break; 3174 3175 case GRO_DROP: 3176 case GRO_MERGED_FREE: 3177 kfree_skb(skb); 3178 break; 3179 3180 case GRO_HELD: 3181 case GRO_MERGED: 3182 break; 3183 } 3184 3185 return ret; 3186} 3187EXPORT_SYMBOL(napi_skb_finish); 3188 3189void skb_gro_reset_offset(struct sk_buff *skb) 3190{ 3191 NAPI_GRO_CB(skb)->data_offset = 0; 3192 NAPI_GRO_CB(skb)->frag0 = NULL; 3193 NAPI_GRO_CB(skb)->frag0_len = 0; 3194 3195 if (skb->mac_header == skb->tail && 3196 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3197 NAPI_GRO_CB(skb)->frag0 = 3198 page_address(skb_shinfo(skb)->frags[0].page) + 3199 skb_shinfo(skb)->frags[0].page_offset; 3200 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3201 } 3202} 3203EXPORT_SYMBOL(skb_gro_reset_offset); 3204 3205gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3206{ 3207 skb_gro_reset_offset(skb); 3208 3209 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3210} 3211EXPORT_SYMBOL(napi_gro_receive); 3212 3213void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3214{ 3215 __skb_pull(skb, skb_headlen(skb)); 3216 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3217 3218 napi->skb = skb; 3219} 3220EXPORT_SYMBOL(napi_reuse_skb); 3221 3222struct sk_buff *napi_get_frags(struct napi_struct *napi) 3223{ 3224 struct sk_buff *skb = napi->skb; 3225 3226 if (!skb) { 3227 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3228 if (skb) 3229 napi->skb = skb; 3230 } 3231 return skb; 3232} 3233EXPORT_SYMBOL(napi_get_frags); 3234 3235gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3236 gro_result_t ret) 3237{ 3238 switch (ret) { 3239 case GRO_NORMAL: 3240 case GRO_HELD: 3241 skb->protocol = eth_type_trans(skb, skb->dev); 3242 3243 if (ret == GRO_HELD) 3244 skb_gro_pull(skb, -ETH_HLEN); 3245 else if (netif_receive_skb(skb)) 3246 ret = GRO_DROP; 3247 break; 3248 3249 case GRO_DROP: 3250 case GRO_MERGED_FREE: 3251 napi_reuse_skb(napi, skb); 3252 break; 3253 3254 case GRO_MERGED: 3255 break; 3256 } 3257 3258 return ret; 3259} 3260EXPORT_SYMBOL(napi_frags_finish); 3261 3262struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3263{ 3264 struct sk_buff *skb = napi->skb; 3265 struct ethhdr *eth; 3266 unsigned int hlen; 3267 unsigned int off; 3268 3269 napi->skb = NULL; 3270 3271 skb_reset_mac_header(skb); 3272 skb_gro_reset_offset(skb); 3273 3274 off = skb_gro_offset(skb); 3275 hlen = off + sizeof(*eth); 3276 eth = skb_gro_header_fast(skb, off); 3277 if (skb_gro_header_hard(skb, hlen)) { 3278 eth = skb_gro_header_slow(skb, hlen, off); 3279 if (unlikely(!eth)) { 3280 napi_reuse_skb(napi, skb); 3281 skb = NULL; 3282 goto out; 3283 } 3284 } 3285 3286 skb_gro_pull(skb, sizeof(*eth)); 3287 3288 /* 3289 * This works because the only protocols we care about don't require 3290 * special handling. We'll fix it up properly at the end. 3291 */ 3292 skb->protocol = eth->h_proto; 3293 3294out: 3295 return skb; 3296} 3297EXPORT_SYMBOL(napi_frags_skb); 3298 3299gro_result_t napi_gro_frags(struct napi_struct *napi) 3300{ 3301 struct sk_buff *skb = napi_frags_skb(napi); 3302 3303 if (!skb) 3304 return GRO_DROP; 3305 3306 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3307} 3308EXPORT_SYMBOL(napi_gro_frags); 3309 3310/* 3311 * net_rps_action sends any pending IPI's for rps. 3312 * Note: called with local irq disabled, but exits with local irq enabled. 3313 */ 3314static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3315{ 3316#ifdef CONFIG_RPS 3317 struct softnet_data *remsd = sd->rps_ipi_list; 3318 3319 if (remsd) { 3320 sd->rps_ipi_list = NULL; 3321 3322 local_irq_enable(); 3323 3324 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3325 while (remsd) { 3326 struct softnet_data *next = remsd->rps_ipi_next; 3327 3328 if (cpu_online(remsd->cpu)) 3329 __smp_call_function_single(remsd->cpu, 3330 &remsd->csd, 0); 3331 remsd = next; 3332 } 3333 } else 3334#endif 3335 local_irq_enable(); 3336} 3337 3338static int process_backlog(struct napi_struct *napi, int quota) 3339{ 3340 int work = 0; 3341 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3342 3343#ifdef CONFIG_RPS 3344 /* Check if we have pending ipi, its better to send them now, 3345 * not waiting net_rx_action() end. 3346 */ 3347 if (sd->rps_ipi_list) { 3348 local_irq_disable(); 3349 net_rps_action_and_irq_enable(sd); 3350 } 3351#endif 3352 napi->weight = weight_p; 3353 local_irq_disable(); 3354 while (work < quota) { 3355 struct sk_buff *skb; 3356 unsigned int qlen; 3357 3358 while ((skb = __skb_dequeue(&sd->process_queue))) { 3359 local_irq_enable(); 3360 __netif_receive_skb(skb); 3361 local_irq_disable(); 3362 input_queue_head_incr(sd); 3363 if (++work >= quota) { 3364 local_irq_enable(); 3365 return work; 3366 } 3367 } 3368 3369 rps_lock(sd); 3370 qlen = skb_queue_len(&sd->input_pkt_queue); 3371 if (qlen) 3372 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3373 &sd->process_queue); 3374 3375 if (qlen < quota - work) { 3376 /* 3377 * Inline a custom version of __napi_complete(). 3378 * only current cpu owns and manipulates this napi, 3379 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3380 * we can use a plain write instead of clear_bit(), 3381 * and we dont need an smp_mb() memory barrier. 3382 */ 3383 list_del(&napi->poll_list); 3384 napi->state = 0; 3385 3386 quota = work + qlen; 3387 } 3388 rps_unlock(sd); 3389 } 3390 local_irq_enable(); 3391 3392 return work; 3393} 3394 3395/** 3396 * __napi_schedule - schedule for receive 3397 * @n: entry to schedule 3398 * 3399 * The entry's receive function will be scheduled to run 3400 */ 3401void __napi_schedule(struct napi_struct *n) 3402{ 3403 unsigned long flags; 3404 3405 local_irq_save(flags); 3406 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3407 local_irq_restore(flags); 3408} 3409EXPORT_SYMBOL(__napi_schedule); 3410 3411void __napi_complete(struct napi_struct *n) 3412{ 3413 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3414 BUG_ON(n->gro_list); 3415 3416 list_del(&n->poll_list); 3417 smp_mb__before_clear_bit(); 3418 clear_bit(NAPI_STATE_SCHED, &n->state); 3419} 3420EXPORT_SYMBOL(__napi_complete); 3421 3422void napi_complete(struct napi_struct *n) 3423{ 3424 unsigned long flags; 3425 3426 /* 3427 * don't let napi dequeue from the cpu poll list 3428 * just in case its running on a different cpu 3429 */ 3430 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3431 return; 3432 3433 napi_gro_flush(n); 3434 local_irq_save(flags); 3435 __napi_complete(n); 3436 local_irq_restore(flags); 3437} 3438EXPORT_SYMBOL(napi_complete); 3439 3440void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3441 int (*poll)(struct napi_struct *, int), int weight) 3442{ 3443 INIT_LIST_HEAD(&napi->poll_list); 3444 napi->gro_count = 0; 3445 napi->gro_list = NULL; 3446 napi->skb = NULL; 3447 napi->poll = poll; 3448 napi->weight = weight; 3449 list_add(&napi->dev_list, &dev->napi_list); 3450 napi->dev = dev; 3451#ifdef CONFIG_NETPOLL 3452 spin_lock_init(&napi->poll_lock); 3453 napi->poll_owner = -1; 3454#endif 3455 set_bit(NAPI_STATE_SCHED, &napi->state); 3456} 3457EXPORT_SYMBOL(netif_napi_add); 3458 3459void netif_napi_del(struct napi_struct *napi) 3460{ 3461 struct sk_buff *skb, *next; 3462 3463 list_del_init(&napi->dev_list); 3464 napi_free_frags(napi); 3465 3466 for (skb = napi->gro_list; skb; skb = next) { 3467 next = skb->next; 3468 skb->next = NULL; 3469 kfree_skb(skb); 3470 } 3471 3472 napi->gro_list = NULL; 3473 napi->gro_count = 0; 3474} 3475EXPORT_SYMBOL(netif_napi_del); 3476 3477static void net_rx_action(struct softirq_action *h) 3478{ 3479 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3480 unsigned long time_limit = jiffies + 2; 3481 int budget = netdev_budget; 3482 void *have; 3483 3484 local_irq_disable(); 3485 3486 while (!list_empty(&sd->poll_list)) { 3487 struct napi_struct *n; 3488 int work, weight; 3489 3490 /* If softirq window is exhuasted then punt. 3491 * Allow this to run for 2 jiffies since which will allow 3492 * an average latency of 1.5/HZ. 3493 */ 3494 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3495 goto softnet_break; 3496 3497 local_irq_enable(); 3498 3499 /* Even though interrupts have been re-enabled, this 3500 * access is safe because interrupts can only add new 3501 * entries to the tail of this list, and only ->poll() 3502 * calls can remove this head entry from the list. 3503 */ 3504 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3505 3506 have = netpoll_poll_lock(n); 3507 3508 weight = n->weight; 3509 3510 /* This NAPI_STATE_SCHED test is for avoiding a race 3511 * with netpoll's poll_napi(). Only the entity which 3512 * obtains the lock and sees NAPI_STATE_SCHED set will 3513 * actually make the ->poll() call. Therefore we avoid 3514 * accidently calling ->poll() when NAPI is not scheduled. 3515 */ 3516 work = 0; 3517 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3518 work = n->poll(n, weight); 3519 trace_napi_poll(n); 3520 } 3521 3522 WARN_ON_ONCE(work > weight); 3523 3524 budget -= work; 3525 3526 local_irq_disable(); 3527 3528 /* Drivers must not modify the NAPI state if they 3529 * consume the entire weight. In such cases this code 3530 * still "owns" the NAPI instance and therefore can 3531 * move the instance around on the list at-will. 3532 */ 3533 if (unlikely(work == weight)) { 3534 if (unlikely(napi_disable_pending(n))) { 3535 local_irq_enable(); 3536 napi_complete(n); 3537 local_irq_disable(); 3538 } else 3539 list_move_tail(&n->poll_list, &sd->poll_list); 3540 } 3541 3542 netpoll_poll_unlock(have); 3543 } 3544out: 3545 net_rps_action_and_irq_enable(sd); 3546 3547#ifdef CONFIG_NET_DMA 3548 /* 3549 * There may not be any more sk_buffs coming right now, so push 3550 * any pending DMA copies to hardware 3551 */ 3552 dma_issue_pending_all(); 3553#endif 3554 3555 return; 3556 3557softnet_break: 3558 sd->time_squeeze++; 3559 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3560 goto out; 3561} 3562 3563static gifconf_func_t *gifconf_list[NPROTO]; 3564 3565/** 3566 * register_gifconf - register a SIOCGIF handler 3567 * @family: Address family 3568 * @gifconf: Function handler 3569 * 3570 * Register protocol dependent address dumping routines. The handler 3571 * that is passed must not be freed or reused until it has been replaced 3572 * by another handler. 3573 */ 3574int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3575{ 3576 if (family >= NPROTO) 3577 return -EINVAL; 3578 gifconf_list[family] = gifconf; 3579 return 0; 3580} 3581EXPORT_SYMBOL(register_gifconf); 3582 3583 3584/* 3585 * Map an interface index to its name (SIOCGIFNAME) 3586 */ 3587 3588/* 3589 * We need this ioctl for efficient implementation of the 3590 * if_indextoname() function required by the IPv6 API. Without 3591 * it, we would have to search all the interfaces to find a 3592 * match. --pb 3593 */ 3594 3595static int dev_ifname(struct net *net, struct ifreq __user *arg) 3596{ 3597 struct net_device *dev; 3598 struct ifreq ifr; 3599 3600 /* 3601 * Fetch the caller's info block. 3602 */ 3603 3604 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3605 return -EFAULT; 3606 3607 rcu_read_lock(); 3608 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3609 if (!dev) { 3610 rcu_read_unlock(); 3611 return -ENODEV; 3612 } 3613 3614 strcpy(ifr.ifr_name, dev->name); 3615 rcu_read_unlock(); 3616 3617 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3618 return -EFAULT; 3619 return 0; 3620} 3621 3622/* 3623 * Perform a SIOCGIFCONF call. This structure will change 3624 * size eventually, and there is nothing I can do about it. 3625 * Thus we will need a 'compatibility mode'. 3626 */ 3627 3628static int dev_ifconf(struct net *net, char __user *arg) 3629{ 3630 struct ifconf ifc; 3631 struct net_device *dev; 3632 char __user *pos; 3633 int len; 3634 int total; 3635 int i; 3636 3637 /* 3638 * Fetch the caller's info block. 3639 */ 3640 3641 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3642 return -EFAULT; 3643 3644 pos = ifc.ifc_buf; 3645 len = ifc.ifc_len; 3646 3647 /* 3648 * Loop over the interfaces, and write an info block for each. 3649 */ 3650 3651 total = 0; 3652 for_each_netdev(net, dev) { 3653 for (i = 0; i < NPROTO; i++) { 3654 if (gifconf_list[i]) { 3655 int done; 3656 if (!pos) 3657 done = gifconf_list[i](dev, NULL, 0); 3658 else 3659 done = gifconf_list[i](dev, pos + total, 3660 len - total); 3661 if (done < 0) 3662 return -EFAULT; 3663 total += done; 3664 } 3665 } 3666 } 3667 3668 /* 3669 * All done. Write the updated control block back to the caller. 3670 */ 3671 ifc.ifc_len = total; 3672 3673 /* 3674 * Both BSD and Solaris return 0 here, so we do too. 3675 */ 3676 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3677} 3678 3679#ifdef CONFIG_PROC_FS 3680/* 3681 * This is invoked by the /proc filesystem handler to display a device 3682 * in detail. 3683 */ 3684void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3685 __acquires(RCU) 3686{ 3687 struct net *net = seq_file_net(seq); 3688 loff_t off; 3689 struct net_device *dev; 3690 3691 rcu_read_lock(); 3692 if (!*pos) 3693 return SEQ_START_TOKEN; 3694 3695 off = 1; 3696 for_each_netdev_rcu(net, dev) 3697 if (off++ == *pos) 3698 return dev; 3699 3700 return NULL; 3701} 3702 3703void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3704{ 3705 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3706 first_net_device(seq_file_net(seq)) : 3707 next_net_device((struct net_device *)v); 3708 3709 ++*pos; 3710 return rcu_dereference(dev); 3711} 3712 3713void dev_seq_stop(struct seq_file *seq, void *v) 3714 __releases(RCU) 3715{ 3716 rcu_read_unlock(); 3717} 3718 3719static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3720{ 3721 const struct net_device_stats *stats = dev_get_stats(dev); 3722 3723 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3724 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3725 dev->name, stats->rx_bytes, stats->rx_packets, 3726 stats->rx_errors, 3727 stats->rx_dropped + stats->rx_missed_errors, 3728 stats->rx_fifo_errors, 3729 stats->rx_length_errors + stats->rx_over_errors + 3730 stats->rx_crc_errors + stats->rx_frame_errors, 3731 stats->rx_compressed, stats->multicast, 3732 stats->tx_bytes, stats->tx_packets, 3733 stats->tx_errors, stats->tx_dropped, 3734 stats->tx_fifo_errors, stats->collisions, 3735 stats->tx_carrier_errors + 3736 stats->tx_aborted_errors + 3737 stats->tx_window_errors + 3738 stats->tx_heartbeat_errors, 3739 stats->tx_compressed); 3740} 3741 3742/* 3743 * Called from the PROCfs module. This now uses the new arbitrary sized 3744 * /proc/net interface to create /proc/net/dev 3745 */ 3746static int dev_seq_show(struct seq_file *seq, void *v) 3747{ 3748 if (v == SEQ_START_TOKEN) 3749 seq_puts(seq, "Inter-| Receive " 3750 " | Transmit\n" 3751 " face |bytes packets errs drop fifo frame " 3752 "compressed multicast|bytes packets errs " 3753 "drop fifo colls carrier compressed\n"); 3754 else 3755 dev_seq_printf_stats(seq, v); 3756 return 0; 3757} 3758 3759static struct softnet_data *softnet_get_online(loff_t *pos) 3760{ 3761 struct softnet_data *sd = NULL; 3762 3763 while (*pos < nr_cpu_ids) 3764 if (cpu_online(*pos)) { 3765 sd = &per_cpu(softnet_data, *pos); 3766 break; 3767 } else 3768 ++*pos; 3769 return sd; 3770} 3771 3772static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3773{ 3774 return softnet_get_online(pos); 3775} 3776 3777static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3778{ 3779 ++*pos; 3780 return softnet_get_online(pos); 3781} 3782 3783static void softnet_seq_stop(struct seq_file *seq, void *v) 3784{ 3785} 3786 3787static int softnet_seq_show(struct seq_file *seq, void *v) 3788{ 3789 struct softnet_data *sd = v; 3790 3791 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3792 sd->processed, sd->dropped, sd->time_squeeze, 0, 3793 0, 0, 0, 0, /* was fastroute */ 3794 sd->cpu_collision, sd->received_rps); 3795 return 0; 3796} 3797 3798static const struct seq_operations dev_seq_ops = { 3799 .start = dev_seq_start, 3800 .next = dev_seq_next, 3801 .stop = dev_seq_stop, 3802 .show = dev_seq_show, 3803}; 3804 3805static int dev_seq_open(struct inode *inode, struct file *file) 3806{ 3807 return seq_open_net(inode, file, &dev_seq_ops, 3808 sizeof(struct seq_net_private)); 3809} 3810 3811static const struct file_operations dev_seq_fops = { 3812 .owner = THIS_MODULE, 3813 .open = dev_seq_open, 3814 .read = seq_read, 3815 .llseek = seq_lseek, 3816 .release = seq_release_net, 3817}; 3818 3819static const struct seq_operations softnet_seq_ops = { 3820 .start = softnet_seq_start, 3821 .next = softnet_seq_next, 3822 .stop = softnet_seq_stop, 3823 .show = softnet_seq_show, 3824}; 3825 3826static int softnet_seq_open(struct inode *inode, struct file *file) 3827{ 3828 return seq_open(file, &softnet_seq_ops); 3829} 3830 3831static const struct file_operations softnet_seq_fops = { 3832 .owner = THIS_MODULE, 3833 .open = softnet_seq_open, 3834 .read = seq_read, 3835 .llseek = seq_lseek, 3836 .release = seq_release, 3837}; 3838 3839static void *ptype_get_idx(loff_t pos) 3840{ 3841 struct packet_type *pt = NULL; 3842 loff_t i = 0; 3843 int t; 3844 3845 list_for_each_entry_rcu(pt, &ptype_all, list) { 3846 if (i == pos) 3847 return pt; 3848 ++i; 3849 } 3850 3851 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3852 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3853 if (i == pos) 3854 return pt; 3855 ++i; 3856 } 3857 } 3858 return NULL; 3859} 3860 3861static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3862 __acquires(RCU) 3863{ 3864 rcu_read_lock(); 3865 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3866} 3867 3868static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3869{ 3870 struct packet_type *pt; 3871 struct list_head *nxt; 3872 int hash; 3873 3874 ++*pos; 3875 if (v == SEQ_START_TOKEN) 3876 return ptype_get_idx(0); 3877 3878 pt = v; 3879 nxt = pt->list.next; 3880 if (pt->type == htons(ETH_P_ALL)) { 3881 if (nxt != &ptype_all) 3882 goto found; 3883 hash = 0; 3884 nxt = ptype_base[0].next; 3885 } else 3886 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3887 3888 while (nxt == &ptype_base[hash]) { 3889 if (++hash >= PTYPE_HASH_SIZE) 3890 return NULL; 3891 nxt = ptype_base[hash].next; 3892 } 3893found: 3894 return list_entry(nxt, struct packet_type, list); 3895} 3896 3897static void ptype_seq_stop(struct seq_file *seq, void *v) 3898 __releases(RCU) 3899{ 3900 rcu_read_unlock(); 3901} 3902 3903static int ptype_seq_show(struct seq_file *seq, void *v) 3904{ 3905 struct packet_type *pt = v; 3906 3907 if (v == SEQ_START_TOKEN) 3908 seq_puts(seq, "Type Device Function\n"); 3909 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3910 if (pt->type == htons(ETH_P_ALL)) 3911 seq_puts(seq, "ALL "); 3912 else 3913 seq_printf(seq, "%04x", ntohs(pt->type)); 3914 3915 seq_printf(seq, " %-8s %pF\n", 3916 pt->dev ? pt->dev->name : "", pt->func); 3917 } 3918 3919 return 0; 3920} 3921 3922static const struct seq_operations ptype_seq_ops = { 3923 .start = ptype_seq_start, 3924 .next = ptype_seq_next, 3925 .stop = ptype_seq_stop, 3926 .show = ptype_seq_show, 3927}; 3928 3929static int ptype_seq_open(struct inode *inode, struct file *file) 3930{ 3931 return seq_open_net(inode, file, &ptype_seq_ops, 3932 sizeof(struct seq_net_private)); 3933} 3934 3935static const struct file_operations ptype_seq_fops = { 3936 .owner = THIS_MODULE, 3937 .open = ptype_seq_open, 3938 .read = seq_read, 3939 .llseek = seq_lseek, 3940 .release = seq_release_net, 3941}; 3942 3943 3944static int __net_init dev_proc_net_init(struct net *net) 3945{ 3946 int rc = -ENOMEM; 3947 3948 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3949 goto out; 3950 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3951 goto out_dev; 3952 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3953 goto out_softnet; 3954 3955 if (wext_proc_init(net)) 3956 goto out_ptype; 3957 rc = 0; 3958out: 3959 return rc; 3960out_ptype: 3961 proc_net_remove(net, "ptype"); 3962out_softnet: 3963 proc_net_remove(net, "softnet_stat"); 3964out_dev: 3965 proc_net_remove(net, "dev"); 3966 goto out; 3967} 3968 3969static void __net_exit dev_proc_net_exit(struct net *net) 3970{ 3971 wext_proc_exit(net); 3972 3973 proc_net_remove(net, "ptype"); 3974 proc_net_remove(net, "softnet_stat"); 3975 proc_net_remove(net, "dev"); 3976} 3977 3978static struct pernet_operations __net_initdata dev_proc_ops = { 3979 .init = dev_proc_net_init, 3980 .exit = dev_proc_net_exit, 3981}; 3982 3983static int __init dev_proc_init(void) 3984{ 3985 return register_pernet_subsys(&dev_proc_ops); 3986} 3987#else 3988#define dev_proc_init() 0 3989#endif /* CONFIG_PROC_FS */ 3990 3991 3992/** 3993 * netdev_set_master - set up master/slave pair 3994 * @slave: slave device 3995 * @master: new master device 3996 * 3997 * Changes the master device of the slave. Pass %NULL to break the 3998 * bonding. The caller must hold the RTNL semaphore. On a failure 3999 * a negative errno code is returned. On success the reference counts 4000 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4001 * function returns zero. 4002 */ 4003int netdev_set_master(struct net_device *slave, struct net_device *master) 4004{ 4005 struct net_device *old = slave->master; 4006 4007 ASSERT_RTNL(); 4008 4009 if (master) { 4010 if (old) 4011 return -EBUSY; 4012 dev_hold(master); 4013 } 4014 4015 slave->master = master; 4016 4017 if (old) { 4018 synchronize_net(); 4019 dev_put(old); 4020 } 4021 if (master) 4022 slave->flags |= IFF_SLAVE; 4023 else 4024 slave->flags &= ~IFF_SLAVE; 4025 4026 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4027 return 0; 4028} 4029EXPORT_SYMBOL(netdev_set_master); 4030 4031static void dev_change_rx_flags(struct net_device *dev, int flags) 4032{ 4033 const struct net_device_ops *ops = dev->netdev_ops; 4034 4035 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4036 ops->ndo_change_rx_flags(dev, flags); 4037} 4038 4039static int __dev_set_promiscuity(struct net_device *dev, int inc) 4040{ 4041 unsigned short old_flags = dev->flags; 4042 uid_t uid; 4043 gid_t gid; 4044 4045 ASSERT_RTNL(); 4046 4047 dev->flags |= IFF_PROMISC; 4048 dev->promiscuity += inc; 4049 if (dev->promiscuity == 0) { 4050 /* 4051 * Avoid overflow. 4052 * If inc causes overflow, untouch promisc and return error. 4053 */ 4054 if (inc < 0) 4055 dev->flags &= ~IFF_PROMISC; 4056 else { 4057 dev->promiscuity -= inc; 4058 printk(KERN_WARNING "%s: promiscuity touches roof, " 4059 "set promiscuity failed, promiscuity feature " 4060 "of device might be broken.\n", dev->name); 4061 return -EOVERFLOW; 4062 } 4063 } 4064 if (dev->flags != old_flags) { 4065 printk(KERN_INFO "device %s %s promiscuous mode\n", 4066 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4067 "left"); 4068 if (audit_enabled) { 4069 current_uid_gid(&uid, &gid); 4070 audit_log(current->audit_context, GFP_ATOMIC, 4071 AUDIT_ANOM_PROMISCUOUS, 4072 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4073 dev->name, (dev->flags & IFF_PROMISC), 4074 (old_flags & IFF_PROMISC), 4075 audit_get_loginuid(current), 4076 uid, gid, 4077 audit_get_sessionid(current)); 4078 } 4079 4080 dev_change_rx_flags(dev, IFF_PROMISC); 4081 } 4082 return 0; 4083} 4084 4085/** 4086 * dev_set_promiscuity - update promiscuity count on a device 4087 * @dev: device 4088 * @inc: modifier 4089 * 4090 * Add or remove promiscuity from a device. While the count in the device 4091 * remains above zero the interface remains promiscuous. Once it hits zero 4092 * the device reverts back to normal filtering operation. A negative inc 4093 * value is used to drop promiscuity on the device. 4094 * Return 0 if successful or a negative errno code on error. 4095 */ 4096int dev_set_promiscuity(struct net_device *dev, int inc) 4097{ 4098 unsigned short old_flags = dev->flags; 4099 int err; 4100 4101 err = __dev_set_promiscuity(dev, inc); 4102 if (err < 0) 4103 return err; 4104 if (dev->flags != old_flags) 4105 dev_set_rx_mode(dev); 4106 return err; 4107} 4108EXPORT_SYMBOL(dev_set_promiscuity); 4109 4110/** 4111 * dev_set_allmulti - update allmulti count on a device 4112 * @dev: device 4113 * @inc: modifier 4114 * 4115 * Add or remove reception of all multicast frames to a device. While the 4116 * count in the device remains above zero the interface remains listening 4117 * to all interfaces. Once it hits zero the device reverts back to normal 4118 * filtering operation. A negative @inc value is used to drop the counter 4119 * when releasing a resource needing all multicasts. 4120 * Return 0 if successful or a negative errno code on error. 4121 */ 4122 4123int dev_set_allmulti(struct net_device *dev, int inc) 4124{ 4125 unsigned short old_flags = dev->flags; 4126 4127 ASSERT_RTNL(); 4128 4129 dev->flags |= IFF_ALLMULTI; 4130 dev->allmulti += inc; 4131 if (dev->allmulti == 0) { 4132 /* 4133 * Avoid overflow. 4134 * If inc causes overflow, untouch allmulti and return error. 4135 */ 4136 if (inc < 0) 4137 dev->flags &= ~IFF_ALLMULTI; 4138 else { 4139 dev->allmulti -= inc; 4140 printk(KERN_WARNING "%s: allmulti touches roof, " 4141 "set allmulti failed, allmulti feature of " 4142 "device might be broken.\n", dev->name); 4143 return -EOVERFLOW; 4144 } 4145 } 4146 if (dev->flags ^ old_flags) { 4147 dev_change_rx_flags(dev, IFF_ALLMULTI); 4148 dev_set_rx_mode(dev); 4149 } 4150 return 0; 4151} 4152EXPORT_SYMBOL(dev_set_allmulti); 4153 4154/* 4155 * Upload unicast and multicast address lists to device and 4156 * configure RX filtering. When the device doesn't support unicast 4157 * filtering it is put in promiscuous mode while unicast addresses 4158 * are present. 4159 */ 4160void __dev_set_rx_mode(struct net_device *dev) 4161{ 4162 const struct net_device_ops *ops = dev->netdev_ops; 4163 4164 /* dev_open will call this function so the list will stay sane. */ 4165 if (!(dev->flags&IFF_UP)) 4166 return; 4167 4168 if (!netif_device_present(dev)) 4169 return; 4170 4171 if (ops->ndo_set_rx_mode) 4172 ops->ndo_set_rx_mode(dev); 4173 else { 4174 /* Unicast addresses changes may only happen under the rtnl, 4175 * therefore calling __dev_set_promiscuity here is safe. 4176 */ 4177 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4178 __dev_set_promiscuity(dev, 1); 4179 dev->uc_promisc = 1; 4180 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4181 __dev_set_promiscuity(dev, -1); 4182 dev->uc_promisc = 0; 4183 } 4184 4185 if (ops->ndo_set_multicast_list) 4186 ops->ndo_set_multicast_list(dev); 4187 } 4188} 4189 4190void dev_set_rx_mode(struct net_device *dev) 4191{ 4192 netif_addr_lock_bh(dev); 4193 __dev_set_rx_mode(dev); 4194 netif_addr_unlock_bh(dev); 4195} 4196 4197/** 4198 * dev_get_flags - get flags reported to userspace 4199 * @dev: device 4200 * 4201 * Get the combination of flag bits exported through APIs to userspace. 4202 */ 4203unsigned dev_get_flags(const struct net_device *dev) 4204{ 4205 unsigned flags; 4206 4207 flags = (dev->flags & ~(IFF_PROMISC | 4208 IFF_ALLMULTI | 4209 IFF_RUNNING | 4210 IFF_LOWER_UP | 4211 IFF_DORMANT)) | 4212 (dev->gflags & (IFF_PROMISC | 4213 IFF_ALLMULTI)); 4214 4215 if (netif_running(dev)) { 4216 if (netif_oper_up(dev)) 4217 flags |= IFF_RUNNING; 4218 if (netif_carrier_ok(dev)) 4219 flags |= IFF_LOWER_UP; 4220 if (netif_dormant(dev)) 4221 flags |= IFF_DORMANT; 4222 } 4223 4224 return flags; 4225} 4226EXPORT_SYMBOL(dev_get_flags); 4227 4228int __dev_change_flags(struct net_device *dev, unsigned int flags) 4229{ 4230 int old_flags = dev->flags; 4231 int ret; 4232 4233 ASSERT_RTNL(); 4234 4235 /* 4236 * Set the flags on our device. 4237 */ 4238 4239 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4240 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4241 IFF_AUTOMEDIA)) | 4242 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4243 IFF_ALLMULTI)); 4244 4245 /* 4246 * Load in the correct multicast list now the flags have changed. 4247 */ 4248 4249 if ((old_flags ^ flags) & IFF_MULTICAST) 4250 dev_change_rx_flags(dev, IFF_MULTICAST); 4251 4252 dev_set_rx_mode(dev); 4253 4254 /* 4255 * Have we downed the interface. We handle IFF_UP ourselves 4256 * according to user attempts to set it, rather than blindly 4257 * setting it. 4258 */ 4259 4260 ret = 0; 4261 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4262 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4263 4264 if (!ret) 4265 dev_set_rx_mode(dev); 4266 } 4267 4268 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4269 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4270 4271 dev->gflags ^= IFF_PROMISC; 4272 dev_set_promiscuity(dev, inc); 4273 } 4274 4275 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4276 is important. Some (broken) drivers set IFF_PROMISC, when 4277 IFF_ALLMULTI is requested not asking us and not reporting. 4278 */ 4279 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4280 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4281 4282 dev->gflags ^= IFF_ALLMULTI; 4283 dev_set_allmulti(dev, inc); 4284 } 4285 4286 return ret; 4287} 4288 4289void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4290{ 4291 unsigned int changes = dev->flags ^ old_flags; 4292 4293 if (changes & IFF_UP) { 4294 if (dev->flags & IFF_UP) 4295 call_netdevice_notifiers(NETDEV_UP, dev); 4296 else 4297 call_netdevice_notifiers(NETDEV_DOWN, dev); 4298 } 4299 4300 if (dev->flags & IFF_UP && 4301 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4302 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4303} 4304 4305/** 4306 * dev_change_flags - change device settings 4307 * @dev: device 4308 * @flags: device state flags 4309 * 4310 * Change settings on device based state flags. The flags are 4311 * in the userspace exported format. 4312 */ 4313int dev_change_flags(struct net_device *dev, unsigned flags) 4314{ 4315 int ret, changes; 4316 int old_flags = dev->flags; 4317 4318 ret = __dev_change_flags(dev, flags); 4319 if (ret < 0) 4320 return ret; 4321 4322 changes = old_flags ^ dev->flags; 4323 if (changes) 4324 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4325 4326 __dev_notify_flags(dev, old_flags); 4327 return ret; 4328} 4329EXPORT_SYMBOL(dev_change_flags); 4330 4331/** 4332 * dev_set_mtu - Change maximum transfer unit 4333 * @dev: device 4334 * @new_mtu: new transfer unit 4335 * 4336 * Change the maximum transfer size of the network device. 4337 */ 4338int dev_set_mtu(struct net_device *dev, int new_mtu) 4339{ 4340 const struct net_device_ops *ops = dev->netdev_ops; 4341 int err; 4342 4343 if (new_mtu == dev->mtu) 4344 return 0; 4345 4346 /* MTU must be positive. */ 4347 if (new_mtu < 0) 4348 return -EINVAL; 4349 4350 if (!netif_device_present(dev)) 4351 return -ENODEV; 4352 4353 err = 0; 4354 if (ops->ndo_change_mtu) 4355 err = ops->ndo_change_mtu(dev, new_mtu); 4356 else 4357 dev->mtu = new_mtu; 4358 4359 if (!err && dev->flags & IFF_UP) 4360 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4361 return err; 4362} 4363EXPORT_SYMBOL(dev_set_mtu); 4364 4365/** 4366 * dev_set_mac_address - Change Media Access Control Address 4367 * @dev: device 4368 * @sa: new address 4369 * 4370 * Change the hardware (MAC) address of the device 4371 */ 4372int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4373{ 4374 const struct net_device_ops *ops = dev->netdev_ops; 4375 int err; 4376 4377 if (!ops->ndo_set_mac_address) 4378 return -EOPNOTSUPP; 4379 if (sa->sa_family != dev->type) 4380 return -EINVAL; 4381 if (!netif_device_present(dev)) 4382 return -ENODEV; 4383 err = ops->ndo_set_mac_address(dev, sa); 4384 if (!err) 4385 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4386 return err; 4387} 4388EXPORT_SYMBOL(dev_set_mac_address); 4389 4390/* 4391 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4392 */ 4393static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4394{ 4395 int err; 4396 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4397 4398 if (!dev) 4399 return -ENODEV; 4400 4401 switch (cmd) { 4402 case SIOCGIFFLAGS: /* Get interface flags */ 4403 ifr->ifr_flags = (short) dev_get_flags(dev); 4404 return 0; 4405 4406 case SIOCGIFMETRIC: /* Get the metric on the interface 4407 (currently unused) */ 4408 ifr->ifr_metric = 0; 4409 return 0; 4410 4411 case SIOCGIFMTU: /* Get the MTU of a device */ 4412 ifr->ifr_mtu = dev->mtu; 4413 return 0; 4414 4415 case SIOCGIFHWADDR: 4416 if (!dev->addr_len) 4417 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4418 else 4419 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4420 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4421 ifr->ifr_hwaddr.sa_family = dev->type; 4422 return 0; 4423 4424 case SIOCGIFSLAVE: 4425 err = -EINVAL; 4426 break; 4427 4428 case SIOCGIFMAP: 4429 ifr->ifr_map.mem_start = dev->mem_start; 4430 ifr->ifr_map.mem_end = dev->mem_end; 4431 ifr->ifr_map.base_addr = dev->base_addr; 4432 ifr->ifr_map.irq = dev->irq; 4433 ifr->ifr_map.dma = dev->dma; 4434 ifr->ifr_map.port = dev->if_port; 4435 return 0; 4436 4437 case SIOCGIFINDEX: 4438 ifr->ifr_ifindex = dev->ifindex; 4439 return 0; 4440 4441 case SIOCGIFTXQLEN: 4442 ifr->ifr_qlen = dev->tx_queue_len; 4443 return 0; 4444 4445 default: 4446 /* dev_ioctl() should ensure this case 4447 * is never reached 4448 */ 4449 WARN_ON(1); 4450 err = -EINVAL; 4451 break; 4452 4453 } 4454 return err; 4455} 4456 4457/* 4458 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4459 */ 4460static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4461{ 4462 int err; 4463 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4464 const struct net_device_ops *ops; 4465 4466 if (!dev) 4467 return -ENODEV; 4468 4469 ops = dev->netdev_ops; 4470 4471 switch (cmd) { 4472 case SIOCSIFFLAGS: /* Set interface flags */ 4473 return dev_change_flags(dev, ifr->ifr_flags); 4474 4475 case SIOCSIFMETRIC: /* Set the metric on the interface 4476 (currently unused) */ 4477 return -EOPNOTSUPP; 4478 4479 case SIOCSIFMTU: /* Set the MTU of a device */ 4480 return dev_set_mtu(dev, ifr->ifr_mtu); 4481 4482 case SIOCSIFHWADDR: 4483 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4484 4485 case SIOCSIFHWBROADCAST: 4486 if (ifr->ifr_hwaddr.sa_family != dev->type) 4487 return -EINVAL; 4488 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4489 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4490 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4491 return 0; 4492 4493 case SIOCSIFMAP: 4494 if (ops->ndo_set_config) { 4495 if (!netif_device_present(dev)) 4496 return -ENODEV; 4497 return ops->ndo_set_config(dev, &ifr->ifr_map); 4498 } 4499 return -EOPNOTSUPP; 4500 4501 case SIOCADDMULTI: 4502 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4503 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4504 return -EINVAL; 4505 if (!netif_device_present(dev)) 4506 return -ENODEV; 4507 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4508 4509 case SIOCDELMULTI: 4510 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4511 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4512 return -EINVAL; 4513 if (!netif_device_present(dev)) 4514 return -ENODEV; 4515 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4516 4517 case SIOCSIFTXQLEN: 4518 if (ifr->ifr_qlen < 0) 4519 return -EINVAL; 4520 dev->tx_queue_len = ifr->ifr_qlen; 4521 return 0; 4522 4523 case SIOCSIFNAME: 4524 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4525 return dev_change_name(dev, ifr->ifr_newname); 4526 4527 /* 4528 * Unknown or private ioctl 4529 */ 4530 default: 4531 if ((cmd >= SIOCDEVPRIVATE && 4532 cmd <= SIOCDEVPRIVATE + 15) || 4533 cmd == SIOCBONDENSLAVE || 4534 cmd == SIOCBONDRELEASE || 4535 cmd == SIOCBONDSETHWADDR || 4536 cmd == SIOCBONDSLAVEINFOQUERY || 4537 cmd == SIOCBONDINFOQUERY || 4538 cmd == SIOCBONDCHANGEACTIVE || 4539 cmd == SIOCGMIIPHY || 4540 cmd == SIOCGMIIREG || 4541 cmd == SIOCSMIIREG || 4542 cmd == SIOCBRADDIF || 4543 cmd == SIOCBRDELIF || 4544 cmd == SIOCSHWTSTAMP || 4545 cmd == SIOCWANDEV) { 4546 err = -EOPNOTSUPP; 4547 if (ops->ndo_do_ioctl) { 4548 if (netif_device_present(dev)) 4549 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4550 else 4551 err = -ENODEV; 4552 } 4553 } else 4554 err = -EINVAL; 4555 4556 } 4557 return err; 4558} 4559 4560/* 4561 * This function handles all "interface"-type I/O control requests. The actual 4562 * 'doing' part of this is dev_ifsioc above. 4563 */ 4564 4565/** 4566 * dev_ioctl - network device ioctl 4567 * @net: the applicable net namespace 4568 * @cmd: command to issue 4569 * @arg: pointer to a struct ifreq in user space 4570 * 4571 * Issue ioctl functions to devices. This is normally called by the 4572 * user space syscall interfaces but can sometimes be useful for 4573 * other purposes. The return value is the return from the syscall if 4574 * positive or a negative errno code on error. 4575 */ 4576 4577int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4578{ 4579 struct ifreq ifr; 4580 int ret; 4581 char *colon; 4582 4583 /* One special case: SIOCGIFCONF takes ifconf argument 4584 and requires shared lock, because it sleeps writing 4585 to user space. 4586 */ 4587 4588 if (cmd == SIOCGIFCONF) { 4589 rtnl_lock(); 4590 ret = dev_ifconf(net, (char __user *) arg); 4591 rtnl_unlock(); 4592 return ret; 4593 } 4594 if (cmd == SIOCGIFNAME) 4595 return dev_ifname(net, (struct ifreq __user *)arg); 4596 4597 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4598 return -EFAULT; 4599 4600 ifr.ifr_name[IFNAMSIZ-1] = 0; 4601 4602 colon = strchr(ifr.ifr_name, ':'); 4603 if (colon) 4604 *colon = 0; 4605 4606 /* 4607 * See which interface the caller is talking about. 4608 */ 4609 4610 switch (cmd) { 4611 /* 4612 * These ioctl calls: 4613 * - can be done by all. 4614 * - atomic and do not require locking. 4615 * - return a value 4616 */ 4617 case SIOCGIFFLAGS: 4618 case SIOCGIFMETRIC: 4619 case SIOCGIFMTU: 4620 case SIOCGIFHWADDR: 4621 case SIOCGIFSLAVE: 4622 case SIOCGIFMAP: 4623 case SIOCGIFINDEX: 4624 case SIOCGIFTXQLEN: 4625 dev_load(net, ifr.ifr_name); 4626 rcu_read_lock(); 4627 ret = dev_ifsioc_locked(net, &ifr, cmd); 4628 rcu_read_unlock(); 4629 if (!ret) { 4630 if (colon) 4631 *colon = ':'; 4632 if (copy_to_user(arg, &ifr, 4633 sizeof(struct ifreq))) 4634 ret = -EFAULT; 4635 } 4636 return ret; 4637 4638 case SIOCETHTOOL: 4639 dev_load(net, ifr.ifr_name); 4640 rtnl_lock(); 4641 ret = dev_ethtool(net, &ifr); 4642 rtnl_unlock(); 4643 if (!ret) { 4644 if (colon) 4645 *colon = ':'; 4646 if (copy_to_user(arg, &ifr, 4647 sizeof(struct ifreq))) 4648 ret = -EFAULT; 4649 } 4650 return ret; 4651 4652 /* 4653 * These ioctl calls: 4654 * - require superuser power. 4655 * - require strict serialization. 4656 * - return a value 4657 */ 4658 case SIOCGMIIPHY: 4659 case SIOCGMIIREG: 4660 case SIOCSIFNAME: 4661 if (!capable(CAP_NET_ADMIN)) 4662 return -EPERM; 4663 dev_load(net, ifr.ifr_name); 4664 rtnl_lock(); 4665 ret = dev_ifsioc(net, &ifr, cmd); 4666 rtnl_unlock(); 4667 if (!ret) { 4668 if (colon) 4669 *colon = ':'; 4670 if (copy_to_user(arg, &ifr, 4671 sizeof(struct ifreq))) 4672 ret = -EFAULT; 4673 } 4674 return ret; 4675 4676 /* 4677 * These ioctl calls: 4678 * - require superuser power. 4679 * - require strict serialization. 4680 * - do not return a value 4681 */ 4682 case SIOCSIFFLAGS: 4683 case SIOCSIFMETRIC: 4684 case SIOCSIFMTU: 4685 case SIOCSIFMAP: 4686 case SIOCSIFHWADDR: 4687 case SIOCSIFSLAVE: 4688 case SIOCADDMULTI: 4689 case SIOCDELMULTI: 4690 case SIOCSIFHWBROADCAST: 4691 case SIOCSIFTXQLEN: 4692 case SIOCSMIIREG: 4693 case SIOCBONDENSLAVE: 4694 case SIOCBONDRELEASE: 4695 case SIOCBONDSETHWADDR: 4696 case SIOCBONDCHANGEACTIVE: 4697 case SIOCBRADDIF: 4698 case SIOCBRDELIF: 4699 case SIOCSHWTSTAMP: 4700 if (!capable(CAP_NET_ADMIN)) 4701 return -EPERM; 4702 /* fall through */ 4703 case SIOCBONDSLAVEINFOQUERY: 4704 case SIOCBONDINFOQUERY: 4705 dev_load(net, ifr.ifr_name); 4706 rtnl_lock(); 4707 ret = dev_ifsioc(net, &ifr, cmd); 4708 rtnl_unlock(); 4709 return ret; 4710 4711 case SIOCGIFMEM: 4712 /* Get the per device memory space. We can add this but 4713 * currently do not support it */ 4714 case SIOCSIFMEM: 4715 /* Set the per device memory buffer space. 4716 * Not applicable in our case */ 4717 case SIOCSIFLINK: 4718 return -EINVAL; 4719 4720 /* 4721 * Unknown or private ioctl. 4722 */ 4723 default: 4724 if (cmd == SIOCWANDEV || 4725 (cmd >= SIOCDEVPRIVATE && 4726 cmd <= SIOCDEVPRIVATE + 15)) { 4727 dev_load(net, ifr.ifr_name); 4728 rtnl_lock(); 4729 ret = dev_ifsioc(net, &ifr, cmd); 4730 rtnl_unlock(); 4731 if (!ret && copy_to_user(arg, &ifr, 4732 sizeof(struct ifreq))) 4733 ret = -EFAULT; 4734 return ret; 4735 } 4736 /* Take care of Wireless Extensions */ 4737 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4738 return wext_handle_ioctl(net, &ifr, cmd, arg); 4739 return -EINVAL; 4740 } 4741} 4742 4743 4744/** 4745 * dev_new_index - allocate an ifindex 4746 * @net: the applicable net namespace 4747 * 4748 * Returns a suitable unique value for a new device interface 4749 * number. The caller must hold the rtnl semaphore or the 4750 * dev_base_lock to be sure it remains unique. 4751 */ 4752static int dev_new_index(struct net *net) 4753{ 4754 static int ifindex; 4755 for (;;) { 4756 if (++ifindex <= 0) 4757 ifindex = 1; 4758 if (!__dev_get_by_index(net, ifindex)) 4759 return ifindex; 4760 } 4761} 4762 4763/* Delayed registration/unregisteration */ 4764static LIST_HEAD(net_todo_list); 4765 4766static void net_set_todo(struct net_device *dev) 4767{ 4768 list_add_tail(&dev->todo_list, &net_todo_list); 4769} 4770 4771static void rollback_registered_many(struct list_head *head) 4772{ 4773 struct net_device *dev, *tmp; 4774 4775 BUG_ON(dev_boot_phase); 4776 ASSERT_RTNL(); 4777 4778 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4779 /* Some devices call without registering 4780 * for initialization unwind. Remove those 4781 * devices and proceed with the remaining. 4782 */ 4783 if (dev->reg_state == NETREG_UNINITIALIZED) { 4784 pr_debug("unregister_netdevice: device %s/%p never " 4785 "was registered\n", dev->name, dev); 4786 4787 WARN_ON(1); 4788 list_del(&dev->unreg_list); 4789 continue; 4790 } 4791 4792 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4793 4794 /* If device is running, close it first. */ 4795 dev_close(dev); 4796 4797 /* And unlink it from device chain. */ 4798 unlist_netdevice(dev); 4799 4800 dev->reg_state = NETREG_UNREGISTERING; 4801 } 4802 4803 synchronize_net(); 4804 4805 list_for_each_entry(dev, head, unreg_list) { 4806 /* Shutdown queueing discipline. */ 4807 dev_shutdown(dev); 4808 4809 4810 /* Notify protocols, that we are about to destroy 4811 this device. They should clean all the things. 4812 */ 4813 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4814 4815 if (!dev->rtnl_link_ops || 4816 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4817 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4818 4819 /* 4820 * Flush the unicast and multicast chains 4821 */ 4822 dev_uc_flush(dev); 4823 dev_mc_flush(dev); 4824 4825 if (dev->netdev_ops->ndo_uninit) 4826 dev->netdev_ops->ndo_uninit(dev); 4827 4828 /* Notifier chain MUST detach us from master device. */ 4829 WARN_ON(dev->master); 4830 4831 /* Remove entries from kobject tree */ 4832 netdev_unregister_kobject(dev); 4833 } 4834 4835 /* Process any work delayed until the end of the batch */ 4836 dev = list_first_entry(head, struct net_device, unreg_list); 4837 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4838 4839 synchronize_net(); 4840 4841 list_for_each_entry(dev, head, unreg_list) 4842 dev_put(dev); 4843} 4844 4845static void rollback_registered(struct net_device *dev) 4846{ 4847 LIST_HEAD(single); 4848 4849 list_add(&dev->unreg_list, &single); 4850 rollback_registered_many(&single); 4851} 4852 4853static void __netdev_init_queue_locks_one(struct net_device *dev, 4854 struct netdev_queue *dev_queue, 4855 void *_unused) 4856{ 4857 spin_lock_init(&dev_queue->_xmit_lock); 4858 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4859 dev_queue->xmit_lock_owner = -1; 4860} 4861 4862static void netdev_init_queue_locks(struct net_device *dev) 4863{ 4864 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4865 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4866} 4867 4868unsigned long netdev_fix_features(unsigned long features, const char *name) 4869{ 4870 /* Fix illegal SG+CSUM combinations. */ 4871 if ((features & NETIF_F_SG) && 4872 !(features & NETIF_F_ALL_CSUM)) { 4873 if (name) 4874 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4875 "checksum feature.\n", name); 4876 features &= ~NETIF_F_SG; 4877 } 4878 4879 /* TSO requires that SG is present as well. */ 4880 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4881 if (name) 4882 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4883 "SG feature.\n", name); 4884 features &= ~NETIF_F_TSO; 4885 } 4886 4887 if (features & NETIF_F_UFO) { 4888 if (!(features & NETIF_F_GEN_CSUM)) { 4889 if (name) 4890 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4891 "since no NETIF_F_HW_CSUM feature.\n", 4892 name); 4893 features &= ~NETIF_F_UFO; 4894 } 4895 4896 if (!(features & NETIF_F_SG)) { 4897 if (name) 4898 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4899 "since no NETIF_F_SG feature.\n", name); 4900 features &= ~NETIF_F_UFO; 4901 } 4902 } 4903 4904 return features; 4905} 4906EXPORT_SYMBOL(netdev_fix_features); 4907 4908/** 4909 * netif_stacked_transfer_operstate - transfer operstate 4910 * @rootdev: the root or lower level device to transfer state from 4911 * @dev: the device to transfer operstate to 4912 * 4913 * Transfer operational state from root to device. This is normally 4914 * called when a stacking relationship exists between the root 4915 * device and the device(a leaf device). 4916 */ 4917void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4918 struct net_device *dev) 4919{ 4920 if (rootdev->operstate == IF_OPER_DORMANT) 4921 netif_dormant_on(dev); 4922 else 4923 netif_dormant_off(dev); 4924 4925 if (netif_carrier_ok(rootdev)) { 4926 if (!netif_carrier_ok(dev)) 4927 netif_carrier_on(dev); 4928 } else { 4929 if (netif_carrier_ok(dev)) 4930 netif_carrier_off(dev); 4931 } 4932} 4933EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4934 4935/** 4936 * register_netdevice - register a network device 4937 * @dev: device to register 4938 * 4939 * Take a completed network device structure and add it to the kernel 4940 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4941 * chain. 0 is returned on success. A negative errno code is returned 4942 * on a failure to set up the device, or if the name is a duplicate. 4943 * 4944 * Callers must hold the rtnl semaphore. You may want 4945 * register_netdev() instead of this. 4946 * 4947 * BUGS: 4948 * The locking appears insufficient to guarantee two parallel registers 4949 * will not get the same name. 4950 */ 4951 4952int register_netdevice(struct net_device *dev) 4953{ 4954 int ret; 4955 struct net *net = dev_net(dev); 4956 4957 BUG_ON(dev_boot_phase); 4958 ASSERT_RTNL(); 4959 4960 might_sleep(); 4961 4962 /* When net_device's are persistent, this will be fatal. */ 4963 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4964 BUG_ON(!net); 4965 4966 spin_lock_init(&dev->addr_list_lock); 4967 netdev_set_addr_lockdep_class(dev); 4968 netdev_init_queue_locks(dev); 4969 4970 dev->iflink = -1; 4971 4972#ifdef CONFIG_RPS 4973 if (!dev->num_rx_queues) { 4974 /* 4975 * Allocate a single RX queue if driver never called 4976 * alloc_netdev_mq 4977 */ 4978 4979 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL); 4980 if (!dev->_rx) { 4981 ret = -ENOMEM; 4982 goto out; 4983 } 4984 4985 dev->_rx->first = dev->_rx; 4986 atomic_set(&dev->_rx->count, 1); 4987 dev->num_rx_queues = 1; 4988 } 4989#endif 4990 /* Init, if this function is available */ 4991 if (dev->netdev_ops->ndo_init) { 4992 ret = dev->netdev_ops->ndo_init(dev); 4993 if (ret) { 4994 if (ret > 0) 4995 ret = -EIO; 4996 goto out; 4997 } 4998 } 4999 5000 ret = dev_get_valid_name(dev, dev->name, 0); 5001 if (ret) 5002 goto err_uninit; 5003 5004 dev->ifindex = dev_new_index(net); 5005 if (dev->iflink == -1) 5006 dev->iflink = dev->ifindex; 5007 5008 /* Fix illegal checksum combinations */ 5009 if ((dev->features & NETIF_F_HW_CSUM) && 5010 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5011 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5012 dev->name); 5013 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5014 } 5015 5016 if ((dev->features & NETIF_F_NO_CSUM) && 5017 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5018 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5019 dev->name); 5020 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5021 } 5022 5023 dev->features = netdev_fix_features(dev->features, dev->name); 5024 5025 /* Enable software GSO if SG is supported. */ 5026 if (dev->features & NETIF_F_SG) 5027 dev->features |= NETIF_F_GSO; 5028 5029 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5030 ret = notifier_to_errno(ret); 5031 if (ret) 5032 goto err_uninit; 5033 5034 ret = netdev_register_kobject(dev); 5035 if (ret) 5036 goto err_uninit; 5037 dev->reg_state = NETREG_REGISTERED; 5038 5039 /* 5040 * Default initial state at registry is that the 5041 * device is present. 5042 */ 5043 5044 set_bit(__LINK_STATE_PRESENT, &dev->state); 5045 5046 dev_init_scheduler(dev); 5047 dev_hold(dev); 5048 list_netdevice(dev); 5049 5050 /* Notify protocols, that a new device appeared. */ 5051 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5052 ret = notifier_to_errno(ret); 5053 if (ret) { 5054 rollback_registered(dev); 5055 dev->reg_state = NETREG_UNREGISTERED; 5056 } 5057 /* 5058 * Prevent userspace races by waiting until the network 5059 * device is fully setup before sending notifications. 5060 */ 5061 if (!dev->rtnl_link_ops || 5062 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5063 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5064 5065out: 5066 return ret; 5067 5068err_uninit: 5069 if (dev->netdev_ops->ndo_uninit) 5070 dev->netdev_ops->ndo_uninit(dev); 5071 goto out; 5072} 5073EXPORT_SYMBOL(register_netdevice); 5074 5075/** 5076 * init_dummy_netdev - init a dummy network device for NAPI 5077 * @dev: device to init 5078 * 5079 * This takes a network device structure and initialize the minimum 5080 * amount of fields so it can be used to schedule NAPI polls without 5081 * registering a full blown interface. This is to be used by drivers 5082 * that need to tie several hardware interfaces to a single NAPI 5083 * poll scheduler due to HW limitations. 5084 */ 5085int init_dummy_netdev(struct net_device *dev) 5086{ 5087 /* Clear everything. Note we don't initialize spinlocks 5088 * are they aren't supposed to be taken by any of the 5089 * NAPI code and this dummy netdev is supposed to be 5090 * only ever used for NAPI polls 5091 */ 5092 memset(dev, 0, sizeof(struct net_device)); 5093 5094 /* make sure we BUG if trying to hit standard 5095 * register/unregister code path 5096 */ 5097 dev->reg_state = NETREG_DUMMY; 5098 5099 /* initialize the ref count */ 5100 atomic_set(&dev->refcnt, 1); 5101 5102 /* NAPI wants this */ 5103 INIT_LIST_HEAD(&dev->napi_list); 5104 5105 /* a dummy interface is started by default */ 5106 set_bit(__LINK_STATE_PRESENT, &dev->state); 5107 set_bit(__LINK_STATE_START, &dev->state); 5108 5109 return 0; 5110} 5111EXPORT_SYMBOL_GPL(init_dummy_netdev); 5112 5113 5114/** 5115 * register_netdev - register a network device 5116 * @dev: device to register 5117 * 5118 * Take a completed network device structure and add it to the kernel 5119 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5120 * chain. 0 is returned on success. A negative errno code is returned 5121 * on a failure to set up the device, or if the name is a duplicate. 5122 * 5123 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5124 * and expands the device name if you passed a format string to 5125 * alloc_netdev. 5126 */ 5127int register_netdev(struct net_device *dev) 5128{ 5129 int err; 5130 5131 rtnl_lock(); 5132 5133 /* 5134 * If the name is a format string the caller wants us to do a 5135 * name allocation. 5136 */ 5137 if (strchr(dev->name, '%')) { 5138 err = dev_alloc_name(dev, dev->name); 5139 if (err < 0) 5140 goto out; 5141 } 5142 5143 err = register_netdevice(dev); 5144out: 5145 rtnl_unlock(); 5146 return err; 5147} 5148EXPORT_SYMBOL(register_netdev); 5149 5150/* 5151 * netdev_wait_allrefs - wait until all references are gone. 5152 * 5153 * This is called when unregistering network devices. 5154 * 5155 * Any protocol or device that holds a reference should register 5156 * for netdevice notification, and cleanup and put back the 5157 * reference if they receive an UNREGISTER event. 5158 * We can get stuck here if buggy protocols don't correctly 5159 * call dev_put. 5160 */ 5161static void netdev_wait_allrefs(struct net_device *dev) 5162{ 5163 unsigned long rebroadcast_time, warning_time; 5164 5165 linkwatch_forget_dev(dev); 5166 5167 rebroadcast_time = warning_time = jiffies; 5168 while (atomic_read(&dev->refcnt) != 0) { 5169 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5170 rtnl_lock(); 5171 5172 /* Rebroadcast unregister notification */ 5173 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5174 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5175 * should have already handle it the first time */ 5176 5177 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5178 &dev->state)) { 5179 /* We must not have linkwatch events 5180 * pending on unregister. If this 5181 * happens, we simply run the queue 5182 * unscheduled, resulting in a noop 5183 * for this device. 5184 */ 5185 linkwatch_run_queue(); 5186 } 5187 5188 __rtnl_unlock(); 5189 5190 rebroadcast_time = jiffies; 5191 } 5192 5193 msleep(250); 5194 5195 if (time_after(jiffies, warning_time + 10 * HZ)) { 5196 printk(KERN_EMERG "unregister_netdevice: " 5197 "waiting for %s to become free. Usage " 5198 "count = %d\n", 5199 dev->name, atomic_read(&dev->refcnt)); 5200 warning_time = jiffies; 5201 } 5202 } 5203} 5204 5205/* The sequence is: 5206 * 5207 * rtnl_lock(); 5208 * ... 5209 * register_netdevice(x1); 5210 * register_netdevice(x2); 5211 * ... 5212 * unregister_netdevice(y1); 5213 * unregister_netdevice(y2); 5214 * ... 5215 * rtnl_unlock(); 5216 * free_netdev(y1); 5217 * free_netdev(y2); 5218 * 5219 * We are invoked by rtnl_unlock(). 5220 * This allows us to deal with problems: 5221 * 1) We can delete sysfs objects which invoke hotplug 5222 * without deadlocking with linkwatch via keventd. 5223 * 2) Since we run with the RTNL semaphore not held, we can sleep 5224 * safely in order to wait for the netdev refcnt to drop to zero. 5225 * 5226 * We must not return until all unregister events added during 5227 * the interval the lock was held have been completed. 5228 */ 5229void netdev_run_todo(void) 5230{ 5231 struct list_head list; 5232 5233 /* Snapshot list, allow later requests */ 5234 list_replace_init(&net_todo_list, &list); 5235 5236 __rtnl_unlock(); 5237 5238 while (!list_empty(&list)) { 5239 struct net_device *dev 5240 = list_first_entry(&list, struct net_device, todo_list); 5241 list_del(&dev->todo_list); 5242 5243 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5244 printk(KERN_ERR "network todo '%s' but state %d\n", 5245 dev->name, dev->reg_state); 5246 dump_stack(); 5247 continue; 5248 } 5249 5250 dev->reg_state = NETREG_UNREGISTERED; 5251 5252 on_each_cpu(flush_backlog, dev, 1); 5253 5254 netdev_wait_allrefs(dev); 5255 5256 /* paranoia */ 5257 BUG_ON(atomic_read(&dev->refcnt)); 5258 WARN_ON(dev->ip_ptr); 5259 WARN_ON(dev->ip6_ptr); 5260 WARN_ON(dev->dn_ptr); 5261 5262 if (dev->destructor) 5263 dev->destructor(dev); 5264 5265 /* Free network device */ 5266 kobject_put(&dev->dev.kobj); 5267 } 5268} 5269 5270/** 5271 * dev_txq_stats_fold - fold tx_queues stats 5272 * @dev: device to get statistics from 5273 * @stats: struct net_device_stats to hold results 5274 */ 5275void dev_txq_stats_fold(const struct net_device *dev, 5276 struct net_device_stats *stats) 5277{ 5278 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5279 unsigned int i; 5280 struct netdev_queue *txq; 5281 5282 for (i = 0; i < dev->num_tx_queues; i++) { 5283 txq = netdev_get_tx_queue(dev, i); 5284 tx_bytes += txq->tx_bytes; 5285 tx_packets += txq->tx_packets; 5286 tx_dropped += txq->tx_dropped; 5287 } 5288 if (tx_bytes || tx_packets || tx_dropped) { 5289 stats->tx_bytes = tx_bytes; 5290 stats->tx_packets = tx_packets; 5291 stats->tx_dropped = tx_dropped; 5292 } 5293} 5294EXPORT_SYMBOL(dev_txq_stats_fold); 5295 5296/** 5297 * dev_get_stats - get network device statistics 5298 * @dev: device to get statistics from 5299 * 5300 * Get network statistics from device. The device driver may provide 5301 * its own method by setting dev->netdev_ops->get_stats; otherwise 5302 * the internal statistics structure is used. 5303 */ 5304const struct net_device_stats *dev_get_stats(struct net_device *dev) 5305{ 5306 const struct net_device_ops *ops = dev->netdev_ops; 5307 5308 if (ops->ndo_get_stats) 5309 return ops->ndo_get_stats(dev); 5310 5311 dev_txq_stats_fold(dev, &dev->stats); 5312 return &dev->stats; 5313} 5314EXPORT_SYMBOL(dev_get_stats); 5315 5316static void netdev_init_one_queue(struct net_device *dev, 5317 struct netdev_queue *queue, 5318 void *_unused) 5319{ 5320 queue->dev = dev; 5321} 5322 5323static void netdev_init_queues(struct net_device *dev) 5324{ 5325 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5326 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5327 spin_lock_init(&dev->tx_global_lock); 5328} 5329 5330/** 5331 * alloc_netdev_mq - allocate network device 5332 * @sizeof_priv: size of private data to allocate space for 5333 * @name: device name format string 5334 * @setup: callback to initialize device 5335 * @queue_count: the number of subqueues to allocate 5336 * 5337 * Allocates a struct net_device with private data area for driver use 5338 * and performs basic initialization. Also allocates subquue structs 5339 * for each queue on the device at the end of the netdevice. 5340 */ 5341struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5342 void (*setup)(struct net_device *), unsigned int queue_count) 5343{ 5344 struct netdev_queue *tx; 5345 struct net_device *dev; 5346 size_t alloc_size; 5347 struct net_device *p; 5348#ifdef CONFIG_RPS 5349 struct netdev_rx_queue *rx; 5350 int i; 5351#endif 5352 5353 BUG_ON(strlen(name) >= sizeof(dev->name)); 5354 5355 alloc_size = sizeof(struct net_device); 5356 if (sizeof_priv) { 5357 /* ensure 32-byte alignment of private area */ 5358 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5359 alloc_size += sizeof_priv; 5360 } 5361 /* ensure 32-byte alignment of whole construct */ 5362 alloc_size += NETDEV_ALIGN - 1; 5363 5364 p = kzalloc(alloc_size, GFP_KERNEL); 5365 if (!p) { 5366 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5367 return NULL; 5368 } 5369 5370 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5371 if (!tx) { 5372 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5373 "tx qdiscs.\n"); 5374 goto free_p; 5375 } 5376 5377#ifdef CONFIG_RPS 5378 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5379 if (!rx) { 5380 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5381 "rx queues.\n"); 5382 goto free_tx; 5383 } 5384 5385 atomic_set(&rx->count, queue_count); 5386 5387 /* 5388 * Set a pointer to first element in the array which holds the 5389 * reference count. 5390 */ 5391 for (i = 0; i < queue_count; i++) 5392 rx[i].first = rx; 5393#endif 5394 5395 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5396 dev->padded = (char *)dev - (char *)p; 5397 5398 if (dev_addr_init(dev)) 5399 goto free_rx; 5400 5401 dev_mc_init(dev); 5402 dev_uc_init(dev); 5403 5404 dev_net_set(dev, &init_net); 5405 5406 dev->_tx = tx; 5407 dev->num_tx_queues = queue_count; 5408 dev->real_num_tx_queues = queue_count; 5409 5410#ifdef CONFIG_RPS 5411 dev->_rx = rx; 5412 dev->num_rx_queues = queue_count; 5413#endif 5414 5415 dev->gso_max_size = GSO_MAX_SIZE; 5416 5417 netdev_init_queues(dev); 5418 5419 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5420 dev->ethtool_ntuple_list.count = 0; 5421 INIT_LIST_HEAD(&dev->napi_list); 5422 INIT_LIST_HEAD(&dev->unreg_list); 5423 INIT_LIST_HEAD(&dev->link_watch_list); 5424 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5425 setup(dev); 5426 strcpy(dev->name, name); 5427 return dev; 5428 5429free_rx: 5430#ifdef CONFIG_RPS 5431 kfree(rx); 5432free_tx: 5433#endif 5434 kfree(tx); 5435free_p: 5436 kfree(p); 5437 return NULL; 5438} 5439EXPORT_SYMBOL(alloc_netdev_mq); 5440 5441/** 5442 * free_netdev - free network device 5443 * @dev: device 5444 * 5445 * This function does the last stage of destroying an allocated device 5446 * interface. The reference to the device object is released. 5447 * If this is the last reference then it will be freed. 5448 */ 5449void free_netdev(struct net_device *dev) 5450{ 5451 struct napi_struct *p, *n; 5452 5453 release_net(dev_net(dev)); 5454 5455 kfree(dev->_tx); 5456 5457 /* Flush device addresses */ 5458 dev_addr_flush(dev); 5459 5460 /* Clear ethtool n-tuple list */ 5461 ethtool_ntuple_flush(dev); 5462 5463 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5464 netif_napi_del(p); 5465 5466 /* Compatibility with error handling in drivers */ 5467 if (dev->reg_state == NETREG_UNINITIALIZED) { 5468 kfree((char *)dev - dev->padded); 5469 return; 5470 } 5471 5472 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5473 dev->reg_state = NETREG_RELEASED; 5474 5475 /* will free via device release */ 5476 put_device(&dev->dev); 5477} 5478EXPORT_SYMBOL(free_netdev); 5479 5480/** 5481 * synchronize_net - Synchronize with packet receive processing 5482 * 5483 * Wait for packets currently being received to be done. 5484 * Does not block later packets from starting. 5485 */ 5486void synchronize_net(void) 5487{ 5488 might_sleep(); 5489 synchronize_rcu(); 5490} 5491EXPORT_SYMBOL(synchronize_net); 5492 5493/** 5494 * unregister_netdevice_queue - remove device from the kernel 5495 * @dev: device 5496 * @head: list 5497 * 5498 * This function shuts down a device interface and removes it 5499 * from the kernel tables. 5500 * If head not NULL, device is queued to be unregistered later. 5501 * 5502 * Callers must hold the rtnl semaphore. You may want 5503 * unregister_netdev() instead of this. 5504 */ 5505 5506void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5507{ 5508 ASSERT_RTNL(); 5509 5510 if (head) { 5511 list_move_tail(&dev->unreg_list, head); 5512 } else { 5513 rollback_registered(dev); 5514 /* Finish processing unregister after unlock */ 5515 net_set_todo(dev); 5516 } 5517} 5518EXPORT_SYMBOL(unregister_netdevice_queue); 5519 5520/** 5521 * unregister_netdevice_many - unregister many devices 5522 * @head: list of devices 5523 */ 5524void unregister_netdevice_many(struct list_head *head) 5525{ 5526 struct net_device *dev; 5527 5528 if (!list_empty(head)) { 5529 rollback_registered_many(head); 5530 list_for_each_entry(dev, head, unreg_list) 5531 net_set_todo(dev); 5532 } 5533} 5534EXPORT_SYMBOL(unregister_netdevice_many); 5535 5536/** 5537 * unregister_netdev - remove device from the kernel 5538 * @dev: device 5539 * 5540 * This function shuts down a device interface and removes it 5541 * from the kernel tables. 5542 * 5543 * This is just a wrapper for unregister_netdevice that takes 5544 * the rtnl semaphore. In general you want to use this and not 5545 * unregister_netdevice. 5546 */ 5547void unregister_netdev(struct net_device *dev) 5548{ 5549 rtnl_lock(); 5550 unregister_netdevice(dev); 5551 rtnl_unlock(); 5552} 5553EXPORT_SYMBOL(unregister_netdev); 5554 5555/** 5556 * dev_change_net_namespace - move device to different nethost namespace 5557 * @dev: device 5558 * @net: network namespace 5559 * @pat: If not NULL name pattern to try if the current device name 5560 * is already taken in the destination network namespace. 5561 * 5562 * This function shuts down a device interface and moves it 5563 * to a new network namespace. On success 0 is returned, on 5564 * a failure a netagive errno code is returned. 5565 * 5566 * Callers must hold the rtnl semaphore. 5567 */ 5568 5569int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5570{ 5571 int err; 5572 5573 ASSERT_RTNL(); 5574 5575 /* Don't allow namespace local devices to be moved. */ 5576 err = -EINVAL; 5577 if (dev->features & NETIF_F_NETNS_LOCAL) 5578 goto out; 5579 5580 /* Ensure the device has been registrered */ 5581 err = -EINVAL; 5582 if (dev->reg_state != NETREG_REGISTERED) 5583 goto out; 5584 5585 /* Get out if there is nothing todo */ 5586 err = 0; 5587 if (net_eq(dev_net(dev), net)) 5588 goto out; 5589 5590 /* Pick the destination device name, and ensure 5591 * we can use it in the destination network namespace. 5592 */ 5593 err = -EEXIST; 5594 if (__dev_get_by_name(net, dev->name)) { 5595 /* We get here if we can't use the current device name */ 5596 if (!pat) 5597 goto out; 5598 if (dev_get_valid_name(dev, pat, 1)) 5599 goto out; 5600 } 5601 5602 /* 5603 * And now a mini version of register_netdevice unregister_netdevice. 5604 */ 5605 5606 /* If device is running close it first. */ 5607 dev_close(dev); 5608 5609 /* And unlink it from device chain */ 5610 err = -ENODEV; 5611 unlist_netdevice(dev); 5612 5613 synchronize_net(); 5614 5615 /* Shutdown queueing discipline. */ 5616 dev_shutdown(dev); 5617 5618 /* Notify protocols, that we are about to destroy 5619 this device. They should clean all the things. 5620 */ 5621 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5622 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5623 5624 /* 5625 * Flush the unicast and multicast chains 5626 */ 5627 dev_uc_flush(dev); 5628 dev_mc_flush(dev); 5629 5630 /* Actually switch the network namespace */ 5631 dev_net_set(dev, net); 5632 5633 /* If there is an ifindex conflict assign a new one */ 5634 if (__dev_get_by_index(net, dev->ifindex)) { 5635 int iflink = (dev->iflink == dev->ifindex); 5636 dev->ifindex = dev_new_index(net); 5637 if (iflink) 5638 dev->iflink = dev->ifindex; 5639 } 5640 5641 /* Fixup kobjects */ 5642 err = device_rename(&dev->dev, dev->name); 5643 WARN_ON(err); 5644 5645 /* Add the device back in the hashes */ 5646 list_netdevice(dev); 5647 5648 /* Notify protocols, that a new device appeared. */ 5649 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5650 5651 /* 5652 * Prevent userspace races by waiting until the network 5653 * device is fully setup before sending notifications. 5654 */ 5655 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5656 5657 synchronize_net(); 5658 err = 0; 5659out: 5660 return err; 5661} 5662EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5663 5664static int dev_cpu_callback(struct notifier_block *nfb, 5665 unsigned long action, 5666 void *ocpu) 5667{ 5668 struct sk_buff **list_skb; 5669 struct sk_buff *skb; 5670 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5671 struct softnet_data *sd, *oldsd; 5672 5673 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5674 return NOTIFY_OK; 5675 5676 local_irq_disable(); 5677 cpu = smp_processor_id(); 5678 sd = &per_cpu(softnet_data, cpu); 5679 oldsd = &per_cpu(softnet_data, oldcpu); 5680 5681 /* Find end of our completion_queue. */ 5682 list_skb = &sd->completion_queue; 5683 while (*list_skb) 5684 list_skb = &(*list_skb)->next; 5685 /* Append completion queue from offline CPU. */ 5686 *list_skb = oldsd->completion_queue; 5687 oldsd->completion_queue = NULL; 5688 5689 /* Append output queue from offline CPU. */ 5690 if (oldsd->output_queue) { 5691 *sd->output_queue_tailp = oldsd->output_queue; 5692 sd->output_queue_tailp = oldsd->output_queue_tailp; 5693 oldsd->output_queue = NULL; 5694 oldsd->output_queue_tailp = &oldsd->output_queue; 5695 } 5696 5697 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5698 local_irq_enable(); 5699 5700 /* Process offline CPU's input_pkt_queue */ 5701 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5702 netif_rx(skb); 5703 input_queue_head_incr(oldsd); 5704 } 5705 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5706 netif_rx(skb); 5707 input_queue_head_incr(oldsd); 5708 } 5709 5710 return NOTIFY_OK; 5711} 5712 5713 5714/** 5715 * netdev_increment_features - increment feature set by one 5716 * @all: current feature set 5717 * @one: new feature set 5718 * @mask: mask feature set 5719 * 5720 * Computes a new feature set after adding a device with feature set 5721 * @one to the master device with current feature set @all. Will not 5722 * enable anything that is off in @mask. Returns the new feature set. 5723 */ 5724unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5725 unsigned long mask) 5726{ 5727 /* If device needs checksumming, downgrade to it. */ 5728 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5729 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5730 else if (mask & NETIF_F_ALL_CSUM) { 5731 /* If one device supports v4/v6 checksumming, set for all. */ 5732 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5733 !(all & NETIF_F_GEN_CSUM)) { 5734 all &= ~NETIF_F_ALL_CSUM; 5735 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5736 } 5737 5738 /* If one device supports hw checksumming, set for all. */ 5739 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5740 all &= ~NETIF_F_ALL_CSUM; 5741 all |= NETIF_F_HW_CSUM; 5742 } 5743 } 5744 5745 one |= NETIF_F_ALL_CSUM; 5746 5747 one |= all & NETIF_F_ONE_FOR_ALL; 5748 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5749 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5750 5751 return all; 5752} 5753EXPORT_SYMBOL(netdev_increment_features); 5754 5755static struct hlist_head *netdev_create_hash(void) 5756{ 5757 int i; 5758 struct hlist_head *hash; 5759 5760 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5761 if (hash != NULL) 5762 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5763 INIT_HLIST_HEAD(&hash[i]); 5764 5765 return hash; 5766} 5767 5768/* Initialize per network namespace state */ 5769static int __net_init netdev_init(struct net *net) 5770{ 5771 INIT_LIST_HEAD(&net->dev_base_head); 5772 5773 net->dev_name_head = netdev_create_hash(); 5774 if (net->dev_name_head == NULL) 5775 goto err_name; 5776 5777 net->dev_index_head = netdev_create_hash(); 5778 if (net->dev_index_head == NULL) 5779 goto err_idx; 5780 5781 return 0; 5782 5783err_idx: 5784 kfree(net->dev_name_head); 5785err_name: 5786 return -ENOMEM; 5787} 5788 5789/** 5790 * netdev_drivername - network driver for the device 5791 * @dev: network device 5792 * @buffer: buffer for resulting name 5793 * @len: size of buffer 5794 * 5795 * Determine network driver for device. 5796 */ 5797char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5798{ 5799 const struct device_driver *driver; 5800 const struct device *parent; 5801 5802 if (len <= 0 || !buffer) 5803 return buffer; 5804 buffer[0] = 0; 5805 5806 parent = dev->dev.parent; 5807 5808 if (!parent) 5809 return buffer; 5810 5811 driver = parent->driver; 5812 if (driver && driver->name) 5813 strlcpy(buffer, driver->name, len); 5814 return buffer; 5815} 5816 5817static void __net_exit netdev_exit(struct net *net) 5818{ 5819 kfree(net->dev_name_head); 5820 kfree(net->dev_index_head); 5821} 5822 5823static struct pernet_operations __net_initdata netdev_net_ops = { 5824 .init = netdev_init, 5825 .exit = netdev_exit, 5826}; 5827 5828static void __net_exit default_device_exit(struct net *net) 5829{ 5830 struct net_device *dev, *aux; 5831 /* 5832 * Push all migratable network devices back to the 5833 * initial network namespace 5834 */ 5835 rtnl_lock(); 5836 for_each_netdev_safe(net, dev, aux) { 5837 int err; 5838 char fb_name[IFNAMSIZ]; 5839 5840 /* Ignore unmoveable devices (i.e. loopback) */ 5841 if (dev->features & NETIF_F_NETNS_LOCAL) 5842 continue; 5843 5844 /* Leave virtual devices for the generic cleanup */ 5845 if (dev->rtnl_link_ops) 5846 continue; 5847 5848 /* Push remaing network devices to init_net */ 5849 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5850 err = dev_change_net_namespace(dev, &init_net, fb_name); 5851 if (err) { 5852 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5853 __func__, dev->name, err); 5854 BUG(); 5855 } 5856 } 5857 rtnl_unlock(); 5858} 5859 5860static void __net_exit default_device_exit_batch(struct list_head *net_list) 5861{ 5862 /* At exit all network devices most be removed from a network 5863 * namespace. Do this in the reverse order of registeration. 5864 * Do this across as many network namespaces as possible to 5865 * improve batching efficiency. 5866 */ 5867 struct net_device *dev; 5868 struct net *net; 5869 LIST_HEAD(dev_kill_list); 5870 5871 rtnl_lock(); 5872 list_for_each_entry(net, net_list, exit_list) { 5873 for_each_netdev_reverse(net, dev) { 5874 if (dev->rtnl_link_ops) 5875 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5876 else 5877 unregister_netdevice_queue(dev, &dev_kill_list); 5878 } 5879 } 5880 unregister_netdevice_many(&dev_kill_list); 5881 rtnl_unlock(); 5882} 5883 5884static struct pernet_operations __net_initdata default_device_ops = { 5885 .exit = default_device_exit, 5886 .exit_batch = default_device_exit_batch, 5887}; 5888 5889/* 5890 * Initialize the DEV module. At boot time this walks the device list and 5891 * unhooks any devices that fail to initialise (normally hardware not 5892 * present) and leaves us with a valid list of present and active devices. 5893 * 5894 */ 5895 5896/* 5897 * This is called single threaded during boot, so no need 5898 * to take the rtnl semaphore. 5899 */ 5900static int __init net_dev_init(void) 5901{ 5902 int i, rc = -ENOMEM; 5903 5904 BUG_ON(!dev_boot_phase); 5905 5906 if (dev_proc_init()) 5907 goto out; 5908 5909 if (netdev_kobject_init()) 5910 goto out; 5911 5912 INIT_LIST_HEAD(&ptype_all); 5913 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5914 INIT_LIST_HEAD(&ptype_base[i]); 5915 5916 if (register_pernet_subsys(&netdev_net_ops)) 5917 goto out; 5918 5919 /* 5920 * Initialise the packet receive queues. 5921 */ 5922 5923 for_each_possible_cpu(i) { 5924 struct softnet_data *sd = &per_cpu(softnet_data, i); 5925 5926 memset(sd, 0, sizeof(*sd)); 5927 skb_queue_head_init(&sd->input_pkt_queue); 5928 skb_queue_head_init(&sd->process_queue); 5929 sd->completion_queue = NULL; 5930 INIT_LIST_HEAD(&sd->poll_list); 5931 sd->output_queue = NULL; 5932 sd->output_queue_tailp = &sd->output_queue; 5933#ifdef CONFIG_RPS 5934 sd->csd.func = rps_trigger_softirq; 5935 sd->csd.info = sd; 5936 sd->csd.flags = 0; 5937 sd->cpu = i; 5938#endif 5939 5940 sd->backlog.poll = process_backlog; 5941 sd->backlog.weight = weight_p; 5942 sd->backlog.gro_list = NULL; 5943 sd->backlog.gro_count = 0; 5944 } 5945 5946 dev_boot_phase = 0; 5947 5948 /* The loopback device is special if any other network devices 5949 * is present in a network namespace the loopback device must 5950 * be present. Since we now dynamically allocate and free the 5951 * loopback device ensure this invariant is maintained by 5952 * keeping the loopback device as the first device on the 5953 * list of network devices. Ensuring the loopback devices 5954 * is the first device that appears and the last network device 5955 * that disappears. 5956 */ 5957 if (register_pernet_device(&loopback_net_ops)) 5958 goto out; 5959 5960 if (register_pernet_device(&default_device_ops)) 5961 goto out; 5962 5963 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5964 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5965 5966 hotcpu_notifier(dev_cpu_callback, 0); 5967 dst_init(); 5968 dev_mcast_init(); 5969 rc = 0; 5970out: 5971 return rc; 5972} 5973 5974subsys_initcall(net_dev_init); 5975 5976static int __init initialize_hashrnd(void) 5977{ 5978 get_random_bytes(&hashrnd, sizeof(hashrnd)); 5979 return 0; 5980} 5981 5982late_initcall_sync(initialize_hashrnd); 5983