at v2.6.35-rc5 5977 lines 148 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/slab.h> 84#include <linux/sched.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <linux/rtnetlink.h> 101#include <linux/proc_fs.h> 102#include <linux/seq_file.h> 103#include <linux/stat.h> 104#include <linux/if_bridge.h> 105#include <linux/if_macvlan.h> 106#include <net/dst.h> 107#include <net/pkt_sched.h> 108#include <net/checksum.h> 109#include <net/xfrm.h> 110#include <linux/highmem.h> 111#include <linux/init.h> 112#include <linux/kmod.h> 113#include <linux/module.h> 114#include <linux/netpoll.h> 115#include <linux/rcupdate.h> 116#include <linux/delay.h> 117#include <net/wext.h> 118#include <net/iw_handler.h> 119#include <asm/current.h> 120#include <linux/audit.h> 121#include <linux/dmaengine.h> 122#include <linux/err.h> 123#include <linux/ctype.h> 124#include <linux/if_arp.h> 125#include <linux/if_vlan.h> 126#include <linux/ip.h> 127#include <net/ip.h> 128#include <linux/ipv6.h> 129#include <linux/in.h> 130#include <linux/jhash.h> 131#include <linux/random.h> 132#include <trace/events/napi.h> 133#include <linux/pci.h> 134 135#include "net-sysfs.h" 136 137/* Instead of increasing this, you should create a hash table. */ 138#define MAX_GRO_SKBS 8 139 140/* This should be increased if a protocol with a bigger head is added. */ 141#define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143/* 144 * The list of packet types we will receive (as opposed to discard) 145 * and the routines to invoke. 146 * 147 * Why 16. Because with 16 the only overlap we get on a hash of the 148 * low nibble of the protocol value is RARP/SNAP/X.25. 149 * 150 * NOTE: That is no longer true with the addition of VLAN tags. Not 151 * sure which should go first, but I bet it won't make much 152 * difference if we are running VLANs. The good news is that 153 * this protocol won't be in the list unless compiled in, so 154 * the average user (w/out VLANs) will not be adversely affected. 155 * --BLG 156 * 157 * 0800 IP 158 * 8100 802.1Q VLAN 159 * 0001 802.3 160 * 0002 AX.25 161 * 0004 802.2 162 * 8035 RARP 163 * 0005 SNAP 164 * 0805 X.25 165 * 0806 ARP 166 * 8137 IPX 167 * 0009 Localtalk 168 * 86DD IPv6 169 */ 170 171#define PTYPE_HASH_SIZE (16) 172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 173 174static DEFINE_SPINLOCK(ptype_lock); 175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 176static struct list_head ptype_all __read_mostly; /* Taps */ 177 178/* 179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 180 * semaphore. 181 * 182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 183 * 184 * Writers must hold the rtnl semaphore while they loop through the 185 * dev_base_head list, and hold dev_base_lock for writing when they do the 186 * actual updates. This allows pure readers to access the list even 187 * while a writer is preparing to update it. 188 * 189 * To put it another way, dev_base_lock is held for writing only to 190 * protect against pure readers; the rtnl semaphore provides the 191 * protection against other writers. 192 * 193 * See, for example usages, register_netdevice() and 194 * unregister_netdevice(), which must be called with the rtnl 195 * semaphore held. 196 */ 197DEFINE_RWLOCK(dev_base_lock); 198EXPORT_SYMBOL(dev_base_lock); 199 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201{ 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204} 205 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207{ 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209} 210 211static inline void rps_lock(struct softnet_data *sd) 212{ 213#ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215#endif 216} 217 218static inline void rps_unlock(struct softnet_data *sd) 219{ 220#ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222#endif 223} 224 225/* Device list insertion */ 226static int list_netdevice(struct net_device *dev) 227{ 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 return 0; 239} 240 241/* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244static void unlist_netdevice(struct net_device *dev) 245{ 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254} 255 256/* 257 * Our notifier list 258 */ 259 260static RAW_NOTIFIER_HEAD(netdev_chain); 261 262/* 263 * Device drivers call our routines to queue packets here. We empty the 264 * queue in the local softnet handler. 265 */ 266 267DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 268EXPORT_PER_CPU_SYMBOL(softnet_data); 269 270#ifdef CONFIG_LOCKDEP 271/* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 291 ARPHRD_VOID, ARPHRD_NONE}; 292 293static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 309 "_xmit_VOID", "_xmit_NONE"}; 310 311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315{ 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323} 324 325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327{ 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333} 334 335static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336{ 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343} 344#else 345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347{ 348} 349static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350{ 351} 352#endif 353 354/******************************************************************************* 355 356 Protocol management and registration routines 357 358*******************************************************************************/ 359 360/* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376/** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389void dev_add_pack(struct packet_type *pt) 390{ 391 int hash; 392 393 spin_lock_bh(&ptype_lock); 394 if (pt->type == htons(ETH_P_ALL)) 395 list_add_rcu(&pt->list, &ptype_all); 396 else { 397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 398 list_add_rcu(&pt->list, &ptype_base[hash]); 399 } 400 spin_unlock_bh(&ptype_lock); 401} 402EXPORT_SYMBOL(dev_add_pack); 403 404/** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417void __dev_remove_pack(struct packet_type *pt) 418{ 419 struct list_head *head; 420 struct packet_type *pt1; 421 422 spin_lock_bh(&ptype_lock); 423 424 if (pt->type == htons(ETH_P_ALL)) 425 head = &ptype_all; 426 else 427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437out: 438 spin_unlock_bh(&ptype_lock); 439} 440EXPORT_SYMBOL(__dev_remove_pack); 441 442/** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454void dev_remove_pack(struct packet_type *pt) 455{ 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459} 460EXPORT_SYMBOL(dev_remove_pack); 461 462/****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466*******************************************************************************/ 467 468/* Boot time configuration table */ 469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471/** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480static int netdev_boot_setup_add(char *name, struct ifmap *map) 481{ 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496} 497 498/** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507int netdev_boot_setup_check(struct net_device *dev) 508{ 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523} 524EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527/** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537unsigned long netdev_boot_base(const char *prefix, int unit) 538{ 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556} 557 558/* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561int __init netdev_boot_setup(char *str) 562{ 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583} 584 585__setup("netdev=", netdev_boot_setup); 586 587/******************************************************************************* 588 589 Device Interface Subroutines 590 591*******************************************************************************/ 592 593/** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605struct net_device *__dev_get_by_name(struct net *net, const char *name) 606{ 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616} 617EXPORT_SYMBOL(__dev_get_by_name); 618 619/** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632{ 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642} 643EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645/** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657struct net_device *dev_get_by_name(struct net *net, const char *name) 658{ 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667} 668EXPORT_SYMBOL(dev_get_by_name); 669 670/** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683{ 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693} 694EXPORT_SYMBOL(__dev_get_by_index); 695 696/** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708{ 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718} 719EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722/** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733struct net_device *dev_get_by_index(struct net *net, int ifindex) 734{ 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743} 744EXPORT_SYMBOL(dev_get_by_index); 745 746/** 747 * dev_getbyhwaddr - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. The caller must hold the 754 * rtnl semaphore. The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 * BUGS: 758 * If the API was consistent this would be __dev_get_by_hwaddr 759 */ 760 761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 762{ 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 767 for_each_netdev(net, dev) 768 if (dev->type == type && 769 !memcmp(dev->dev_addr, ha, dev->addr_len)) 770 return dev; 771 772 return NULL; 773} 774EXPORT_SYMBOL(dev_getbyhwaddr); 775 776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 777{ 778 struct net_device *dev; 779 780 ASSERT_RTNL(); 781 for_each_netdev(net, dev) 782 if (dev->type == type) 783 return dev; 784 785 return NULL; 786} 787EXPORT_SYMBOL(__dev_getfirstbyhwtype); 788 789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 790{ 791 struct net_device *dev, *ret = NULL; 792 793 rcu_read_lock(); 794 for_each_netdev_rcu(net, dev) 795 if (dev->type == type) { 796 dev_hold(dev); 797 ret = dev; 798 break; 799 } 800 rcu_read_unlock(); 801 return ret; 802} 803EXPORT_SYMBOL(dev_getfirstbyhwtype); 804 805/** 806 * dev_get_by_flags - find any device with given flags 807 * @net: the applicable net namespace 808 * @if_flags: IFF_* values 809 * @mask: bitmask of bits in if_flags to check 810 * 811 * Search for any interface with the given flags. Returns NULL if a device 812 * is not found or a pointer to the device. The device returned has 813 * had a reference added and the pointer is safe until the user calls 814 * dev_put to indicate they have finished with it. 815 */ 816 817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 818 unsigned short mask) 819{ 820 struct net_device *dev, *ret; 821 822 ret = NULL; 823 rcu_read_lock(); 824 for_each_netdev_rcu(net, dev) { 825 if (((dev->flags ^ if_flags) & mask) == 0) { 826 dev_hold(dev); 827 ret = dev; 828 break; 829 } 830 } 831 rcu_read_unlock(); 832 return ret; 833} 834EXPORT_SYMBOL(dev_get_by_flags); 835 836/** 837 * dev_valid_name - check if name is okay for network device 838 * @name: name string 839 * 840 * Network device names need to be valid file names to 841 * to allow sysfs to work. We also disallow any kind of 842 * whitespace. 843 */ 844int dev_valid_name(const char *name) 845{ 846 if (*name == '\0') 847 return 0; 848 if (strlen(name) >= IFNAMSIZ) 849 return 0; 850 if (!strcmp(name, ".") || !strcmp(name, "..")) 851 return 0; 852 853 while (*name) { 854 if (*name == '/' || isspace(*name)) 855 return 0; 856 name++; 857 } 858 return 1; 859} 860EXPORT_SYMBOL(dev_valid_name); 861 862/** 863 * __dev_alloc_name - allocate a name for a device 864 * @net: network namespace to allocate the device name in 865 * @name: name format string 866 * @buf: scratch buffer and result name string 867 * 868 * Passed a format string - eg "lt%d" it will try and find a suitable 869 * id. It scans list of devices to build up a free map, then chooses 870 * the first empty slot. The caller must hold the dev_base or rtnl lock 871 * while allocating the name and adding the device in order to avoid 872 * duplicates. 873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 874 * Returns the number of the unit assigned or a negative errno code. 875 */ 876 877static int __dev_alloc_name(struct net *net, const char *name, char *buf) 878{ 879 int i = 0; 880 const char *p; 881 const int max_netdevices = 8*PAGE_SIZE; 882 unsigned long *inuse; 883 struct net_device *d; 884 885 p = strnchr(name, IFNAMSIZ-1, '%'); 886 if (p) { 887 /* 888 * Verify the string as this thing may have come from 889 * the user. There must be either one "%d" and no other "%" 890 * characters. 891 */ 892 if (p[1] != 'd' || strchr(p + 2, '%')) 893 return -EINVAL; 894 895 /* Use one page as a bit array of possible slots */ 896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 897 if (!inuse) 898 return -ENOMEM; 899 900 for_each_netdev(net, d) { 901 if (!sscanf(d->name, name, &i)) 902 continue; 903 if (i < 0 || i >= max_netdevices) 904 continue; 905 906 /* avoid cases where sscanf is not exact inverse of printf */ 907 snprintf(buf, IFNAMSIZ, name, i); 908 if (!strncmp(buf, d->name, IFNAMSIZ)) 909 set_bit(i, inuse); 910 } 911 912 i = find_first_zero_bit(inuse, max_netdevices); 913 free_page((unsigned long) inuse); 914 } 915 916 if (buf != name) 917 snprintf(buf, IFNAMSIZ, name, i); 918 if (!__dev_get_by_name(net, buf)) 919 return i; 920 921 /* It is possible to run out of possible slots 922 * when the name is long and there isn't enough space left 923 * for the digits, or if all bits are used. 924 */ 925 return -ENFILE; 926} 927 928/** 929 * dev_alloc_name - allocate a name for a device 930 * @dev: device 931 * @name: name format string 932 * 933 * Passed a format string - eg "lt%d" it will try and find a suitable 934 * id. It scans list of devices to build up a free map, then chooses 935 * the first empty slot. The caller must hold the dev_base or rtnl lock 936 * while allocating the name and adding the device in order to avoid 937 * duplicates. 938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 939 * Returns the number of the unit assigned or a negative errno code. 940 */ 941 942int dev_alloc_name(struct net_device *dev, const char *name) 943{ 944 char buf[IFNAMSIZ]; 945 struct net *net; 946 int ret; 947 948 BUG_ON(!dev_net(dev)); 949 net = dev_net(dev); 950 ret = __dev_alloc_name(net, name, buf); 951 if (ret >= 0) 952 strlcpy(dev->name, buf, IFNAMSIZ); 953 return ret; 954} 955EXPORT_SYMBOL(dev_alloc_name); 956 957static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 958{ 959 struct net *net; 960 961 BUG_ON(!dev_net(dev)); 962 net = dev_net(dev); 963 964 if (!dev_valid_name(name)) 965 return -EINVAL; 966 967 if (fmt && strchr(name, '%')) 968 return dev_alloc_name(dev, name); 969 else if (__dev_get_by_name(net, name)) 970 return -EEXIST; 971 else if (dev->name != name) 972 strlcpy(dev->name, name, IFNAMSIZ); 973 974 return 0; 975} 976 977/** 978 * dev_change_name - change name of a device 979 * @dev: device 980 * @newname: name (or format string) must be at least IFNAMSIZ 981 * 982 * Change name of a device, can pass format strings "eth%d". 983 * for wildcarding. 984 */ 985int dev_change_name(struct net_device *dev, const char *newname) 986{ 987 char oldname[IFNAMSIZ]; 988 int err = 0; 989 int ret; 990 struct net *net; 991 992 ASSERT_RTNL(); 993 BUG_ON(!dev_net(dev)); 994 995 net = dev_net(dev); 996 if (dev->flags & IFF_UP) 997 return -EBUSY; 998 999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1000 return 0; 1001 1002 memcpy(oldname, dev->name, IFNAMSIZ); 1003 1004 err = dev_get_valid_name(dev, newname, 1); 1005 if (err < 0) 1006 return err; 1007 1008rollback: 1009 ret = device_rename(&dev->dev, dev->name); 1010 if (ret) { 1011 memcpy(dev->name, oldname, IFNAMSIZ); 1012 return ret; 1013 } 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_del(&dev->name_hlist); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 synchronize_rcu(); 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1026 ret = notifier_to_errno(ret); 1027 1028 if (ret) { 1029 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1030 if (err >= 0) { 1031 err = ret; 1032 memcpy(dev->name, oldname, IFNAMSIZ); 1033 goto rollback; 1034 } else { 1035 printk(KERN_ERR 1036 "%s: name change rollback failed: %d.\n", 1037 dev->name, ret); 1038 } 1039 } 1040 1041 return err; 1042} 1043 1044/** 1045 * dev_set_alias - change ifalias of a device 1046 * @dev: device 1047 * @alias: name up to IFALIASZ 1048 * @len: limit of bytes to copy from info 1049 * 1050 * Set ifalias for a device, 1051 */ 1052int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1053{ 1054 ASSERT_RTNL(); 1055 1056 if (len >= IFALIASZ) 1057 return -EINVAL; 1058 1059 if (!len) { 1060 if (dev->ifalias) { 1061 kfree(dev->ifalias); 1062 dev->ifalias = NULL; 1063 } 1064 return 0; 1065 } 1066 1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1068 if (!dev->ifalias) 1069 return -ENOMEM; 1070 1071 strlcpy(dev->ifalias, alias, len+1); 1072 return len; 1073} 1074 1075 1076/** 1077 * netdev_features_change - device changes features 1078 * @dev: device to cause notification 1079 * 1080 * Called to indicate a device has changed features. 1081 */ 1082void netdev_features_change(struct net_device *dev) 1083{ 1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1085} 1086EXPORT_SYMBOL(netdev_features_change); 1087 1088/** 1089 * netdev_state_change - device changes state 1090 * @dev: device to cause notification 1091 * 1092 * Called to indicate a device has changed state. This function calls 1093 * the notifier chains for netdev_chain and sends a NEWLINK message 1094 * to the routing socket. 1095 */ 1096void netdev_state_change(struct net_device *dev) 1097{ 1098 if (dev->flags & IFF_UP) { 1099 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1101 } 1102} 1103EXPORT_SYMBOL(netdev_state_change); 1104 1105int netdev_bonding_change(struct net_device *dev, unsigned long event) 1106{ 1107 return call_netdevice_notifiers(event, dev); 1108} 1109EXPORT_SYMBOL(netdev_bonding_change); 1110 1111/** 1112 * dev_load - load a network module 1113 * @net: the applicable net namespace 1114 * @name: name of interface 1115 * 1116 * If a network interface is not present and the process has suitable 1117 * privileges this function loads the module. If module loading is not 1118 * available in this kernel then it becomes a nop. 1119 */ 1120 1121void dev_load(struct net *net, const char *name) 1122{ 1123 struct net_device *dev; 1124 1125 rcu_read_lock(); 1126 dev = dev_get_by_name_rcu(net, name); 1127 rcu_read_unlock(); 1128 1129 if (!dev && capable(CAP_NET_ADMIN)) 1130 request_module("%s", name); 1131} 1132EXPORT_SYMBOL(dev_load); 1133 1134static int __dev_open(struct net_device *dev) 1135{ 1136 const struct net_device_ops *ops = dev->netdev_ops; 1137 int ret; 1138 1139 ASSERT_RTNL(); 1140 1141 /* 1142 * Is it even present? 1143 */ 1144 if (!netif_device_present(dev)) 1145 return -ENODEV; 1146 1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1148 ret = notifier_to_errno(ret); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * Call device private open method 1154 */ 1155 set_bit(__LINK_STATE_START, &dev->state); 1156 1157 if (ops->ndo_validate_addr) 1158 ret = ops->ndo_validate_addr(dev); 1159 1160 if (!ret && ops->ndo_open) 1161 ret = ops->ndo_open(dev); 1162 1163 /* 1164 * If it went open OK then: 1165 */ 1166 1167 if (ret) 1168 clear_bit(__LINK_STATE_START, &dev->state); 1169 else { 1170 /* 1171 * Set the flags. 1172 */ 1173 dev->flags |= IFF_UP; 1174 1175 /* 1176 * Enable NET_DMA 1177 */ 1178 net_dmaengine_get(); 1179 1180 /* 1181 * Initialize multicasting status 1182 */ 1183 dev_set_rx_mode(dev); 1184 1185 /* 1186 * Wakeup transmit queue engine 1187 */ 1188 dev_activate(dev); 1189 } 1190 1191 return ret; 1192} 1193 1194/** 1195 * dev_open - prepare an interface for use. 1196 * @dev: device to open 1197 * 1198 * Takes a device from down to up state. The device's private open 1199 * function is invoked and then the multicast lists are loaded. Finally 1200 * the device is moved into the up state and a %NETDEV_UP message is 1201 * sent to the netdev notifier chain. 1202 * 1203 * Calling this function on an active interface is a nop. On a failure 1204 * a negative errno code is returned. 1205 */ 1206int dev_open(struct net_device *dev) 1207{ 1208 int ret; 1209 1210 /* 1211 * Is it already up? 1212 */ 1213 if (dev->flags & IFF_UP) 1214 return 0; 1215 1216 /* 1217 * Open device 1218 */ 1219 ret = __dev_open(dev); 1220 if (ret < 0) 1221 return ret; 1222 1223 /* 1224 * ... and announce new interface. 1225 */ 1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1227 call_netdevice_notifiers(NETDEV_UP, dev); 1228 1229 return ret; 1230} 1231EXPORT_SYMBOL(dev_open); 1232 1233static int __dev_close(struct net_device *dev) 1234{ 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 ASSERT_RTNL(); 1238 might_sleep(); 1239 1240 /* 1241 * Tell people we are going down, so that they can 1242 * prepare to death, when device is still operating. 1243 */ 1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1245 1246 clear_bit(__LINK_STATE_START, &dev->state); 1247 1248 /* Synchronize to scheduled poll. We cannot touch poll list, 1249 * it can be even on different cpu. So just clear netif_running(). 1250 * 1251 * dev->stop() will invoke napi_disable() on all of it's 1252 * napi_struct instances on this device. 1253 */ 1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1255 1256 dev_deactivate(dev); 1257 1258 /* 1259 * Call the device specific close. This cannot fail. 1260 * Only if device is UP 1261 * 1262 * We allow it to be called even after a DETACH hot-plug 1263 * event. 1264 */ 1265 if (ops->ndo_stop) 1266 ops->ndo_stop(dev); 1267 1268 /* 1269 * Device is now down. 1270 */ 1271 1272 dev->flags &= ~IFF_UP; 1273 1274 /* 1275 * Shutdown NET_DMA 1276 */ 1277 net_dmaengine_put(); 1278 1279 return 0; 1280} 1281 1282/** 1283 * dev_close - shutdown an interface. 1284 * @dev: device to shutdown 1285 * 1286 * This function moves an active device into down state. A 1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1289 * chain. 1290 */ 1291int dev_close(struct net_device *dev) 1292{ 1293 if (!(dev->flags & IFF_UP)) 1294 return 0; 1295 1296 __dev_close(dev); 1297 1298 /* 1299 * Tell people we are down 1300 */ 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1302 call_netdevice_notifiers(NETDEV_DOWN, dev); 1303 1304 return 0; 1305} 1306EXPORT_SYMBOL(dev_close); 1307 1308 1309/** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317void dev_disable_lro(struct net_device *dev) 1318{ 1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1320 dev->ethtool_ops->set_flags) { 1321 u32 flags = dev->ethtool_ops->get_flags(dev); 1322 if (flags & ETH_FLAG_LRO) { 1323 flags &= ~ETH_FLAG_LRO; 1324 dev->ethtool_ops->set_flags(dev, flags); 1325 } 1326 } 1327 WARN_ON(dev->features & NETIF_F_LRO); 1328} 1329EXPORT_SYMBOL(dev_disable_lro); 1330 1331 1332static int dev_boot_phase = 1; 1333 1334/* 1335 * Device change register/unregister. These are not inline or static 1336 * as we export them to the world. 1337 */ 1338 1339/** 1340 * register_netdevice_notifier - register a network notifier block 1341 * @nb: notifier 1342 * 1343 * Register a notifier to be called when network device events occur. 1344 * The notifier passed is linked into the kernel structures and must 1345 * not be reused until it has been unregistered. A negative errno code 1346 * is returned on a failure. 1347 * 1348 * When registered all registration and up events are replayed 1349 * to the new notifier to allow device to have a race free 1350 * view of the network device list. 1351 */ 1352 1353int register_netdevice_notifier(struct notifier_block *nb) 1354{ 1355 struct net_device *dev; 1356 struct net_device *last; 1357 struct net *net; 1358 int err; 1359 1360 rtnl_lock(); 1361 err = raw_notifier_chain_register(&netdev_chain, nb); 1362 if (err) 1363 goto unlock; 1364 if (dev_boot_phase) 1365 goto unlock; 1366 for_each_net(net) { 1367 for_each_netdev(net, dev) { 1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1369 err = notifier_to_errno(err); 1370 if (err) 1371 goto rollback; 1372 1373 if (!(dev->flags & IFF_UP)) 1374 continue; 1375 1376 nb->notifier_call(nb, NETDEV_UP, dev); 1377 } 1378 } 1379 1380unlock: 1381 rtnl_unlock(); 1382 return err; 1383 1384rollback: 1385 last = dev; 1386 for_each_net(net) { 1387 for_each_netdev(net, dev) { 1388 if (dev == last) 1389 break; 1390 1391 if (dev->flags & IFF_UP) { 1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1393 nb->notifier_call(nb, NETDEV_DOWN, dev); 1394 } 1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1397 } 1398 } 1399 1400 raw_notifier_chain_unregister(&netdev_chain, nb); 1401 goto unlock; 1402} 1403EXPORT_SYMBOL(register_netdevice_notifier); 1404 1405/** 1406 * unregister_netdevice_notifier - unregister a network notifier block 1407 * @nb: notifier 1408 * 1409 * Unregister a notifier previously registered by 1410 * register_netdevice_notifier(). The notifier is unlinked into the 1411 * kernel structures and may then be reused. A negative errno code 1412 * is returned on a failure. 1413 */ 1414 1415int unregister_netdevice_notifier(struct notifier_block *nb) 1416{ 1417 int err; 1418 1419 rtnl_lock(); 1420 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1421 rtnl_unlock(); 1422 return err; 1423} 1424EXPORT_SYMBOL(unregister_netdevice_notifier); 1425 1426/** 1427 * call_netdevice_notifiers - call all network notifier blocks 1428 * @val: value passed unmodified to notifier function 1429 * @dev: net_device pointer passed unmodified to notifier function 1430 * 1431 * Call all network notifier blocks. Parameters and return value 1432 * are as for raw_notifier_call_chain(). 1433 */ 1434 1435int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1436{ 1437 ASSERT_RTNL(); 1438 return raw_notifier_call_chain(&netdev_chain, val, dev); 1439} 1440 1441/* When > 0 there are consumers of rx skb time stamps */ 1442static atomic_t netstamp_needed = ATOMIC_INIT(0); 1443 1444void net_enable_timestamp(void) 1445{ 1446 atomic_inc(&netstamp_needed); 1447} 1448EXPORT_SYMBOL(net_enable_timestamp); 1449 1450void net_disable_timestamp(void) 1451{ 1452 atomic_dec(&netstamp_needed); 1453} 1454EXPORT_SYMBOL(net_disable_timestamp); 1455 1456static inline void net_timestamp_set(struct sk_buff *skb) 1457{ 1458 if (atomic_read(&netstamp_needed)) 1459 __net_timestamp(skb); 1460 else 1461 skb->tstamp.tv64 = 0; 1462} 1463 1464static inline void net_timestamp_check(struct sk_buff *skb) 1465{ 1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1467 __net_timestamp(skb); 1468} 1469 1470/** 1471 * dev_forward_skb - loopback an skb to another netif 1472 * 1473 * @dev: destination network device 1474 * @skb: buffer to forward 1475 * 1476 * return values: 1477 * NET_RX_SUCCESS (no congestion) 1478 * NET_RX_DROP (packet was dropped, but freed) 1479 * 1480 * dev_forward_skb can be used for injecting an skb from the 1481 * start_xmit function of one device into the receive queue 1482 * of another device. 1483 * 1484 * The receiving device may be in another namespace, so 1485 * we have to clear all information in the skb that could 1486 * impact namespace isolation. 1487 */ 1488int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1489{ 1490 skb_orphan(skb); 1491 1492 if (!(dev->flags & IFF_UP) || 1493 (skb->len > (dev->mtu + dev->hard_header_len))) { 1494 kfree_skb(skb); 1495 return NET_RX_DROP; 1496 } 1497 skb_set_dev(skb, dev); 1498 skb->tstamp.tv64 = 0; 1499 skb->pkt_type = PACKET_HOST; 1500 skb->protocol = eth_type_trans(skb, dev); 1501 return netif_rx(skb); 1502} 1503EXPORT_SYMBOL_GPL(dev_forward_skb); 1504 1505/* 1506 * Support routine. Sends outgoing frames to any network 1507 * taps currently in use. 1508 */ 1509 1510static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1511{ 1512 struct packet_type *ptype; 1513 1514#ifdef CONFIG_NET_CLS_ACT 1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1516 net_timestamp_set(skb); 1517#else 1518 net_timestamp_set(skb); 1519#endif 1520 1521 rcu_read_lock(); 1522 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1523 /* Never send packets back to the socket 1524 * they originated from - MvS (miquels@drinkel.ow.org) 1525 */ 1526 if ((ptype->dev == dev || !ptype->dev) && 1527 (ptype->af_packet_priv == NULL || 1528 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1530 if (!skb2) 1531 break; 1532 1533 /* skb->nh should be correctly 1534 set by sender, so that the second statement is 1535 just protection against buggy protocols. 1536 */ 1537 skb_reset_mac_header(skb2); 1538 1539 if (skb_network_header(skb2) < skb2->data || 1540 skb2->network_header > skb2->tail) { 1541 if (net_ratelimit()) 1542 printk(KERN_CRIT "protocol %04x is " 1543 "buggy, dev %s\n", 1544 skb2->protocol, dev->name); 1545 skb_reset_network_header(skb2); 1546 } 1547 1548 skb2->transport_header = skb2->network_header; 1549 skb2->pkt_type = PACKET_OUTGOING; 1550 ptype->func(skb2, skb->dev, ptype, skb->dev); 1551 } 1552 } 1553 rcu_read_unlock(); 1554} 1555 1556/* 1557 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1558 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1559 */ 1560void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1561{ 1562 unsigned int real_num = dev->real_num_tx_queues; 1563 1564 if (unlikely(txq > dev->num_tx_queues)) 1565 ; 1566 else if (txq > real_num) 1567 dev->real_num_tx_queues = txq; 1568 else if (txq < real_num) { 1569 dev->real_num_tx_queues = txq; 1570 qdisc_reset_all_tx_gt(dev, txq); 1571 } 1572} 1573EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1574 1575static inline void __netif_reschedule(struct Qdisc *q) 1576{ 1577 struct softnet_data *sd; 1578 unsigned long flags; 1579 1580 local_irq_save(flags); 1581 sd = &__get_cpu_var(softnet_data); 1582 q->next_sched = NULL; 1583 *sd->output_queue_tailp = q; 1584 sd->output_queue_tailp = &q->next_sched; 1585 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1586 local_irq_restore(flags); 1587} 1588 1589void __netif_schedule(struct Qdisc *q) 1590{ 1591 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1592 __netif_reschedule(q); 1593} 1594EXPORT_SYMBOL(__netif_schedule); 1595 1596void dev_kfree_skb_irq(struct sk_buff *skb) 1597{ 1598 if (atomic_dec_and_test(&skb->users)) { 1599 struct softnet_data *sd; 1600 unsigned long flags; 1601 1602 local_irq_save(flags); 1603 sd = &__get_cpu_var(softnet_data); 1604 skb->next = sd->completion_queue; 1605 sd->completion_queue = skb; 1606 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1607 local_irq_restore(flags); 1608 } 1609} 1610EXPORT_SYMBOL(dev_kfree_skb_irq); 1611 1612void dev_kfree_skb_any(struct sk_buff *skb) 1613{ 1614 if (in_irq() || irqs_disabled()) 1615 dev_kfree_skb_irq(skb); 1616 else 1617 dev_kfree_skb(skb); 1618} 1619EXPORT_SYMBOL(dev_kfree_skb_any); 1620 1621 1622/** 1623 * netif_device_detach - mark device as removed 1624 * @dev: network device 1625 * 1626 * Mark device as removed from system and therefore no longer available. 1627 */ 1628void netif_device_detach(struct net_device *dev) 1629{ 1630 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1631 netif_running(dev)) { 1632 netif_tx_stop_all_queues(dev); 1633 } 1634} 1635EXPORT_SYMBOL(netif_device_detach); 1636 1637/** 1638 * netif_device_attach - mark device as attached 1639 * @dev: network device 1640 * 1641 * Mark device as attached from system and restart if needed. 1642 */ 1643void netif_device_attach(struct net_device *dev) 1644{ 1645 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1646 netif_running(dev)) { 1647 netif_tx_wake_all_queues(dev); 1648 __netdev_watchdog_up(dev); 1649 } 1650} 1651EXPORT_SYMBOL(netif_device_attach); 1652 1653static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1654{ 1655 return ((features & NETIF_F_GEN_CSUM) || 1656 ((features & NETIF_F_IP_CSUM) && 1657 protocol == htons(ETH_P_IP)) || 1658 ((features & NETIF_F_IPV6_CSUM) && 1659 protocol == htons(ETH_P_IPV6)) || 1660 ((features & NETIF_F_FCOE_CRC) && 1661 protocol == htons(ETH_P_FCOE))); 1662} 1663 1664static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1665{ 1666 if (can_checksum_protocol(dev->features, skb->protocol)) 1667 return true; 1668 1669 if (skb->protocol == htons(ETH_P_8021Q)) { 1670 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1671 if (can_checksum_protocol(dev->features & dev->vlan_features, 1672 veh->h_vlan_encapsulated_proto)) 1673 return true; 1674 } 1675 1676 return false; 1677} 1678 1679/** 1680 * skb_dev_set -- assign a new device to a buffer 1681 * @skb: buffer for the new device 1682 * @dev: network device 1683 * 1684 * If an skb is owned by a device already, we have to reset 1685 * all data private to the namespace a device belongs to 1686 * before assigning it a new device. 1687 */ 1688#ifdef CONFIG_NET_NS 1689void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1690{ 1691 skb_dst_drop(skb); 1692 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1693 secpath_reset(skb); 1694 nf_reset(skb); 1695 skb_init_secmark(skb); 1696 skb->mark = 0; 1697 skb->priority = 0; 1698 skb->nf_trace = 0; 1699 skb->ipvs_property = 0; 1700#ifdef CONFIG_NET_SCHED 1701 skb->tc_index = 0; 1702#endif 1703 } 1704 skb->dev = dev; 1705} 1706EXPORT_SYMBOL(skb_set_dev); 1707#endif /* CONFIG_NET_NS */ 1708 1709/* 1710 * Invalidate hardware checksum when packet is to be mangled, and 1711 * complete checksum manually on outgoing path. 1712 */ 1713int skb_checksum_help(struct sk_buff *skb) 1714{ 1715 __wsum csum; 1716 int ret = 0, offset; 1717 1718 if (skb->ip_summed == CHECKSUM_COMPLETE) 1719 goto out_set_summed; 1720 1721 if (unlikely(skb_shinfo(skb)->gso_size)) { 1722 /* Let GSO fix up the checksum. */ 1723 goto out_set_summed; 1724 } 1725 1726 offset = skb->csum_start - skb_headroom(skb); 1727 BUG_ON(offset >= skb_headlen(skb)); 1728 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1729 1730 offset += skb->csum_offset; 1731 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1732 1733 if (skb_cloned(skb) && 1734 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1735 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1736 if (ret) 1737 goto out; 1738 } 1739 1740 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1741out_set_summed: 1742 skb->ip_summed = CHECKSUM_NONE; 1743out: 1744 return ret; 1745} 1746EXPORT_SYMBOL(skb_checksum_help); 1747 1748/** 1749 * skb_gso_segment - Perform segmentation on skb. 1750 * @skb: buffer to segment 1751 * @features: features for the output path (see dev->features) 1752 * 1753 * This function segments the given skb and returns a list of segments. 1754 * 1755 * It may return NULL if the skb requires no segmentation. This is 1756 * only possible when GSO is used for verifying header integrity. 1757 */ 1758struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1759{ 1760 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1761 struct packet_type *ptype; 1762 __be16 type = skb->protocol; 1763 int err; 1764 1765 skb_reset_mac_header(skb); 1766 skb->mac_len = skb->network_header - skb->mac_header; 1767 __skb_pull(skb, skb->mac_len); 1768 1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1770 struct net_device *dev = skb->dev; 1771 struct ethtool_drvinfo info = {}; 1772 1773 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1774 dev->ethtool_ops->get_drvinfo(dev, &info); 1775 1776 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1777 "ip_summed=%d", 1778 info.driver, dev ? dev->features : 0L, 1779 skb->sk ? skb->sk->sk_route_caps : 0L, 1780 skb->len, skb->data_len, skb->ip_summed); 1781 1782 if (skb_header_cloned(skb) && 1783 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1784 return ERR_PTR(err); 1785 } 1786 1787 rcu_read_lock(); 1788 list_for_each_entry_rcu(ptype, 1789 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1790 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1791 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1792 err = ptype->gso_send_check(skb); 1793 segs = ERR_PTR(err); 1794 if (err || skb_gso_ok(skb, features)) 1795 break; 1796 __skb_push(skb, (skb->data - 1797 skb_network_header(skb))); 1798 } 1799 segs = ptype->gso_segment(skb, features); 1800 break; 1801 } 1802 } 1803 rcu_read_unlock(); 1804 1805 __skb_push(skb, skb->data - skb_mac_header(skb)); 1806 1807 return segs; 1808} 1809EXPORT_SYMBOL(skb_gso_segment); 1810 1811/* Take action when hardware reception checksum errors are detected. */ 1812#ifdef CONFIG_BUG 1813void netdev_rx_csum_fault(struct net_device *dev) 1814{ 1815 if (net_ratelimit()) { 1816 printk(KERN_ERR "%s: hw csum failure.\n", 1817 dev ? dev->name : "<unknown>"); 1818 dump_stack(); 1819 } 1820} 1821EXPORT_SYMBOL(netdev_rx_csum_fault); 1822#endif 1823 1824/* Actually, we should eliminate this check as soon as we know, that: 1825 * 1. IOMMU is present and allows to map all the memory. 1826 * 2. No high memory really exists on this machine. 1827 */ 1828 1829static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1830{ 1831#ifdef CONFIG_HIGHMEM 1832 int i; 1833 if (!(dev->features & NETIF_F_HIGHDMA)) { 1834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1835 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1836 return 1; 1837 } 1838 1839 if (PCI_DMA_BUS_IS_PHYS) { 1840 struct device *pdev = dev->dev.parent; 1841 1842 if (!pdev) 1843 return 0; 1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1845 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1846 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1847 return 1; 1848 } 1849 } 1850#endif 1851 return 0; 1852} 1853 1854struct dev_gso_cb { 1855 void (*destructor)(struct sk_buff *skb); 1856}; 1857 1858#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1859 1860static void dev_gso_skb_destructor(struct sk_buff *skb) 1861{ 1862 struct dev_gso_cb *cb; 1863 1864 do { 1865 struct sk_buff *nskb = skb->next; 1866 1867 skb->next = nskb->next; 1868 nskb->next = NULL; 1869 kfree_skb(nskb); 1870 } while (skb->next); 1871 1872 cb = DEV_GSO_CB(skb); 1873 if (cb->destructor) 1874 cb->destructor(skb); 1875} 1876 1877/** 1878 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1879 * @skb: buffer to segment 1880 * 1881 * This function segments the given skb and stores the list of segments 1882 * in skb->next. 1883 */ 1884static int dev_gso_segment(struct sk_buff *skb) 1885{ 1886 struct net_device *dev = skb->dev; 1887 struct sk_buff *segs; 1888 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1889 NETIF_F_SG : 0); 1890 1891 segs = skb_gso_segment(skb, features); 1892 1893 /* Verifying header integrity only. */ 1894 if (!segs) 1895 return 0; 1896 1897 if (IS_ERR(segs)) 1898 return PTR_ERR(segs); 1899 1900 skb->next = segs; 1901 DEV_GSO_CB(skb)->destructor = skb->destructor; 1902 skb->destructor = dev_gso_skb_destructor; 1903 1904 return 0; 1905} 1906 1907/* 1908 * Try to orphan skb early, right before transmission by the device. 1909 * We cannot orphan skb if tx timestamp is requested, since 1910 * drivers need to call skb_tstamp_tx() to send the timestamp. 1911 */ 1912static inline void skb_orphan_try(struct sk_buff *skb) 1913{ 1914 if (!skb_tx(skb)->flags) 1915 skb_orphan(skb); 1916} 1917 1918int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1919 struct netdev_queue *txq) 1920{ 1921 const struct net_device_ops *ops = dev->netdev_ops; 1922 int rc = NETDEV_TX_OK; 1923 1924 if (likely(!skb->next)) { 1925 if (!list_empty(&ptype_all)) 1926 dev_queue_xmit_nit(skb, dev); 1927 1928 /* 1929 * If device doesnt need skb->dst, release it right now while 1930 * its hot in this cpu cache 1931 */ 1932 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1933 skb_dst_drop(skb); 1934 1935 skb_orphan_try(skb); 1936 1937 if (netif_needs_gso(dev, skb)) { 1938 if (unlikely(dev_gso_segment(skb))) 1939 goto out_kfree_skb; 1940 if (skb->next) 1941 goto gso; 1942 } 1943 1944 rc = ops->ndo_start_xmit(skb, dev); 1945 if (rc == NETDEV_TX_OK) 1946 txq_trans_update(txq); 1947 return rc; 1948 } 1949 1950gso: 1951 do { 1952 struct sk_buff *nskb = skb->next; 1953 1954 skb->next = nskb->next; 1955 nskb->next = NULL; 1956 1957 /* 1958 * If device doesnt need nskb->dst, release it right now while 1959 * its hot in this cpu cache 1960 */ 1961 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1962 skb_dst_drop(nskb); 1963 1964 rc = ops->ndo_start_xmit(nskb, dev); 1965 if (unlikely(rc != NETDEV_TX_OK)) { 1966 if (rc & ~NETDEV_TX_MASK) 1967 goto out_kfree_gso_skb; 1968 nskb->next = skb->next; 1969 skb->next = nskb; 1970 return rc; 1971 } 1972 txq_trans_update(txq); 1973 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1974 return NETDEV_TX_BUSY; 1975 } while (skb->next); 1976 1977out_kfree_gso_skb: 1978 if (likely(skb->next == NULL)) 1979 skb->destructor = DEV_GSO_CB(skb)->destructor; 1980out_kfree_skb: 1981 kfree_skb(skb); 1982 return rc; 1983} 1984 1985static u32 hashrnd __read_mostly; 1986 1987u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1988{ 1989 u32 hash; 1990 1991 if (skb_rx_queue_recorded(skb)) { 1992 hash = skb_get_rx_queue(skb); 1993 while (unlikely(hash >= dev->real_num_tx_queues)) 1994 hash -= dev->real_num_tx_queues; 1995 return hash; 1996 } 1997 1998 if (skb->sk && skb->sk->sk_hash) 1999 hash = skb->sk->sk_hash; 2000 else 2001 hash = (__force u16) skb->protocol; 2002 2003 hash = jhash_1word(hash, hashrnd); 2004 2005 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2006} 2007EXPORT_SYMBOL(skb_tx_hash); 2008 2009static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2010{ 2011 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2012 if (net_ratelimit()) { 2013 pr_warning("%s selects TX queue %d, but " 2014 "real number of TX queues is %d\n", 2015 dev->name, queue_index, dev->real_num_tx_queues); 2016 } 2017 return 0; 2018 } 2019 return queue_index; 2020} 2021 2022static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2023 struct sk_buff *skb) 2024{ 2025 u16 queue_index; 2026 struct sock *sk = skb->sk; 2027 2028 if (sk_tx_queue_recorded(sk)) { 2029 queue_index = sk_tx_queue_get(sk); 2030 } else { 2031 const struct net_device_ops *ops = dev->netdev_ops; 2032 2033 if (ops->ndo_select_queue) { 2034 queue_index = ops->ndo_select_queue(dev, skb); 2035 queue_index = dev_cap_txqueue(dev, queue_index); 2036 } else { 2037 queue_index = 0; 2038 if (dev->real_num_tx_queues > 1) 2039 queue_index = skb_tx_hash(dev, skb); 2040 2041 if (sk) { 2042 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2043 2044 if (dst && skb_dst(skb) == dst) 2045 sk_tx_queue_set(sk, queue_index); 2046 } 2047 } 2048 } 2049 2050 skb_set_queue_mapping(skb, queue_index); 2051 return netdev_get_tx_queue(dev, queue_index); 2052} 2053 2054static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2055 struct net_device *dev, 2056 struct netdev_queue *txq) 2057{ 2058 spinlock_t *root_lock = qdisc_lock(q); 2059 int rc; 2060 2061 spin_lock(root_lock); 2062 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2063 kfree_skb(skb); 2064 rc = NET_XMIT_DROP; 2065 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2066 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2067 /* 2068 * This is a work-conserving queue; there are no old skbs 2069 * waiting to be sent out; and the qdisc is not running - 2070 * xmit the skb directly. 2071 */ 2072 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2073 skb_dst_force(skb); 2074 __qdisc_update_bstats(q, skb->len); 2075 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2076 __qdisc_run(q); 2077 else 2078 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2079 2080 rc = NET_XMIT_SUCCESS; 2081 } else { 2082 skb_dst_force(skb); 2083 rc = qdisc_enqueue_root(skb, q); 2084 qdisc_run(q); 2085 } 2086 spin_unlock(root_lock); 2087 2088 return rc; 2089} 2090 2091/* 2092 * Returns true if either: 2093 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2094 * 2. skb is fragmented and the device does not support SG, or if 2095 * at least one of fragments is in highmem and device does not 2096 * support DMA from it. 2097 */ 2098static inline int skb_needs_linearize(struct sk_buff *skb, 2099 struct net_device *dev) 2100{ 2101 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2102 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2103 illegal_highdma(dev, skb))); 2104} 2105 2106/** 2107 * dev_queue_xmit - transmit a buffer 2108 * @skb: buffer to transmit 2109 * 2110 * Queue a buffer for transmission to a network device. The caller must 2111 * have set the device and priority and built the buffer before calling 2112 * this function. The function can be called from an interrupt. 2113 * 2114 * A negative errno code is returned on a failure. A success does not 2115 * guarantee the frame will be transmitted as it may be dropped due 2116 * to congestion or traffic shaping. 2117 * 2118 * ----------------------------------------------------------------------------------- 2119 * I notice this method can also return errors from the queue disciplines, 2120 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2121 * be positive. 2122 * 2123 * Regardless of the return value, the skb is consumed, so it is currently 2124 * difficult to retry a send to this method. (You can bump the ref count 2125 * before sending to hold a reference for retry if you are careful.) 2126 * 2127 * When calling this method, interrupts MUST be enabled. This is because 2128 * the BH enable code must have IRQs enabled so that it will not deadlock. 2129 * --BLG 2130 */ 2131int dev_queue_xmit(struct sk_buff *skb) 2132{ 2133 struct net_device *dev = skb->dev; 2134 struct netdev_queue *txq; 2135 struct Qdisc *q; 2136 int rc = -ENOMEM; 2137 2138 /* GSO will handle the following emulations directly. */ 2139 if (netif_needs_gso(dev, skb)) 2140 goto gso; 2141 2142 /* Convert a paged skb to linear, if required */ 2143 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2144 goto out_kfree_skb; 2145 2146 /* If packet is not checksummed and device does not support 2147 * checksumming for this protocol, complete checksumming here. 2148 */ 2149 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2150 skb_set_transport_header(skb, skb->csum_start - 2151 skb_headroom(skb)); 2152 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2153 goto out_kfree_skb; 2154 } 2155 2156gso: 2157 /* Disable soft irqs for various locks below. Also 2158 * stops preemption for RCU. 2159 */ 2160 rcu_read_lock_bh(); 2161 2162 txq = dev_pick_tx(dev, skb); 2163 q = rcu_dereference_bh(txq->qdisc); 2164 2165#ifdef CONFIG_NET_CLS_ACT 2166 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2167#endif 2168 if (q->enqueue) { 2169 rc = __dev_xmit_skb(skb, q, dev, txq); 2170 goto out; 2171 } 2172 2173 /* The device has no queue. Common case for software devices: 2174 loopback, all the sorts of tunnels... 2175 2176 Really, it is unlikely that netif_tx_lock protection is necessary 2177 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2178 counters.) 2179 However, it is possible, that they rely on protection 2180 made by us here. 2181 2182 Check this and shot the lock. It is not prone from deadlocks. 2183 Either shot noqueue qdisc, it is even simpler 8) 2184 */ 2185 if (dev->flags & IFF_UP) { 2186 int cpu = smp_processor_id(); /* ok because BHs are off */ 2187 2188 if (txq->xmit_lock_owner != cpu) { 2189 2190 HARD_TX_LOCK(dev, txq, cpu); 2191 2192 if (!netif_tx_queue_stopped(txq)) { 2193 rc = dev_hard_start_xmit(skb, dev, txq); 2194 if (dev_xmit_complete(rc)) { 2195 HARD_TX_UNLOCK(dev, txq); 2196 goto out; 2197 } 2198 } 2199 HARD_TX_UNLOCK(dev, txq); 2200 if (net_ratelimit()) 2201 printk(KERN_CRIT "Virtual device %s asks to " 2202 "queue packet!\n", dev->name); 2203 } else { 2204 /* Recursion is detected! It is possible, 2205 * unfortunately */ 2206 if (net_ratelimit()) 2207 printk(KERN_CRIT "Dead loop on virtual device " 2208 "%s, fix it urgently!\n", dev->name); 2209 } 2210 } 2211 2212 rc = -ENETDOWN; 2213 rcu_read_unlock_bh(); 2214 2215out_kfree_skb: 2216 kfree_skb(skb); 2217 return rc; 2218out: 2219 rcu_read_unlock_bh(); 2220 return rc; 2221} 2222EXPORT_SYMBOL(dev_queue_xmit); 2223 2224 2225/*======================================================================= 2226 Receiver routines 2227 =======================================================================*/ 2228 2229int netdev_max_backlog __read_mostly = 1000; 2230int netdev_tstamp_prequeue __read_mostly = 1; 2231int netdev_budget __read_mostly = 300; 2232int weight_p __read_mostly = 64; /* old backlog weight */ 2233 2234/* Called with irq disabled */ 2235static inline void ____napi_schedule(struct softnet_data *sd, 2236 struct napi_struct *napi) 2237{ 2238 list_add_tail(&napi->poll_list, &sd->poll_list); 2239 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2240} 2241 2242#ifdef CONFIG_RPS 2243 2244/* One global table that all flow-based protocols share. */ 2245struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2246EXPORT_SYMBOL(rps_sock_flow_table); 2247 2248/* 2249 * get_rps_cpu is called from netif_receive_skb and returns the target 2250 * CPU from the RPS map of the receiving queue for a given skb. 2251 * rcu_read_lock must be held on entry. 2252 */ 2253static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2254 struct rps_dev_flow **rflowp) 2255{ 2256 struct ipv6hdr *ip6; 2257 struct iphdr *ip; 2258 struct netdev_rx_queue *rxqueue; 2259 struct rps_map *map; 2260 struct rps_dev_flow_table *flow_table; 2261 struct rps_sock_flow_table *sock_flow_table; 2262 int cpu = -1; 2263 u8 ip_proto; 2264 u16 tcpu; 2265 u32 addr1, addr2, ihl; 2266 union { 2267 u32 v32; 2268 u16 v16[2]; 2269 } ports; 2270 2271 if (skb_rx_queue_recorded(skb)) { 2272 u16 index = skb_get_rx_queue(skb); 2273 if (unlikely(index >= dev->num_rx_queues)) { 2274 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet " 2275 "on queue %u, but number of RX queues is %u\n", 2276 dev->name, index, dev->num_rx_queues); 2277 goto done; 2278 } 2279 rxqueue = dev->_rx + index; 2280 } else 2281 rxqueue = dev->_rx; 2282 2283 if (!rxqueue->rps_map && !rxqueue->rps_flow_table) 2284 goto done; 2285 2286 if (skb->rxhash) 2287 goto got_hash; /* Skip hash computation on packet header */ 2288 2289 switch (skb->protocol) { 2290 case __constant_htons(ETH_P_IP): 2291 if (!pskb_may_pull(skb, sizeof(*ip))) 2292 goto done; 2293 2294 ip = (struct iphdr *) skb->data; 2295 ip_proto = ip->protocol; 2296 addr1 = (__force u32) ip->saddr; 2297 addr2 = (__force u32) ip->daddr; 2298 ihl = ip->ihl; 2299 break; 2300 case __constant_htons(ETH_P_IPV6): 2301 if (!pskb_may_pull(skb, sizeof(*ip6))) 2302 goto done; 2303 2304 ip6 = (struct ipv6hdr *) skb->data; 2305 ip_proto = ip6->nexthdr; 2306 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2307 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2308 ihl = (40 >> 2); 2309 break; 2310 default: 2311 goto done; 2312 } 2313 switch (ip_proto) { 2314 case IPPROTO_TCP: 2315 case IPPROTO_UDP: 2316 case IPPROTO_DCCP: 2317 case IPPROTO_ESP: 2318 case IPPROTO_AH: 2319 case IPPROTO_SCTP: 2320 case IPPROTO_UDPLITE: 2321 if (pskb_may_pull(skb, (ihl * 4) + 4)) { 2322 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4)); 2323 if (ports.v16[1] < ports.v16[0]) 2324 swap(ports.v16[0], ports.v16[1]); 2325 break; 2326 } 2327 default: 2328 ports.v32 = 0; 2329 break; 2330 } 2331 2332 /* get a consistent hash (same value on both flow directions) */ 2333 if (addr2 < addr1) 2334 swap(addr1, addr2); 2335 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2336 if (!skb->rxhash) 2337 skb->rxhash = 1; 2338 2339got_hash: 2340 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2341 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2342 if (flow_table && sock_flow_table) { 2343 u16 next_cpu; 2344 struct rps_dev_flow *rflow; 2345 2346 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2347 tcpu = rflow->cpu; 2348 2349 next_cpu = sock_flow_table->ents[skb->rxhash & 2350 sock_flow_table->mask]; 2351 2352 /* 2353 * If the desired CPU (where last recvmsg was done) is 2354 * different from current CPU (one in the rx-queue flow 2355 * table entry), switch if one of the following holds: 2356 * - Current CPU is unset (equal to RPS_NO_CPU). 2357 * - Current CPU is offline. 2358 * - The current CPU's queue tail has advanced beyond the 2359 * last packet that was enqueued using this table entry. 2360 * This guarantees that all previous packets for the flow 2361 * have been dequeued, thus preserving in order delivery. 2362 */ 2363 if (unlikely(tcpu != next_cpu) && 2364 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2365 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2366 rflow->last_qtail)) >= 0)) { 2367 tcpu = rflow->cpu = next_cpu; 2368 if (tcpu != RPS_NO_CPU) 2369 rflow->last_qtail = per_cpu(softnet_data, 2370 tcpu).input_queue_head; 2371 } 2372 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2373 *rflowp = rflow; 2374 cpu = tcpu; 2375 goto done; 2376 } 2377 } 2378 2379 map = rcu_dereference(rxqueue->rps_map); 2380 if (map) { 2381 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2382 2383 if (cpu_online(tcpu)) { 2384 cpu = tcpu; 2385 goto done; 2386 } 2387 } 2388 2389done: 2390 return cpu; 2391} 2392 2393/* Called from hardirq (IPI) context */ 2394static void rps_trigger_softirq(void *data) 2395{ 2396 struct softnet_data *sd = data; 2397 2398 ____napi_schedule(sd, &sd->backlog); 2399 sd->received_rps++; 2400} 2401 2402#endif /* CONFIG_RPS */ 2403 2404/* 2405 * Check if this softnet_data structure is another cpu one 2406 * If yes, queue it to our IPI list and return 1 2407 * If no, return 0 2408 */ 2409static int rps_ipi_queued(struct softnet_data *sd) 2410{ 2411#ifdef CONFIG_RPS 2412 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2413 2414 if (sd != mysd) { 2415 sd->rps_ipi_next = mysd->rps_ipi_list; 2416 mysd->rps_ipi_list = sd; 2417 2418 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2419 return 1; 2420 } 2421#endif /* CONFIG_RPS */ 2422 return 0; 2423} 2424 2425/* 2426 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2427 * queue (may be a remote CPU queue). 2428 */ 2429static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2430 unsigned int *qtail) 2431{ 2432 struct softnet_data *sd; 2433 unsigned long flags; 2434 2435 sd = &per_cpu(softnet_data, cpu); 2436 2437 local_irq_save(flags); 2438 2439 rps_lock(sd); 2440 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2441 if (skb_queue_len(&sd->input_pkt_queue)) { 2442enqueue: 2443 __skb_queue_tail(&sd->input_pkt_queue, skb); 2444 input_queue_tail_incr_save(sd, qtail); 2445 rps_unlock(sd); 2446 local_irq_restore(flags); 2447 return NET_RX_SUCCESS; 2448 } 2449 2450 /* Schedule NAPI for backlog device 2451 * We can use non atomic operation since we own the queue lock 2452 */ 2453 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2454 if (!rps_ipi_queued(sd)) 2455 ____napi_schedule(sd, &sd->backlog); 2456 } 2457 goto enqueue; 2458 } 2459 2460 sd->dropped++; 2461 rps_unlock(sd); 2462 2463 local_irq_restore(flags); 2464 2465 kfree_skb(skb); 2466 return NET_RX_DROP; 2467} 2468 2469/** 2470 * netif_rx - post buffer to the network code 2471 * @skb: buffer to post 2472 * 2473 * This function receives a packet from a device driver and queues it for 2474 * the upper (protocol) levels to process. It always succeeds. The buffer 2475 * may be dropped during processing for congestion control or by the 2476 * protocol layers. 2477 * 2478 * return values: 2479 * NET_RX_SUCCESS (no congestion) 2480 * NET_RX_DROP (packet was dropped) 2481 * 2482 */ 2483 2484int netif_rx(struct sk_buff *skb) 2485{ 2486 int ret; 2487 2488 /* if netpoll wants it, pretend we never saw it */ 2489 if (netpoll_rx(skb)) 2490 return NET_RX_DROP; 2491 2492 if (netdev_tstamp_prequeue) 2493 net_timestamp_check(skb); 2494 2495#ifdef CONFIG_RPS 2496 { 2497 struct rps_dev_flow voidflow, *rflow = &voidflow; 2498 int cpu; 2499 2500 rcu_read_lock(); 2501 2502 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2503 if (cpu < 0) 2504 cpu = smp_processor_id(); 2505 2506 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2507 2508 rcu_read_unlock(); 2509 } 2510#else 2511 { 2512 unsigned int qtail; 2513 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2514 put_cpu(); 2515 } 2516#endif 2517 return ret; 2518} 2519EXPORT_SYMBOL(netif_rx); 2520 2521int netif_rx_ni(struct sk_buff *skb) 2522{ 2523 int err; 2524 2525 preempt_disable(); 2526 err = netif_rx(skb); 2527 if (local_softirq_pending()) 2528 do_softirq(); 2529 preempt_enable(); 2530 2531 return err; 2532} 2533EXPORT_SYMBOL(netif_rx_ni); 2534 2535static void net_tx_action(struct softirq_action *h) 2536{ 2537 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2538 2539 if (sd->completion_queue) { 2540 struct sk_buff *clist; 2541 2542 local_irq_disable(); 2543 clist = sd->completion_queue; 2544 sd->completion_queue = NULL; 2545 local_irq_enable(); 2546 2547 while (clist) { 2548 struct sk_buff *skb = clist; 2549 clist = clist->next; 2550 2551 WARN_ON(atomic_read(&skb->users)); 2552 __kfree_skb(skb); 2553 } 2554 } 2555 2556 if (sd->output_queue) { 2557 struct Qdisc *head; 2558 2559 local_irq_disable(); 2560 head = sd->output_queue; 2561 sd->output_queue = NULL; 2562 sd->output_queue_tailp = &sd->output_queue; 2563 local_irq_enable(); 2564 2565 while (head) { 2566 struct Qdisc *q = head; 2567 spinlock_t *root_lock; 2568 2569 head = head->next_sched; 2570 2571 root_lock = qdisc_lock(q); 2572 if (spin_trylock(root_lock)) { 2573 smp_mb__before_clear_bit(); 2574 clear_bit(__QDISC_STATE_SCHED, 2575 &q->state); 2576 qdisc_run(q); 2577 spin_unlock(root_lock); 2578 } else { 2579 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2580 &q->state)) { 2581 __netif_reschedule(q); 2582 } else { 2583 smp_mb__before_clear_bit(); 2584 clear_bit(__QDISC_STATE_SCHED, 2585 &q->state); 2586 } 2587 } 2588 } 2589 } 2590} 2591 2592static inline int deliver_skb(struct sk_buff *skb, 2593 struct packet_type *pt_prev, 2594 struct net_device *orig_dev) 2595{ 2596 atomic_inc(&skb->users); 2597 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2598} 2599 2600#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2601 2602#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2603/* This hook is defined here for ATM LANE */ 2604int (*br_fdb_test_addr_hook)(struct net_device *dev, 2605 unsigned char *addr) __read_mostly; 2606EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2607#endif 2608 2609/* 2610 * If bridge module is loaded call bridging hook. 2611 * returns NULL if packet was consumed. 2612 */ 2613struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2614 struct sk_buff *skb) __read_mostly; 2615EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2616 2617static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2618 struct packet_type **pt_prev, int *ret, 2619 struct net_device *orig_dev) 2620{ 2621 struct net_bridge_port *port; 2622 2623 if (skb->pkt_type == PACKET_LOOPBACK || 2624 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2625 return skb; 2626 2627 if (*pt_prev) { 2628 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2629 *pt_prev = NULL; 2630 } 2631 2632 return br_handle_frame_hook(port, skb); 2633} 2634#else 2635#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2636#endif 2637 2638#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2639struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p, 2640 struct sk_buff *skb) __read_mostly; 2641EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2642 2643static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2644 struct packet_type **pt_prev, 2645 int *ret, 2646 struct net_device *orig_dev) 2647{ 2648 struct macvlan_port *port; 2649 2650 port = rcu_dereference(skb->dev->macvlan_port); 2651 if (!port) 2652 return skb; 2653 2654 if (*pt_prev) { 2655 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2656 *pt_prev = NULL; 2657 } 2658 return macvlan_handle_frame_hook(port, skb); 2659} 2660#else 2661#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2662#endif 2663 2664#ifdef CONFIG_NET_CLS_ACT 2665/* TODO: Maybe we should just force sch_ingress to be compiled in 2666 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2667 * a compare and 2 stores extra right now if we dont have it on 2668 * but have CONFIG_NET_CLS_ACT 2669 * NOTE: This doesnt stop any functionality; if you dont have 2670 * the ingress scheduler, you just cant add policies on ingress. 2671 * 2672 */ 2673static int ing_filter(struct sk_buff *skb) 2674{ 2675 struct net_device *dev = skb->dev; 2676 u32 ttl = G_TC_RTTL(skb->tc_verd); 2677 struct netdev_queue *rxq; 2678 int result = TC_ACT_OK; 2679 struct Qdisc *q; 2680 2681 if (MAX_RED_LOOP < ttl++) { 2682 printk(KERN_WARNING 2683 "Redir loop detected Dropping packet (%d->%d)\n", 2684 skb->skb_iif, dev->ifindex); 2685 return TC_ACT_SHOT; 2686 } 2687 2688 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2689 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2690 2691 rxq = &dev->rx_queue; 2692 2693 q = rxq->qdisc; 2694 if (q != &noop_qdisc) { 2695 spin_lock(qdisc_lock(q)); 2696 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2697 result = qdisc_enqueue_root(skb, q); 2698 spin_unlock(qdisc_lock(q)); 2699 } 2700 2701 return result; 2702} 2703 2704static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2705 struct packet_type **pt_prev, 2706 int *ret, struct net_device *orig_dev) 2707{ 2708 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2709 goto out; 2710 2711 if (*pt_prev) { 2712 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2713 *pt_prev = NULL; 2714 } else { 2715 /* Huh? Why does turning on AF_PACKET affect this? */ 2716 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2717 } 2718 2719 switch (ing_filter(skb)) { 2720 case TC_ACT_SHOT: 2721 case TC_ACT_STOLEN: 2722 kfree_skb(skb); 2723 return NULL; 2724 } 2725 2726out: 2727 skb->tc_verd = 0; 2728 return skb; 2729} 2730#endif 2731 2732/* 2733 * netif_nit_deliver - deliver received packets to network taps 2734 * @skb: buffer 2735 * 2736 * This function is used to deliver incoming packets to network 2737 * taps. It should be used when the normal netif_receive_skb path 2738 * is bypassed, for example because of VLAN acceleration. 2739 */ 2740void netif_nit_deliver(struct sk_buff *skb) 2741{ 2742 struct packet_type *ptype; 2743 2744 if (list_empty(&ptype_all)) 2745 return; 2746 2747 skb_reset_network_header(skb); 2748 skb_reset_transport_header(skb); 2749 skb->mac_len = skb->network_header - skb->mac_header; 2750 2751 rcu_read_lock(); 2752 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2753 if (!ptype->dev || ptype->dev == skb->dev) 2754 deliver_skb(skb, ptype, skb->dev); 2755 } 2756 rcu_read_unlock(); 2757} 2758 2759static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2760 struct net_device *master) 2761{ 2762 if (skb->pkt_type == PACKET_HOST) { 2763 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2764 2765 memcpy(dest, master->dev_addr, ETH_ALEN); 2766 } 2767} 2768 2769/* On bonding slaves other than the currently active slave, suppress 2770 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2771 * ARP on active-backup slaves with arp_validate enabled. 2772 */ 2773int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2774{ 2775 struct net_device *dev = skb->dev; 2776 2777 if (master->priv_flags & IFF_MASTER_ARPMON) 2778 dev->last_rx = jiffies; 2779 2780 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) { 2781 /* Do address unmangle. The local destination address 2782 * will be always the one master has. Provides the right 2783 * functionality in a bridge. 2784 */ 2785 skb_bond_set_mac_by_master(skb, master); 2786 } 2787 2788 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2789 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2790 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2791 return 0; 2792 2793 if (master->priv_flags & IFF_MASTER_ALB) { 2794 if (skb->pkt_type != PACKET_BROADCAST && 2795 skb->pkt_type != PACKET_MULTICAST) 2796 return 0; 2797 } 2798 if (master->priv_flags & IFF_MASTER_8023AD && 2799 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2800 return 0; 2801 2802 return 1; 2803 } 2804 return 0; 2805} 2806EXPORT_SYMBOL(__skb_bond_should_drop); 2807 2808static int __netif_receive_skb(struct sk_buff *skb) 2809{ 2810 struct packet_type *ptype, *pt_prev; 2811 struct net_device *orig_dev; 2812 struct net_device *master; 2813 struct net_device *null_or_orig; 2814 struct net_device *orig_or_bond; 2815 int ret = NET_RX_DROP; 2816 __be16 type; 2817 2818 if (!netdev_tstamp_prequeue) 2819 net_timestamp_check(skb); 2820 2821 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2822 return NET_RX_SUCCESS; 2823 2824 /* if we've gotten here through NAPI, check netpoll */ 2825 if (netpoll_receive_skb(skb)) 2826 return NET_RX_DROP; 2827 2828 if (!skb->skb_iif) 2829 skb->skb_iif = skb->dev->ifindex; 2830 2831 /* 2832 * bonding note: skbs received on inactive slaves should only 2833 * be delivered to pkt handlers that are exact matches. Also 2834 * the deliver_no_wcard flag will be set. If packet handlers 2835 * are sensitive to duplicate packets these skbs will need to 2836 * be dropped at the handler. The vlan accel path may have 2837 * already set the deliver_no_wcard flag. 2838 */ 2839 null_or_orig = NULL; 2840 orig_dev = skb->dev; 2841 master = ACCESS_ONCE(orig_dev->master); 2842 if (skb->deliver_no_wcard) 2843 null_or_orig = orig_dev; 2844 else if (master) { 2845 if (skb_bond_should_drop(skb, master)) { 2846 skb->deliver_no_wcard = 1; 2847 null_or_orig = orig_dev; /* deliver only exact match */ 2848 } else 2849 skb->dev = master; 2850 } 2851 2852 __get_cpu_var(softnet_data).processed++; 2853 2854 skb_reset_network_header(skb); 2855 skb_reset_transport_header(skb); 2856 skb->mac_len = skb->network_header - skb->mac_header; 2857 2858 pt_prev = NULL; 2859 2860 rcu_read_lock(); 2861 2862#ifdef CONFIG_NET_CLS_ACT 2863 if (skb->tc_verd & TC_NCLS) { 2864 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2865 goto ncls; 2866 } 2867#endif 2868 2869 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2870 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2871 ptype->dev == orig_dev) { 2872 if (pt_prev) 2873 ret = deliver_skb(skb, pt_prev, orig_dev); 2874 pt_prev = ptype; 2875 } 2876 } 2877 2878#ifdef CONFIG_NET_CLS_ACT 2879 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2880 if (!skb) 2881 goto out; 2882ncls: 2883#endif 2884 2885 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2886 if (!skb) 2887 goto out; 2888 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2889 if (!skb) 2890 goto out; 2891 2892 /* 2893 * Make sure frames received on VLAN interfaces stacked on 2894 * bonding interfaces still make their way to any base bonding 2895 * device that may have registered for a specific ptype. The 2896 * handler may have to adjust skb->dev and orig_dev. 2897 */ 2898 orig_or_bond = orig_dev; 2899 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2900 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2901 orig_or_bond = vlan_dev_real_dev(skb->dev); 2902 } 2903 2904 type = skb->protocol; 2905 list_for_each_entry_rcu(ptype, 2906 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2907 if (ptype->type == type && (ptype->dev == null_or_orig || 2908 ptype->dev == skb->dev || ptype->dev == orig_dev || 2909 ptype->dev == orig_or_bond)) { 2910 if (pt_prev) 2911 ret = deliver_skb(skb, pt_prev, orig_dev); 2912 pt_prev = ptype; 2913 } 2914 } 2915 2916 if (pt_prev) { 2917 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2918 } else { 2919 kfree_skb(skb); 2920 /* Jamal, now you will not able to escape explaining 2921 * me how you were going to use this. :-) 2922 */ 2923 ret = NET_RX_DROP; 2924 } 2925 2926out: 2927 rcu_read_unlock(); 2928 return ret; 2929} 2930 2931/** 2932 * netif_receive_skb - process receive buffer from network 2933 * @skb: buffer to process 2934 * 2935 * netif_receive_skb() is the main receive data processing function. 2936 * It always succeeds. The buffer may be dropped during processing 2937 * for congestion control or by the protocol layers. 2938 * 2939 * This function may only be called from softirq context and interrupts 2940 * should be enabled. 2941 * 2942 * Return values (usually ignored): 2943 * NET_RX_SUCCESS: no congestion 2944 * NET_RX_DROP: packet was dropped 2945 */ 2946int netif_receive_skb(struct sk_buff *skb) 2947{ 2948 if (netdev_tstamp_prequeue) 2949 net_timestamp_check(skb); 2950 2951#ifdef CONFIG_RPS 2952 { 2953 struct rps_dev_flow voidflow, *rflow = &voidflow; 2954 int cpu, ret; 2955 2956 rcu_read_lock(); 2957 2958 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2959 2960 if (cpu >= 0) { 2961 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2962 rcu_read_unlock(); 2963 } else { 2964 rcu_read_unlock(); 2965 ret = __netif_receive_skb(skb); 2966 } 2967 2968 return ret; 2969 } 2970#else 2971 return __netif_receive_skb(skb); 2972#endif 2973} 2974EXPORT_SYMBOL(netif_receive_skb); 2975 2976/* Network device is going away, flush any packets still pending 2977 * Called with irqs disabled. 2978 */ 2979static void flush_backlog(void *arg) 2980{ 2981 struct net_device *dev = arg; 2982 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2983 struct sk_buff *skb, *tmp; 2984 2985 rps_lock(sd); 2986 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 2987 if (skb->dev == dev) { 2988 __skb_unlink(skb, &sd->input_pkt_queue); 2989 kfree_skb(skb); 2990 input_queue_head_incr(sd); 2991 } 2992 } 2993 rps_unlock(sd); 2994 2995 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 2996 if (skb->dev == dev) { 2997 __skb_unlink(skb, &sd->process_queue); 2998 kfree_skb(skb); 2999 input_queue_head_incr(sd); 3000 } 3001 } 3002} 3003 3004static int napi_gro_complete(struct sk_buff *skb) 3005{ 3006 struct packet_type *ptype; 3007 __be16 type = skb->protocol; 3008 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3009 int err = -ENOENT; 3010 3011 if (NAPI_GRO_CB(skb)->count == 1) { 3012 skb_shinfo(skb)->gso_size = 0; 3013 goto out; 3014 } 3015 3016 rcu_read_lock(); 3017 list_for_each_entry_rcu(ptype, head, list) { 3018 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3019 continue; 3020 3021 err = ptype->gro_complete(skb); 3022 break; 3023 } 3024 rcu_read_unlock(); 3025 3026 if (err) { 3027 WARN_ON(&ptype->list == head); 3028 kfree_skb(skb); 3029 return NET_RX_SUCCESS; 3030 } 3031 3032out: 3033 return netif_receive_skb(skb); 3034} 3035 3036static void napi_gro_flush(struct napi_struct *napi) 3037{ 3038 struct sk_buff *skb, *next; 3039 3040 for (skb = napi->gro_list; skb; skb = next) { 3041 next = skb->next; 3042 skb->next = NULL; 3043 napi_gro_complete(skb); 3044 } 3045 3046 napi->gro_count = 0; 3047 napi->gro_list = NULL; 3048} 3049 3050enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3051{ 3052 struct sk_buff **pp = NULL; 3053 struct packet_type *ptype; 3054 __be16 type = skb->protocol; 3055 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3056 int same_flow; 3057 int mac_len; 3058 enum gro_result ret; 3059 3060 if (!(skb->dev->features & NETIF_F_GRO)) 3061 goto normal; 3062 3063 if (skb_is_gso(skb) || skb_has_frags(skb)) 3064 goto normal; 3065 3066 rcu_read_lock(); 3067 list_for_each_entry_rcu(ptype, head, list) { 3068 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3069 continue; 3070 3071 skb_set_network_header(skb, skb_gro_offset(skb)); 3072 mac_len = skb->network_header - skb->mac_header; 3073 skb->mac_len = mac_len; 3074 NAPI_GRO_CB(skb)->same_flow = 0; 3075 NAPI_GRO_CB(skb)->flush = 0; 3076 NAPI_GRO_CB(skb)->free = 0; 3077 3078 pp = ptype->gro_receive(&napi->gro_list, skb); 3079 break; 3080 } 3081 rcu_read_unlock(); 3082 3083 if (&ptype->list == head) 3084 goto normal; 3085 3086 same_flow = NAPI_GRO_CB(skb)->same_flow; 3087 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3088 3089 if (pp) { 3090 struct sk_buff *nskb = *pp; 3091 3092 *pp = nskb->next; 3093 nskb->next = NULL; 3094 napi_gro_complete(nskb); 3095 napi->gro_count--; 3096 } 3097 3098 if (same_flow) 3099 goto ok; 3100 3101 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3102 goto normal; 3103 3104 napi->gro_count++; 3105 NAPI_GRO_CB(skb)->count = 1; 3106 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3107 skb->next = napi->gro_list; 3108 napi->gro_list = skb; 3109 ret = GRO_HELD; 3110 3111pull: 3112 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3113 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3114 3115 BUG_ON(skb->end - skb->tail < grow); 3116 3117 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3118 3119 skb->tail += grow; 3120 skb->data_len -= grow; 3121 3122 skb_shinfo(skb)->frags[0].page_offset += grow; 3123 skb_shinfo(skb)->frags[0].size -= grow; 3124 3125 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3126 put_page(skb_shinfo(skb)->frags[0].page); 3127 memmove(skb_shinfo(skb)->frags, 3128 skb_shinfo(skb)->frags + 1, 3129 --skb_shinfo(skb)->nr_frags); 3130 } 3131 } 3132 3133ok: 3134 return ret; 3135 3136normal: 3137 ret = GRO_NORMAL; 3138 goto pull; 3139} 3140EXPORT_SYMBOL(dev_gro_receive); 3141 3142static gro_result_t 3143__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3144{ 3145 struct sk_buff *p; 3146 3147 if (netpoll_rx_on(skb)) 3148 return GRO_NORMAL; 3149 3150 for (p = napi->gro_list; p; p = p->next) { 3151 NAPI_GRO_CB(p)->same_flow = 3152 (p->dev == skb->dev) && 3153 !compare_ether_header(skb_mac_header(p), 3154 skb_gro_mac_header(skb)); 3155 NAPI_GRO_CB(p)->flush = 0; 3156 } 3157 3158 return dev_gro_receive(napi, skb); 3159} 3160 3161gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3162{ 3163 switch (ret) { 3164 case GRO_NORMAL: 3165 if (netif_receive_skb(skb)) 3166 ret = GRO_DROP; 3167 break; 3168 3169 case GRO_DROP: 3170 case GRO_MERGED_FREE: 3171 kfree_skb(skb); 3172 break; 3173 3174 case GRO_HELD: 3175 case GRO_MERGED: 3176 break; 3177 } 3178 3179 return ret; 3180} 3181EXPORT_SYMBOL(napi_skb_finish); 3182 3183void skb_gro_reset_offset(struct sk_buff *skb) 3184{ 3185 NAPI_GRO_CB(skb)->data_offset = 0; 3186 NAPI_GRO_CB(skb)->frag0 = NULL; 3187 NAPI_GRO_CB(skb)->frag0_len = 0; 3188 3189 if (skb->mac_header == skb->tail && 3190 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3191 NAPI_GRO_CB(skb)->frag0 = 3192 page_address(skb_shinfo(skb)->frags[0].page) + 3193 skb_shinfo(skb)->frags[0].page_offset; 3194 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3195 } 3196} 3197EXPORT_SYMBOL(skb_gro_reset_offset); 3198 3199gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3200{ 3201 skb_gro_reset_offset(skb); 3202 3203 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3204} 3205EXPORT_SYMBOL(napi_gro_receive); 3206 3207void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3208{ 3209 __skb_pull(skb, skb_headlen(skb)); 3210 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3211 3212 napi->skb = skb; 3213} 3214EXPORT_SYMBOL(napi_reuse_skb); 3215 3216struct sk_buff *napi_get_frags(struct napi_struct *napi) 3217{ 3218 struct sk_buff *skb = napi->skb; 3219 3220 if (!skb) { 3221 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3222 if (skb) 3223 napi->skb = skb; 3224 } 3225 return skb; 3226} 3227EXPORT_SYMBOL(napi_get_frags); 3228 3229gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3230 gro_result_t ret) 3231{ 3232 switch (ret) { 3233 case GRO_NORMAL: 3234 case GRO_HELD: 3235 skb->protocol = eth_type_trans(skb, skb->dev); 3236 3237 if (ret == GRO_HELD) 3238 skb_gro_pull(skb, -ETH_HLEN); 3239 else if (netif_receive_skb(skb)) 3240 ret = GRO_DROP; 3241 break; 3242 3243 case GRO_DROP: 3244 case GRO_MERGED_FREE: 3245 napi_reuse_skb(napi, skb); 3246 break; 3247 3248 case GRO_MERGED: 3249 break; 3250 } 3251 3252 return ret; 3253} 3254EXPORT_SYMBOL(napi_frags_finish); 3255 3256struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3257{ 3258 struct sk_buff *skb = napi->skb; 3259 struct ethhdr *eth; 3260 unsigned int hlen; 3261 unsigned int off; 3262 3263 napi->skb = NULL; 3264 3265 skb_reset_mac_header(skb); 3266 skb_gro_reset_offset(skb); 3267 3268 off = skb_gro_offset(skb); 3269 hlen = off + sizeof(*eth); 3270 eth = skb_gro_header_fast(skb, off); 3271 if (skb_gro_header_hard(skb, hlen)) { 3272 eth = skb_gro_header_slow(skb, hlen, off); 3273 if (unlikely(!eth)) { 3274 napi_reuse_skb(napi, skb); 3275 skb = NULL; 3276 goto out; 3277 } 3278 } 3279 3280 skb_gro_pull(skb, sizeof(*eth)); 3281 3282 /* 3283 * This works because the only protocols we care about don't require 3284 * special handling. We'll fix it up properly at the end. 3285 */ 3286 skb->protocol = eth->h_proto; 3287 3288out: 3289 return skb; 3290} 3291EXPORT_SYMBOL(napi_frags_skb); 3292 3293gro_result_t napi_gro_frags(struct napi_struct *napi) 3294{ 3295 struct sk_buff *skb = napi_frags_skb(napi); 3296 3297 if (!skb) 3298 return GRO_DROP; 3299 3300 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3301} 3302EXPORT_SYMBOL(napi_gro_frags); 3303 3304/* 3305 * net_rps_action sends any pending IPI's for rps. 3306 * Note: called with local irq disabled, but exits with local irq enabled. 3307 */ 3308static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3309{ 3310#ifdef CONFIG_RPS 3311 struct softnet_data *remsd = sd->rps_ipi_list; 3312 3313 if (remsd) { 3314 sd->rps_ipi_list = NULL; 3315 3316 local_irq_enable(); 3317 3318 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3319 while (remsd) { 3320 struct softnet_data *next = remsd->rps_ipi_next; 3321 3322 if (cpu_online(remsd->cpu)) 3323 __smp_call_function_single(remsd->cpu, 3324 &remsd->csd, 0); 3325 remsd = next; 3326 } 3327 } else 3328#endif 3329 local_irq_enable(); 3330} 3331 3332static int process_backlog(struct napi_struct *napi, int quota) 3333{ 3334 int work = 0; 3335 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3336 3337#ifdef CONFIG_RPS 3338 /* Check if we have pending ipi, its better to send them now, 3339 * not waiting net_rx_action() end. 3340 */ 3341 if (sd->rps_ipi_list) { 3342 local_irq_disable(); 3343 net_rps_action_and_irq_enable(sd); 3344 } 3345#endif 3346 napi->weight = weight_p; 3347 local_irq_disable(); 3348 while (work < quota) { 3349 struct sk_buff *skb; 3350 unsigned int qlen; 3351 3352 while ((skb = __skb_dequeue(&sd->process_queue))) { 3353 local_irq_enable(); 3354 __netif_receive_skb(skb); 3355 local_irq_disable(); 3356 input_queue_head_incr(sd); 3357 if (++work >= quota) { 3358 local_irq_enable(); 3359 return work; 3360 } 3361 } 3362 3363 rps_lock(sd); 3364 qlen = skb_queue_len(&sd->input_pkt_queue); 3365 if (qlen) 3366 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3367 &sd->process_queue); 3368 3369 if (qlen < quota - work) { 3370 /* 3371 * Inline a custom version of __napi_complete(). 3372 * only current cpu owns and manipulates this napi, 3373 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3374 * we can use a plain write instead of clear_bit(), 3375 * and we dont need an smp_mb() memory barrier. 3376 */ 3377 list_del(&napi->poll_list); 3378 napi->state = 0; 3379 3380 quota = work + qlen; 3381 } 3382 rps_unlock(sd); 3383 } 3384 local_irq_enable(); 3385 3386 return work; 3387} 3388 3389/** 3390 * __napi_schedule - schedule for receive 3391 * @n: entry to schedule 3392 * 3393 * The entry's receive function will be scheduled to run 3394 */ 3395void __napi_schedule(struct napi_struct *n) 3396{ 3397 unsigned long flags; 3398 3399 local_irq_save(flags); 3400 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3401 local_irq_restore(flags); 3402} 3403EXPORT_SYMBOL(__napi_schedule); 3404 3405void __napi_complete(struct napi_struct *n) 3406{ 3407 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3408 BUG_ON(n->gro_list); 3409 3410 list_del(&n->poll_list); 3411 smp_mb__before_clear_bit(); 3412 clear_bit(NAPI_STATE_SCHED, &n->state); 3413} 3414EXPORT_SYMBOL(__napi_complete); 3415 3416void napi_complete(struct napi_struct *n) 3417{ 3418 unsigned long flags; 3419 3420 /* 3421 * don't let napi dequeue from the cpu poll list 3422 * just in case its running on a different cpu 3423 */ 3424 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3425 return; 3426 3427 napi_gro_flush(n); 3428 local_irq_save(flags); 3429 __napi_complete(n); 3430 local_irq_restore(flags); 3431} 3432EXPORT_SYMBOL(napi_complete); 3433 3434void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3435 int (*poll)(struct napi_struct *, int), int weight) 3436{ 3437 INIT_LIST_HEAD(&napi->poll_list); 3438 napi->gro_count = 0; 3439 napi->gro_list = NULL; 3440 napi->skb = NULL; 3441 napi->poll = poll; 3442 napi->weight = weight; 3443 list_add(&napi->dev_list, &dev->napi_list); 3444 napi->dev = dev; 3445#ifdef CONFIG_NETPOLL 3446 spin_lock_init(&napi->poll_lock); 3447 napi->poll_owner = -1; 3448#endif 3449 set_bit(NAPI_STATE_SCHED, &napi->state); 3450} 3451EXPORT_SYMBOL(netif_napi_add); 3452 3453void netif_napi_del(struct napi_struct *napi) 3454{ 3455 struct sk_buff *skb, *next; 3456 3457 list_del_init(&napi->dev_list); 3458 napi_free_frags(napi); 3459 3460 for (skb = napi->gro_list; skb; skb = next) { 3461 next = skb->next; 3462 skb->next = NULL; 3463 kfree_skb(skb); 3464 } 3465 3466 napi->gro_list = NULL; 3467 napi->gro_count = 0; 3468} 3469EXPORT_SYMBOL(netif_napi_del); 3470 3471static void net_rx_action(struct softirq_action *h) 3472{ 3473 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3474 unsigned long time_limit = jiffies + 2; 3475 int budget = netdev_budget; 3476 void *have; 3477 3478 local_irq_disable(); 3479 3480 while (!list_empty(&sd->poll_list)) { 3481 struct napi_struct *n; 3482 int work, weight; 3483 3484 /* If softirq window is exhuasted then punt. 3485 * Allow this to run for 2 jiffies since which will allow 3486 * an average latency of 1.5/HZ. 3487 */ 3488 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3489 goto softnet_break; 3490 3491 local_irq_enable(); 3492 3493 /* Even though interrupts have been re-enabled, this 3494 * access is safe because interrupts can only add new 3495 * entries to the tail of this list, and only ->poll() 3496 * calls can remove this head entry from the list. 3497 */ 3498 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3499 3500 have = netpoll_poll_lock(n); 3501 3502 weight = n->weight; 3503 3504 /* This NAPI_STATE_SCHED test is for avoiding a race 3505 * with netpoll's poll_napi(). Only the entity which 3506 * obtains the lock and sees NAPI_STATE_SCHED set will 3507 * actually make the ->poll() call. Therefore we avoid 3508 * accidently calling ->poll() when NAPI is not scheduled. 3509 */ 3510 work = 0; 3511 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3512 work = n->poll(n, weight); 3513 trace_napi_poll(n); 3514 } 3515 3516 WARN_ON_ONCE(work > weight); 3517 3518 budget -= work; 3519 3520 local_irq_disable(); 3521 3522 /* Drivers must not modify the NAPI state if they 3523 * consume the entire weight. In such cases this code 3524 * still "owns" the NAPI instance and therefore can 3525 * move the instance around on the list at-will. 3526 */ 3527 if (unlikely(work == weight)) { 3528 if (unlikely(napi_disable_pending(n))) { 3529 local_irq_enable(); 3530 napi_complete(n); 3531 local_irq_disable(); 3532 } else 3533 list_move_tail(&n->poll_list, &sd->poll_list); 3534 } 3535 3536 netpoll_poll_unlock(have); 3537 } 3538out: 3539 net_rps_action_and_irq_enable(sd); 3540 3541#ifdef CONFIG_NET_DMA 3542 /* 3543 * There may not be any more sk_buffs coming right now, so push 3544 * any pending DMA copies to hardware 3545 */ 3546 dma_issue_pending_all(); 3547#endif 3548 3549 return; 3550 3551softnet_break: 3552 sd->time_squeeze++; 3553 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3554 goto out; 3555} 3556 3557static gifconf_func_t *gifconf_list[NPROTO]; 3558 3559/** 3560 * register_gifconf - register a SIOCGIF handler 3561 * @family: Address family 3562 * @gifconf: Function handler 3563 * 3564 * Register protocol dependent address dumping routines. The handler 3565 * that is passed must not be freed or reused until it has been replaced 3566 * by another handler. 3567 */ 3568int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3569{ 3570 if (family >= NPROTO) 3571 return -EINVAL; 3572 gifconf_list[family] = gifconf; 3573 return 0; 3574} 3575EXPORT_SYMBOL(register_gifconf); 3576 3577 3578/* 3579 * Map an interface index to its name (SIOCGIFNAME) 3580 */ 3581 3582/* 3583 * We need this ioctl for efficient implementation of the 3584 * if_indextoname() function required by the IPv6 API. Without 3585 * it, we would have to search all the interfaces to find a 3586 * match. --pb 3587 */ 3588 3589static int dev_ifname(struct net *net, struct ifreq __user *arg) 3590{ 3591 struct net_device *dev; 3592 struct ifreq ifr; 3593 3594 /* 3595 * Fetch the caller's info block. 3596 */ 3597 3598 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3599 return -EFAULT; 3600 3601 rcu_read_lock(); 3602 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3603 if (!dev) { 3604 rcu_read_unlock(); 3605 return -ENODEV; 3606 } 3607 3608 strcpy(ifr.ifr_name, dev->name); 3609 rcu_read_unlock(); 3610 3611 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3612 return -EFAULT; 3613 return 0; 3614} 3615 3616/* 3617 * Perform a SIOCGIFCONF call. This structure will change 3618 * size eventually, and there is nothing I can do about it. 3619 * Thus we will need a 'compatibility mode'. 3620 */ 3621 3622static int dev_ifconf(struct net *net, char __user *arg) 3623{ 3624 struct ifconf ifc; 3625 struct net_device *dev; 3626 char __user *pos; 3627 int len; 3628 int total; 3629 int i; 3630 3631 /* 3632 * Fetch the caller's info block. 3633 */ 3634 3635 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3636 return -EFAULT; 3637 3638 pos = ifc.ifc_buf; 3639 len = ifc.ifc_len; 3640 3641 /* 3642 * Loop over the interfaces, and write an info block for each. 3643 */ 3644 3645 total = 0; 3646 for_each_netdev(net, dev) { 3647 for (i = 0; i < NPROTO; i++) { 3648 if (gifconf_list[i]) { 3649 int done; 3650 if (!pos) 3651 done = gifconf_list[i](dev, NULL, 0); 3652 else 3653 done = gifconf_list[i](dev, pos + total, 3654 len - total); 3655 if (done < 0) 3656 return -EFAULT; 3657 total += done; 3658 } 3659 } 3660 } 3661 3662 /* 3663 * All done. Write the updated control block back to the caller. 3664 */ 3665 ifc.ifc_len = total; 3666 3667 /* 3668 * Both BSD and Solaris return 0 here, so we do too. 3669 */ 3670 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3671} 3672 3673#ifdef CONFIG_PROC_FS 3674/* 3675 * This is invoked by the /proc filesystem handler to display a device 3676 * in detail. 3677 */ 3678void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3679 __acquires(RCU) 3680{ 3681 struct net *net = seq_file_net(seq); 3682 loff_t off; 3683 struct net_device *dev; 3684 3685 rcu_read_lock(); 3686 if (!*pos) 3687 return SEQ_START_TOKEN; 3688 3689 off = 1; 3690 for_each_netdev_rcu(net, dev) 3691 if (off++ == *pos) 3692 return dev; 3693 3694 return NULL; 3695} 3696 3697void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3698{ 3699 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3700 first_net_device(seq_file_net(seq)) : 3701 next_net_device((struct net_device *)v); 3702 3703 ++*pos; 3704 return rcu_dereference(dev); 3705} 3706 3707void dev_seq_stop(struct seq_file *seq, void *v) 3708 __releases(RCU) 3709{ 3710 rcu_read_unlock(); 3711} 3712 3713static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3714{ 3715 const struct net_device_stats *stats = dev_get_stats(dev); 3716 3717 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3718 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3719 dev->name, stats->rx_bytes, stats->rx_packets, 3720 stats->rx_errors, 3721 stats->rx_dropped + stats->rx_missed_errors, 3722 stats->rx_fifo_errors, 3723 stats->rx_length_errors + stats->rx_over_errors + 3724 stats->rx_crc_errors + stats->rx_frame_errors, 3725 stats->rx_compressed, stats->multicast, 3726 stats->tx_bytes, stats->tx_packets, 3727 stats->tx_errors, stats->tx_dropped, 3728 stats->tx_fifo_errors, stats->collisions, 3729 stats->tx_carrier_errors + 3730 stats->tx_aborted_errors + 3731 stats->tx_window_errors + 3732 stats->tx_heartbeat_errors, 3733 stats->tx_compressed); 3734} 3735 3736/* 3737 * Called from the PROCfs module. This now uses the new arbitrary sized 3738 * /proc/net interface to create /proc/net/dev 3739 */ 3740static int dev_seq_show(struct seq_file *seq, void *v) 3741{ 3742 if (v == SEQ_START_TOKEN) 3743 seq_puts(seq, "Inter-| Receive " 3744 " | Transmit\n" 3745 " face |bytes packets errs drop fifo frame " 3746 "compressed multicast|bytes packets errs " 3747 "drop fifo colls carrier compressed\n"); 3748 else 3749 dev_seq_printf_stats(seq, v); 3750 return 0; 3751} 3752 3753static struct softnet_data *softnet_get_online(loff_t *pos) 3754{ 3755 struct softnet_data *sd = NULL; 3756 3757 while (*pos < nr_cpu_ids) 3758 if (cpu_online(*pos)) { 3759 sd = &per_cpu(softnet_data, *pos); 3760 break; 3761 } else 3762 ++*pos; 3763 return sd; 3764} 3765 3766static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3767{ 3768 return softnet_get_online(pos); 3769} 3770 3771static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3772{ 3773 ++*pos; 3774 return softnet_get_online(pos); 3775} 3776 3777static void softnet_seq_stop(struct seq_file *seq, void *v) 3778{ 3779} 3780 3781static int softnet_seq_show(struct seq_file *seq, void *v) 3782{ 3783 struct softnet_data *sd = v; 3784 3785 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3786 sd->processed, sd->dropped, sd->time_squeeze, 0, 3787 0, 0, 0, 0, /* was fastroute */ 3788 sd->cpu_collision, sd->received_rps); 3789 return 0; 3790} 3791 3792static const struct seq_operations dev_seq_ops = { 3793 .start = dev_seq_start, 3794 .next = dev_seq_next, 3795 .stop = dev_seq_stop, 3796 .show = dev_seq_show, 3797}; 3798 3799static int dev_seq_open(struct inode *inode, struct file *file) 3800{ 3801 return seq_open_net(inode, file, &dev_seq_ops, 3802 sizeof(struct seq_net_private)); 3803} 3804 3805static const struct file_operations dev_seq_fops = { 3806 .owner = THIS_MODULE, 3807 .open = dev_seq_open, 3808 .read = seq_read, 3809 .llseek = seq_lseek, 3810 .release = seq_release_net, 3811}; 3812 3813static const struct seq_operations softnet_seq_ops = { 3814 .start = softnet_seq_start, 3815 .next = softnet_seq_next, 3816 .stop = softnet_seq_stop, 3817 .show = softnet_seq_show, 3818}; 3819 3820static int softnet_seq_open(struct inode *inode, struct file *file) 3821{ 3822 return seq_open(file, &softnet_seq_ops); 3823} 3824 3825static const struct file_operations softnet_seq_fops = { 3826 .owner = THIS_MODULE, 3827 .open = softnet_seq_open, 3828 .read = seq_read, 3829 .llseek = seq_lseek, 3830 .release = seq_release, 3831}; 3832 3833static void *ptype_get_idx(loff_t pos) 3834{ 3835 struct packet_type *pt = NULL; 3836 loff_t i = 0; 3837 int t; 3838 3839 list_for_each_entry_rcu(pt, &ptype_all, list) { 3840 if (i == pos) 3841 return pt; 3842 ++i; 3843 } 3844 3845 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3846 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3847 if (i == pos) 3848 return pt; 3849 ++i; 3850 } 3851 } 3852 return NULL; 3853} 3854 3855static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3856 __acquires(RCU) 3857{ 3858 rcu_read_lock(); 3859 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3860} 3861 3862static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3863{ 3864 struct packet_type *pt; 3865 struct list_head *nxt; 3866 int hash; 3867 3868 ++*pos; 3869 if (v == SEQ_START_TOKEN) 3870 return ptype_get_idx(0); 3871 3872 pt = v; 3873 nxt = pt->list.next; 3874 if (pt->type == htons(ETH_P_ALL)) { 3875 if (nxt != &ptype_all) 3876 goto found; 3877 hash = 0; 3878 nxt = ptype_base[0].next; 3879 } else 3880 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3881 3882 while (nxt == &ptype_base[hash]) { 3883 if (++hash >= PTYPE_HASH_SIZE) 3884 return NULL; 3885 nxt = ptype_base[hash].next; 3886 } 3887found: 3888 return list_entry(nxt, struct packet_type, list); 3889} 3890 3891static void ptype_seq_stop(struct seq_file *seq, void *v) 3892 __releases(RCU) 3893{ 3894 rcu_read_unlock(); 3895} 3896 3897static int ptype_seq_show(struct seq_file *seq, void *v) 3898{ 3899 struct packet_type *pt = v; 3900 3901 if (v == SEQ_START_TOKEN) 3902 seq_puts(seq, "Type Device Function\n"); 3903 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3904 if (pt->type == htons(ETH_P_ALL)) 3905 seq_puts(seq, "ALL "); 3906 else 3907 seq_printf(seq, "%04x", ntohs(pt->type)); 3908 3909 seq_printf(seq, " %-8s %pF\n", 3910 pt->dev ? pt->dev->name : "", pt->func); 3911 } 3912 3913 return 0; 3914} 3915 3916static const struct seq_operations ptype_seq_ops = { 3917 .start = ptype_seq_start, 3918 .next = ptype_seq_next, 3919 .stop = ptype_seq_stop, 3920 .show = ptype_seq_show, 3921}; 3922 3923static int ptype_seq_open(struct inode *inode, struct file *file) 3924{ 3925 return seq_open_net(inode, file, &ptype_seq_ops, 3926 sizeof(struct seq_net_private)); 3927} 3928 3929static const struct file_operations ptype_seq_fops = { 3930 .owner = THIS_MODULE, 3931 .open = ptype_seq_open, 3932 .read = seq_read, 3933 .llseek = seq_lseek, 3934 .release = seq_release_net, 3935}; 3936 3937 3938static int __net_init dev_proc_net_init(struct net *net) 3939{ 3940 int rc = -ENOMEM; 3941 3942 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3943 goto out; 3944 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3945 goto out_dev; 3946 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3947 goto out_softnet; 3948 3949 if (wext_proc_init(net)) 3950 goto out_ptype; 3951 rc = 0; 3952out: 3953 return rc; 3954out_ptype: 3955 proc_net_remove(net, "ptype"); 3956out_softnet: 3957 proc_net_remove(net, "softnet_stat"); 3958out_dev: 3959 proc_net_remove(net, "dev"); 3960 goto out; 3961} 3962 3963static void __net_exit dev_proc_net_exit(struct net *net) 3964{ 3965 wext_proc_exit(net); 3966 3967 proc_net_remove(net, "ptype"); 3968 proc_net_remove(net, "softnet_stat"); 3969 proc_net_remove(net, "dev"); 3970} 3971 3972static struct pernet_operations __net_initdata dev_proc_ops = { 3973 .init = dev_proc_net_init, 3974 .exit = dev_proc_net_exit, 3975}; 3976 3977static int __init dev_proc_init(void) 3978{ 3979 return register_pernet_subsys(&dev_proc_ops); 3980} 3981#else 3982#define dev_proc_init() 0 3983#endif /* CONFIG_PROC_FS */ 3984 3985 3986/** 3987 * netdev_set_master - set up master/slave pair 3988 * @slave: slave device 3989 * @master: new master device 3990 * 3991 * Changes the master device of the slave. Pass %NULL to break the 3992 * bonding. The caller must hold the RTNL semaphore. On a failure 3993 * a negative errno code is returned. On success the reference counts 3994 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3995 * function returns zero. 3996 */ 3997int netdev_set_master(struct net_device *slave, struct net_device *master) 3998{ 3999 struct net_device *old = slave->master; 4000 4001 ASSERT_RTNL(); 4002 4003 if (master) { 4004 if (old) 4005 return -EBUSY; 4006 dev_hold(master); 4007 } 4008 4009 slave->master = master; 4010 4011 if (old) { 4012 synchronize_net(); 4013 dev_put(old); 4014 } 4015 if (master) 4016 slave->flags |= IFF_SLAVE; 4017 else 4018 slave->flags &= ~IFF_SLAVE; 4019 4020 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4021 return 0; 4022} 4023EXPORT_SYMBOL(netdev_set_master); 4024 4025static void dev_change_rx_flags(struct net_device *dev, int flags) 4026{ 4027 const struct net_device_ops *ops = dev->netdev_ops; 4028 4029 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4030 ops->ndo_change_rx_flags(dev, flags); 4031} 4032 4033static int __dev_set_promiscuity(struct net_device *dev, int inc) 4034{ 4035 unsigned short old_flags = dev->flags; 4036 uid_t uid; 4037 gid_t gid; 4038 4039 ASSERT_RTNL(); 4040 4041 dev->flags |= IFF_PROMISC; 4042 dev->promiscuity += inc; 4043 if (dev->promiscuity == 0) { 4044 /* 4045 * Avoid overflow. 4046 * If inc causes overflow, untouch promisc and return error. 4047 */ 4048 if (inc < 0) 4049 dev->flags &= ~IFF_PROMISC; 4050 else { 4051 dev->promiscuity -= inc; 4052 printk(KERN_WARNING "%s: promiscuity touches roof, " 4053 "set promiscuity failed, promiscuity feature " 4054 "of device might be broken.\n", dev->name); 4055 return -EOVERFLOW; 4056 } 4057 } 4058 if (dev->flags != old_flags) { 4059 printk(KERN_INFO "device %s %s promiscuous mode\n", 4060 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4061 "left"); 4062 if (audit_enabled) { 4063 current_uid_gid(&uid, &gid); 4064 audit_log(current->audit_context, GFP_ATOMIC, 4065 AUDIT_ANOM_PROMISCUOUS, 4066 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4067 dev->name, (dev->flags & IFF_PROMISC), 4068 (old_flags & IFF_PROMISC), 4069 audit_get_loginuid(current), 4070 uid, gid, 4071 audit_get_sessionid(current)); 4072 } 4073 4074 dev_change_rx_flags(dev, IFF_PROMISC); 4075 } 4076 return 0; 4077} 4078 4079/** 4080 * dev_set_promiscuity - update promiscuity count on a device 4081 * @dev: device 4082 * @inc: modifier 4083 * 4084 * Add or remove promiscuity from a device. While the count in the device 4085 * remains above zero the interface remains promiscuous. Once it hits zero 4086 * the device reverts back to normal filtering operation. A negative inc 4087 * value is used to drop promiscuity on the device. 4088 * Return 0 if successful or a negative errno code on error. 4089 */ 4090int dev_set_promiscuity(struct net_device *dev, int inc) 4091{ 4092 unsigned short old_flags = dev->flags; 4093 int err; 4094 4095 err = __dev_set_promiscuity(dev, inc); 4096 if (err < 0) 4097 return err; 4098 if (dev->flags != old_flags) 4099 dev_set_rx_mode(dev); 4100 return err; 4101} 4102EXPORT_SYMBOL(dev_set_promiscuity); 4103 4104/** 4105 * dev_set_allmulti - update allmulti count on a device 4106 * @dev: device 4107 * @inc: modifier 4108 * 4109 * Add or remove reception of all multicast frames to a device. While the 4110 * count in the device remains above zero the interface remains listening 4111 * to all interfaces. Once it hits zero the device reverts back to normal 4112 * filtering operation. A negative @inc value is used to drop the counter 4113 * when releasing a resource needing all multicasts. 4114 * Return 0 if successful or a negative errno code on error. 4115 */ 4116 4117int dev_set_allmulti(struct net_device *dev, int inc) 4118{ 4119 unsigned short old_flags = dev->flags; 4120 4121 ASSERT_RTNL(); 4122 4123 dev->flags |= IFF_ALLMULTI; 4124 dev->allmulti += inc; 4125 if (dev->allmulti == 0) { 4126 /* 4127 * Avoid overflow. 4128 * If inc causes overflow, untouch allmulti and return error. 4129 */ 4130 if (inc < 0) 4131 dev->flags &= ~IFF_ALLMULTI; 4132 else { 4133 dev->allmulti -= inc; 4134 printk(KERN_WARNING "%s: allmulti touches roof, " 4135 "set allmulti failed, allmulti feature of " 4136 "device might be broken.\n", dev->name); 4137 return -EOVERFLOW; 4138 } 4139 } 4140 if (dev->flags ^ old_flags) { 4141 dev_change_rx_flags(dev, IFF_ALLMULTI); 4142 dev_set_rx_mode(dev); 4143 } 4144 return 0; 4145} 4146EXPORT_SYMBOL(dev_set_allmulti); 4147 4148/* 4149 * Upload unicast and multicast address lists to device and 4150 * configure RX filtering. When the device doesn't support unicast 4151 * filtering it is put in promiscuous mode while unicast addresses 4152 * are present. 4153 */ 4154void __dev_set_rx_mode(struct net_device *dev) 4155{ 4156 const struct net_device_ops *ops = dev->netdev_ops; 4157 4158 /* dev_open will call this function so the list will stay sane. */ 4159 if (!(dev->flags&IFF_UP)) 4160 return; 4161 4162 if (!netif_device_present(dev)) 4163 return; 4164 4165 if (ops->ndo_set_rx_mode) 4166 ops->ndo_set_rx_mode(dev); 4167 else { 4168 /* Unicast addresses changes may only happen under the rtnl, 4169 * therefore calling __dev_set_promiscuity here is safe. 4170 */ 4171 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4172 __dev_set_promiscuity(dev, 1); 4173 dev->uc_promisc = 1; 4174 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4175 __dev_set_promiscuity(dev, -1); 4176 dev->uc_promisc = 0; 4177 } 4178 4179 if (ops->ndo_set_multicast_list) 4180 ops->ndo_set_multicast_list(dev); 4181 } 4182} 4183 4184void dev_set_rx_mode(struct net_device *dev) 4185{ 4186 netif_addr_lock_bh(dev); 4187 __dev_set_rx_mode(dev); 4188 netif_addr_unlock_bh(dev); 4189} 4190 4191/** 4192 * dev_get_flags - get flags reported to userspace 4193 * @dev: device 4194 * 4195 * Get the combination of flag bits exported through APIs to userspace. 4196 */ 4197unsigned dev_get_flags(const struct net_device *dev) 4198{ 4199 unsigned flags; 4200 4201 flags = (dev->flags & ~(IFF_PROMISC | 4202 IFF_ALLMULTI | 4203 IFF_RUNNING | 4204 IFF_LOWER_UP | 4205 IFF_DORMANT)) | 4206 (dev->gflags & (IFF_PROMISC | 4207 IFF_ALLMULTI)); 4208 4209 if (netif_running(dev)) { 4210 if (netif_oper_up(dev)) 4211 flags |= IFF_RUNNING; 4212 if (netif_carrier_ok(dev)) 4213 flags |= IFF_LOWER_UP; 4214 if (netif_dormant(dev)) 4215 flags |= IFF_DORMANT; 4216 } 4217 4218 return flags; 4219} 4220EXPORT_SYMBOL(dev_get_flags); 4221 4222int __dev_change_flags(struct net_device *dev, unsigned int flags) 4223{ 4224 int old_flags = dev->flags; 4225 int ret; 4226 4227 ASSERT_RTNL(); 4228 4229 /* 4230 * Set the flags on our device. 4231 */ 4232 4233 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4234 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4235 IFF_AUTOMEDIA)) | 4236 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4237 IFF_ALLMULTI)); 4238 4239 /* 4240 * Load in the correct multicast list now the flags have changed. 4241 */ 4242 4243 if ((old_flags ^ flags) & IFF_MULTICAST) 4244 dev_change_rx_flags(dev, IFF_MULTICAST); 4245 4246 dev_set_rx_mode(dev); 4247 4248 /* 4249 * Have we downed the interface. We handle IFF_UP ourselves 4250 * according to user attempts to set it, rather than blindly 4251 * setting it. 4252 */ 4253 4254 ret = 0; 4255 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4256 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4257 4258 if (!ret) 4259 dev_set_rx_mode(dev); 4260 } 4261 4262 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4263 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4264 4265 dev->gflags ^= IFF_PROMISC; 4266 dev_set_promiscuity(dev, inc); 4267 } 4268 4269 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4270 is important. Some (broken) drivers set IFF_PROMISC, when 4271 IFF_ALLMULTI is requested not asking us and not reporting. 4272 */ 4273 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4274 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4275 4276 dev->gflags ^= IFF_ALLMULTI; 4277 dev_set_allmulti(dev, inc); 4278 } 4279 4280 return ret; 4281} 4282 4283void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4284{ 4285 unsigned int changes = dev->flags ^ old_flags; 4286 4287 if (changes & IFF_UP) { 4288 if (dev->flags & IFF_UP) 4289 call_netdevice_notifiers(NETDEV_UP, dev); 4290 else 4291 call_netdevice_notifiers(NETDEV_DOWN, dev); 4292 } 4293 4294 if (dev->flags & IFF_UP && 4295 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4296 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4297} 4298 4299/** 4300 * dev_change_flags - change device settings 4301 * @dev: device 4302 * @flags: device state flags 4303 * 4304 * Change settings on device based state flags. The flags are 4305 * in the userspace exported format. 4306 */ 4307int dev_change_flags(struct net_device *dev, unsigned flags) 4308{ 4309 int ret, changes; 4310 int old_flags = dev->flags; 4311 4312 ret = __dev_change_flags(dev, flags); 4313 if (ret < 0) 4314 return ret; 4315 4316 changes = old_flags ^ dev->flags; 4317 if (changes) 4318 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4319 4320 __dev_notify_flags(dev, old_flags); 4321 return ret; 4322} 4323EXPORT_SYMBOL(dev_change_flags); 4324 4325/** 4326 * dev_set_mtu - Change maximum transfer unit 4327 * @dev: device 4328 * @new_mtu: new transfer unit 4329 * 4330 * Change the maximum transfer size of the network device. 4331 */ 4332int dev_set_mtu(struct net_device *dev, int new_mtu) 4333{ 4334 const struct net_device_ops *ops = dev->netdev_ops; 4335 int err; 4336 4337 if (new_mtu == dev->mtu) 4338 return 0; 4339 4340 /* MTU must be positive. */ 4341 if (new_mtu < 0) 4342 return -EINVAL; 4343 4344 if (!netif_device_present(dev)) 4345 return -ENODEV; 4346 4347 err = 0; 4348 if (ops->ndo_change_mtu) 4349 err = ops->ndo_change_mtu(dev, new_mtu); 4350 else 4351 dev->mtu = new_mtu; 4352 4353 if (!err && dev->flags & IFF_UP) 4354 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4355 return err; 4356} 4357EXPORT_SYMBOL(dev_set_mtu); 4358 4359/** 4360 * dev_set_mac_address - Change Media Access Control Address 4361 * @dev: device 4362 * @sa: new address 4363 * 4364 * Change the hardware (MAC) address of the device 4365 */ 4366int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4367{ 4368 const struct net_device_ops *ops = dev->netdev_ops; 4369 int err; 4370 4371 if (!ops->ndo_set_mac_address) 4372 return -EOPNOTSUPP; 4373 if (sa->sa_family != dev->type) 4374 return -EINVAL; 4375 if (!netif_device_present(dev)) 4376 return -ENODEV; 4377 err = ops->ndo_set_mac_address(dev, sa); 4378 if (!err) 4379 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4380 return err; 4381} 4382EXPORT_SYMBOL(dev_set_mac_address); 4383 4384/* 4385 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4386 */ 4387static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4388{ 4389 int err; 4390 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4391 4392 if (!dev) 4393 return -ENODEV; 4394 4395 switch (cmd) { 4396 case SIOCGIFFLAGS: /* Get interface flags */ 4397 ifr->ifr_flags = (short) dev_get_flags(dev); 4398 return 0; 4399 4400 case SIOCGIFMETRIC: /* Get the metric on the interface 4401 (currently unused) */ 4402 ifr->ifr_metric = 0; 4403 return 0; 4404 4405 case SIOCGIFMTU: /* Get the MTU of a device */ 4406 ifr->ifr_mtu = dev->mtu; 4407 return 0; 4408 4409 case SIOCGIFHWADDR: 4410 if (!dev->addr_len) 4411 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4412 else 4413 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4414 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4415 ifr->ifr_hwaddr.sa_family = dev->type; 4416 return 0; 4417 4418 case SIOCGIFSLAVE: 4419 err = -EINVAL; 4420 break; 4421 4422 case SIOCGIFMAP: 4423 ifr->ifr_map.mem_start = dev->mem_start; 4424 ifr->ifr_map.mem_end = dev->mem_end; 4425 ifr->ifr_map.base_addr = dev->base_addr; 4426 ifr->ifr_map.irq = dev->irq; 4427 ifr->ifr_map.dma = dev->dma; 4428 ifr->ifr_map.port = dev->if_port; 4429 return 0; 4430 4431 case SIOCGIFINDEX: 4432 ifr->ifr_ifindex = dev->ifindex; 4433 return 0; 4434 4435 case SIOCGIFTXQLEN: 4436 ifr->ifr_qlen = dev->tx_queue_len; 4437 return 0; 4438 4439 default: 4440 /* dev_ioctl() should ensure this case 4441 * is never reached 4442 */ 4443 WARN_ON(1); 4444 err = -EINVAL; 4445 break; 4446 4447 } 4448 return err; 4449} 4450 4451/* 4452 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4453 */ 4454static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4455{ 4456 int err; 4457 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4458 const struct net_device_ops *ops; 4459 4460 if (!dev) 4461 return -ENODEV; 4462 4463 ops = dev->netdev_ops; 4464 4465 switch (cmd) { 4466 case SIOCSIFFLAGS: /* Set interface flags */ 4467 return dev_change_flags(dev, ifr->ifr_flags); 4468 4469 case SIOCSIFMETRIC: /* Set the metric on the interface 4470 (currently unused) */ 4471 return -EOPNOTSUPP; 4472 4473 case SIOCSIFMTU: /* Set the MTU of a device */ 4474 return dev_set_mtu(dev, ifr->ifr_mtu); 4475 4476 case SIOCSIFHWADDR: 4477 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4478 4479 case SIOCSIFHWBROADCAST: 4480 if (ifr->ifr_hwaddr.sa_family != dev->type) 4481 return -EINVAL; 4482 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4483 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4484 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4485 return 0; 4486 4487 case SIOCSIFMAP: 4488 if (ops->ndo_set_config) { 4489 if (!netif_device_present(dev)) 4490 return -ENODEV; 4491 return ops->ndo_set_config(dev, &ifr->ifr_map); 4492 } 4493 return -EOPNOTSUPP; 4494 4495 case SIOCADDMULTI: 4496 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4497 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4498 return -EINVAL; 4499 if (!netif_device_present(dev)) 4500 return -ENODEV; 4501 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4502 4503 case SIOCDELMULTI: 4504 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4505 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4506 return -EINVAL; 4507 if (!netif_device_present(dev)) 4508 return -ENODEV; 4509 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4510 4511 case SIOCSIFTXQLEN: 4512 if (ifr->ifr_qlen < 0) 4513 return -EINVAL; 4514 dev->tx_queue_len = ifr->ifr_qlen; 4515 return 0; 4516 4517 case SIOCSIFNAME: 4518 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4519 return dev_change_name(dev, ifr->ifr_newname); 4520 4521 /* 4522 * Unknown or private ioctl 4523 */ 4524 default: 4525 if ((cmd >= SIOCDEVPRIVATE && 4526 cmd <= SIOCDEVPRIVATE + 15) || 4527 cmd == SIOCBONDENSLAVE || 4528 cmd == SIOCBONDRELEASE || 4529 cmd == SIOCBONDSETHWADDR || 4530 cmd == SIOCBONDSLAVEINFOQUERY || 4531 cmd == SIOCBONDINFOQUERY || 4532 cmd == SIOCBONDCHANGEACTIVE || 4533 cmd == SIOCGMIIPHY || 4534 cmd == SIOCGMIIREG || 4535 cmd == SIOCSMIIREG || 4536 cmd == SIOCBRADDIF || 4537 cmd == SIOCBRDELIF || 4538 cmd == SIOCSHWTSTAMP || 4539 cmd == SIOCWANDEV) { 4540 err = -EOPNOTSUPP; 4541 if (ops->ndo_do_ioctl) { 4542 if (netif_device_present(dev)) 4543 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4544 else 4545 err = -ENODEV; 4546 } 4547 } else 4548 err = -EINVAL; 4549 4550 } 4551 return err; 4552} 4553 4554/* 4555 * This function handles all "interface"-type I/O control requests. The actual 4556 * 'doing' part of this is dev_ifsioc above. 4557 */ 4558 4559/** 4560 * dev_ioctl - network device ioctl 4561 * @net: the applicable net namespace 4562 * @cmd: command to issue 4563 * @arg: pointer to a struct ifreq in user space 4564 * 4565 * Issue ioctl functions to devices. This is normally called by the 4566 * user space syscall interfaces but can sometimes be useful for 4567 * other purposes. The return value is the return from the syscall if 4568 * positive or a negative errno code on error. 4569 */ 4570 4571int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4572{ 4573 struct ifreq ifr; 4574 int ret; 4575 char *colon; 4576 4577 /* One special case: SIOCGIFCONF takes ifconf argument 4578 and requires shared lock, because it sleeps writing 4579 to user space. 4580 */ 4581 4582 if (cmd == SIOCGIFCONF) { 4583 rtnl_lock(); 4584 ret = dev_ifconf(net, (char __user *) arg); 4585 rtnl_unlock(); 4586 return ret; 4587 } 4588 if (cmd == SIOCGIFNAME) 4589 return dev_ifname(net, (struct ifreq __user *)arg); 4590 4591 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4592 return -EFAULT; 4593 4594 ifr.ifr_name[IFNAMSIZ-1] = 0; 4595 4596 colon = strchr(ifr.ifr_name, ':'); 4597 if (colon) 4598 *colon = 0; 4599 4600 /* 4601 * See which interface the caller is talking about. 4602 */ 4603 4604 switch (cmd) { 4605 /* 4606 * These ioctl calls: 4607 * - can be done by all. 4608 * - atomic and do not require locking. 4609 * - return a value 4610 */ 4611 case SIOCGIFFLAGS: 4612 case SIOCGIFMETRIC: 4613 case SIOCGIFMTU: 4614 case SIOCGIFHWADDR: 4615 case SIOCGIFSLAVE: 4616 case SIOCGIFMAP: 4617 case SIOCGIFINDEX: 4618 case SIOCGIFTXQLEN: 4619 dev_load(net, ifr.ifr_name); 4620 rcu_read_lock(); 4621 ret = dev_ifsioc_locked(net, &ifr, cmd); 4622 rcu_read_unlock(); 4623 if (!ret) { 4624 if (colon) 4625 *colon = ':'; 4626 if (copy_to_user(arg, &ifr, 4627 sizeof(struct ifreq))) 4628 ret = -EFAULT; 4629 } 4630 return ret; 4631 4632 case SIOCETHTOOL: 4633 dev_load(net, ifr.ifr_name); 4634 rtnl_lock(); 4635 ret = dev_ethtool(net, &ifr); 4636 rtnl_unlock(); 4637 if (!ret) { 4638 if (colon) 4639 *colon = ':'; 4640 if (copy_to_user(arg, &ifr, 4641 sizeof(struct ifreq))) 4642 ret = -EFAULT; 4643 } 4644 return ret; 4645 4646 /* 4647 * These ioctl calls: 4648 * - require superuser power. 4649 * - require strict serialization. 4650 * - return a value 4651 */ 4652 case SIOCGMIIPHY: 4653 case SIOCGMIIREG: 4654 case SIOCSIFNAME: 4655 if (!capable(CAP_NET_ADMIN)) 4656 return -EPERM; 4657 dev_load(net, ifr.ifr_name); 4658 rtnl_lock(); 4659 ret = dev_ifsioc(net, &ifr, cmd); 4660 rtnl_unlock(); 4661 if (!ret) { 4662 if (colon) 4663 *colon = ':'; 4664 if (copy_to_user(arg, &ifr, 4665 sizeof(struct ifreq))) 4666 ret = -EFAULT; 4667 } 4668 return ret; 4669 4670 /* 4671 * These ioctl calls: 4672 * - require superuser power. 4673 * - require strict serialization. 4674 * - do not return a value 4675 */ 4676 case SIOCSIFFLAGS: 4677 case SIOCSIFMETRIC: 4678 case SIOCSIFMTU: 4679 case SIOCSIFMAP: 4680 case SIOCSIFHWADDR: 4681 case SIOCSIFSLAVE: 4682 case SIOCADDMULTI: 4683 case SIOCDELMULTI: 4684 case SIOCSIFHWBROADCAST: 4685 case SIOCSIFTXQLEN: 4686 case SIOCSMIIREG: 4687 case SIOCBONDENSLAVE: 4688 case SIOCBONDRELEASE: 4689 case SIOCBONDSETHWADDR: 4690 case SIOCBONDCHANGEACTIVE: 4691 case SIOCBRADDIF: 4692 case SIOCBRDELIF: 4693 case SIOCSHWTSTAMP: 4694 if (!capable(CAP_NET_ADMIN)) 4695 return -EPERM; 4696 /* fall through */ 4697 case SIOCBONDSLAVEINFOQUERY: 4698 case SIOCBONDINFOQUERY: 4699 dev_load(net, ifr.ifr_name); 4700 rtnl_lock(); 4701 ret = dev_ifsioc(net, &ifr, cmd); 4702 rtnl_unlock(); 4703 return ret; 4704 4705 case SIOCGIFMEM: 4706 /* Get the per device memory space. We can add this but 4707 * currently do not support it */ 4708 case SIOCSIFMEM: 4709 /* Set the per device memory buffer space. 4710 * Not applicable in our case */ 4711 case SIOCSIFLINK: 4712 return -EINVAL; 4713 4714 /* 4715 * Unknown or private ioctl. 4716 */ 4717 default: 4718 if (cmd == SIOCWANDEV || 4719 (cmd >= SIOCDEVPRIVATE && 4720 cmd <= SIOCDEVPRIVATE + 15)) { 4721 dev_load(net, ifr.ifr_name); 4722 rtnl_lock(); 4723 ret = dev_ifsioc(net, &ifr, cmd); 4724 rtnl_unlock(); 4725 if (!ret && copy_to_user(arg, &ifr, 4726 sizeof(struct ifreq))) 4727 ret = -EFAULT; 4728 return ret; 4729 } 4730 /* Take care of Wireless Extensions */ 4731 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4732 return wext_handle_ioctl(net, &ifr, cmd, arg); 4733 return -EINVAL; 4734 } 4735} 4736 4737 4738/** 4739 * dev_new_index - allocate an ifindex 4740 * @net: the applicable net namespace 4741 * 4742 * Returns a suitable unique value for a new device interface 4743 * number. The caller must hold the rtnl semaphore or the 4744 * dev_base_lock to be sure it remains unique. 4745 */ 4746static int dev_new_index(struct net *net) 4747{ 4748 static int ifindex; 4749 for (;;) { 4750 if (++ifindex <= 0) 4751 ifindex = 1; 4752 if (!__dev_get_by_index(net, ifindex)) 4753 return ifindex; 4754 } 4755} 4756 4757/* Delayed registration/unregisteration */ 4758static LIST_HEAD(net_todo_list); 4759 4760static void net_set_todo(struct net_device *dev) 4761{ 4762 list_add_tail(&dev->todo_list, &net_todo_list); 4763} 4764 4765static void rollback_registered_many(struct list_head *head) 4766{ 4767 struct net_device *dev, *tmp; 4768 4769 BUG_ON(dev_boot_phase); 4770 ASSERT_RTNL(); 4771 4772 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4773 /* Some devices call without registering 4774 * for initialization unwind. Remove those 4775 * devices and proceed with the remaining. 4776 */ 4777 if (dev->reg_state == NETREG_UNINITIALIZED) { 4778 pr_debug("unregister_netdevice: device %s/%p never " 4779 "was registered\n", dev->name, dev); 4780 4781 WARN_ON(1); 4782 list_del(&dev->unreg_list); 4783 continue; 4784 } 4785 4786 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4787 4788 /* If device is running, close it first. */ 4789 dev_close(dev); 4790 4791 /* And unlink it from device chain. */ 4792 unlist_netdevice(dev); 4793 4794 dev->reg_state = NETREG_UNREGISTERING; 4795 } 4796 4797 synchronize_net(); 4798 4799 list_for_each_entry(dev, head, unreg_list) { 4800 /* Shutdown queueing discipline. */ 4801 dev_shutdown(dev); 4802 4803 4804 /* Notify protocols, that we are about to destroy 4805 this device. They should clean all the things. 4806 */ 4807 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4808 4809 if (!dev->rtnl_link_ops || 4810 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4811 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4812 4813 /* 4814 * Flush the unicast and multicast chains 4815 */ 4816 dev_uc_flush(dev); 4817 dev_mc_flush(dev); 4818 4819 if (dev->netdev_ops->ndo_uninit) 4820 dev->netdev_ops->ndo_uninit(dev); 4821 4822 /* Notifier chain MUST detach us from master device. */ 4823 WARN_ON(dev->master); 4824 4825 /* Remove entries from kobject tree */ 4826 netdev_unregister_kobject(dev); 4827 } 4828 4829 /* Process any work delayed until the end of the batch */ 4830 dev = list_first_entry(head, struct net_device, unreg_list); 4831 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4832 4833 synchronize_net(); 4834 4835 list_for_each_entry(dev, head, unreg_list) 4836 dev_put(dev); 4837} 4838 4839static void rollback_registered(struct net_device *dev) 4840{ 4841 LIST_HEAD(single); 4842 4843 list_add(&dev->unreg_list, &single); 4844 rollback_registered_many(&single); 4845} 4846 4847static void __netdev_init_queue_locks_one(struct net_device *dev, 4848 struct netdev_queue *dev_queue, 4849 void *_unused) 4850{ 4851 spin_lock_init(&dev_queue->_xmit_lock); 4852 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4853 dev_queue->xmit_lock_owner = -1; 4854} 4855 4856static void netdev_init_queue_locks(struct net_device *dev) 4857{ 4858 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4859 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4860} 4861 4862unsigned long netdev_fix_features(unsigned long features, const char *name) 4863{ 4864 /* Fix illegal SG+CSUM combinations. */ 4865 if ((features & NETIF_F_SG) && 4866 !(features & NETIF_F_ALL_CSUM)) { 4867 if (name) 4868 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4869 "checksum feature.\n", name); 4870 features &= ~NETIF_F_SG; 4871 } 4872 4873 /* TSO requires that SG is present as well. */ 4874 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4875 if (name) 4876 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4877 "SG feature.\n", name); 4878 features &= ~NETIF_F_TSO; 4879 } 4880 4881 if (features & NETIF_F_UFO) { 4882 if (!(features & NETIF_F_GEN_CSUM)) { 4883 if (name) 4884 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4885 "since no NETIF_F_HW_CSUM feature.\n", 4886 name); 4887 features &= ~NETIF_F_UFO; 4888 } 4889 4890 if (!(features & NETIF_F_SG)) { 4891 if (name) 4892 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4893 "since no NETIF_F_SG feature.\n", name); 4894 features &= ~NETIF_F_UFO; 4895 } 4896 } 4897 4898 return features; 4899} 4900EXPORT_SYMBOL(netdev_fix_features); 4901 4902/** 4903 * netif_stacked_transfer_operstate - transfer operstate 4904 * @rootdev: the root or lower level device to transfer state from 4905 * @dev: the device to transfer operstate to 4906 * 4907 * Transfer operational state from root to device. This is normally 4908 * called when a stacking relationship exists between the root 4909 * device and the device(a leaf device). 4910 */ 4911void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4912 struct net_device *dev) 4913{ 4914 if (rootdev->operstate == IF_OPER_DORMANT) 4915 netif_dormant_on(dev); 4916 else 4917 netif_dormant_off(dev); 4918 4919 if (netif_carrier_ok(rootdev)) { 4920 if (!netif_carrier_ok(dev)) 4921 netif_carrier_on(dev); 4922 } else { 4923 if (netif_carrier_ok(dev)) 4924 netif_carrier_off(dev); 4925 } 4926} 4927EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4928 4929/** 4930 * register_netdevice - register a network device 4931 * @dev: device to register 4932 * 4933 * Take a completed network device structure and add it to the kernel 4934 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4935 * chain. 0 is returned on success. A negative errno code is returned 4936 * on a failure to set up the device, or if the name is a duplicate. 4937 * 4938 * Callers must hold the rtnl semaphore. You may want 4939 * register_netdev() instead of this. 4940 * 4941 * BUGS: 4942 * The locking appears insufficient to guarantee two parallel registers 4943 * will not get the same name. 4944 */ 4945 4946int register_netdevice(struct net_device *dev) 4947{ 4948 int ret; 4949 struct net *net = dev_net(dev); 4950 4951 BUG_ON(dev_boot_phase); 4952 ASSERT_RTNL(); 4953 4954 might_sleep(); 4955 4956 /* When net_device's are persistent, this will be fatal. */ 4957 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4958 BUG_ON(!net); 4959 4960 spin_lock_init(&dev->addr_list_lock); 4961 netdev_set_addr_lockdep_class(dev); 4962 netdev_init_queue_locks(dev); 4963 4964 dev->iflink = -1; 4965 4966#ifdef CONFIG_RPS 4967 if (!dev->num_rx_queues) { 4968 /* 4969 * Allocate a single RX queue if driver never called 4970 * alloc_netdev_mq 4971 */ 4972 4973 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL); 4974 if (!dev->_rx) { 4975 ret = -ENOMEM; 4976 goto out; 4977 } 4978 4979 dev->_rx->first = dev->_rx; 4980 atomic_set(&dev->_rx->count, 1); 4981 dev->num_rx_queues = 1; 4982 } 4983#endif 4984 /* Init, if this function is available */ 4985 if (dev->netdev_ops->ndo_init) { 4986 ret = dev->netdev_ops->ndo_init(dev); 4987 if (ret) { 4988 if (ret > 0) 4989 ret = -EIO; 4990 goto out; 4991 } 4992 } 4993 4994 ret = dev_get_valid_name(dev, dev->name, 0); 4995 if (ret) 4996 goto err_uninit; 4997 4998 dev->ifindex = dev_new_index(net); 4999 if (dev->iflink == -1) 5000 dev->iflink = dev->ifindex; 5001 5002 /* Fix illegal checksum combinations */ 5003 if ((dev->features & NETIF_F_HW_CSUM) && 5004 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5005 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5006 dev->name); 5007 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5008 } 5009 5010 if ((dev->features & NETIF_F_NO_CSUM) && 5011 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5012 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5013 dev->name); 5014 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5015 } 5016 5017 dev->features = netdev_fix_features(dev->features, dev->name); 5018 5019 /* Enable software GSO if SG is supported. */ 5020 if (dev->features & NETIF_F_SG) 5021 dev->features |= NETIF_F_GSO; 5022 5023 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5024 ret = notifier_to_errno(ret); 5025 if (ret) 5026 goto err_uninit; 5027 5028 ret = netdev_register_kobject(dev); 5029 if (ret) 5030 goto err_uninit; 5031 dev->reg_state = NETREG_REGISTERED; 5032 5033 /* 5034 * Default initial state at registry is that the 5035 * device is present. 5036 */ 5037 5038 set_bit(__LINK_STATE_PRESENT, &dev->state); 5039 5040 dev_init_scheduler(dev); 5041 dev_hold(dev); 5042 list_netdevice(dev); 5043 5044 /* Notify protocols, that a new device appeared. */ 5045 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5046 ret = notifier_to_errno(ret); 5047 if (ret) { 5048 rollback_registered(dev); 5049 dev->reg_state = NETREG_UNREGISTERED; 5050 } 5051 /* 5052 * Prevent userspace races by waiting until the network 5053 * device is fully setup before sending notifications. 5054 */ 5055 if (!dev->rtnl_link_ops || 5056 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5057 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5058 5059out: 5060 return ret; 5061 5062err_uninit: 5063 if (dev->netdev_ops->ndo_uninit) 5064 dev->netdev_ops->ndo_uninit(dev); 5065 goto out; 5066} 5067EXPORT_SYMBOL(register_netdevice); 5068 5069/** 5070 * init_dummy_netdev - init a dummy network device for NAPI 5071 * @dev: device to init 5072 * 5073 * This takes a network device structure and initialize the minimum 5074 * amount of fields so it can be used to schedule NAPI polls without 5075 * registering a full blown interface. This is to be used by drivers 5076 * that need to tie several hardware interfaces to a single NAPI 5077 * poll scheduler due to HW limitations. 5078 */ 5079int init_dummy_netdev(struct net_device *dev) 5080{ 5081 /* Clear everything. Note we don't initialize spinlocks 5082 * are they aren't supposed to be taken by any of the 5083 * NAPI code and this dummy netdev is supposed to be 5084 * only ever used for NAPI polls 5085 */ 5086 memset(dev, 0, sizeof(struct net_device)); 5087 5088 /* make sure we BUG if trying to hit standard 5089 * register/unregister code path 5090 */ 5091 dev->reg_state = NETREG_DUMMY; 5092 5093 /* initialize the ref count */ 5094 atomic_set(&dev->refcnt, 1); 5095 5096 /* NAPI wants this */ 5097 INIT_LIST_HEAD(&dev->napi_list); 5098 5099 /* a dummy interface is started by default */ 5100 set_bit(__LINK_STATE_PRESENT, &dev->state); 5101 set_bit(__LINK_STATE_START, &dev->state); 5102 5103 return 0; 5104} 5105EXPORT_SYMBOL_GPL(init_dummy_netdev); 5106 5107 5108/** 5109 * register_netdev - register a network device 5110 * @dev: device to register 5111 * 5112 * Take a completed network device structure and add it to the kernel 5113 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5114 * chain. 0 is returned on success. A negative errno code is returned 5115 * on a failure to set up the device, or if the name is a duplicate. 5116 * 5117 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5118 * and expands the device name if you passed a format string to 5119 * alloc_netdev. 5120 */ 5121int register_netdev(struct net_device *dev) 5122{ 5123 int err; 5124 5125 rtnl_lock(); 5126 5127 /* 5128 * If the name is a format string the caller wants us to do a 5129 * name allocation. 5130 */ 5131 if (strchr(dev->name, '%')) { 5132 err = dev_alloc_name(dev, dev->name); 5133 if (err < 0) 5134 goto out; 5135 } 5136 5137 err = register_netdevice(dev); 5138out: 5139 rtnl_unlock(); 5140 return err; 5141} 5142EXPORT_SYMBOL(register_netdev); 5143 5144/* 5145 * netdev_wait_allrefs - wait until all references are gone. 5146 * 5147 * This is called when unregistering network devices. 5148 * 5149 * Any protocol or device that holds a reference should register 5150 * for netdevice notification, and cleanup and put back the 5151 * reference if they receive an UNREGISTER event. 5152 * We can get stuck here if buggy protocols don't correctly 5153 * call dev_put. 5154 */ 5155static void netdev_wait_allrefs(struct net_device *dev) 5156{ 5157 unsigned long rebroadcast_time, warning_time; 5158 5159 linkwatch_forget_dev(dev); 5160 5161 rebroadcast_time = warning_time = jiffies; 5162 while (atomic_read(&dev->refcnt) != 0) { 5163 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5164 rtnl_lock(); 5165 5166 /* Rebroadcast unregister notification */ 5167 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5168 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5169 * should have already handle it the first time */ 5170 5171 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5172 &dev->state)) { 5173 /* We must not have linkwatch events 5174 * pending on unregister. If this 5175 * happens, we simply run the queue 5176 * unscheduled, resulting in a noop 5177 * for this device. 5178 */ 5179 linkwatch_run_queue(); 5180 } 5181 5182 __rtnl_unlock(); 5183 5184 rebroadcast_time = jiffies; 5185 } 5186 5187 msleep(250); 5188 5189 if (time_after(jiffies, warning_time + 10 * HZ)) { 5190 printk(KERN_EMERG "unregister_netdevice: " 5191 "waiting for %s to become free. Usage " 5192 "count = %d\n", 5193 dev->name, atomic_read(&dev->refcnt)); 5194 warning_time = jiffies; 5195 } 5196 } 5197} 5198 5199/* The sequence is: 5200 * 5201 * rtnl_lock(); 5202 * ... 5203 * register_netdevice(x1); 5204 * register_netdevice(x2); 5205 * ... 5206 * unregister_netdevice(y1); 5207 * unregister_netdevice(y2); 5208 * ... 5209 * rtnl_unlock(); 5210 * free_netdev(y1); 5211 * free_netdev(y2); 5212 * 5213 * We are invoked by rtnl_unlock(). 5214 * This allows us to deal with problems: 5215 * 1) We can delete sysfs objects which invoke hotplug 5216 * without deadlocking with linkwatch via keventd. 5217 * 2) Since we run with the RTNL semaphore not held, we can sleep 5218 * safely in order to wait for the netdev refcnt to drop to zero. 5219 * 5220 * We must not return until all unregister events added during 5221 * the interval the lock was held have been completed. 5222 */ 5223void netdev_run_todo(void) 5224{ 5225 struct list_head list; 5226 5227 /* Snapshot list, allow later requests */ 5228 list_replace_init(&net_todo_list, &list); 5229 5230 __rtnl_unlock(); 5231 5232 while (!list_empty(&list)) { 5233 struct net_device *dev 5234 = list_first_entry(&list, struct net_device, todo_list); 5235 list_del(&dev->todo_list); 5236 5237 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5238 printk(KERN_ERR "network todo '%s' but state %d\n", 5239 dev->name, dev->reg_state); 5240 dump_stack(); 5241 continue; 5242 } 5243 5244 dev->reg_state = NETREG_UNREGISTERED; 5245 5246 on_each_cpu(flush_backlog, dev, 1); 5247 5248 netdev_wait_allrefs(dev); 5249 5250 /* paranoia */ 5251 BUG_ON(atomic_read(&dev->refcnt)); 5252 WARN_ON(dev->ip_ptr); 5253 WARN_ON(dev->ip6_ptr); 5254 WARN_ON(dev->dn_ptr); 5255 5256 if (dev->destructor) 5257 dev->destructor(dev); 5258 5259 /* Free network device */ 5260 kobject_put(&dev->dev.kobj); 5261 } 5262} 5263 5264/** 5265 * dev_txq_stats_fold - fold tx_queues stats 5266 * @dev: device to get statistics from 5267 * @stats: struct net_device_stats to hold results 5268 */ 5269void dev_txq_stats_fold(const struct net_device *dev, 5270 struct net_device_stats *stats) 5271{ 5272 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5273 unsigned int i; 5274 struct netdev_queue *txq; 5275 5276 for (i = 0; i < dev->num_tx_queues; i++) { 5277 txq = netdev_get_tx_queue(dev, i); 5278 tx_bytes += txq->tx_bytes; 5279 tx_packets += txq->tx_packets; 5280 tx_dropped += txq->tx_dropped; 5281 } 5282 if (tx_bytes || tx_packets || tx_dropped) { 5283 stats->tx_bytes = tx_bytes; 5284 stats->tx_packets = tx_packets; 5285 stats->tx_dropped = tx_dropped; 5286 } 5287} 5288EXPORT_SYMBOL(dev_txq_stats_fold); 5289 5290/** 5291 * dev_get_stats - get network device statistics 5292 * @dev: device to get statistics from 5293 * 5294 * Get network statistics from device. The device driver may provide 5295 * its own method by setting dev->netdev_ops->get_stats; otherwise 5296 * the internal statistics structure is used. 5297 */ 5298const struct net_device_stats *dev_get_stats(struct net_device *dev) 5299{ 5300 const struct net_device_ops *ops = dev->netdev_ops; 5301 5302 if (ops->ndo_get_stats) 5303 return ops->ndo_get_stats(dev); 5304 5305 dev_txq_stats_fold(dev, &dev->stats); 5306 return &dev->stats; 5307} 5308EXPORT_SYMBOL(dev_get_stats); 5309 5310static void netdev_init_one_queue(struct net_device *dev, 5311 struct netdev_queue *queue, 5312 void *_unused) 5313{ 5314 queue->dev = dev; 5315} 5316 5317static void netdev_init_queues(struct net_device *dev) 5318{ 5319 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5320 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5321 spin_lock_init(&dev->tx_global_lock); 5322} 5323 5324/** 5325 * alloc_netdev_mq - allocate network device 5326 * @sizeof_priv: size of private data to allocate space for 5327 * @name: device name format string 5328 * @setup: callback to initialize device 5329 * @queue_count: the number of subqueues to allocate 5330 * 5331 * Allocates a struct net_device with private data area for driver use 5332 * and performs basic initialization. Also allocates subquue structs 5333 * for each queue on the device at the end of the netdevice. 5334 */ 5335struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5336 void (*setup)(struct net_device *), unsigned int queue_count) 5337{ 5338 struct netdev_queue *tx; 5339 struct net_device *dev; 5340 size_t alloc_size; 5341 struct net_device *p; 5342#ifdef CONFIG_RPS 5343 struct netdev_rx_queue *rx; 5344 int i; 5345#endif 5346 5347 BUG_ON(strlen(name) >= sizeof(dev->name)); 5348 5349 alloc_size = sizeof(struct net_device); 5350 if (sizeof_priv) { 5351 /* ensure 32-byte alignment of private area */ 5352 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5353 alloc_size += sizeof_priv; 5354 } 5355 /* ensure 32-byte alignment of whole construct */ 5356 alloc_size += NETDEV_ALIGN - 1; 5357 5358 p = kzalloc(alloc_size, GFP_KERNEL); 5359 if (!p) { 5360 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5361 return NULL; 5362 } 5363 5364 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5365 if (!tx) { 5366 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5367 "tx qdiscs.\n"); 5368 goto free_p; 5369 } 5370 5371#ifdef CONFIG_RPS 5372 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5373 if (!rx) { 5374 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5375 "rx queues.\n"); 5376 goto free_tx; 5377 } 5378 5379 atomic_set(&rx->count, queue_count); 5380 5381 /* 5382 * Set a pointer to first element in the array which holds the 5383 * reference count. 5384 */ 5385 for (i = 0; i < queue_count; i++) 5386 rx[i].first = rx; 5387#endif 5388 5389 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5390 dev->padded = (char *)dev - (char *)p; 5391 5392 if (dev_addr_init(dev)) 5393 goto free_rx; 5394 5395 dev_mc_init(dev); 5396 dev_uc_init(dev); 5397 5398 dev_net_set(dev, &init_net); 5399 5400 dev->_tx = tx; 5401 dev->num_tx_queues = queue_count; 5402 dev->real_num_tx_queues = queue_count; 5403 5404#ifdef CONFIG_RPS 5405 dev->_rx = rx; 5406 dev->num_rx_queues = queue_count; 5407#endif 5408 5409 dev->gso_max_size = GSO_MAX_SIZE; 5410 5411 netdev_init_queues(dev); 5412 5413 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5414 dev->ethtool_ntuple_list.count = 0; 5415 INIT_LIST_HEAD(&dev->napi_list); 5416 INIT_LIST_HEAD(&dev->unreg_list); 5417 INIT_LIST_HEAD(&dev->link_watch_list); 5418 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5419 setup(dev); 5420 strcpy(dev->name, name); 5421 return dev; 5422 5423free_rx: 5424#ifdef CONFIG_RPS 5425 kfree(rx); 5426free_tx: 5427#endif 5428 kfree(tx); 5429free_p: 5430 kfree(p); 5431 return NULL; 5432} 5433EXPORT_SYMBOL(alloc_netdev_mq); 5434 5435/** 5436 * free_netdev - free network device 5437 * @dev: device 5438 * 5439 * This function does the last stage of destroying an allocated device 5440 * interface. The reference to the device object is released. 5441 * If this is the last reference then it will be freed. 5442 */ 5443void free_netdev(struct net_device *dev) 5444{ 5445 struct napi_struct *p, *n; 5446 5447 release_net(dev_net(dev)); 5448 5449 kfree(dev->_tx); 5450 5451 /* Flush device addresses */ 5452 dev_addr_flush(dev); 5453 5454 /* Clear ethtool n-tuple list */ 5455 ethtool_ntuple_flush(dev); 5456 5457 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5458 netif_napi_del(p); 5459 5460 /* Compatibility with error handling in drivers */ 5461 if (dev->reg_state == NETREG_UNINITIALIZED) { 5462 kfree((char *)dev - dev->padded); 5463 return; 5464 } 5465 5466 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5467 dev->reg_state = NETREG_RELEASED; 5468 5469 /* will free via device release */ 5470 put_device(&dev->dev); 5471} 5472EXPORT_SYMBOL(free_netdev); 5473 5474/** 5475 * synchronize_net - Synchronize with packet receive processing 5476 * 5477 * Wait for packets currently being received to be done. 5478 * Does not block later packets from starting. 5479 */ 5480void synchronize_net(void) 5481{ 5482 might_sleep(); 5483 synchronize_rcu(); 5484} 5485EXPORT_SYMBOL(synchronize_net); 5486 5487/** 5488 * unregister_netdevice_queue - remove device from the kernel 5489 * @dev: device 5490 * @head: list 5491 * 5492 * This function shuts down a device interface and removes it 5493 * from the kernel tables. 5494 * If head not NULL, device is queued to be unregistered later. 5495 * 5496 * Callers must hold the rtnl semaphore. You may want 5497 * unregister_netdev() instead of this. 5498 */ 5499 5500void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5501{ 5502 ASSERT_RTNL(); 5503 5504 if (head) { 5505 list_move_tail(&dev->unreg_list, head); 5506 } else { 5507 rollback_registered(dev); 5508 /* Finish processing unregister after unlock */ 5509 net_set_todo(dev); 5510 } 5511} 5512EXPORT_SYMBOL(unregister_netdevice_queue); 5513 5514/** 5515 * unregister_netdevice_many - unregister many devices 5516 * @head: list of devices 5517 */ 5518void unregister_netdevice_many(struct list_head *head) 5519{ 5520 struct net_device *dev; 5521 5522 if (!list_empty(head)) { 5523 rollback_registered_many(head); 5524 list_for_each_entry(dev, head, unreg_list) 5525 net_set_todo(dev); 5526 } 5527} 5528EXPORT_SYMBOL(unregister_netdevice_many); 5529 5530/** 5531 * unregister_netdev - remove device from the kernel 5532 * @dev: device 5533 * 5534 * This function shuts down a device interface and removes it 5535 * from the kernel tables. 5536 * 5537 * This is just a wrapper for unregister_netdevice that takes 5538 * the rtnl semaphore. In general you want to use this and not 5539 * unregister_netdevice. 5540 */ 5541void unregister_netdev(struct net_device *dev) 5542{ 5543 rtnl_lock(); 5544 unregister_netdevice(dev); 5545 rtnl_unlock(); 5546} 5547EXPORT_SYMBOL(unregister_netdev); 5548 5549/** 5550 * dev_change_net_namespace - move device to different nethost namespace 5551 * @dev: device 5552 * @net: network namespace 5553 * @pat: If not NULL name pattern to try if the current device name 5554 * is already taken in the destination network namespace. 5555 * 5556 * This function shuts down a device interface and moves it 5557 * to a new network namespace. On success 0 is returned, on 5558 * a failure a netagive errno code is returned. 5559 * 5560 * Callers must hold the rtnl semaphore. 5561 */ 5562 5563int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5564{ 5565 int err; 5566 5567 ASSERT_RTNL(); 5568 5569 /* Don't allow namespace local devices to be moved. */ 5570 err = -EINVAL; 5571 if (dev->features & NETIF_F_NETNS_LOCAL) 5572 goto out; 5573 5574 /* Ensure the device has been registrered */ 5575 err = -EINVAL; 5576 if (dev->reg_state != NETREG_REGISTERED) 5577 goto out; 5578 5579 /* Get out if there is nothing todo */ 5580 err = 0; 5581 if (net_eq(dev_net(dev), net)) 5582 goto out; 5583 5584 /* Pick the destination device name, and ensure 5585 * we can use it in the destination network namespace. 5586 */ 5587 err = -EEXIST; 5588 if (__dev_get_by_name(net, dev->name)) { 5589 /* We get here if we can't use the current device name */ 5590 if (!pat) 5591 goto out; 5592 if (dev_get_valid_name(dev, pat, 1)) 5593 goto out; 5594 } 5595 5596 /* 5597 * And now a mini version of register_netdevice unregister_netdevice. 5598 */ 5599 5600 /* If device is running close it first. */ 5601 dev_close(dev); 5602 5603 /* And unlink it from device chain */ 5604 err = -ENODEV; 5605 unlist_netdevice(dev); 5606 5607 synchronize_net(); 5608 5609 /* Shutdown queueing discipline. */ 5610 dev_shutdown(dev); 5611 5612 /* Notify protocols, that we are about to destroy 5613 this device. They should clean all the things. 5614 */ 5615 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5616 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5617 5618 /* 5619 * Flush the unicast and multicast chains 5620 */ 5621 dev_uc_flush(dev); 5622 dev_mc_flush(dev); 5623 5624 /* Actually switch the network namespace */ 5625 dev_net_set(dev, net); 5626 5627 /* If there is an ifindex conflict assign a new one */ 5628 if (__dev_get_by_index(net, dev->ifindex)) { 5629 int iflink = (dev->iflink == dev->ifindex); 5630 dev->ifindex = dev_new_index(net); 5631 if (iflink) 5632 dev->iflink = dev->ifindex; 5633 } 5634 5635 /* Fixup kobjects */ 5636 err = device_rename(&dev->dev, dev->name); 5637 WARN_ON(err); 5638 5639 /* Add the device back in the hashes */ 5640 list_netdevice(dev); 5641 5642 /* Notify protocols, that a new device appeared. */ 5643 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5644 5645 /* 5646 * Prevent userspace races by waiting until the network 5647 * device is fully setup before sending notifications. 5648 */ 5649 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5650 5651 synchronize_net(); 5652 err = 0; 5653out: 5654 return err; 5655} 5656EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5657 5658static int dev_cpu_callback(struct notifier_block *nfb, 5659 unsigned long action, 5660 void *ocpu) 5661{ 5662 struct sk_buff **list_skb; 5663 struct sk_buff *skb; 5664 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5665 struct softnet_data *sd, *oldsd; 5666 5667 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5668 return NOTIFY_OK; 5669 5670 local_irq_disable(); 5671 cpu = smp_processor_id(); 5672 sd = &per_cpu(softnet_data, cpu); 5673 oldsd = &per_cpu(softnet_data, oldcpu); 5674 5675 /* Find end of our completion_queue. */ 5676 list_skb = &sd->completion_queue; 5677 while (*list_skb) 5678 list_skb = &(*list_skb)->next; 5679 /* Append completion queue from offline CPU. */ 5680 *list_skb = oldsd->completion_queue; 5681 oldsd->completion_queue = NULL; 5682 5683 /* Append output queue from offline CPU. */ 5684 if (oldsd->output_queue) { 5685 *sd->output_queue_tailp = oldsd->output_queue; 5686 sd->output_queue_tailp = oldsd->output_queue_tailp; 5687 oldsd->output_queue = NULL; 5688 oldsd->output_queue_tailp = &oldsd->output_queue; 5689 } 5690 5691 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5692 local_irq_enable(); 5693 5694 /* Process offline CPU's input_pkt_queue */ 5695 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5696 netif_rx(skb); 5697 input_queue_head_incr(oldsd); 5698 } 5699 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5700 netif_rx(skb); 5701 input_queue_head_incr(oldsd); 5702 } 5703 5704 return NOTIFY_OK; 5705} 5706 5707 5708/** 5709 * netdev_increment_features - increment feature set by one 5710 * @all: current feature set 5711 * @one: new feature set 5712 * @mask: mask feature set 5713 * 5714 * Computes a new feature set after adding a device with feature set 5715 * @one to the master device with current feature set @all. Will not 5716 * enable anything that is off in @mask. Returns the new feature set. 5717 */ 5718unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5719 unsigned long mask) 5720{ 5721 /* If device needs checksumming, downgrade to it. */ 5722 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5723 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5724 else if (mask & NETIF_F_ALL_CSUM) { 5725 /* If one device supports v4/v6 checksumming, set for all. */ 5726 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5727 !(all & NETIF_F_GEN_CSUM)) { 5728 all &= ~NETIF_F_ALL_CSUM; 5729 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5730 } 5731 5732 /* If one device supports hw checksumming, set for all. */ 5733 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5734 all &= ~NETIF_F_ALL_CSUM; 5735 all |= NETIF_F_HW_CSUM; 5736 } 5737 } 5738 5739 one |= NETIF_F_ALL_CSUM; 5740 5741 one |= all & NETIF_F_ONE_FOR_ALL; 5742 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5743 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5744 5745 return all; 5746} 5747EXPORT_SYMBOL(netdev_increment_features); 5748 5749static struct hlist_head *netdev_create_hash(void) 5750{ 5751 int i; 5752 struct hlist_head *hash; 5753 5754 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5755 if (hash != NULL) 5756 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5757 INIT_HLIST_HEAD(&hash[i]); 5758 5759 return hash; 5760} 5761 5762/* Initialize per network namespace state */ 5763static int __net_init netdev_init(struct net *net) 5764{ 5765 INIT_LIST_HEAD(&net->dev_base_head); 5766 5767 net->dev_name_head = netdev_create_hash(); 5768 if (net->dev_name_head == NULL) 5769 goto err_name; 5770 5771 net->dev_index_head = netdev_create_hash(); 5772 if (net->dev_index_head == NULL) 5773 goto err_idx; 5774 5775 return 0; 5776 5777err_idx: 5778 kfree(net->dev_name_head); 5779err_name: 5780 return -ENOMEM; 5781} 5782 5783/** 5784 * netdev_drivername - network driver for the device 5785 * @dev: network device 5786 * @buffer: buffer for resulting name 5787 * @len: size of buffer 5788 * 5789 * Determine network driver for device. 5790 */ 5791char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5792{ 5793 const struct device_driver *driver; 5794 const struct device *parent; 5795 5796 if (len <= 0 || !buffer) 5797 return buffer; 5798 buffer[0] = 0; 5799 5800 parent = dev->dev.parent; 5801 5802 if (!parent) 5803 return buffer; 5804 5805 driver = parent->driver; 5806 if (driver && driver->name) 5807 strlcpy(buffer, driver->name, len); 5808 return buffer; 5809} 5810 5811static void __net_exit netdev_exit(struct net *net) 5812{ 5813 kfree(net->dev_name_head); 5814 kfree(net->dev_index_head); 5815} 5816 5817static struct pernet_operations __net_initdata netdev_net_ops = { 5818 .init = netdev_init, 5819 .exit = netdev_exit, 5820}; 5821 5822static void __net_exit default_device_exit(struct net *net) 5823{ 5824 struct net_device *dev, *aux; 5825 /* 5826 * Push all migratable network devices back to the 5827 * initial network namespace 5828 */ 5829 rtnl_lock(); 5830 for_each_netdev_safe(net, dev, aux) { 5831 int err; 5832 char fb_name[IFNAMSIZ]; 5833 5834 /* Ignore unmoveable devices (i.e. loopback) */ 5835 if (dev->features & NETIF_F_NETNS_LOCAL) 5836 continue; 5837 5838 /* Leave virtual devices for the generic cleanup */ 5839 if (dev->rtnl_link_ops) 5840 continue; 5841 5842 /* Push remaing network devices to init_net */ 5843 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5844 err = dev_change_net_namespace(dev, &init_net, fb_name); 5845 if (err) { 5846 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5847 __func__, dev->name, err); 5848 BUG(); 5849 } 5850 } 5851 rtnl_unlock(); 5852} 5853 5854static void __net_exit default_device_exit_batch(struct list_head *net_list) 5855{ 5856 /* At exit all network devices most be removed from a network 5857 * namespace. Do this in the reverse order of registeration. 5858 * Do this across as many network namespaces as possible to 5859 * improve batching efficiency. 5860 */ 5861 struct net_device *dev; 5862 struct net *net; 5863 LIST_HEAD(dev_kill_list); 5864 5865 rtnl_lock(); 5866 list_for_each_entry(net, net_list, exit_list) { 5867 for_each_netdev_reverse(net, dev) { 5868 if (dev->rtnl_link_ops) 5869 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5870 else 5871 unregister_netdevice_queue(dev, &dev_kill_list); 5872 } 5873 } 5874 unregister_netdevice_many(&dev_kill_list); 5875 rtnl_unlock(); 5876} 5877 5878static struct pernet_operations __net_initdata default_device_ops = { 5879 .exit = default_device_exit, 5880 .exit_batch = default_device_exit_batch, 5881}; 5882 5883/* 5884 * Initialize the DEV module. At boot time this walks the device list and 5885 * unhooks any devices that fail to initialise (normally hardware not 5886 * present) and leaves us with a valid list of present and active devices. 5887 * 5888 */ 5889 5890/* 5891 * This is called single threaded during boot, so no need 5892 * to take the rtnl semaphore. 5893 */ 5894static int __init net_dev_init(void) 5895{ 5896 int i, rc = -ENOMEM; 5897 5898 BUG_ON(!dev_boot_phase); 5899 5900 if (dev_proc_init()) 5901 goto out; 5902 5903 if (netdev_kobject_init()) 5904 goto out; 5905 5906 INIT_LIST_HEAD(&ptype_all); 5907 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5908 INIT_LIST_HEAD(&ptype_base[i]); 5909 5910 if (register_pernet_subsys(&netdev_net_ops)) 5911 goto out; 5912 5913 /* 5914 * Initialise the packet receive queues. 5915 */ 5916 5917 for_each_possible_cpu(i) { 5918 struct softnet_data *sd = &per_cpu(softnet_data, i); 5919 5920 memset(sd, 0, sizeof(*sd)); 5921 skb_queue_head_init(&sd->input_pkt_queue); 5922 skb_queue_head_init(&sd->process_queue); 5923 sd->completion_queue = NULL; 5924 INIT_LIST_HEAD(&sd->poll_list); 5925 sd->output_queue = NULL; 5926 sd->output_queue_tailp = &sd->output_queue; 5927#ifdef CONFIG_RPS 5928 sd->csd.func = rps_trigger_softirq; 5929 sd->csd.info = sd; 5930 sd->csd.flags = 0; 5931 sd->cpu = i; 5932#endif 5933 5934 sd->backlog.poll = process_backlog; 5935 sd->backlog.weight = weight_p; 5936 sd->backlog.gro_list = NULL; 5937 sd->backlog.gro_count = 0; 5938 } 5939 5940 dev_boot_phase = 0; 5941 5942 /* The loopback device is special if any other network devices 5943 * is present in a network namespace the loopback device must 5944 * be present. Since we now dynamically allocate and free the 5945 * loopback device ensure this invariant is maintained by 5946 * keeping the loopback device as the first device on the 5947 * list of network devices. Ensuring the loopback devices 5948 * is the first device that appears and the last network device 5949 * that disappears. 5950 */ 5951 if (register_pernet_device(&loopback_net_ops)) 5952 goto out; 5953 5954 if (register_pernet_device(&default_device_ops)) 5955 goto out; 5956 5957 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5958 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5959 5960 hotcpu_notifier(dev_cpu_callback, 0); 5961 dst_init(); 5962 dev_mcast_init(); 5963 rc = 0; 5964out: 5965 return rc; 5966} 5967 5968subsys_initcall(net_dev_init); 5969 5970static int __init initialize_hashrnd(void) 5971{ 5972 get_random_bytes(&hashrnd, sizeof(hashrnd)); 5973 return 0; 5974} 5975 5976late_initcall_sync(initialize_hashrnd); 5977