Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <linux/if_bridge.h>
105#include <linux/if_macvlan.h>
106#include <net/dst.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/kmod.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/wext.h>
118#include <net/iw_handler.h>
119#include <asm/current.h>
120#include <linux/audit.h>
121#include <linux/dmaengine.h>
122#include <linux/err.h>
123#include <linux/ctype.h>
124#include <linux/if_arp.h>
125#include <linux/if_vlan.h>
126#include <linux/ip.h>
127#include <net/ip.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <linux/pci.h>
134
135#include "net-sysfs.h"
136
137/* Instead of increasing this, you should create a hash table. */
138#define MAX_GRO_SKBS 8
139
140/* This should be increased if a protocol with a bigger head is added. */
141#define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143/*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171#define PTYPE_HASH_SIZE (16)
172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174static DEFINE_SPINLOCK(ptype_lock);
175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176static struct list_head ptype_all __read_mostly; /* Taps */
177
178/*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197DEFINE_RWLOCK(dev_base_lock);
198EXPORT_SYMBOL(dev_base_lock);
199
200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209}
210
211static inline void rps_lock(struct softnet_data *sd)
212{
213#ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215#endif
216}
217
218static inline void rps_unlock(struct softnet_data *sd)
219{
220#ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222#endif
223}
224
225/* Device list insertion */
226static int list_netdevice(struct net_device *dev)
227{
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239}
240
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254}
255
256/*
257 * Our notifier list
258 */
259
260static RAW_NOTIFIER_HEAD(netdev_chain);
261
262/*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270#ifdef CONFIG_LOCKDEP
271/*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
344#else
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351}
352#endif
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376/**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389void dev_add_pack(struct packet_type *pt)
390{
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401}
402EXPORT_SYMBOL(dev_add_pack);
403
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437out:
438 spin_unlock_bh(&ptype_lock);
439}
440EXPORT_SYMBOL(__dev_remove_pack);
441
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459}
460EXPORT_SYMBOL(dev_remove_pack);
461
462/******************************************************************************
463
464 Device Boot-time Settings Routines
465
466*******************************************************************************/
467
468/* Boot time configuration table */
469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471/**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480static int netdev_boot_setup_add(char *name, struct ifmap *map)
481{
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496}
497
498/**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507int netdev_boot_setup_check(struct net_device *dev)
508{
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523}
524EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527/**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537unsigned long netdev_boot_base(const char *prefix, int unit)
538{
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556}
557
558/*
559 * Saves at boot time configured settings for any netdevice.
560 */
561int __init netdev_boot_setup(char *str)
562{
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583}
584
585__setup("netdev=", netdev_boot_setup);
586
587/*******************************************************************************
588
589 Device Interface Subroutines
590
591*******************************************************************************/
592
593/**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605struct net_device *__dev_get_by_name(struct net *net, const char *name)
606{
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616}
617EXPORT_SYMBOL(__dev_get_by_name);
618
619/**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632{
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642}
643EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645/**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657struct net_device *dev_get_by_name(struct net *net, const char *name)
658{
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667}
668EXPORT_SYMBOL(dev_get_by_name);
669
670/**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683{
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693}
694EXPORT_SYMBOL(__dev_get_by_index);
695
696/**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708{
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718}
719EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722/**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device *dev_get_by_index(struct net *net, int ifindex)
734{
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743}
744EXPORT_SYMBOL(dev_get_by_index);
745
746/**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762{
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_getbyhwaddr);
775
776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777{
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786}
787EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790{
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802}
803EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805/**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819{
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833}
834EXPORT_SYMBOL(dev_get_by_flags);
835
836/**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844int dev_valid_name(const char *name)
845{
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859}
860EXPORT_SYMBOL(dev_valid_name);
861
862/**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878{
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926}
927
928/**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942int dev_alloc_name(struct net_device *dev, const char *name)
943{
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954}
955EXPORT_SYMBOL(dev_alloc_name);
956
957static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958{
959 struct net *net;
960
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
963
964 if (!dev_valid_name(name))
965 return -EINVAL;
966
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
973
974 return 0;
975}
976
977/**
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
981 *
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
984 */
985int dev_change_name(struct net_device *dev, const char *newname)
986{
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
991
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
994
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
998
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1001
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1003
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1007
1008rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1018
1019 synchronize_rcu();
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1024
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1027
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1038 }
1039 }
1040
1041 return err;
1042}
1043
1044/**
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1049 *
1050 * Set ifalias for a device,
1051 */
1052int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053{
1054 ASSERT_RTNL();
1055
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1058
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1070
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1073}
1074
1075
1076/**
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1079 *
1080 * Called to indicate a device has changed features.
1081 */
1082void netdev_features_change(struct net_device *dev)
1083{
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085}
1086EXPORT_SYMBOL(netdev_features_change);
1087
1088/**
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1091 *
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1095 */
1096void netdev_state_change(struct net_device *dev)
1097{
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 }
1102}
1103EXPORT_SYMBOL(netdev_state_change);
1104
1105int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106{
1107 return call_netdevice_notifiers(event, dev);
1108}
1109EXPORT_SYMBOL(netdev_bonding_change);
1110
1111/**
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1115 *
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1119 */
1120
1121void dev_load(struct net *net, const char *name)
1122{
1123 struct net_device *dev;
1124
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1128
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1131}
1132EXPORT_SYMBOL(dev_load);
1133
1134static int __dev_open(struct net_device *dev)
1135{
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1138
1139 ASSERT_RTNL();
1140
1141 /*
1142 * Is it even present?
1143 */
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1146
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Call device private open method
1154 */
1155 set_bit(__LINK_STATE_START, &dev->state);
1156
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1159
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1162
1163 /*
1164 * If it went open OK then:
1165 */
1166
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1170 /*
1171 * Set the flags.
1172 */
1173 dev->flags |= IFF_UP;
1174
1175 /*
1176 * Enable NET_DMA
1177 */
1178 net_dmaengine_get();
1179
1180 /*
1181 * Initialize multicasting status
1182 */
1183 dev_set_rx_mode(dev);
1184
1185 /*
1186 * Wakeup transmit queue engine
1187 */
1188 dev_activate(dev);
1189 }
1190
1191 return ret;
1192}
1193
1194/**
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1197 *
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1202 *
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1205 */
1206int dev_open(struct net_device *dev)
1207{
1208 int ret;
1209
1210 /*
1211 * Is it already up?
1212 */
1213 if (dev->flags & IFF_UP)
1214 return 0;
1215
1216 /*
1217 * Open device
1218 */
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1222
1223 /*
1224 * ... and announce new interface.
1225 */
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1228
1229 return ret;
1230}
1231EXPORT_SYMBOL(dev_open);
1232
1233static int __dev_close(struct net_device *dev)
1234{
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 ASSERT_RTNL();
1238 might_sleep();
1239
1240 /*
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1243 */
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245
1246 clear_bit(__LINK_STATE_START, &dev->state);
1247
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1250 *
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1253 */
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255
1256 dev_deactivate(dev);
1257
1258 /*
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1261 *
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1264 */
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1267
1268 /*
1269 * Device is now down.
1270 */
1271
1272 dev->flags &= ~IFF_UP;
1273
1274 /*
1275 * Shutdown NET_DMA
1276 */
1277 net_dmaengine_put();
1278
1279 return 0;
1280}
1281
1282/**
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1285 *
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1290 */
1291int dev_close(struct net_device *dev)
1292{
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1295
1296 __dev_close(dev);
1297
1298 /*
1299 * Tell people we are down
1300 */
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1303
1304 return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1325 }
1326 }
1327 WARN_ON(dev->features & NETIF_F_LRO);
1328}
1329EXPORT_SYMBOL(dev_disable_lro);
1330
1331
1332static int dev_boot_phase = 1;
1333
1334/*
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1337 */
1338
1339/**
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1342 *
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1347 *
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1351 */
1352
1353int register_netdevice_notifier(struct notifier_block *nb)
1354{
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1359
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1372
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1375
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1377 }
1378 }
1379
1380unlock:
1381 rtnl_unlock();
1382 return err;
1383
1384rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1390
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 }
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 }
1398 }
1399
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1402}
1403EXPORT_SYMBOL(register_netdevice_notifier);
1404
1405/**
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1408 *
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1413 */
1414
1415int unregister_netdevice_notifier(struct notifier_block *nb)
1416{
1417 int err;
1418
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1423}
1424EXPORT_SYMBOL(unregister_netdevice_notifier);
1425
1426/**
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1430 *
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1433 */
1434
1435int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436{
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439}
1440
1441/* When > 0 there are consumers of rx skb time stamps */
1442static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444void net_enable_timestamp(void)
1445{
1446 atomic_inc(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_enable_timestamp);
1449
1450void net_disable_timestamp(void)
1451{
1452 atomic_dec(&netstamp_needed);
1453}
1454EXPORT_SYMBOL(net_disable_timestamp);
1455
1456static inline void net_timestamp_set(struct sk_buff *skb)
1457{
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462}
1463
1464static inline void net_timestamp_check(struct sk_buff *skb)
1465{
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468}
1469
1470/**
1471 * dev_forward_skb - loopback an skb to another netif
1472 *
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1475 *
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1479 *
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1483 *
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1487 */
1488int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489{
1490 skb_orphan(skb);
1491
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1496 }
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1502}
1503EXPORT_SYMBOL_GPL(dev_forward_skb);
1504
1505/*
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1508 */
1509
1510static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511{
1512 struct packet_type *ptype;
1513
1514#ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517#else
1518 net_timestamp_set(skb);
1519#endif
1520
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1525 */
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1532
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1536 */
1537 skb_reset_mac_header(skb2);
1538
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 }
1552 }
1553 rcu_read_unlock();
1554}
1555
1556/*
1557 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1558 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1559 */
1560void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1561{
1562 unsigned int real_num = dev->real_num_tx_queues;
1563
1564 if (unlikely(txq > dev->num_tx_queues))
1565 ;
1566 else if (txq > real_num)
1567 dev->real_num_tx_queues = txq;
1568 else if (txq < real_num) {
1569 dev->real_num_tx_queues = txq;
1570 qdisc_reset_all_tx_gt(dev, txq);
1571 }
1572}
1573EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574
1575static inline void __netif_reschedule(struct Qdisc *q)
1576{
1577 struct softnet_data *sd;
1578 unsigned long flags;
1579
1580 local_irq_save(flags);
1581 sd = &__get_cpu_var(softnet_data);
1582 q->next_sched = NULL;
1583 *sd->output_queue_tailp = q;
1584 sd->output_queue_tailp = &q->next_sched;
1585 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1586 local_irq_restore(flags);
1587}
1588
1589void __netif_schedule(struct Qdisc *q)
1590{
1591 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1592 __netif_reschedule(q);
1593}
1594EXPORT_SYMBOL(__netif_schedule);
1595
1596void dev_kfree_skb_irq(struct sk_buff *skb)
1597{
1598 if (atomic_dec_and_test(&skb->users)) {
1599 struct softnet_data *sd;
1600 unsigned long flags;
1601
1602 local_irq_save(flags);
1603 sd = &__get_cpu_var(softnet_data);
1604 skb->next = sd->completion_queue;
1605 sd->completion_queue = skb;
1606 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1607 local_irq_restore(flags);
1608 }
1609}
1610EXPORT_SYMBOL(dev_kfree_skb_irq);
1611
1612void dev_kfree_skb_any(struct sk_buff *skb)
1613{
1614 if (in_irq() || irqs_disabled())
1615 dev_kfree_skb_irq(skb);
1616 else
1617 dev_kfree_skb(skb);
1618}
1619EXPORT_SYMBOL(dev_kfree_skb_any);
1620
1621
1622/**
1623 * netif_device_detach - mark device as removed
1624 * @dev: network device
1625 *
1626 * Mark device as removed from system and therefore no longer available.
1627 */
1628void netif_device_detach(struct net_device *dev)
1629{
1630 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1631 netif_running(dev)) {
1632 netif_tx_stop_all_queues(dev);
1633 }
1634}
1635EXPORT_SYMBOL(netif_device_detach);
1636
1637/**
1638 * netif_device_attach - mark device as attached
1639 * @dev: network device
1640 *
1641 * Mark device as attached from system and restart if needed.
1642 */
1643void netif_device_attach(struct net_device *dev)
1644{
1645 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1646 netif_running(dev)) {
1647 netif_tx_wake_all_queues(dev);
1648 __netdev_watchdog_up(dev);
1649 }
1650}
1651EXPORT_SYMBOL(netif_device_attach);
1652
1653static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1654{
1655 return ((features & NETIF_F_GEN_CSUM) ||
1656 ((features & NETIF_F_IP_CSUM) &&
1657 protocol == htons(ETH_P_IP)) ||
1658 ((features & NETIF_F_IPV6_CSUM) &&
1659 protocol == htons(ETH_P_IPV6)) ||
1660 ((features & NETIF_F_FCOE_CRC) &&
1661 protocol == htons(ETH_P_FCOE)));
1662}
1663
1664static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1665{
1666 if (can_checksum_protocol(dev->features, skb->protocol))
1667 return true;
1668
1669 if (skb->protocol == htons(ETH_P_8021Q)) {
1670 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1671 if (can_checksum_protocol(dev->features & dev->vlan_features,
1672 veh->h_vlan_encapsulated_proto))
1673 return true;
1674 }
1675
1676 return false;
1677}
1678
1679/**
1680 * skb_dev_set -- assign a new device to a buffer
1681 * @skb: buffer for the new device
1682 * @dev: network device
1683 *
1684 * If an skb is owned by a device already, we have to reset
1685 * all data private to the namespace a device belongs to
1686 * before assigning it a new device.
1687 */
1688#ifdef CONFIG_NET_NS
1689void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1690{
1691 skb_dst_drop(skb);
1692 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1693 secpath_reset(skb);
1694 nf_reset(skb);
1695 skb_init_secmark(skb);
1696 skb->mark = 0;
1697 skb->priority = 0;
1698 skb->nf_trace = 0;
1699 skb->ipvs_property = 0;
1700#ifdef CONFIG_NET_SCHED
1701 skb->tc_index = 0;
1702#endif
1703 }
1704 skb->dev = dev;
1705}
1706EXPORT_SYMBOL(skb_set_dev);
1707#endif /* CONFIG_NET_NS */
1708
1709/*
1710 * Invalidate hardware checksum when packet is to be mangled, and
1711 * complete checksum manually on outgoing path.
1712 */
1713int skb_checksum_help(struct sk_buff *skb)
1714{
1715 __wsum csum;
1716 int ret = 0, offset;
1717
1718 if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 goto out_set_summed;
1720
1721 if (unlikely(skb_shinfo(skb)->gso_size)) {
1722 /* Let GSO fix up the checksum. */
1723 goto out_set_summed;
1724 }
1725
1726 offset = skb->csum_start - skb_headroom(skb);
1727 BUG_ON(offset >= skb_headlen(skb));
1728 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1729
1730 offset += skb->csum_offset;
1731 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1732
1733 if (skb_cloned(skb) &&
1734 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1735 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1736 if (ret)
1737 goto out;
1738 }
1739
1740 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1741out_set_summed:
1742 skb->ip_summed = CHECKSUM_NONE;
1743out:
1744 return ret;
1745}
1746EXPORT_SYMBOL(skb_checksum_help);
1747
1748/**
1749 * skb_gso_segment - Perform segmentation on skb.
1750 * @skb: buffer to segment
1751 * @features: features for the output path (see dev->features)
1752 *
1753 * This function segments the given skb and returns a list of segments.
1754 *
1755 * It may return NULL if the skb requires no segmentation. This is
1756 * only possible when GSO is used for verifying header integrity.
1757 */
1758struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1759{
1760 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1761 struct packet_type *ptype;
1762 __be16 type = skb->protocol;
1763 int err;
1764
1765 skb_reset_mac_header(skb);
1766 skb->mac_len = skb->network_header - skb->mac_header;
1767 __skb_pull(skb, skb->mac_len);
1768
1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 struct net_device *dev = skb->dev;
1771 struct ethtool_drvinfo info = {};
1772
1773 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1774 dev->ethtool_ops->get_drvinfo(dev, &info);
1775
1776 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1777 "ip_summed=%d",
1778 info.driver, dev ? dev->features : 0L,
1779 skb->sk ? skb->sk->sk_route_caps : 0L,
1780 skb->len, skb->data_len, skb->ip_summed);
1781
1782 if (skb_header_cloned(skb) &&
1783 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1784 return ERR_PTR(err);
1785 }
1786
1787 rcu_read_lock();
1788 list_for_each_entry_rcu(ptype,
1789 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1790 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1791 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1792 err = ptype->gso_send_check(skb);
1793 segs = ERR_PTR(err);
1794 if (err || skb_gso_ok(skb, features))
1795 break;
1796 __skb_push(skb, (skb->data -
1797 skb_network_header(skb)));
1798 }
1799 segs = ptype->gso_segment(skb, features);
1800 break;
1801 }
1802 }
1803 rcu_read_unlock();
1804
1805 __skb_push(skb, skb->data - skb_mac_header(skb));
1806
1807 return segs;
1808}
1809EXPORT_SYMBOL(skb_gso_segment);
1810
1811/* Take action when hardware reception checksum errors are detected. */
1812#ifdef CONFIG_BUG
1813void netdev_rx_csum_fault(struct net_device *dev)
1814{
1815 if (net_ratelimit()) {
1816 printk(KERN_ERR "%s: hw csum failure.\n",
1817 dev ? dev->name : "<unknown>");
1818 dump_stack();
1819 }
1820}
1821EXPORT_SYMBOL(netdev_rx_csum_fault);
1822#endif
1823
1824/* Actually, we should eliminate this check as soon as we know, that:
1825 * 1. IOMMU is present and allows to map all the memory.
1826 * 2. No high memory really exists on this machine.
1827 */
1828
1829static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1830{
1831#ifdef CONFIG_HIGHMEM
1832 int i;
1833 if (!(dev->features & NETIF_F_HIGHDMA)) {
1834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1835 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1836 return 1;
1837 }
1838
1839 if (PCI_DMA_BUS_IS_PHYS) {
1840 struct device *pdev = dev->dev.parent;
1841
1842 if (!pdev)
1843 return 0;
1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1846 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1847 return 1;
1848 }
1849 }
1850#endif
1851 return 0;
1852}
1853
1854struct dev_gso_cb {
1855 void (*destructor)(struct sk_buff *skb);
1856};
1857
1858#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1859
1860static void dev_gso_skb_destructor(struct sk_buff *skb)
1861{
1862 struct dev_gso_cb *cb;
1863
1864 do {
1865 struct sk_buff *nskb = skb->next;
1866
1867 skb->next = nskb->next;
1868 nskb->next = NULL;
1869 kfree_skb(nskb);
1870 } while (skb->next);
1871
1872 cb = DEV_GSO_CB(skb);
1873 if (cb->destructor)
1874 cb->destructor(skb);
1875}
1876
1877/**
1878 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1879 * @skb: buffer to segment
1880 *
1881 * This function segments the given skb and stores the list of segments
1882 * in skb->next.
1883 */
1884static int dev_gso_segment(struct sk_buff *skb)
1885{
1886 struct net_device *dev = skb->dev;
1887 struct sk_buff *segs;
1888 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1889 NETIF_F_SG : 0);
1890
1891 segs = skb_gso_segment(skb, features);
1892
1893 /* Verifying header integrity only. */
1894 if (!segs)
1895 return 0;
1896
1897 if (IS_ERR(segs))
1898 return PTR_ERR(segs);
1899
1900 skb->next = segs;
1901 DEV_GSO_CB(skb)->destructor = skb->destructor;
1902 skb->destructor = dev_gso_skb_destructor;
1903
1904 return 0;
1905}
1906
1907/*
1908 * Try to orphan skb early, right before transmission by the device.
1909 * We cannot orphan skb if tx timestamp is requested, since
1910 * drivers need to call skb_tstamp_tx() to send the timestamp.
1911 */
1912static inline void skb_orphan_try(struct sk_buff *skb)
1913{
1914 if (!skb_tx(skb)->flags)
1915 skb_orphan(skb);
1916}
1917
1918int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1919 struct netdev_queue *txq)
1920{
1921 const struct net_device_ops *ops = dev->netdev_ops;
1922 int rc = NETDEV_TX_OK;
1923
1924 if (likely(!skb->next)) {
1925 if (!list_empty(&ptype_all))
1926 dev_queue_xmit_nit(skb, dev);
1927
1928 /*
1929 * If device doesnt need skb->dst, release it right now while
1930 * its hot in this cpu cache
1931 */
1932 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1933 skb_dst_drop(skb);
1934
1935 skb_orphan_try(skb);
1936
1937 if (netif_needs_gso(dev, skb)) {
1938 if (unlikely(dev_gso_segment(skb)))
1939 goto out_kfree_skb;
1940 if (skb->next)
1941 goto gso;
1942 }
1943
1944 rc = ops->ndo_start_xmit(skb, dev);
1945 if (rc == NETDEV_TX_OK)
1946 txq_trans_update(txq);
1947 return rc;
1948 }
1949
1950gso:
1951 do {
1952 struct sk_buff *nskb = skb->next;
1953
1954 skb->next = nskb->next;
1955 nskb->next = NULL;
1956
1957 /*
1958 * If device doesnt need nskb->dst, release it right now while
1959 * its hot in this cpu cache
1960 */
1961 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1962 skb_dst_drop(nskb);
1963
1964 rc = ops->ndo_start_xmit(nskb, dev);
1965 if (unlikely(rc != NETDEV_TX_OK)) {
1966 if (rc & ~NETDEV_TX_MASK)
1967 goto out_kfree_gso_skb;
1968 nskb->next = skb->next;
1969 skb->next = nskb;
1970 return rc;
1971 }
1972 txq_trans_update(txq);
1973 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1974 return NETDEV_TX_BUSY;
1975 } while (skb->next);
1976
1977out_kfree_gso_skb:
1978 if (likely(skb->next == NULL))
1979 skb->destructor = DEV_GSO_CB(skb)->destructor;
1980out_kfree_skb:
1981 kfree_skb(skb);
1982 return rc;
1983}
1984
1985static u32 hashrnd __read_mostly;
1986
1987u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1988{
1989 u32 hash;
1990
1991 if (skb_rx_queue_recorded(skb)) {
1992 hash = skb_get_rx_queue(skb);
1993 while (unlikely(hash >= dev->real_num_tx_queues))
1994 hash -= dev->real_num_tx_queues;
1995 return hash;
1996 }
1997
1998 if (skb->sk && skb->sk->sk_hash)
1999 hash = skb->sk->sk_hash;
2000 else
2001 hash = (__force u16) skb->protocol;
2002
2003 hash = jhash_1word(hash, hashrnd);
2004
2005 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2006}
2007EXPORT_SYMBOL(skb_tx_hash);
2008
2009static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2010{
2011 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2012 if (net_ratelimit()) {
2013 pr_warning("%s selects TX queue %d, but "
2014 "real number of TX queues is %d\n",
2015 dev->name, queue_index, dev->real_num_tx_queues);
2016 }
2017 return 0;
2018 }
2019 return queue_index;
2020}
2021
2022static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2023 struct sk_buff *skb)
2024{
2025 u16 queue_index;
2026 struct sock *sk = skb->sk;
2027
2028 if (sk_tx_queue_recorded(sk)) {
2029 queue_index = sk_tx_queue_get(sk);
2030 } else {
2031 const struct net_device_ops *ops = dev->netdev_ops;
2032
2033 if (ops->ndo_select_queue) {
2034 queue_index = ops->ndo_select_queue(dev, skb);
2035 queue_index = dev_cap_txqueue(dev, queue_index);
2036 } else {
2037 queue_index = 0;
2038 if (dev->real_num_tx_queues > 1)
2039 queue_index = skb_tx_hash(dev, skb);
2040
2041 if (sk) {
2042 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2043
2044 if (dst && skb_dst(skb) == dst)
2045 sk_tx_queue_set(sk, queue_index);
2046 }
2047 }
2048 }
2049
2050 skb_set_queue_mapping(skb, queue_index);
2051 return netdev_get_tx_queue(dev, queue_index);
2052}
2053
2054static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2055 struct net_device *dev,
2056 struct netdev_queue *txq)
2057{
2058 spinlock_t *root_lock = qdisc_lock(q);
2059 int rc;
2060
2061 spin_lock(root_lock);
2062 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2063 kfree_skb(skb);
2064 rc = NET_XMIT_DROP;
2065 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2066 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2067 /*
2068 * This is a work-conserving queue; there are no old skbs
2069 * waiting to be sent out; and the qdisc is not running -
2070 * xmit the skb directly.
2071 */
2072 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2073 skb_dst_force(skb);
2074 __qdisc_update_bstats(q, skb->len);
2075 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2076 __qdisc_run(q);
2077 else
2078 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2079
2080 rc = NET_XMIT_SUCCESS;
2081 } else {
2082 skb_dst_force(skb);
2083 rc = qdisc_enqueue_root(skb, q);
2084 qdisc_run(q);
2085 }
2086 spin_unlock(root_lock);
2087
2088 return rc;
2089}
2090
2091/*
2092 * Returns true if either:
2093 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2094 * 2. skb is fragmented and the device does not support SG, or if
2095 * at least one of fragments is in highmem and device does not
2096 * support DMA from it.
2097 */
2098static inline int skb_needs_linearize(struct sk_buff *skb,
2099 struct net_device *dev)
2100{
2101 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2102 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2103 illegal_highdma(dev, skb)));
2104}
2105
2106/**
2107 * dev_queue_xmit - transmit a buffer
2108 * @skb: buffer to transmit
2109 *
2110 * Queue a buffer for transmission to a network device. The caller must
2111 * have set the device and priority and built the buffer before calling
2112 * this function. The function can be called from an interrupt.
2113 *
2114 * A negative errno code is returned on a failure. A success does not
2115 * guarantee the frame will be transmitted as it may be dropped due
2116 * to congestion or traffic shaping.
2117 *
2118 * -----------------------------------------------------------------------------------
2119 * I notice this method can also return errors from the queue disciplines,
2120 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2121 * be positive.
2122 *
2123 * Regardless of the return value, the skb is consumed, so it is currently
2124 * difficult to retry a send to this method. (You can bump the ref count
2125 * before sending to hold a reference for retry if you are careful.)
2126 *
2127 * When calling this method, interrupts MUST be enabled. This is because
2128 * the BH enable code must have IRQs enabled so that it will not deadlock.
2129 * --BLG
2130 */
2131int dev_queue_xmit(struct sk_buff *skb)
2132{
2133 struct net_device *dev = skb->dev;
2134 struct netdev_queue *txq;
2135 struct Qdisc *q;
2136 int rc = -ENOMEM;
2137
2138 /* GSO will handle the following emulations directly. */
2139 if (netif_needs_gso(dev, skb))
2140 goto gso;
2141
2142 /* Convert a paged skb to linear, if required */
2143 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2144 goto out_kfree_skb;
2145
2146 /* If packet is not checksummed and device does not support
2147 * checksumming for this protocol, complete checksumming here.
2148 */
2149 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2150 skb_set_transport_header(skb, skb->csum_start -
2151 skb_headroom(skb));
2152 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2153 goto out_kfree_skb;
2154 }
2155
2156gso:
2157 /* Disable soft irqs for various locks below. Also
2158 * stops preemption for RCU.
2159 */
2160 rcu_read_lock_bh();
2161
2162 txq = dev_pick_tx(dev, skb);
2163 q = rcu_dereference_bh(txq->qdisc);
2164
2165#ifdef CONFIG_NET_CLS_ACT
2166 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2167#endif
2168 if (q->enqueue) {
2169 rc = __dev_xmit_skb(skb, q, dev, txq);
2170 goto out;
2171 }
2172
2173 /* The device has no queue. Common case for software devices:
2174 loopback, all the sorts of tunnels...
2175
2176 Really, it is unlikely that netif_tx_lock protection is necessary
2177 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2178 counters.)
2179 However, it is possible, that they rely on protection
2180 made by us here.
2181
2182 Check this and shot the lock. It is not prone from deadlocks.
2183 Either shot noqueue qdisc, it is even simpler 8)
2184 */
2185 if (dev->flags & IFF_UP) {
2186 int cpu = smp_processor_id(); /* ok because BHs are off */
2187
2188 if (txq->xmit_lock_owner != cpu) {
2189
2190 HARD_TX_LOCK(dev, txq, cpu);
2191
2192 if (!netif_tx_queue_stopped(txq)) {
2193 rc = dev_hard_start_xmit(skb, dev, txq);
2194 if (dev_xmit_complete(rc)) {
2195 HARD_TX_UNLOCK(dev, txq);
2196 goto out;
2197 }
2198 }
2199 HARD_TX_UNLOCK(dev, txq);
2200 if (net_ratelimit())
2201 printk(KERN_CRIT "Virtual device %s asks to "
2202 "queue packet!\n", dev->name);
2203 } else {
2204 /* Recursion is detected! It is possible,
2205 * unfortunately */
2206 if (net_ratelimit())
2207 printk(KERN_CRIT "Dead loop on virtual device "
2208 "%s, fix it urgently!\n", dev->name);
2209 }
2210 }
2211
2212 rc = -ENETDOWN;
2213 rcu_read_unlock_bh();
2214
2215out_kfree_skb:
2216 kfree_skb(skb);
2217 return rc;
2218out:
2219 rcu_read_unlock_bh();
2220 return rc;
2221}
2222EXPORT_SYMBOL(dev_queue_xmit);
2223
2224
2225/*=======================================================================
2226 Receiver routines
2227 =======================================================================*/
2228
2229int netdev_max_backlog __read_mostly = 1000;
2230int netdev_tstamp_prequeue __read_mostly = 1;
2231int netdev_budget __read_mostly = 300;
2232int weight_p __read_mostly = 64; /* old backlog weight */
2233
2234/* Called with irq disabled */
2235static inline void ____napi_schedule(struct softnet_data *sd,
2236 struct napi_struct *napi)
2237{
2238 list_add_tail(&napi->poll_list, &sd->poll_list);
2239 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2240}
2241
2242#ifdef CONFIG_RPS
2243
2244/* One global table that all flow-based protocols share. */
2245struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2246EXPORT_SYMBOL(rps_sock_flow_table);
2247
2248/*
2249 * get_rps_cpu is called from netif_receive_skb and returns the target
2250 * CPU from the RPS map of the receiving queue for a given skb.
2251 * rcu_read_lock must be held on entry.
2252 */
2253static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2254 struct rps_dev_flow **rflowp)
2255{
2256 struct ipv6hdr *ip6;
2257 struct iphdr *ip;
2258 struct netdev_rx_queue *rxqueue;
2259 struct rps_map *map;
2260 struct rps_dev_flow_table *flow_table;
2261 struct rps_sock_flow_table *sock_flow_table;
2262 int cpu = -1;
2263 u8 ip_proto;
2264 u16 tcpu;
2265 u32 addr1, addr2, ihl;
2266 union {
2267 u32 v32;
2268 u16 v16[2];
2269 } ports;
2270
2271 if (skb_rx_queue_recorded(skb)) {
2272 u16 index = skb_get_rx_queue(skb);
2273 if (unlikely(index >= dev->num_rx_queues)) {
2274 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2275 "on queue %u, but number of RX queues is %u\n",
2276 dev->name, index, dev->num_rx_queues);
2277 goto done;
2278 }
2279 rxqueue = dev->_rx + index;
2280 } else
2281 rxqueue = dev->_rx;
2282
2283 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2284 goto done;
2285
2286 if (skb->rxhash)
2287 goto got_hash; /* Skip hash computation on packet header */
2288
2289 switch (skb->protocol) {
2290 case __constant_htons(ETH_P_IP):
2291 if (!pskb_may_pull(skb, sizeof(*ip)))
2292 goto done;
2293
2294 ip = (struct iphdr *) skb->data;
2295 ip_proto = ip->protocol;
2296 addr1 = (__force u32) ip->saddr;
2297 addr2 = (__force u32) ip->daddr;
2298 ihl = ip->ihl;
2299 break;
2300 case __constant_htons(ETH_P_IPV6):
2301 if (!pskb_may_pull(skb, sizeof(*ip6)))
2302 goto done;
2303
2304 ip6 = (struct ipv6hdr *) skb->data;
2305 ip_proto = ip6->nexthdr;
2306 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2307 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2308 ihl = (40 >> 2);
2309 break;
2310 default:
2311 goto done;
2312 }
2313 switch (ip_proto) {
2314 case IPPROTO_TCP:
2315 case IPPROTO_UDP:
2316 case IPPROTO_DCCP:
2317 case IPPROTO_ESP:
2318 case IPPROTO_AH:
2319 case IPPROTO_SCTP:
2320 case IPPROTO_UDPLITE:
2321 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2322 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2323 if (ports.v16[1] < ports.v16[0])
2324 swap(ports.v16[0], ports.v16[1]);
2325 break;
2326 }
2327 default:
2328 ports.v32 = 0;
2329 break;
2330 }
2331
2332 /* get a consistent hash (same value on both flow directions) */
2333 if (addr2 < addr1)
2334 swap(addr1, addr2);
2335 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2336 if (!skb->rxhash)
2337 skb->rxhash = 1;
2338
2339got_hash:
2340 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2341 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2342 if (flow_table && sock_flow_table) {
2343 u16 next_cpu;
2344 struct rps_dev_flow *rflow;
2345
2346 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2347 tcpu = rflow->cpu;
2348
2349 next_cpu = sock_flow_table->ents[skb->rxhash &
2350 sock_flow_table->mask];
2351
2352 /*
2353 * If the desired CPU (where last recvmsg was done) is
2354 * different from current CPU (one in the rx-queue flow
2355 * table entry), switch if one of the following holds:
2356 * - Current CPU is unset (equal to RPS_NO_CPU).
2357 * - Current CPU is offline.
2358 * - The current CPU's queue tail has advanced beyond the
2359 * last packet that was enqueued using this table entry.
2360 * This guarantees that all previous packets for the flow
2361 * have been dequeued, thus preserving in order delivery.
2362 */
2363 if (unlikely(tcpu != next_cpu) &&
2364 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2365 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2366 rflow->last_qtail)) >= 0)) {
2367 tcpu = rflow->cpu = next_cpu;
2368 if (tcpu != RPS_NO_CPU)
2369 rflow->last_qtail = per_cpu(softnet_data,
2370 tcpu).input_queue_head;
2371 }
2372 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2373 *rflowp = rflow;
2374 cpu = tcpu;
2375 goto done;
2376 }
2377 }
2378
2379 map = rcu_dereference(rxqueue->rps_map);
2380 if (map) {
2381 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2382
2383 if (cpu_online(tcpu)) {
2384 cpu = tcpu;
2385 goto done;
2386 }
2387 }
2388
2389done:
2390 return cpu;
2391}
2392
2393/* Called from hardirq (IPI) context */
2394static void rps_trigger_softirq(void *data)
2395{
2396 struct softnet_data *sd = data;
2397
2398 ____napi_schedule(sd, &sd->backlog);
2399 sd->received_rps++;
2400}
2401
2402#endif /* CONFIG_RPS */
2403
2404/*
2405 * Check if this softnet_data structure is another cpu one
2406 * If yes, queue it to our IPI list and return 1
2407 * If no, return 0
2408 */
2409static int rps_ipi_queued(struct softnet_data *sd)
2410{
2411#ifdef CONFIG_RPS
2412 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2413
2414 if (sd != mysd) {
2415 sd->rps_ipi_next = mysd->rps_ipi_list;
2416 mysd->rps_ipi_list = sd;
2417
2418 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2419 return 1;
2420 }
2421#endif /* CONFIG_RPS */
2422 return 0;
2423}
2424
2425/*
2426 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2427 * queue (may be a remote CPU queue).
2428 */
2429static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2430 unsigned int *qtail)
2431{
2432 struct softnet_data *sd;
2433 unsigned long flags;
2434
2435 sd = &per_cpu(softnet_data, cpu);
2436
2437 local_irq_save(flags);
2438
2439 rps_lock(sd);
2440 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2441 if (skb_queue_len(&sd->input_pkt_queue)) {
2442enqueue:
2443 __skb_queue_tail(&sd->input_pkt_queue, skb);
2444 input_queue_tail_incr_save(sd, qtail);
2445 rps_unlock(sd);
2446 local_irq_restore(flags);
2447 return NET_RX_SUCCESS;
2448 }
2449
2450 /* Schedule NAPI for backlog device
2451 * We can use non atomic operation since we own the queue lock
2452 */
2453 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2454 if (!rps_ipi_queued(sd))
2455 ____napi_schedule(sd, &sd->backlog);
2456 }
2457 goto enqueue;
2458 }
2459
2460 sd->dropped++;
2461 rps_unlock(sd);
2462
2463 local_irq_restore(flags);
2464
2465 kfree_skb(skb);
2466 return NET_RX_DROP;
2467}
2468
2469/**
2470 * netif_rx - post buffer to the network code
2471 * @skb: buffer to post
2472 *
2473 * This function receives a packet from a device driver and queues it for
2474 * the upper (protocol) levels to process. It always succeeds. The buffer
2475 * may be dropped during processing for congestion control or by the
2476 * protocol layers.
2477 *
2478 * return values:
2479 * NET_RX_SUCCESS (no congestion)
2480 * NET_RX_DROP (packet was dropped)
2481 *
2482 */
2483
2484int netif_rx(struct sk_buff *skb)
2485{
2486 int ret;
2487
2488 /* if netpoll wants it, pretend we never saw it */
2489 if (netpoll_rx(skb))
2490 return NET_RX_DROP;
2491
2492 if (netdev_tstamp_prequeue)
2493 net_timestamp_check(skb);
2494
2495#ifdef CONFIG_RPS
2496 {
2497 struct rps_dev_flow voidflow, *rflow = &voidflow;
2498 int cpu;
2499
2500 rcu_read_lock();
2501
2502 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2503 if (cpu < 0)
2504 cpu = smp_processor_id();
2505
2506 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2507
2508 rcu_read_unlock();
2509 }
2510#else
2511 {
2512 unsigned int qtail;
2513 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2514 put_cpu();
2515 }
2516#endif
2517 return ret;
2518}
2519EXPORT_SYMBOL(netif_rx);
2520
2521int netif_rx_ni(struct sk_buff *skb)
2522{
2523 int err;
2524
2525 preempt_disable();
2526 err = netif_rx(skb);
2527 if (local_softirq_pending())
2528 do_softirq();
2529 preempt_enable();
2530
2531 return err;
2532}
2533EXPORT_SYMBOL(netif_rx_ni);
2534
2535static void net_tx_action(struct softirq_action *h)
2536{
2537 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2538
2539 if (sd->completion_queue) {
2540 struct sk_buff *clist;
2541
2542 local_irq_disable();
2543 clist = sd->completion_queue;
2544 sd->completion_queue = NULL;
2545 local_irq_enable();
2546
2547 while (clist) {
2548 struct sk_buff *skb = clist;
2549 clist = clist->next;
2550
2551 WARN_ON(atomic_read(&skb->users));
2552 __kfree_skb(skb);
2553 }
2554 }
2555
2556 if (sd->output_queue) {
2557 struct Qdisc *head;
2558
2559 local_irq_disable();
2560 head = sd->output_queue;
2561 sd->output_queue = NULL;
2562 sd->output_queue_tailp = &sd->output_queue;
2563 local_irq_enable();
2564
2565 while (head) {
2566 struct Qdisc *q = head;
2567 spinlock_t *root_lock;
2568
2569 head = head->next_sched;
2570
2571 root_lock = qdisc_lock(q);
2572 if (spin_trylock(root_lock)) {
2573 smp_mb__before_clear_bit();
2574 clear_bit(__QDISC_STATE_SCHED,
2575 &q->state);
2576 qdisc_run(q);
2577 spin_unlock(root_lock);
2578 } else {
2579 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2580 &q->state)) {
2581 __netif_reschedule(q);
2582 } else {
2583 smp_mb__before_clear_bit();
2584 clear_bit(__QDISC_STATE_SCHED,
2585 &q->state);
2586 }
2587 }
2588 }
2589 }
2590}
2591
2592static inline int deliver_skb(struct sk_buff *skb,
2593 struct packet_type *pt_prev,
2594 struct net_device *orig_dev)
2595{
2596 atomic_inc(&skb->users);
2597 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2598}
2599
2600#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2601
2602#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2603/* This hook is defined here for ATM LANE */
2604int (*br_fdb_test_addr_hook)(struct net_device *dev,
2605 unsigned char *addr) __read_mostly;
2606EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2607#endif
2608
2609/*
2610 * If bridge module is loaded call bridging hook.
2611 * returns NULL if packet was consumed.
2612 */
2613struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2614 struct sk_buff *skb) __read_mostly;
2615EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2616
2617static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2618 struct packet_type **pt_prev, int *ret,
2619 struct net_device *orig_dev)
2620{
2621 struct net_bridge_port *port;
2622
2623 if (skb->pkt_type == PACKET_LOOPBACK ||
2624 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2625 return skb;
2626
2627 if (*pt_prev) {
2628 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2629 *pt_prev = NULL;
2630 }
2631
2632 return br_handle_frame_hook(port, skb);
2633}
2634#else
2635#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2636#endif
2637
2638#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2639struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2640 struct sk_buff *skb) __read_mostly;
2641EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2642
2643static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2644 struct packet_type **pt_prev,
2645 int *ret,
2646 struct net_device *orig_dev)
2647{
2648 struct macvlan_port *port;
2649
2650 port = rcu_dereference(skb->dev->macvlan_port);
2651 if (!port)
2652 return skb;
2653
2654 if (*pt_prev) {
2655 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2656 *pt_prev = NULL;
2657 }
2658 return macvlan_handle_frame_hook(port, skb);
2659}
2660#else
2661#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2662#endif
2663
2664#ifdef CONFIG_NET_CLS_ACT
2665/* TODO: Maybe we should just force sch_ingress to be compiled in
2666 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2667 * a compare and 2 stores extra right now if we dont have it on
2668 * but have CONFIG_NET_CLS_ACT
2669 * NOTE: This doesnt stop any functionality; if you dont have
2670 * the ingress scheduler, you just cant add policies on ingress.
2671 *
2672 */
2673static int ing_filter(struct sk_buff *skb)
2674{
2675 struct net_device *dev = skb->dev;
2676 u32 ttl = G_TC_RTTL(skb->tc_verd);
2677 struct netdev_queue *rxq;
2678 int result = TC_ACT_OK;
2679 struct Qdisc *q;
2680
2681 if (MAX_RED_LOOP < ttl++) {
2682 printk(KERN_WARNING
2683 "Redir loop detected Dropping packet (%d->%d)\n",
2684 skb->skb_iif, dev->ifindex);
2685 return TC_ACT_SHOT;
2686 }
2687
2688 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2689 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2690
2691 rxq = &dev->rx_queue;
2692
2693 q = rxq->qdisc;
2694 if (q != &noop_qdisc) {
2695 spin_lock(qdisc_lock(q));
2696 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2697 result = qdisc_enqueue_root(skb, q);
2698 spin_unlock(qdisc_lock(q));
2699 }
2700
2701 return result;
2702}
2703
2704static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2705 struct packet_type **pt_prev,
2706 int *ret, struct net_device *orig_dev)
2707{
2708 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2709 goto out;
2710
2711 if (*pt_prev) {
2712 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2713 *pt_prev = NULL;
2714 } else {
2715 /* Huh? Why does turning on AF_PACKET affect this? */
2716 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2717 }
2718
2719 switch (ing_filter(skb)) {
2720 case TC_ACT_SHOT:
2721 case TC_ACT_STOLEN:
2722 kfree_skb(skb);
2723 return NULL;
2724 }
2725
2726out:
2727 skb->tc_verd = 0;
2728 return skb;
2729}
2730#endif
2731
2732/*
2733 * netif_nit_deliver - deliver received packets to network taps
2734 * @skb: buffer
2735 *
2736 * This function is used to deliver incoming packets to network
2737 * taps. It should be used when the normal netif_receive_skb path
2738 * is bypassed, for example because of VLAN acceleration.
2739 */
2740void netif_nit_deliver(struct sk_buff *skb)
2741{
2742 struct packet_type *ptype;
2743
2744 if (list_empty(&ptype_all))
2745 return;
2746
2747 skb_reset_network_header(skb);
2748 skb_reset_transport_header(skb);
2749 skb->mac_len = skb->network_header - skb->mac_header;
2750
2751 rcu_read_lock();
2752 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2753 if (!ptype->dev || ptype->dev == skb->dev)
2754 deliver_skb(skb, ptype, skb->dev);
2755 }
2756 rcu_read_unlock();
2757}
2758
2759static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2760 struct net_device *master)
2761{
2762 if (skb->pkt_type == PACKET_HOST) {
2763 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2764
2765 memcpy(dest, master->dev_addr, ETH_ALEN);
2766 }
2767}
2768
2769/* On bonding slaves other than the currently active slave, suppress
2770 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2771 * ARP on active-backup slaves with arp_validate enabled.
2772 */
2773int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2774{
2775 struct net_device *dev = skb->dev;
2776
2777 if (master->priv_flags & IFF_MASTER_ARPMON)
2778 dev->last_rx = jiffies;
2779
2780 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2781 /* Do address unmangle. The local destination address
2782 * will be always the one master has. Provides the right
2783 * functionality in a bridge.
2784 */
2785 skb_bond_set_mac_by_master(skb, master);
2786 }
2787
2788 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2789 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2790 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2791 return 0;
2792
2793 if (master->priv_flags & IFF_MASTER_ALB) {
2794 if (skb->pkt_type != PACKET_BROADCAST &&
2795 skb->pkt_type != PACKET_MULTICAST)
2796 return 0;
2797 }
2798 if (master->priv_flags & IFF_MASTER_8023AD &&
2799 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2800 return 0;
2801
2802 return 1;
2803 }
2804 return 0;
2805}
2806EXPORT_SYMBOL(__skb_bond_should_drop);
2807
2808static int __netif_receive_skb(struct sk_buff *skb)
2809{
2810 struct packet_type *ptype, *pt_prev;
2811 struct net_device *orig_dev;
2812 struct net_device *master;
2813 struct net_device *null_or_orig;
2814 struct net_device *orig_or_bond;
2815 int ret = NET_RX_DROP;
2816 __be16 type;
2817
2818 if (!netdev_tstamp_prequeue)
2819 net_timestamp_check(skb);
2820
2821 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2822 return NET_RX_SUCCESS;
2823
2824 /* if we've gotten here through NAPI, check netpoll */
2825 if (netpoll_receive_skb(skb))
2826 return NET_RX_DROP;
2827
2828 if (!skb->skb_iif)
2829 skb->skb_iif = skb->dev->ifindex;
2830
2831 /*
2832 * bonding note: skbs received on inactive slaves should only
2833 * be delivered to pkt handlers that are exact matches. Also
2834 * the deliver_no_wcard flag will be set. If packet handlers
2835 * are sensitive to duplicate packets these skbs will need to
2836 * be dropped at the handler. The vlan accel path may have
2837 * already set the deliver_no_wcard flag.
2838 */
2839 null_or_orig = NULL;
2840 orig_dev = skb->dev;
2841 master = ACCESS_ONCE(orig_dev->master);
2842 if (skb->deliver_no_wcard)
2843 null_or_orig = orig_dev;
2844 else if (master) {
2845 if (skb_bond_should_drop(skb, master)) {
2846 skb->deliver_no_wcard = 1;
2847 null_or_orig = orig_dev; /* deliver only exact match */
2848 } else
2849 skb->dev = master;
2850 }
2851
2852 __get_cpu_var(softnet_data).processed++;
2853
2854 skb_reset_network_header(skb);
2855 skb_reset_transport_header(skb);
2856 skb->mac_len = skb->network_header - skb->mac_header;
2857
2858 pt_prev = NULL;
2859
2860 rcu_read_lock();
2861
2862#ifdef CONFIG_NET_CLS_ACT
2863 if (skb->tc_verd & TC_NCLS) {
2864 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2865 goto ncls;
2866 }
2867#endif
2868
2869 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2870 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2871 ptype->dev == orig_dev) {
2872 if (pt_prev)
2873 ret = deliver_skb(skb, pt_prev, orig_dev);
2874 pt_prev = ptype;
2875 }
2876 }
2877
2878#ifdef CONFIG_NET_CLS_ACT
2879 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2880 if (!skb)
2881 goto out;
2882ncls:
2883#endif
2884
2885 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2886 if (!skb)
2887 goto out;
2888 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2889 if (!skb)
2890 goto out;
2891
2892 /*
2893 * Make sure frames received on VLAN interfaces stacked on
2894 * bonding interfaces still make their way to any base bonding
2895 * device that may have registered for a specific ptype. The
2896 * handler may have to adjust skb->dev and orig_dev.
2897 */
2898 orig_or_bond = orig_dev;
2899 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2900 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2901 orig_or_bond = vlan_dev_real_dev(skb->dev);
2902 }
2903
2904 type = skb->protocol;
2905 list_for_each_entry_rcu(ptype,
2906 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2907 if (ptype->type == type && (ptype->dev == null_or_orig ||
2908 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2909 ptype->dev == orig_or_bond)) {
2910 if (pt_prev)
2911 ret = deliver_skb(skb, pt_prev, orig_dev);
2912 pt_prev = ptype;
2913 }
2914 }
2915
2916 if (pt_prev) {
2917 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2918 } else {
2919 kfree_skb(skb);
2920 /* Jamal, now you will not able to escape explaining
2921 * me how you were going to use this. :-)
2922 */
2923 ret = NET_RX_DROP;
2924 }
2925
2926out:
2927 rcu_read_unlock();
2928 return ret;
2929}
2930
2931/**
2932 * netif_receive_skb - process receive buffer from network
2933 * @skb: buffer to process
2934 *
2935 * netif_receive_skb() is the main receive data processing function.
2936 * It always succeeds. The buffer may be dropped during processing
2937 * for congestion control or by the protocol layers.
2938 *
2939 * This function may only be called from softirq context and interrupts
2940 * should be enabled.
2941 *
2942 * Return values (usually ignored):
2943 * NET_RX_SUCCESS: no congestion
2944 * NET_RX_DROP: packet was dropped
2945 */
2946int netif_receive_skb(struct sk_buff *skb)
2947{
2948 if (netdev_tstamp_prequeue)
2949 net_timestamp_check(skb);
2950
2951#ifdef CONFIG_RPS
2952 {
2953 struct rps_dev_flow voidflow, *rflow = &voidflow;
2954 int cpu, ret;
2955
2956 rcu_read_lock();
2957
2958 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2959
2960 if (cpu >= 0) {
2961 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2962 rcu_read_unlock();
2963 } else {
2964 rcu_read_unlock();
2965 ret = __netif_receive_skb(skb);
2966 }
2967
2968 return ret;
2969 }
2970#else
2971 return __netif_receive_skb(skb);
2972#endif
2973}
2974EXPORT_SYMBOL(netif_receive_skb);
2975
2976/* Network device is going away, flush any packets still pending
2977 * Called with irqs disabled.
2978 */
2979static void flush_backlog(void *arg)
2980{
2981 struct net_device *dev = arg;
2982 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2983 struct sk_buff *skb, *tmp;
2984
2985 rps_lock(sd);
2986 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2987 if (skb->dev == dev) {
2988 __skb_unlink(skb, &sd->input_pkt_queue);
2989 kfree_skb(skb);
2990 input_queue_head_incr(sd);
2991 }
2992 }
2993 rps_unlock(sd);
2994
2995 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2996 if (skb->dev == dev) {
2997 __skb_unlink(skb, &sd->process_queue);
2998 kfree_skb(skb);
2999 input_queue_head_incr(sd);
3000 }
3001 }
3002}
3003
3004static int napi_gro_complete(struct sk_buff *skb)
3005{
3006 struct packet_type *ptype;
3007 __be16 type = skb->protocol;
3008 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3009 int err = -ENOENT;
3010
3011 if (NAPI_GRO_CB(skb)->count == 1) {
3012 skb_shinfo(skb)->gso_size = 0;
3013 goto out;
3014 }
3015
3016 rcu_read_lock();
3017 list_for_each_entry_rcu(ptype, head, list) {
3018 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3019 continue;
3020
3021 err = ptype->gro_complete(skb);
3022 break;
3023 }
3024 rcu_read_unlock();
3025
3026 if (err) {
3027 WARN_ON(&ptype->list == head);
3028 kfree_skb(skb);
3029 return NET_RX_SUCCESS;
3030 }
3031
3032out:
3033 return netif_receive_skb(skb);
3034}
3035
3036static void napi_gro_flush(struct napi_struct *napi)
3037{
3038 struct sk_buff *skb, *next;
3039
3040 for (skb = napi->gro_list; skb; skb = next) {
3041 next = skb->next;
3042 skb->next = NULL;
3043 napi_gro_complete(skb);
3044 }
3045
3046 napi->gro_count = 0;
3047 napi->gro_list = NULL;
3048}
3049
3050enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3051{
3052 struct sk_buff **pp = NULL;
3053 struct packet_type *ptype;
3054 __be16 type = skb->protocol;
3055 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3056 int same_flow;
3057 int mac_len;
3058 enum gro_result ret;
3059
3060 if (!(skb->dev->features & NETIF_F_GRO))
3061 goto normal;
3062
3063 if (skb_is_gso(skb) || skb_has_frags(skb))
3064 goto normal;
3065
3066 rcu_read_lock();
3067 list_for_each_entry_rcu(ptype, head, list) {
3068 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3069 continue;
3070
3071 skb_set_network_header(skb, skb_gro_offset(skb));
3072 mac_len = skb->network_header - skb->mac_header;
3073 skb->mac_len = mac_len;
3074 NAPI_GRO_CB(skb)->same_flow = 0;
3075 NAPI_GRO_CB(skb)->flush = 0;
3076 NAPI_GRO_CB(skb)->free = 0;
3077
3078 pp = ptype->gro_receive(&napi->gro_list, skb);
3079 break;
3080 }
3081 rcu_read_unlock();
3082
3083 if (&ptype->list == head)
3084 goto normal;
3085
3086 same_flow = NAPI_GRO_CB(skb)->same_flow;
3087 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3088
3089 if (pp) {
3090 struct sk_buff *nskb = *pp;
3091
3092 *pp = nskb->next;
3093 nskb->next = NULL;
3094 napi_gro_complete(nskb);
3095 napi->gro_count--;
3096 }
3097
3098 if (same_flow)
3099 goto ok;
3100
3101 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3102 goto normal;
3103
3104 napi->gro_count++;
3105 NAPI_GRO_CB(skb)->count = 1;
3106 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3107 skb->next = napi->gro_list;
3108 napi->gro_list = skb;
3109 ret = GRO_HELD;
3110
3111pull:
3112 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3113 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3114
3115 BUG_ON(skb->end - skb->tail < grow);
3116
3117 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3118
3119 skb->tail += grow;
3120 skb->data_len -= grow;
3121
3122 skb_shinfo(skb)->frags[0].page_offset += grow;
3123 skb_shinfo(skb)->frags[0].size -= grow;
3124
3125 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3126 put_page(skb_shinfo(skb)->frags[0].page);
3127 memmove(skb_shinfo(skb)->frags,
3128 skb_shinfo(skb)->frags + 1,
3129 --skb_shinfo(skb)->nr_frags);
3130 }
3131 }
3132
3133ok:
3134 return ret;
3135
3136normal:
3137 ret = GRO_NORMAL;
3138 goto pull;
3139}
3140EXPORT_SYMBOL(dev_gro_receive);
3141
3142static gro_result_t
3143__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3144{
3145 struct sk_buff *p;
3146
3147 if (netpoll_rx_on(skb))
3148 return GRO_NORMAL;
3149
3150 for (p = napi->gro_list; p; p = p->next) {
3151 NAPI_GRO_CB(p)->same_flow =
3152 (p->dev == skb->dev) &&
3153 !compare_ether_header(skb_mac_header(p),
3154 skb_gro_mac_header(skb));
3155 NAPI_GRO_CB(p)->flush = 0;
3156 }
3157
3158 return dev_gro_receive(napi, skb);
3159}
3160
3161gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3162{
3163 switch (ret) {
3164 case GRO_NORMAL:
3165 if (netif_receive_skb(skb))
3166 ret = GRO_DROP;
3167 break;
3168
3169 case GRO_DROP:
3170 case GRO_MERGED_FREE:
3171 kfree_skb(skb);
3172 break;
3173
3174 case GRO_HELD:
3175 case GRO_MERGED:
3176 break;
3177 }
3178
3179 return ret;
3180}
3181EXPORT_SYMBOL(napi_skb_finish);
3182
3183void skb_gro_reset_offset(struct sk_buff *skb)
3184{
3185 NAPI_GRO_CB(skb)->data_offset = 0;
3186 NAPI_GRO_CB(skb)->frag0 = NULL;
3187 NAPI_GRO_CB(skb)->frag0_len = 0;
3188
3189 if (skb->mac_header == skb->tail &&
3190 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3191 NAPI_GRO_CB(skb)->frag0 =
3192 page_address(skb_shinfo(skb)->frags[0].page) +
3193 skb_shinfo(skb)->frags[0].page_offset;
3194 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3195 }
3196}
3197EXPORT_SYMBOL(skb_gro_reset_offset);
3198
3199gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3200{
3201 skb_gro_reset_offset(skb);
3202
3203 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3204}
3205EXPORT_SYMBOL(napi_gro_receive);
3206
3207void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3208{
3209 __skb_pull(skb, skb_headlen(skb));
3210 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3211
3212 napi->skb = skb;
3213}
3214EXPORT_SYMBOL(napi_reuse_skb);
3215
3216struct sk_buff *napi_get_frags(struct napi_struct *napi)
3217{
3218 struct sk_buff *skb = napi->skb;
3219
3220 if (!skb) {
3221 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3222 if (skb)
3223 napi->skb = skb;
3224 }
3225 return skb;
3226}
3227EXPORT_SYMBOL(napi_get_frags);
3228
3229gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3230 gro_result_t ret)
3231{
3232 switch (ret) {
3233 case GRO_NORMAL:
3234 case GRO_HELD:
3235 skb->protocol = eth_type_trans(skb, skb->dev);
3236
3237 if (ret == GRO_HELD)
3238 skb_gro_pull(skb, -ETH_HLEN);
3239 else if (netif_receive_skb(skb))
3240 ret = GRO_DROP;
3241 break;
3242
3243 case GRO_DROP:
3244 case GRO_MERGED_FREE:
3245 napi_reuse_skb(napi, skb);
3246 break;
3247
3248 case GRO_MERGED:
3249 break;
3250 }
3251
3252 return ret;
3253}
3254EXPORT_SYMBOL(napi_frags_finish);
3255
3256struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3257{
3258 struct sk_buff *skb = napi->skb;
3259 struct ethhdr *eth;
3260 unsigned int hlen;
3261 unsigned int off;
3262
3263 napi->skb = NULL;
3264
3265 skb_reset_mac_header(skb);
3266 skb_gro_reset_offset(skb);
3267
3268 off = skb_gro_offset(skb);
3269 hlen = off + sizeof(*eth);
3270 eth = skb_gro_header_fast(skb, off);
3271 if (skb_gro_header_hard(skb, hlen)) {
3272 eth = skb_gro_header_slow(skb, hlen, off);
3273 if (unlikely(!eth)) {
3274 napi_reuse_skb(napi, skb);
3275 skb = NULL;
3276 goto out;
3277 }
3278 }
3279
3280 skb_gro_pull(skb, sizeof(*eth));
3281
3282 /*
3283 * This works because the only protocols we care about don't require
3284 * special handling. We'll fix it up properly at the end.
3285 */
3286 skb->protocol = eth->h_proto;
3287
3288out:
3289 return skb;
3290}
3291EXPORT_SYMBOL(napi_frags_skb);
3292
3293gro_result_t napi_gro_frags(struct napi_struct *napi)
3294{
3295 struct sk_buff *skb = napi_frags_skb(napi);
3296
3297 if (!skb)
3298 return GRO_DROP;
3299
3300 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3301}
3302EXPORT_SYMBOL(napi_gro_frags);
3303
3304/*
3305 * net_rps_action sends any pending IPI's for rps.
3306 * Note: called with local irq disabled, but exits with local irq enabled.
3307 */
3308static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3309{
3310#ifdef CONFIG_RPS
3311 struct softnet_data *remsd = sd->rps_ipi_list;
3312
3313 if (remsd) {
3314 sd->rps_ipi_list = NULL;
3315
3316 local_irq_enable();
3317
3318 /* Send pending IPI's to kick RPS processing on remote cpus. */
3319 while (remsd) {
3320 struct softnet_data *next = remsd->rps_ipi_next;
3321
3322 if (cpu_online(remsd->cpu))
3323 __smp_call_function_single(remsd->cpu,
3324 &remsd->csd, 0);
3325 remsd = next;
3326 }
3327 } else
3328#endif
3329 local_irq_enable();
3330}
3331
3332static int process_backlog(struct napi_struct *napi, int quota)
3333{
3334 int work = 0;
3335 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3336
3337#ifdef CONFIG_RPS
3338 /* Check if we have pending ipi, its better to send them now,
3339 * not waiting net_rx_action() end.
3340 */
3341 if (sd->rps_ipi_list) {
3342 local_irq_disable();
3343 net_rps_action_and_irq_enable(sd);
3344 }
3345#endif
3346 napi->weight = weight_p;
3347 local_irq_disable();
3348 while (work < quota) {
3349 struct sk_buff *skb;
3350 unsigned int qlen;
3351
3352 while ((skb = __skb_dequeue(&sd->process_queue))) {
3353 local_irq_enable();
3354 __netif_receive_skb(skb);
3355 local_irq_disable();
3356 input_queue_head_incr(sd);
3357 if (++work >= quota) {
3358 local_irq_enable();
3359 return work;
3360 }
3361 }
3362
3363 rps_lock(sd);
3364 qlen = skb_queue_len(&sd->input_pkt_queue);
3365 if (qlen)
3366 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3367 &sd->process_queue);
3368
3369 if (qlen < quota - work) {
3370 /*
3371 * Inline a custom version of __napi_complete().
3372 * only current cpu owns and manipulates this napi,
3373 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3374 * we can use a plain write instead of clear_bit(),
3375 * and we dont need an smp_mb() memory barrier.
3376 */
3377 list_del(&napi->poll_list);
3378 napi->state = 0;
3379
3380 quota = work + qlen;
3381 }
3382 rps_unlock(sd);
3383 }
3384 local_irq_enable();
3385
3386 return work;
3387}
3388
3389/**
3390 * __napi_schedule - schedule for receive
3391 * @n: entry to schedule
3392 *
3393 * The entry's receive function will be scheduled to run
3394 */
3395void __napi_schedule(struct napi_struct *n)
3396{
3397 unsigned long flags;
3398
3399 local_irq_save(flags);
3400 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3401 local_irq_restore(flags);
3402}
3403EXPORT_SYMBOL(__napi_schedule);
3404
3405void __napi_complete(struct napi_struct *n)
3406{
3407 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3408 BUG_ON(n->gro_list);
3409
3410 list_del(&n->poll_list);
3411 smp_mb__before_clear_bit();
3412 clear_bit(NAPI_STATE_SCHED, &n->state);
3413}
3414EXPORT_SYMBOL(__napi_complete);
3415
3416void napi_complete(struct napi_struct *n)
3417{
3418 unsigned long flags;
3419
3420 /*
3421 * don't let napi dequeue from the cpu poll list
3422 * just in case its running on a different cpu
3423 */
3424 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3425 return;
3426
3427 napi_gro_flush(n);
3428 local_irq_save(flags);
3429 __napi_complete(n);
3430 local_irq_restore(flags);
3431}
3432EXPORT_SYMBOL(napi_complete);
3433
3434void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3435 int (*poll)(struct napi_struct *, int), int weight)
3436{
3437 INIT_LIST_HEAD(&napi->poll_list);
3438 napi->gro_count = 0;
3439 napi->gro_list = NULL;
3440 napi->skb = NULL;
3441 napi->poll = poll;
3442 napi->weight = weight;
3443 list_add(&napi->dev_list, &dev->napi_list);
3444 napi->dev = dev;
3445#ifdef CONFIG_NETPOLL
3446 spin_lock_init(&napi->poll_lock);
3447 napi->poll_owner = -1;
3448#endif
3449 set_bit(NAPI_STATE_SCHED, &napi->state);
3450}
3451EXPORT_SYMBOL(netif_napi_add);
3452
3453void netif_napi_del(struct napi_struct *napi)
3454{
3455 struct sk_buff *skb, *next;
3456
3457 list_del_init(&napi->dev_list);
3458 napi_free_frags(napi);
3459
3460 for (skb = napi->gro_list; skb; skb = next) {
3461 next = skb->next;
3462 skb->next = NULL;
3463 kfree_skb(skb);
3464 }
3465
3466 napi->gro_list = NULL;
3467 napi->gro_count = 0;
3468}
3469EXPORT_SYMBOL(netif_napi_del);
3470
3471static void net_rx_action(struct softirq_action *h)
3472{
3473 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3474 unsigned long time_limit = jiffies + 2;
3475 int budget = netdev_budget;
3476 void *have;
3477
3478 local_irq_disable();
3479
3480 while (!list_empty(&sd->poll_list)) {
3481 struct napi_struct *n;
3482 int work, weight;
3483
3484 /* If softirq window is exhuasted then punt.
3485 * Allow this to run for 2 jiffies since which will allow
3486 * an average latency of 1.5/HZ.
3487 */
3488 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3489 goto softnet_break;
3490
3491 local_irq_enable();
3492
3493 /* Even though interrupts have been re-enabled, this
3494 * access is safe because interrupts can only add new
3495 * entries to the tail of this list, and only ->poll()
3496 * calls can remove this head entry from the list.
3497 */
3498 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3499
3500 have = netpoll_poll_lock(n);
3501
3502 weight = n->weight;
3503
3504 /* This NAPI_STATE_SCHED test is for avoiding a race
3505 * with netpoll's poll_napi(). Only the entity which
3506 * obtains the lock and sees NAPI_STATE_SCHED set will
3507 * actually make the ->poll() call. Therefore we avoid
3508 * accidently calling ->poll() when NAPI is not scheduled.
3509 */
3510 work = 0;
3511 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3512 work = n->poll(n, weight);
3513 trace_napi_poll(n);
3514 }
3515
3516 WARN_ON_ONCE(work > weight);
3517
3518 budget -= work;
3519
3520 local_irq_disable();
3521
3522 /* Drivers must not modify the NAPI state if they
3523 * consume the entire weight. In such cases this code
3524 * still "owns" the NAPI instance and therefore can
3525 * move the instance around on the list at-will.
3526 */
3527 if (unlikely(work == weight)) {
3528 if (unlikely(napi_disable_pending(n))) {
3529 local_irq_enable();
3530 napi_complete(n);
3531 local_irq_disable();
3532 } else
3533 list_move_tail(&n->poll_list, &sd->poll_list);
3534 }
3535
3536 netpoll_poll_unlock(have);
3537 }
3538out:
3539 net_rps_action_and_irq_enable(sd);
3540
3541#ifdef CONFIG_NET_DMA
3542 /*
3543 * There may not be any more sk_buffs coming right now, so push
3544 * any pending DMA copies to hardware
3545 */
3546 dma_issue_pending_all();
3547#endif
3548
3549 return;
3550
3551softnet_break:
3552 sd->time_squeeze++;
3553 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3554 goto out;
3555}
3556
3557static gifconf_func_t *gifconf_list[NPROTO];
3558
3559/**
3560 * register_gifconf - register a SIOCGIF handler
3561 * @family: Address family
3562 * @gifconf: Function handler
3563 *
3564 * Register protocol dependent address dumping routines. The handler
3565 * that is passed must not be freed or reused until it has been replaced
3566 * by another handler.
3567 */
3568int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3569{
3570 if (family >= NPROTO)
3571 return -EINVAL;
3572 gifconf_list[family] = gifconf;
3573 return 0;
3574}
3575EXPORT_SYMBOL(register_gifconf);
3576
3577
3578/*
3579 * Map an interface index to its name (SIOCGIFNAME)
3580 */
3581
3582/*
3583 * We need this ioctl for efficient implementation of the
3584 * if_indextoname() function required by the IPv6 API. Without
3585 * it, we would have to search all the interfaces to find a
3586 * match. --pb
3587 */
3588
3589static int dev_ifname(struct net *net, struct ifreq __user *arg)
3590{
3591 struct net_device *dev;
3592 struct ifreq ifr;
3593
3594 /*
3595 * Fetch the caller's info block.
3596 */
3597
3598 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3599 return -EFAULT;
3600
3601 rcu_read_lock();
3602 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3603 if (!dev) {
3604 rcu_read_unlock();
3605 return -ENODEV;
3606 }
3607
3608 strcpy(ifr.ifr_name, dev->name);
3609 rcu_read_unlock();
3610
3611 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3612 return -EFAULT;
3613 return 0;
3614}
3615
3616/*
3617 * Perform a SIOCGIFCONF call. This structure will change
3618 * size eventually, and there is nothing I can do about it.
3619 * Thus we will need a 'compatibility mode'.
3620 */
3621
3622static int dev_ifconf(struct net *net, char __user *arg)
3623{
3624 struct ifconf ifc;
3625 struct net_device *dev;
3626 char __user *pos;
3627 int len;
3628 int total;
3629 int i;
3630
3631 /*
3632 * Fetch the caller's info block.
3633 */
3634
3635 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3636 return -EFAULT;
3637
3638 pos = ifc.ifc_buf;
3639 len = ifc.ifc_len;
3640
3641 /*
3642 * Loop over the interfaces, and write an info block for each.
3643 */
3644
3645 total = 0;
3646 for_each_netdev(net, dev) {
3647 for (i = 0; i < NPROTO; i++) {
3648 if (gifconf_list[i]) {
3649 int done;
3650 if (!pos)
3651 done = gifconf_list[i](dev, NULL, 0);
3652 else
3653 done = gifconf_list[i](dev, pos + total,
3654 len - total);
3655 if (done < 0)
3656 return -EFAULT;
3657 total += done;
3658 }
3659 }
3660 }
3661
3662 /*
3663 * All done. Write the updated control block back to the caller.
3664 */
3665 ifc.ifc_len = total;
3666
3667 /*
3668 * Both BSD and Solaris return 0 here, so we do too.
3669 */
3670 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3671}
3672
3673#ifdef CONFIG_PROC_FS
3674/*
3675 * This is invoked by the /proc filesystem handler to display a device
3676 * in detail.
3677 */
3678void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3679 __acquires(RCU)
3680{
3681 struct net *net = seq_file_net(seq);
3682 loff_t off;
3683 struct net_device *dev;
3684
3685 rcu_read_lock();
3686 if (!*pos)
3687 return SEQ_START_TOKEN;
3688
3689 off = 1;
3690 for_each_netdev_rcu(net, dev)
3691 if (off++ == *pos)
3692 return dev;
3693
3694 return NULL;
3695}
3696
3697void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3698{
3699 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3700 first_net_device(seq_file_net(seq)) :
3701 next_net_device((struct net_device *)v);
3702
3703 ++*pos;
3704 return rcu_dereference(dev);
3705}
3706
3707void dev_seq_stop(struct seq_file *seq, void *v)
3708 __releases(RCU)
3709{
3710 rcu_read_unlock();
3711}
3712
3713static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3714{
3715 const struct net_device_stats *stats = dev_get_stats(dev);
3716
3717 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3718 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3719 dev->name, stats->rx_bytes, stats->rx_packets,
3720 stats->rx_errors,
3721 stats->rx_dropped + stats->rx_missed_errors,
3722 stats->rx_fifo_errors,
3723 stats->rx_length_errors + stats->rx_over_errors +
3724 stats->rx_crc_errors + stats->rx_frame_errors,
3725 stats->rx_compressed, stats->multicast,
3726 stats->tx_bytes, stats->tx_packets,
3727 stats->tx_errors, stats->tx_dropped,
3728 stats->tx_fifo_errors, stats->collisions,
3729 stats->tx_carrier_errors +
3730 stats->tx_aborted_errors +
3731 stats->tx_window_errors +
3732 stats->tx_heartbeat_errors,
3733 stats->tx_compressed);
3734}
3735
3736/*
3737 * Called from the PROCfs module. This now uses the new arbitrary sized
3738 * /proc/net interface to create /proc/net/dev
3739 */
3740static int dev_seq_show(struct seq_file *seq, void *v)
3741{
3742 if (v == SEQ_START_TOKEN)
3743 seq_puts(seq, "Inter-| Receive "
3744 " | Transmit\n"
3745 " face |bytes packets errs drop fifo frame "
3746 "compressed multicast|bytes packets errs "
3747 "drop fifo colls carrier compressed\n");
3748 else
3749 dev_seq_printf_stats(seq, v);
3750 return 0;
3751}
3752
3753static struct softnet_data *softnet_get_online(loff_t *pos)
3754{
3755 struct softnet_data *sd = NULL;
3756
3757 while (*pos < nr_cpu_ids)
3758 if (cpu_online(*pos)) {
3759 sd = &per_cpu(softnet_data, *pos);
3760 break;
3761 } else
3762 ++*pos;
3763 return sd;
3764}
3765
3766static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3767{
3768 return softnet_get_online(pos);
3769}
3770
3771static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3772{
3773 ++*pos;
3774 return softnet_get_online(pos);
3775}
3776
3777static void softnet_seq_stop(struct seq_file *seq, void *v)
3778{
3779}
3780
3781static int softnet_seq_show(struct seq_file *seq, void *v)
3782{
3783 struct softnet_data *sd = v;
3784
3785 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3786 sd->processed, sd->dropped, sd->time_squeeze, 0,
3787 0, 0, 0, 0, /* was fastroute */
3788 sd->cpu_collision, sd->received_rps);
3789 return 0;
3790}
3791
3792static const struct seq_operations dev_seq_ops = {
3793 .start = dev_seq_start,
3794 .next = dev_seq_next,
3795 .stop = dev_seq_stop,
3796 .show = dev_seq_show,
3797};
3798
3799static int dev_seq_open(struct inode *inode, struct file *file)
3800{
3801 return seq_open_net(inode, file, &dev_seq_ops,
3802 sizeof(struct seq_net_private));
3803}
3804
3805static const struct file_operations dev_seq_fops = {
3806 .owner = THIS_MODULE,
3807 .open = dev_seq_open,
3808 .read = seq_read,
3809 .llseek = seq_lseek,
3810 .release = seq_release_net,
3811};
3812
3813static const struct seq_operations softnet_seq_ops = {
3814 .start = softnet_seq_start,
3815 .next = softnet_seq_next,
3816 .stop = softnet_seq_stop,
3817 .show = softnet_seq_show,
3818};
3819
3820static int softnet_seq_open(struct inode *inode, struct file *file)
3821{
3822 return seq_open(file, &softnet_seq_ops);
3823}
3824
3825static const struct file_operations softnet_seq_fops = {
3826 .owner = THIS_MODULE,
3827 .open = softnet_seq_open,
3828 .read = seq_read,
3829 .llseek = seq_lseek,
3830 .release = seq_release,
3831};
3832
3833static void *ptype_get_idx(loff_t pos)
3834{
3835 struct packet_type *pt = NULL;
3836 loff_t i = 0;
3837 int t;
3838
3839 list_for_each_entry_rcu(pt, &ptype_all, list) {
3840 if (i == pos)
3841 return pt;
3842 ++i;
3843 }
3844
3845 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3846 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3847 if (i == pos)
3848 return pt;
3849 ++i;
3850 }
3851 }
3852 return NULL;
3853}
3854
3855static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3856 __acquires(RCU)
3857{
3858 rcu_read_lock();
3859 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3860}
3861
3862static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3863{
3864 struct packet_type *pt;
3865 struct list_head *nxt;
3866 int hash;
3867
3868 ++*pos;
3869 if (v == SEQ_START_TOKEN)
3870 return ptype_get_idx(0);
3871
3872 pt = v;
3873 nxt = pt->list.next;
3874 if (pt->type == htons(ETH_P_ALL)) {
3875 if (nxt != &ptype_all)
3876 goto found;
3877 hash = 0;
3878 nxt = ptype_base[0].next;
3879 } else
3880 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3881
3882 while (nxt == &ptype_base[hash]) {
3883 if (++hash >= PTYPE_HASH_SIZE)
3884 return NULL;
3885 nxt = ptype_base[hash].next;
3886 }
3887found:
3888 return list_entry(nxt, struct packet_type, list);
3889}
3890
3891static void ptype_seq_stop(struct seq_file *seq, void *v)
3892 __releases(RCU)
3893{
3894 rcu_read_unlock();
3895}
3896
3897static int ptype_seq_show(struct seq_file *seq, void *v)
3898{
3899 struct packet_type *pt = v;
3900
3901 if (v == SEQ_START_TOKEN)
3902 seq_puts(seq, "Type Device Function\n");
3903 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3904 if (pt->type == htons(ETH_P_ALL))
3905 seq_puts(seq, "ALL ");
3906 else
3907 seq_printf(seq, "%04x", ntohs(pt->type));
3908
3909 seq_printf(seq, " %-8s %pF\n",
3910 pt->dev ? pt->dev->name : "", pt->func);
3911 }
3912
3913 return 0;
3914}
3915
3916static const struct seq_operations ptype_seq_ops = {
3917 .start = ptype_seq_start,
3918 .next = ptype_seq_next,
3919 .stop = ptype_seq_stop,
3920 .show = ptype_seq_show,
3921};
3922
3923static int ptype_seq_open(struct inode *inode, struct file *file)
3924{
3925 return seq_open_net(inode, file, &ptype_seq_ops,
3926 sizeof(struct seq_net_private));
3927}
3928
3929static const struct file_operations ptype_seq_fops = {
3930 .owner = THIS_MODULE,
3931 .open = ptype_seq_open,
3932 .read = seq_read,
3933 .llseek = seq_lseek,
3934 .release = seq_release_net,
3935};
3936
3937
3938static int __net_init dev_proc_net_init(struct net *net)
3939{
3940 int rc = -ENOMEM;
3941
3942 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3943 goto out;
3944 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3945 goto out_dev;
3946 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3947 goto out_softnet;
3948
3949 if (wext_proc_init(net))
3950 goto out_ptype;
3951 rc = 0;
3952out:
3953 return rc;
3954out_ptype:
3955 proc_net_remove(net, "ptype");
3956out_softnet:
3957 proc_net_remove(net, "softnet_stat");
3958out_dev:
3959 proc_net_remove(net, "dev");
3960 goto out;
3961}
3962
3963static void __net_exit dev_proc_net_exit(struct net *net)
3964{
3965 wext_proc_exit(net);
3966
3967 proc_net_remove(net, "ptype");
3968 proc_net_remove(net, "softnet_stat");
3969 proc_net_remove(net, "dev");
3970}
3971
3972static struct pernet_operations __net_initdata dev_proc_ops = {
3973 .init = dev_proc_net_init,
3974 .exit = dev_proc_net_exit,
3975};
3976
3977static int __init dev_proc_init(void)
3978{
3979 return register_pernet_subsys(&dev_proc_ops);
3980}
3981#else
3982#define dev_proc_init() 0
3983#endif /* CONFIG_PROC_FS */
3984
3985
3986/**
3987 * netdev_set_master - set up master/slave pair
3988 * @slave: slave device
3989 * @master: new master device
3990 *
3991 * Changes the master device of the slave. Pass %NULL to break the
3992 * bonding. The caller must hold the RTNL semaphore. On a failure
3993 * a negative errno code is returned. On success the reference counts
3994 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3995 * function returns zero.
3996 */
3997int netdev_set_master(struct net_device *slave, struct net_device *master)
3998{
3999 struct net_device *old = slave->master;
4000
4001 ASSERT_RTNL();
4002
4003 if (master) {
4004 if (old)
4005 return -EBUSY;
4006 dev_hold(master);
4007 }
4008
4009 slave->master = master;
4010
4011 if (old) {
4012 synchronize_net();
4013 dev_put(old);
4014 }
4015 if (master)
4016 slave->flags |= IFF_SLAVE;
4017 else
4018 slave->flags &= ~IFF_SLAVE;
4019
4020 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4021 return 0;
4022}
4023EXPORT_SYMBOL(netdev_set_master);
4024
4025static void dev_change_rx_flags(struct net_device *dev, int flags)
4026{
4027 const struct net_device_ops *ops = dev->netdev_ops;
4028
4029 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4030 ops->ndo_change_rx_flags(dev, flags);
4031}
4032
4033static int __dev_set_promiscuity(struct net_device *dev, int inc)
4034{
4035 unsigned short old_flags = dev->flags;
4036 uid_t uid;
4037 gid_t gid;
4038
4039 ASSERT_RTNL();
4040
4041 dev->flags |= IFF_PROMISC;
4042 dev->promiscuity += inc;
4043 if (dev->promiscuity == 0) {
4044 /*
4045 * Avoid overflow.
4046 * If inc causes overflow, untouch promisc and return error.
4047 */
4048 if (inc < 0)
4049 dev->flags &= ~IFF_PROMISC;
4050 else {
4051 dev->promiscuity -= inc;
4052 printk(KERN_WARNING "%s: promiscuity touches roof, "
4053 "set promiscuity failed, promiscuity feature "
4054 "of device might be broken.\n", dev->name);
4055 return -EOVERFLOW;
4056 }
4057 }
4058 if (dev->flags != old_flags) {
4059 printk(KERN_INFO "device %s %s promiscuous mode\n",
4060 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4061 "left");
4062 if (audit_enabled) {
4063 current_uid_gid(&uid, &gid);
4064 audit_log(current->audit_context, GFP_ATOMIC,
4065 AUDIT_ANOM_PROMISCUOUS,
4066 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4067 dev->name, (dev->flags & IFF_PROMISC),
4068 (old_flags & IFF_PROMISC),
4069 audit_get_loginuid(current),
4070 uid, gid,
4071 audit_get_sessionid(current));
4072 }
4073
4074 dev_change_rx_flags(dev, IFF_PROMISC);
4075 }
4076 return 0;
4077}
4078
4079/**
4080 * dev_set_promiscuity - update promiscuity count on a device
4081 * @dev: device
4082 * @inc: modifier
4083 *
4084 * Add or remove promiscuity from a device. While the count in the device
4085 * remains above zero the interface remains promiscuous. Once it hits zero
4086 * the device reverts back to normal filtering operation. A negative inc
4087 * value is used to drop promiscuity on the device.
4088 * Return 0 if successful or a negative errno code on error.
4089 */
4090int dev_set_promiscuity(struct net_device *dev, int inc)
4091{
4092 unsigned short old_flags = dev->flags;
4093 int err;
4094
4095 err = __dev_set_promiscuity(dev, inc);
4096 if (err < 0)
4097 return err;
4098 if (dev->flags != old_flags)
4099 dev_set_rx_mode(dev);
4100 return err;
4101}
4102EXPORT_SYMBOL(dev_set_promiscuity);
4103
4104/**
4105 * dev_set_allmulti - update allmulti count on a device
4106 * @dev: device
4107 * @inc: modifier
4108 *
4109 * Add or remove reception of all multicast frames to a device. While the
4110 * count in the device remains above zero the interface remains listening
4111 * to all interfaces. Once it hits zero the device reverts back to normal
4112 * filtering operation. A negative @inc value is used to drop the counter
4113 * when releasing a resource needing all multicasts.
4114 * Return 0 if successful or a negative errno code on error.
4115 */
4116
4117int dev_set_allmulti(struct net_device *dev, int inc)
4118{
4119 unsigned short old_flags = dev->flags;
4120
4121 ASSERT_RTNL();
4122
4123 dev->flags |= IFF_ALLMULTI;
4124 dev->allmulti += inc;
4125 if (dev->allmulti == 0) {
4126 /*
4127 * Avoid overflow.
4128 * If inc causes overflow, untouch allmulti and return error.
4129 */
4130 if (inc < 0)
4131 dev->flags &= ~IFF_ALLMULTI;
4132 else {
4133 dev->allmulti -= inc;
4134 printk(KERN_WARNING "%s: allmulti touches roof, "
4135 "set allmulti failed, allmulti feature of "
4136 "device might be broken.\n", dev->name);
4137 return -EOVERFLOW;
4138 }
4139 }
4140 if (dev->flags ^ old_flags) {
4141 dev_change_rx_flags(dev, IFF_ALLMULTI);
4142 dev_set_rx_mode(dev);
4143 }
4144 return 0;
4145}
4146EXPORT_SYMBOL(dev_set_allmulti);
4147
4148/*
4149 * Upload unicast and multicast address lists to device and
4150 * configure RX filtering. When the device doesn't support unicast
4151 * filtering it is put in promiscuous mode while unicast addresses
4152 * are present.
4153 */
4154void __dev_set_rx_mode(struct net_device *dev)
4155{
4156 const struct net_device_ops *ops = dev->netdev_ops;
4157
4158 /* dev_open will call this function so the list will stay sane. */
4159 if (!(dev->flags&IFF_UP))
4160 return;
4161
4162 if (!netif_device_present(dev))
4163 return;
4164
4165 if (ops->ndo_set_rx_mode)
4166 ops->ndo_set_rx_mode(dev);
4167 else {
4168 /* Unicast addresses changes may only happen under the rtnl,
4169 * therefore calling __dev_set_promiscuity here is safe.
4170 */
4171 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4172 __dev_set_promiscuity(dev, 1);
4173 dev->uc_promisc = 1;
4174 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4175 __dev_set_promiscuity(dev, -1);
4176 dev->uc_promisc = 0;
4177 }
4178
4179 if (ops->ndo_set_multicast_list)
4180 ops->ndo_set_multicast_list(dev);
4181 }
4182}
4183
4184void dev_set_rx_mode(struct net_device *dev)
4185{
4186 netif_addr_lock_bh(dev);
4187 __dev_set_rx_mode(dev);
4188 netif_addr_unlock_bh(dev);
4189}
4190
4191/**
4192 * dev_get_flags - get flags reported to userspace
4193 * @dev: device
4194 *
4195 * Get the combination of flag bits exported through APIs to userspace.
4196 */
4197unsigned dev_get_flags(const struct net_device *dev)
4198{
4199 unsigned flags;
4200
4201 flags = (dev->flags & ~(IFF_PROMISC |
4202 IFF_ALLMULTI |
4203 IFF_RUNNING |
4204 IFF_LOWER_UP |
4205 IFF_DORMANT)) |
4206 (dev->gflags & (IFF_PROMISC |
4207 IFF_ALLMULTI));
4208
4209 if (netif_running(dev)) {
4210 if (netif_oper_up(dev))
4211 flags |= IFF_RUNNING;
4212 if (netif_carrier_ok(dev))
4213 flags |= IFF_LOWER_UP;
4214 if (netif_dormant(dev))
4215 flags |= IFF_DORMANT;
4216 }
4217
4218 return flags;
4219}
4220EXPORT_SYMBOL(dev_get_flags);
4221
4222int __dev_change_flags(struct net_device *dev, unsigned int flags)
4223{
4224 int old_flags = dev->flags;
4225 int ret;
4226
4227 ASSERT_RTNL();
4228
4229 /*
4230 * Set the flags on our device.
4231 */
4232
4233 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4234 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4235 IFF_AUTOMEDIA)) |
4236 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4237 IFF_ALLMULTI));
4238
4239 /*
4240 * Load in the correct multicast list now the flags have changed.
4241 */
4242
4243 if ((old_flags ^ flags) & IFF_MULTICAST)
4244 dev_change_rx_flags(dev, IFF_MULTICAST);
4245
4246 dev_set_rx_mode(dev);
4247
4248 /*
4249 * Have we downed the interface. We handle IFF_UP ourselves
4250 * according to user attempts to set it, rather than blindly
4251 * setting it.
4252 */
4253
4254 ret = 0;
4255 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4256 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4257
4258 if (!ret)
4259 dev_set_rx_mode(dev);
4260 }
4261
4262 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4263 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4264
4265 dev->gflags ^= IFF_PROMISC;
4266 dev_set_promiscuity(dev, inc);
4267 }
4268
4269 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4270 is important. Some (broken) drivers set IFF_PROMISC, when
4271 IFF_ALLMULTI is requested not asking us and not reporting.
4272 */
4273 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4274 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4275
4276 dev->gflags ^= IFF_ALLMULTI;
4277 dev_set_allmulti(dev, inc);
4278 }
4279
4280 return ret;
4281}
4282
4283void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4284{
4285 unsigned int changes = dev->flags ^ old_flags;
4286
4287 if (changes & IFF_UP) {
4288 if (dev->flags & IFF_UP)
4289 call_netdevice_notifiers(NETDEV_UP, dev);
4290 else
4291 call_netdevice_notifiers(NETDEV_DOWN, dev);
4292 }
4293
4294 if (dev->flags & IFF_UP &&
4295 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4296 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4297}
4298
4299/**
4300 * dev_change_flags - change device settings
4301 * @dev: device
4302 * @flags: device state flags
4303 *
4304 * Change settings on device based state flags. The flags are
4305 * in the userspace exported format.
4306 */
4307int dev_change_flags(struct net_device *dev, unsigned flags)
4308{
4309 int ret, changes;
4310 int old_flags = dev->flags;
4311
4312 ret = __dev_change_flags(dev, flags);
4313 if (ret < 0)
4314 return ret;
4315
4316 changes = old_flags ^ dev->flags;
4317 if (changes)
4318 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4319
4320 __dev_notify_flags(dev, old_flags);
4321 return ret;
4322}
4323EXPORT_SYMBOL(dev_change_flags);
4324
4325/**
4326 * dev_set_mtu - Change maximum transfer unit
4327 * @dev: device
4328 * @new_mtu: new transfer unit
4329 *
4330 * Change the maximum transfer size of the network device.
4331 */
4332int dev_set_mtu(struct net_device *dev, int new_mtu)
4333{
4334 const struct net_device_ops *ops = dev->netdev_ops;
4335 int err;
4336
4337 if (new_mtu == dev->mtu)
4338 return 0;
4339
4340 /* MTU must be positive. */
4341 if (new_mtu < 0)
4342 return -EINVAL;
4343
4344 if (!netif_device_present(dev))
4345 return -ENODEV;
4346
4347 err = 0;
4348 if (ops->ndo_change_mtu)
4349 err = ops->ndo_change_mtu(dev, new_mtu);
4350 else
4351 dev->mtu = new_mtu;
4352
4353 if (!err && dev->flags & IFF_UP)
4354 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4355 return err;
4356}
4357EXPORT_SYMBOL(dev_set_mtu);
4358
4359/**
4360 * dev_set_mac_address - Change Media Access Control Address
4361 * @dev: device
4362 * @sa: new address
4363 *
4364 * Change the hardware (MAC) address of the device
4365 */
4366int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4367{
4368 const struct net_device_ops *ops = dev->netdev_ops;
4369 int err;
4370
4371 if (!ops->ndo_set_mac_address)
4372 return -EOPNOTSUPP;
4373 if (sa->sa_family != dev->type)
4374 return -EINVAL;
4375 if (!netif_device_present(dev))
4376 return -ENODEV;
4377 err = ops->ndo_set_mac_address(dev, sa);
4378 if (!err)
4379 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4380 return err;
4381}
4382EXPORT_SYMBOL(dev_set_mac_address);
4383
4384/*
4385 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4386 */
4387static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4388{
4389 int err;
4390 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4391
4392 if (!dev)
4393 return -ENODEV;
4394
4395 switch (cmd) {
4396 case SIOCGIFFLAGS: /* Get interface flags */
4397 ifr->ifr_flags = (short) dev_get_flags(dev);
4398 return 0;
4399
4400 case SIOCGIFMETRIC: /* Get the metric on the interface
4401 (currently unused) */
4402 ifr->ifr_metric = 0;
4403 return 0;
4404
4405 case SIOCGIFMTU: /* Get the MTU of a device */
4406 ifr->ifr_mtu = dev->mtu;
4407 return 0;
4408
4409 case SIOCGIFHWADDR:
4410 if (!dev->addr_len)
4411 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4412 else
4413 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4414 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4415 ifr->ifr_hwaddr.sa_family = dev->type;
4416 return 0;
4417
4418 case SIOCGIFSLAVE:
4419 err = -EINVAL;
4420 break;
4421
4422 case SIOCGIFMAP:
4423 ifr->ifr_map.mem_start = dev->mem_start;
4424 ifr->ifr_map.mem_end = dev->mem_end;
4425 ifr->ifr_map.base_addr = dev->base_addr;
4426 ifr->ifr_map.irq = dev->irq;
4427 ifr->ifr_map.dma = dev->dma;
4428 ifr->ifr_map.port = dev->if_port;
4429 return 0;
4430
4431 case SIOCGIFINDEX:
4432 ifr->ifr_ifindex = dev->ifindex;
4433 return 0;
4434
4435 case SIOCGIFTXQLEN:
4436 ifr->ifr_qlen = dev->tx_queue_len;
4437 return 0;
4438
4439 default:
4440 /* dev_ioctl() should ensure this case
4441 * is never reached
4442 */
4443 WARN_ON(1);
4444 err = -EINVAL;
4445 break;
4446
4447 }
4448 return err;
4449}
4450
4451/*
4452 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4453 */
4454static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4455{
4456 int err;
4457 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4458 const struct net_device_ops *ops;
4459
4460 if (!dev)
4461 return -ENODEV;
4462
4463 ops = dev->netdev_ops;
4464
4465 switch (cmd) {
4466 case SIOCSIFFLAGS: /* Set interface flags */
4467 return dev_change_flags(dev, ifr->ifr_flags);
4468
4469 case SIOCSIFMETRIC: /* Set the metric on the interface
4470 (currently unused) */
4471 return -EOPNOTSUPP;
4472
4473 case SIOCSIFMTU: /* Set the MTU of a device */
4474 return dev_set_mtu(dev, ifr->ifr_mtu);
4475
4476 case SIOCSIFHWADDR:
4477 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4478
4479 case SIOCSIFHWBROADCAST:
4480 if (ifr->ifr_hwaddr.sa_family != dev->type)
4481 return -EINVAL;
4482 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4483 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4484 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4485 return 0;
4486
4487 case SIOCSIFMAP:
4488 if (ops->ndo_set_config) {
4489 if (!netif_device_present(dev))
4490 return -ENODEV;
4491 return ops->ndo_set_config(dev, &ifr->ifr_map);
4492 }
4493 return -EOPNOTSUPP;
4494
4495 case SIOCADDMULTI:
4496 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4497 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4498 return -EINVAL;
4499 if (!netif_device_present(dev))
4500 return -ENODEV;
4501 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4502
4503 case SIOCDELMULTI:
4504 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4505 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4506 return -EINVAL;
4507 if (!netif_device_present(dev))
4508 return -ENODEV;
4509 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4510
4511 case SIOCSIFTXQLEN:
4512 if (ifr->ifr_qlen < 0)
4513 return -EINVAL;
4514 dev->tx_queue_len = ifr->ifr_qlen;
4515 return 0;
4516
4517 case SIOCSIFNAME:
4518 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4519 return dev_change_name(dev, ifr->ifr_newname);
4520
4521 /*
4522 * Unknown or private ioctl
4523 */
4524 default:
4525 if ((cmd >= SIOCDEVPRIVATE &&
4526 cmd <= SIOCDEVPRIVATE + 15) ||
4527 cmd == SIOCBONDENSLAVE ||
4528 cmd == SIOCBONDRELEASE ||
4529 cmd == SIOCBONDSETHWADDR ||
4530 cmd == SIOCBONDSLAVEINFOQUERY ||
4531 cmd == SIOCBONDINFOQUERY ||
4532 cmd == SIOCBONDCHANGEACTIVE ||
4533 cmd == SIOCGMIIPHY ||
4534 cmd == SIOCGMIIREG ||
4535 cmd == SIOCSMIIREG ||
4536 cmd == SIOCBRADDIF ||
4537 cmd == SIOCBRDELIF ||
4538 cmd == SIOCSHWTSTAMP ||
4539 cmd == SIOCWANDEV) {
4540 err = -EOPNOTSUPP;
4541 if (ops->ndo_do_ioctl) {
4542 if (netif_device_present(dev))
4543 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4544 else
4545 err = -ENODEV;
4546 }
4547 } else
4548 err = -EINVAL;
4549
4550 }
4551 return err;
4552}
4553
4554/*
4555 * This function handles all "interface"-type I/O control requests. The actual
4556 * 'doing' part of this is dev_ifsioc above.
4557 */
4558
4559/**
4560 * dev_ioctl - network device ioctl
4561 * @net: the applicable net namespace
4562 * @cmd: command to issue
4563 * @arg: pointer to a struct ifreq in user space
4564 *
4565 * Issue ioctl functions to devices. This is normally called by the
4566 * user space syscall interfaces but can sometimes be useful for
4567 * other purposes. The return value is the return from the syscall if
4568 * positive or a negative errno code on error.
4569 */
4570
4571int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4572{
4573 struct ifreq ifr;
4574 int ret;
4575 char *colon;
4576
4577 /* One special case: SIOCGIFCONF takes ifconf argument
4578 and requires shared lock, because it sleeps writing
4579 to user space.
4580 */
4581
4582 if (cmd == SIOCGIFCONF) {
4583 rtnl_lock();
4584 ret = dev_ifconf(net, (char __user *) arg);
4585 rtnl_unlock();
4586 return ret;
4587 }
4588 if (cmd == SIOCGIFNAME)
4589 return dev_ifname(net, (struct ifreq __user *)arg);
4590
4591 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4592 return -EFAULT;
4593
4594 ifr.ifr_name[IFNAMSIZ-1] = 0;
4595
4596 colon = strchr(ifr.ifr_name, ':');
4597 if (colon)
4598 *colon = 0;
4599
4600 /*
4601 * See which interface the caller is talking about.
4602 */
4603
4604 switch (cmd) {
4605 /*
4606 * These ioctl calls:
4607 * - can be done by all.
4608 * - atomic and do not require locking.
4609 * - return a value
4610 */
4611 case SIOCGIFFLAGS:
4612 case SIOCGIFMETRIC:
4613 case SIOCGIFMTU:
4614 case SIOCGIFHWADDR:
4615 case SIOCGIFSLAVE:
4616 case SIOCGIFMAP:
4617 case SIOCGIFINDEX:
4618 case SIOCGIFTXQLEN:
4619 dev_load(net, ifr.ifr_name);
4620 rcu_read_lock();
4621 ret = dev_ifsioc_locked(net, &ifr, cmd);
4622 rcu_read_unlock();
4623 if (!ret) {
4624 if (colon)
4625 *colon = ':';
4626 if (copy_to_user(arg, &ifr,
4627 sizeof(struct ifreq)))
4628 ret = -EFAULT;
4629 }
4630 return ret;
4631
4632 case SIOCETHTOOL:
4633 dev_load(net, ifr.ifr_name);
4634 rtnl_lock();
4635 ret = dev_ethtool(net, &ifr);
4636 rtnl_unlock();
4637 if (!ret) {
4638 if (colon)
4639 *colon = ':';
4640 if (copy_to_user(arg, &ifr,
4641 sizeof(struct ifreq)))
4642 ret = -EFAULT;
4643 }
4644 return ret;
4645
4646 /*
4647 * These ioctl calls:
4648 * - require superuser power.
4649 * - require strict serialization.
4650 * - return a value
4651 */
4652 case SIOCGMIIPHY:
4653 case SIOCGMIIREG:
4654 case SIOCSIFNAME:
4655 if (!capable(CAP_NET_ADMIN))
4656 return -EPERM;
4657 dev_load(net, ifr.ifr_name);
4658 rtnl_lock();
4659 ret = dev_ifsioc(net, &ifr, cmd);
4660 rtnl_unlock();
4661 if (!ret) {
4662 if (colon)
4663 *colon = ':';
4664 if (copy_to_user(arg, &ifr,
4665 sizeof(struct ifreq)))
4666 ret = -EFAULT;
4667 }
4668 return ret;
4669
4670 /*
4671 * These ioctl calls:
4672 * - require superuser power.
4673 * - require strict serialization.
4674 * - do not return a value
4675 */
4676 case SIOCSIFFLAGS:
4677 case SIOCSIFMETRIC:
4678 case SIOCSIFMTU:
4679 case SIOCSIFMAP:
4680 case SIOCSIFHWADDR:
4681 case SIOCSIFSLAVE:
4682 case SIOCADDMULTI:
4683 case SIOCDELMULTI:
4684 case SIOCSIFHWBROADCAST:
4685 case SIOCSIFTXQLEN:
4686 case SIOCSMIIREG:
4687 case SIOCBONDENSLAVE:
4688 case SIOCBONDRELEASE:
4689 case SIOCBONDSETHWADDR:
4690 case SIOCBONDCHANGEACTIVE:
4691 case SIOCBRADDIF:
4692 case SIOCBRDELIF:
4693 case SIOCSHWTSTAMP:
4694 if (!capable(CAP_NET_ADMIN))
4695 return -EPERM;
4696 /* fall through */
4697 case SIOCBONDSLAVEINFOQUERY:
4698 case SIOCBONDINFOQUERY:
4699 dev_load(net, ifr.ifr_name);
4700 rtnl_lock();
4701 ret = dev_ifsioc(net, &ifr, cmd);
4702 rtnl_unlock();
4703 return ret;
4704
4705 case SIOCGIFMEM:
4706 /* Get the per device memory space. We can add this but
4707 * currently do not support it */
4708 case SIOCSIFMEM:
4709 /* Set the per device memory buffer space.
4710 * Not applicable in our case */
4711 case SIOCSIFLINK:
4712 return -EINVAL;
4713
4714 /*
4715 * Unknown or private ioctl.
4716 */
4717 default:
4718 if (cmd == SIOCWANDEV ||
4719 (cmd >= SIOCDEVPRIVATE &&
4720 cmd <= SIOCDEVPRIVATE + 15)) {
4721 dev_load(net, ifr.ifr_name);
4722 rtnl_lock();
4723 ret = dev_ifsioc(net, &ifr, cmd);
4724 rtnl_unlock();
4725 if (!ret && copy_to_user(arg, &ifr,
4726 sizeof(struct ifreq)))
4727 ret = -EFAULT;
4728 return ret;
4729 }
4730 /* Take care of Wireless Extensions */
4731 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4732 return wext_handle_ioctl(net, &ifr, cmd, arg);
4733 return -EINVAL;
4734 }
4735}
4736
4737
4738/**
4739 * dev_new_index - allocate an ifindex
4740 * @net: the applicable net namespace
4741 *
4742 * Returns a suitable unique value for a new device interface
4743 * number. The caller must hold the rtnl semaphore or the
4744 * dev_base_lock to be sure it remains unique.
4745 */
4746static int dev_new_index(struct net *net)
4747{
4748 static int ifindex;
4749 for (;;) {
4750 if (++ifindex <= 0)
4751 ifindex = 1;
4752 if (!__dev_get_by_index(net, ifindex))
4753 return ifindex;
4754 }
4755}
4756
4757/* Delayed registration/unregisteration */
4758static LIST_HEAD(net_todo_list);
4759
4760static void net_set_todo(struct net_device *dev)
4761{
4762 list_add_tail(&dev->todo_list, &net_todo_list);
4763}
4764
4765static void rollback_registered_many(struct list_head *head)
4766{
4767 struct net_device *dev, *tmp;
4768
4769 BUG_ON(dev_boot_phase);
4770 ASSERT_RTNL();
4771
4772 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4773 /* Some devices call without registering
4774 * for initialization unwind. Remove those
4775 * devices and proceed with the remaining.
4776 */
4777 if (dev->reg_state == NETREG_UNINITIALIZED) {
4778 pr_debug("unregister_netdevice: device %s/%p never "
4779 "was registered\n", dev->name, dev);
4780
4781 WARN_ON(1);
4782 list_del(&dev->unreg_list);
4783 continue;
4784 }
4785
4786 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4787
4788 /* If device is running, close it first. */
4789 dev_close(dev);
4790
4791 /* And unlink it from device chain. */
4792 unlist_netdevice(dev);
4793
4794 dev->reg_state = NETREG_UNREGISTERING;
4795 }
4796
4797 synchronize_net();
4798
4799 list_for_each_entry(dev, head, unreg_list) {
4800 /* Shutdown queueing discipline. */
4801 dev_shutdown(dev);
4802
4803
4804 /* Notify protocols, that we are about to destroy
4805 this device. They should clean all the things.
4806 */
4807 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4808
4809 if (!dev->rtnl_link_ops ||
4810 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4811 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4812
4813 /*
4814 * Flush the unicast and multicast chains
4815 */
4816 dev_uc_flush(dev);
4817 dev_mc_flush(dev);
4818
4819 if (dev->netdev_ops->ndo_uninit)
4820 dev->netdev_ops->ndo_uninit(dev);
4821
4822 /* Notifier chain MUST detach us from master device. */
4823 WARN_ON(dev->master);
4824
4825 /* Remove entries from kobject tree */
4826 netdev_unregister_kobject(dev);
4827 }
4828
4829 /* Process any work delayed until the end of the batch */
4830 dev = list_first_entry(head, struct net_device, unreg_list);
4831 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4832
4833 synchronize_net();
4834
4835 list_for_each_entry(dev, head, unreg_list)
4836 dev_put(dev);
4837}
4838
4839static void rollback_registered(struct net_device *dev)
4840{
4841 LIST_HEAD(single);
4842
4843 list_add(&dev->unreg_list, &single);
4844 rollback_registered_many(&single);
4845}
4846
4847static void __netdev_init_queue_locks_one(struct net_device *dev,
4848 struct netdev_queue *dev_queue,
4849 void *_unused)
4850{
4851 spin_lock_init(&dev_queue->_xmit_lock);
4852 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4853 dev_queue->xmit_lock_owner = -1;
4854}
4855
4856static void netdev_init_queue_locks(struct net_device *dev)
4857{
4858 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4859 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4860}
4861
4862unsigned long netdev_fix_features(unsigned long features, const char *name)
4863{
4864 /* Fix illegal SG+CSUM combinations. */
4865 if ((features & NETIF_F_SG) &&
4866 !(features & NETIF_F_ALL_CSUM)) {
4867 if (name)
4868 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4869 "checksum feature.\n", name);
4870 features &= ~NETIF_F_SG;
4871 }
4872
4873 /* TSO requires that SG is present as well. */
4874 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4875 if (name)
4876 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4877 "SG feature.\n", name);
4878 features &= ~NETIF_F_TSO;
4879 }
4880
4881 if (features & NETIF_F_UFO) {
4882 if (!(features & NETIF_F_GEN_CSUM)) {
4883 if (name)
4884 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4885 "since no NETIF_F_HW_CSUM feature.\n",
4886 name);
4887 features &= ~NETIF_F_UFO;
4888 }
4889
4890 if (!(features & NETIF_F_SG)) {
4891 if (name)
4892 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4893 "since no NETIF_F_SG feature.\n", name);
4894 features &= ~NETIF_F_UFO;
4895 }
4896 }
4897
4898 return features;
4899}
4900EXPORT_SYMBOL(netdev_fix_features);
4901
4902/**
4903 * netif_stacked_transfer_operstate - transfer operstate
4904 * @rootdev: the root or lower level device to transfer state from
4905 * @dev: the device to transfer operstate to
4906 *
4907 * Transfer operational state from root to device. This is normally
4908 * called when a stacking relationship exists between the root
4909 * device and the device(a leaf device).
4910 */
4911void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4912 struct net_device *dev)
4913{
4914 if (rootdev->operstate == IF_OPER_DORMANT)
4915 netif_dormant_on(dev);
4916 else
4917 netif_dormant_off(dev);
4918
4919 if (netif_carrier_ok(rootdev)) {
4920 if (!netif_carrier_ok(dev))
4921 netif_carrier_on(dev);
4922 } else {
4923 if (netif_carrier_ok(dev))
4924 netif_carrier_off(dev);
4925 }
4926}
4927EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4928
4929/**
4930 * register_netdevice - register a network device
4931 * @dev: device to register
4932 *
4933 * Take a completed network device structure and add it to the kernel
4934 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4935 * chain. 0 is returned on success. A negative errno code is returned
4936 * on a failure to set up the device, or if the name is a duplicate.
4937 *
4938 * Callers must hold the rtnl semaphore. You may want
4939 * register_netdev() instead of this.
4940 *
4941 * BUGS:
4942 * The locking appears insufficient to guarantee two parallel registers
4943 * will not get the same name.
4944 */
4945
4946int register_netdevice(struct net_device *dev)
4947{
4948 int ret;
4949 struct net *net = dev_net(dev);
4950
4951 BUG_ON(dev_boot_phase);
4952 ASSERT_RTNL();
4953
4954 might_sleep();
4955
4956 /* When net_device's are persistent, this will be fatal. */
4957 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4958 BUG_ON(!net);
4959
4960 spin_lock_init(&dev->addr_list_lock);
4961 netdev_set_addr_lockdep_class(dev);
4962 netdev_init_queue_locks(dev);
4963
4964 dev->iflink = -1;
4965
4966#ifdef CONFIG_RPS
4967 if (!dev->num_rx_queues) {
4968 /*
4969 * Allocate a single RX queue if driver never called
4970 * alloc_netdev_mq
4971 */
4972
4973 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4974 if (!dev->_rx) {
4975 ret = -ENOMEM;
4976 goto out;
4977 }
4978
4979 dev->_rx->first = dev->_rx;
4980 atomic_set(&dev->_rx->count, 1);
4981 dev->num_rx_queues = 1;
4982 }
4983#endif
4984 /* Init, if this function is available */
4985 if (dev->netdev_ops->ndo_init) {
4986 ret = dev->netdev_ops->ndo_init(dev);
4987 if (ret) {
4988 if (ret > 0)
4989 ret = -EIO;
4990 goto out;
4991 }
4992 }
4993
4994 ret = dev_get_valid_name(dev, dev->name, 0);
4995 if (ret)
4996 goto err_uninit;
4997
4998 dev->ifindex = dev_new_index(net);
4999 if (dev->iflink == -1)
5000 dev->iflink = dev->ifindex;
5001
5002 /* Fix illegal checksum combinations */
5003 if ((dev->features & NETIF_F_HW_CSUM) &&
5004 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5005 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5006 dev->name);
5007 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5008 }
5009
5010 if ((dev->features & NETIF_F_NO_CSUM) &&
5011 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5012 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5013 dev->name);
5014 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5015 }
5016
5017 dev->features = netdev_fix_features(dev->features, dev->name);
5018
5019 /* Enable software GSO if SG is supported. */
5020 if (dev->features & NETIF_F_SG)
5021 dev->features |= NETIF_F_GSO;
5022
5023 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5024 ret = notifier_to_errno(ret);
5025 if (ret)
5026 goto err_uninit;
5027
5028 ret = netdev_register_kobject(dev);
5029 if (ret)
5030 goto err_uninit;
5031 dev->reg_state = NETREG_REGISTERED;
5032
5033 /*
5034 * Default initial state at registry is that the
5035 * device is present.
5036 */
5037
5038 set_bit(__LINK_STATE_PRESENT, &dev->state);
5039
5040 dev_init_scheduler(dev);
5041 dev_hold(dev);
5042 list_netdevice(dev);
5043
5044 /* Notify protocols, that a new device appeared. */
5045 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5046 ret = notifier_to_errno(ret);
5047 if (ret) {
5048 rollback_registered(dev);
5049 dev->reg_state = NETREG_UNREGISTERED;
5050 }
5051 /*
5052 * Prevent userspace races by waiting until the network
5053 * device is fully setup before sending notifications.
5054 */
5055 if (!dev->rtnl_link_ops ||
5056 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5057 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5058
5059out:
5060 return ret;
5061
5062err_uninit:
5063 if (dev->netdev_ops->ndo_uninit)
5064 dev->netdev_ops->ndo_uninit(dev);
5065 goto out;
5066}
5067EXPORT_SYMBOL(register_netdevice);
5068
5069/**
5070 * init_dummy_netdev - init a dummy network device for NAPI
5071 * @dev: device to init
5072 *
5073 * This takes a network device structure and initialize the minimum
5074 * amount of fields so it can be used to schedule NAPI polls without
5075 * registering a full blown interface. This is to be used by drivers
5076 * that need to tie several hardware interfaces to a single NAPI
5077 * poll scheduler due to HW limitations.
5078 */
5079int init_dummy_netdev(struct net_device *dev)
5080{
5081 /* Clear everything. Note we don't initialize spinlocks
5082 * are they aren't supposed to be taken by any of the
5083 * NAPI code and this dummy netdev is supposed to be
5084 * only ever used for NAPI polls
5085 */
5086 memset(dev, 0, sizeof(struct net_device));
5087
5088 /* make sure we BUG if trying to hit standard
5089 * register/unregister code path
5090 */
5091 dev->reg_state = NETREG_DUMMY;
5092
5093 /* initialize the ref count */
5094 atomic_set(&dev->refcnt, 1);
5095
5096 /* NAPI wants this */
5097 INIT_LIST_HEAD(&dev->napi_list);
5098
5099 /* a dummy interface is started by default */
5100 set_bit(__LINK_STATE_PRESENT, &dev->state);
5101 set_bit(__LINK_STATE_START, &dev->state);
5102
5103 return 0;
5104}
5105EXPORT_SYMBOL_GPL(init_dummy_netdev);
5106
5107
5108/**
5109 * register_netdev - register a network device
5110 * @dev: device to register
5111 *
5112 * Take a completed network device structure and add it to the kernel
5113 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5114 * chain. 0 is returned on success. A negative errno code is returned
5115 * on a failure to set up the device, or if the name is a duplicate.
5116 *
5117 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5118 * and expands the device name if you passed a format string to
5119 * alloc_netdev.
5120 */
5121int register_netdev(struct net_device *dev)
5122{
5123 int err;
5124
5125 rtnl_lock();
5126
5127 /*
5128 * If the name is a format string the caller wants us to do a
5129 * name allocation.
5130 */
5131 if (strchr(dev->name, '%')) {
5132 err = dev_alloc_name(dev, dev->name);
5133 if (err < 0)
5134 goto out;
5135 }
5136
5137 err = register_netdevice(dev);
5138out:
5139 rtnl_unlock();
5140 return err;
5141}
5142EXPORT_SYMBOL(register_netdev);
5143
5144/*
5145 * netdev_wait_allrefs - wait until all references are gone.
5146 *
5147 * This is called when unregistering network devices.
5148 *
5149 * Any protocol or device that holds a reference should register
5150 * for netdevice notification, and cleanup and put back the
5151 * reference if they receive an UNREGISTER event.
5152 * We can get stuck here if buggy protocols don't correctly
5153 * call dev_put.
5154 */
5155static void netdev_wait_allrefs(struct net_device *dev)
5156{
5157 unsigned long rebroadcast_time, warning_time;
5158
5159 linkwatch_forget_dev(dev);
5160
5161 rebroadcast_time = warning_time = jiffies;
5162 while (atomic_read(&dev->refcnt) != 0) {
5163 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5164 rtnl_lock();
5165
5166 /* Rebroadcast unregister notification */
5167 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5168 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5169 * should have already handle it the first time */
5170
5171 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5172 &dev->state)) {
5173 /* We must not have linkwatch events
5174 * pending on unregister. If this
5175 * happens, we simply run the queue
5176 * unscheduled, resulting in a noop
5177 * for this device.
5178 */
5179 linkwatch_run_queue();
5180 }
5181
5182 __rtnl_unlock();
5183
5184 rebroadcast_time = jiffies;
5185 }
5186
5187 msleep(250);
5188
5189 if (time_after(jiffies, warning_time + 10 * HZ)) {
5190 printk(KERN_EMERG "unregister_netdevice: "
5191 "waiting for %s to become free. Usage "
5192 "count = %d\n",
5193 dev->name, atomic_read(&dev->refcnt));
5194 warning_time = jiffies;
5195 }
5196 }
5197}
5198
5199/* The sequence is:
5200 *
5201 * rtnl_lock();
5202 * ...
5203 * register_netdevice(x1);
5204 * register_netdevice(x2);
5205 * ...
5206 * unregister_netdevice(y1);
5207 * unregister_netdevice(y2);
5208 * ...
5209 * rtnl_unlock();
5210 * free_netdev(y1);
5211 * free_netdev(y2);
5212 *
5213 * We are invoked by rtnl_unlock().
5214 * This allows us to deal with problems:
5215 * 1) We can delete sysfs objects which invoke hotplug
5216 * without deadlocking with linkwatch via keventd.
5217 * 2) Since we run with the RTNL semaphore not held, we can sleep
5218 * safely in order to wait for the netdev refcnt to drop to zero.
5219 *
5220 * We must not return until all unregister events added during
5221 * the interval the lock was held have been completed.
5222 */
5223void netdev_run_todo(void)
5224{
5225 struct list_head list;
5226
5227 /* Snapshot list, allow later requests */
5228 list_replace_init(&net_todo_list, &list);
5229
5230 __rtnl_unlock();
5231
5232 while (!list_empty(&list)) {
5233 struct net_device *dev
5234 = list_first_entry(&list, struct net_device, todo_list);
5235 list_del(&dev->todo_list);
5236
5237 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5238 printk(KERN_ERR "network todo '%s' but state %d\n",
5239 dev->name, dev->reg_state);
5240 dump_stack();
5241 continue;
5242 }
5243
5244 dev->reg_state = NETREG_UNREGISTERED;
5245
5246 on_each_cpu(flush_backlog, dev, 1);
5247
5248 netdev_wait_allrefs(dev);
5249
5250 /* paranoia */
5251 BUG_ON(atomic_read(&dev->refcnt));
5252 WARN_ON(dev->ip_ptr);
5253 WARN_ON(dev->ip6_ptr);
5254 WARN_ON(dev->dn_ptr);
5255
5256 if (dev->destructor)
5257 dev->destructor(dev);
5258
5259 /* Free network device */
5260 kobject_put(&dev->dev.kobj);
5261 }
5262}
5263
5264/**
5265 * dev_txq_stats_fold - fold tx_queues stats
5266 * @dev: device to get statistics from
5267 * @stats: struct net_device_stats to hold results
5268 */
5269void dev_txq_stats_fold(const struct net_device *dev,
5270 struct net_device_stats *stats)
5271{
5272 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5273 unsigned int i;
5274 struct netdev_queue *txq;
5275
5276 for (i = 0; i < dev->num_tx_queues; i++) {
5277 txq = netdev_get_tx_queue(dev, i);
5278 tx_bytes += txq->tx_bytes;
5279 tx_packets += txq->tx_packets;
5280 tx_dropped += txq->tx_dropped;
5281 }
5282 if (tx_bytes || tx_packets || tx_dropped) {
5283 stats->tx_bytes = tx_bytes;
5284 stats->tx_packets = tx_packets;
5285 stats->tx_dropped = tx_dropped;
5286 }
5287}
5288EXPORT_SYMBOL(dev_txq_stats_fold);
5289
5290/**
5291 * dev_get_stats - get network device statistics
5292 * @dev: device to get statistics from
5293 *
5294 * Get network statistics from device. The device driver may provide
5295 * its own method by setting dev->netdev_ops->get_stats; otherwise
5296 * the internal statistics structure is used.
5297 */
5298const struct net_device_stats *dev_get_stats(struct net_device *dev)
5299{
5300 const struct net_device_ops *ops = dev->netdev_ops;
5301
5302 if (ops->ndo_get_stats)
5303 return ops->ndo_get_stats(dev);
5304
5305 dev_txq_stats_fold(dev, &dev->stats);
5306 return &dev->stats;
5307}
5308EXPORT_SYMBOL(dev_get_stats);
5309
5310static void netdev_init_one_queue(struct net_device *dev,
5311 struct netdev_queue *queue,
5312 void *_unused)
5313{
5314 queue->dev = dev;
5315}
5316
5317static void netdev_init_queues(struct net_device *dev)
5318{
5319 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5320 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5321 spin_lock_init(&dev->tx_global_lock);
5322}
5323
5324/**
5325 * alloc_netdev_mq - allocate network device
5326 * @sizeof_priv: size of private data to allocate space for
5327 * @name: device name format string
5328 * @setup: callback to initialize device
5329 * @queue_count: the number of subqueues to allocate
5330 *
5331 * Allocates a struct net_device with private data area for driver use
5332 * and performs basic initialization. Also allocates subquue structs
5333 * for each queue on the device at the end of the netdevice.
5334 */
5335struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5336 void (*setup)(struct net_device *), unsigned int queue_count)
5337{
5338 struct netdev_queue *tx;
5339 struct net_device *dev;
5340 size_t alloc_size;
5341 struct net_device *p;
5342#ifdef CONFIG_RPS
5343 struct netdev_rx_queue *rx;
5344 int i;
5345#endif
5346
5347 BUG_ON(strlen(name) >= sizeof(dev->name));
5348
5349 alloc_size = sizeof(struct net_device);
5350 if (sizeof_priv) {
5351 /* ensure 32-byte alignment of private area */
5352 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5353 alloc_size += sizeof_priv;
5354 }
5355 /* ensure 32-byte alignment of whole construct */
5356 alloc_size += NETDEV_ALIGN - 1;
5357
5358 p = kzalloc(alloc_size, GFP_KERNEL);
5359 if (!p) {
5360 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5361 return NULL;
5362 }
5363
5364 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5365 if (!tx) {
5366 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5367 "tx qdiscs.\n");
5368 goto free_p;
5369 }
5370
5371#ifdef CONFIG_RPS
5372 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5373 if (!rx) {
5374 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5375 "rx queues.\n");
5376 goto free_tx;
5377 }
5378
5379 atomic_set(&rx->count, queue_count);
5380
5381 /*
5382 * Set a pointer to first element in the array which holds the
5383 * reference count.
5384 */
5385 for (i = 0; i < queue_count; i++)
5386 rx[i].first = rx;
5387#endif
5388
5389 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5390 dev->padded = (char *)dev - (char *)p;
5391
5392 if (dev_addr_init(dev))
5393 goto free_rx;
5394
5395 dev_mc_init(dev);
5396 dev_uc_init(dev);
5397
5398 dev_net_set(dev, &init_net);
5399
5400 dev->_tx = tx;
5401 dev->num_tx_queues = queue_count;
5402 dev->real_num_tx_queues = queue_count;
5403
5404#ifdef CONFIG_RPS
5405 dev->_rx = rx;
5406 dev->num_rx_queues = queue_count;
5407#endif
5408
5409 dev->gso_max_size = GSO_MAX_SIZE;
5410
5411 netdev_init_queues(dev);
5412
5413 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5414 dev->ethtool_ntuple_list.count = 0;
5415 INIT_LIST_HEAD(&dev->napi_list);
5416 INIT_LIST_HEAD(&dev->unreg_list);
5417 INIT_LIST_HEAD(&dev->link_watch_list);
5418 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5419 setup(dev);
5420 strcpy(dev->name, name);
5421 return dev;
5422
5423free_rx:
5424#ifdef CONFIG_RPS
5425 kfree(rx);
5426free_tx:
5427#endif
5428 kfree(tx);
5429free_p:
5430 kfree(p);
5431 return NULL;
5432}
5433EXPORT_SYMBOL(alloc_netdev_mq);
5434
5435/**
5436 * free_netdev - free network device
5437 * @dev: device
5438 *
5439 * This function does the last stage of destroying an allocated device
5440 * interface. The reference to the device object is released.
5441 * If this is the last reference then it will be freed.
5442 */
5443void free_netdev(struct net_device *dev)
5444{
5445 struct napi_struct *p, *n;
5446
5447 release_net(dev_net(dev));
5448
5449 kfree(dev->_tx);
5450
5451 /* Flush device addresses */
5452 dev_addr_flush(dev);
5453
5454 /* Clear ethtool n-tuple list */
5455 ethtool_ntuple_flush(dev);
5456
5457 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5458 netif_napi_del(p);
5459
5460 /* Compatibility with error handling in drivers */
5461 if (dev->reg_state == NETREG_UNINITIALIZED) {
5462 kfree((char *)dev - dev->padded);
5463 return;
5464 }
5465
5466 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5467 dev->reg_state = NETREG_RELEASED;
5468
5469 /* will free via device release */
5470 put_device(&dev->dev);
5471}
5472EXPORT_SYMBOL(free_netdev);
5473
5474/**
5475 * synchronize_net - Synchronize with packet receive processing
5476 *
5477 * Wait for packets currently being received to be done.
5478 * Does not block later packets from starting.
5479 */
5480void synchronize_net(void)
5481{
5482 might_sleep();
5483 synchronize_rcu();
5484}
5485EXPORT_SYMBOL(synchronize_net);
5486
5487/**
5488 * unregister_netdevice_queue - remove device from the kernel
5489 * @dev: device
5490 * @head: list
5491 *
5492 * This function shuts down a device interface and removes it
5493 * from the kernel tables.
5494 * If head not NULL, device is queued to be unregistered later.
5495 *
5496 * Callers must hold the rtnl semaphore. You may want
5497 * unregister_netdev() instead of this.
5498 */
5499
5500void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5501{
5502 ASSERT_RTNL();
5503
5504 if (head) {
5505 list_move_tail(&dev->unreg_list, head);
5506 } else {
5507 rollback_registered(dev);
5508 /* Finish processing unregister after unlock */
5509 net_set_todo(dev);
5510 }
5511}
5512EXPORT_SYMBOL(unregister_netdevice_queue);
5513
5514/**
5515 * unregister_netdevice_many - unregister many devices
5516 * @head: list of devices
5517 */
5518void unregister_netdevice_many(struct list_head *head)
5519{
5520 struct net_device *dev;
5521
5522 if (!list_empty(head)) {
5523 rollback_registered_many(head);
5524 list_for_each_entry(dev, head, unreg_list)
5525 net_set_todo(dev);
5526 }
5527}
5528EXPORT_SYMBOL(unregister_netdevice_many);
5529
5530/**
5531 * unregister_netdev - remove device from the kernel
5532 * @dev: device
5533 *
5534 * This function shuts down a device interface and removes it
5535 * from the kernel tables.
5536 *
5537 * This is just a wrapper for unregister_netdevice that takes
5538 * the rtnl semaphore. In general you want to use this and not
5539 * unregister_netdevice.
5540 */
5541void unregister_netdev(struct net_device *dev)
5542{
5543 rtnl_lock();
5544 unregister_netdevice(dev);
5545 rtnl_unlock();
5546}
5547EXPORT_SYMBOL(unregister_netdev);
5548
5549/**
5550 * dev_change_net_namespace - move device to different nethost namespace
5551 * @dev: device
5552 * @net: network namespace
5553 * @pat: If not NULL name pattern to try if the current device name
5554 * is already taken in the destination network namespace.
5555 *
5556 * This function shuts down a device interface and moves it
5557 * to a new network namespace. On success 0 is returned, on
5558 * a failure a netagive errno code is returned.
5559 *
5560 * Callers must hold the rtnl semaphore.
5561 */
5562
5563int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5564{
5565 int err;
5566
5567 ASSERT_RTNL();
5568
5569 /* Don't allow namespace local devices to be moved. */
5570 err = -EINVAL;
5571 if (dev->features & NETIF_F_NETNS_LOCAL)
5572 goto out;
5573
5574 /* Ensure the device has been registrered */
5575 err = -EINVAL;
5576 if (dev->reg_state != NETREG_REGISTERED)
5577 goto out;
5578
5579 /* Get out if there is nothing todo */
5580 err = 0;
5581 if (net_eq(dev_net(dev), net))
5582 goto out;
5583
5584 /* Pick the destination device name, and ensure
5585 * we can use it in the destination network namespace.
5586 */
5587 err = -EEXIST;
5588 if (__dev_get_by_name(net, dev->name)) {
5589 /* We get here if we can't use the current device name */
5590 if (!pat)
5591 goto out;
5592 if (dev_get_valid_name(dev, pat, 1))
5593 goto out;
5594 }
5595
5596 /*
5597 * And now a mini version of register_netdevice unregister_netdevice.
5598 */
5599
5600 /* If device is running close it first. */
5601 dev_close(dev);
5602
5603 /* And unlink it from device chain */
5604 err = -ENODEV;
5605 unlist_netdevice(dev);
5606
5607 synchronize_net();
5608
5609 /* Shutdown queueing discipline. */
5610 dev_shutdown(dev);
5611
5612 /* Notify protocols, that we are about to destroy
5613 this device. They should clean all the things.
5614 */
5615 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5616 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5617
5618 /*
5619 * Flush the unicast and multicast chains
5620 */
5621 dev_uc_flush(dev);
5622 dev_mc_flush(dev);
5623
5624 /* Actually switch the network namespace */
5625 dev_net_set(dev, net);
5626
5627 /* If there is an ifindex conflict assign a new one */
5628 if (__dev_get_by_index(net, dev->ifindex)) {
5629 int iflink = (dev->iflink == dev->ifindex);
5630 dev->ifindex = dev_new_index(net);
5631 if (iflink)
5632 dev->iflink = dev->ifindex;
5633 }
5634
5635 /* Fixup kobjects */
5636 err = device_rename(&dev->dev, dev->name);
5637 WARN_ON(err);
5638
5639 /* Add the device back in the hashes */
5640 list_netdevice(dev);
5641
5642 /* Notify protocols, that a new device appeared. */
5643 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5644
5645 /*
5646 * Prevent userspace races by waiting until the network
5647 * device is fully setup before sending notifications.
5648 */
5649 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5650
5651 synchronize_net();
5652 err = 0;
5653out:
5654 return err;
5655}
5656EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5657
5658static int dev_cpu_callback(struct notifier_block *nfb,
5659 unsigned long action,
5660 void *ocpu)
5661{
5662 struct sk_buff **list_skb;
5663 struct sk_buff *skb;
5664 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5665 struct softnet_data *sd, *oldsd;
5666
5667 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5668 return NOTIFY_OK;
5669
5670 local_irq_disable();
5671 cpu = smp_processor_id();
5672 sd = &per_cpu(softnet_data, cpu);
5673 oldsd = &per_cpu(softnet_data, oldcpu);
5674
5675 /* Find end of our completion_queue. */
5676 list_skb = &sd->completion_queue;
5677 while (*list_skb)
5678 list_skb = &(*list_skb)->next;
5679 /* Append completion queue from offline CPU. */
5680 *list_skb = oldsd->completion_queue;
5681 oldsd->completion_queue = NULL;
5682
5683 /* Append output queue from offline CPU. */
5684 if (oldsd->output_queue) {
5685 *sd->output_queue_tailp = oldsd->output_queue;
5686 sd->output_queue_tailp = oldsd->output_queue_tailp;
5687 oldsd->output_queue = NULL;
5688 oldsd->output_queue_tailp = &oldsd->output_queue;
5689 }
5690
5691 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5692 local_irq_enable();
5693
5694 /* Process offline CPU's input_pkt_queue */
5695 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5696 netif_rx(skb);
5697 input_queue_head_incr(oldsd);
5698 }
5699 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5700 netif_rx(skb);
5701 input_queue_head_incr(oldsd);
5702 }
5703
5704 return NOTIFY_OK;
5705}
5706
5707
5708/**
5709 * netdev_increment_features - increment feature set by one
5710 * @all: current feature set
5711 * @one: new feature set
5712 * @mask: mask feature set
5713 *
5714 * Computes a new feature set after adding a device with feature set
5715 * @one to the master device with current feature set @all. Will not
5716 * enable anything that is off in @mask. Returns the new feature set.
5717 */
5718unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5719 unsigned long mask)
5720{
5721 /* If device needs checksumming, downgrade to it. */
5722 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5723 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5724 else if (mask & NETIF_F_ALL_CSUM) {
5725 /* If one device supports v4/v6 checksumming, set for all. */
5726 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5727 !(all & NETIF_F_GEN_CSUM)) {
5728 all &= ~NETIF_F_ALL_CSUM;
5729 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5730 }
5731
5732 /* If one device supports hw checksumming, set for all. */
5733 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5734 all &= ~NETIF_F_ALL_CSUM;
5735 all |= NETIF_F_HW_CSUM;
5736 }
5737 }
5738
5739 one |= NETIF_F_ALL_CSUM;
5740
5741 one |= all & NETIF_F_ONE_FOR_ALL;
5742 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5743 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5744
5745 return all;
5746}
5747EXPORT_SYMBOL(netdev_increment_features);
5748
5749static struct hlist_head *netdev_create_hash(void)
5750{
5751 int i;
5752 struct hlist_head *hash;
5753
5754 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5755 if (hash != NULL)
5756 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5757 INIT_HLIST_HEAD(&hash[i]);
5758
5759 return hash;
5760}
5761
5762/* Initialize per network namespace state */
5763static int __net_init netdev_init(struct net *net)
5764{
5765 INIT_LIST_HEAD(&net->dev_base_head);
5766
5767 net->dev_name_head = netdev_create_hash();
5768 if (net->dev_name_head == NULL)
5769 goto err_name;
5770
5771 net->dev_index_head = netdev_create_hash();
5772 if (net->dev_index_head == NULL)
5773 goto err_idx;
5774
5775 return 0;
5776
5777err_idx:
5778 kfree(net->dev_name_head);
5779err_name:
5780 return -ENOMEM;
5781}
5782
5783/**
5784 * netdev_drivername - network driver for the device
5785 * @dev: network device
5786 * @buffer: buffer for resulting name
5787 * @len: size of buffer
5788 *
5789 * Determine network driver for device.
5790 */
5791char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5792{
5793 const struct device_driver *driver;
5794 const struct device *parent;
5795
5796 if (len <= 0 || !buffer)
5797 return buffer;
5798 buffer[0] = 0;
5799
5800 parent = dev->dev.parent;
5801
5802 if (!parent)
5803 return buffer;
5804
5805 driver = parent->driver;
5806 if (driver && driver->name)
5807 strlcpy(buffer, driver->name, len);
5808 return buffer;
5809}
5810
5811static void __net_exit netdev_exit(struct net *net)
5812{
5813 kfree(net->dev_name_head);
5814 kfree(net->dev_index_head);
5815}
5816
5817static struct pernet_operations __net_initdata netdev_net_ops = {
5818 .init = netdev_init,
5819 .exit = netdev_exit,
5820};
5821
5822static void __net_exit default_device_exit(struct net *net)
5823{
5824 struct net_device *dev, *aux;
5825 /*
5826 * Push all migratable network devices back to the
5827 * initial network namespace
5828 */
5829 rtnl_lock();
5830 for_each_netdev_safe(net, dev, aux) {
5831 int err;
5832 char fb_name[IFNAMSIZ];
5833
5834 /* Ignore unmoveable devices (i.e. loopback) */
5835 if (dev->features & NETIF_F_NETNS_LOCAL)
5836 continue;
5837
5838 /* Leave virtual devices for the generic cleanup */
5839 if (dev->rtnl_link_ops)
5840 continue;
5841
5842 /* Push remaing network devices to init_net */
5843 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5844 err = dev_change_net_namespace(dev, &init_net, fb_name);
5845 if (err) {
5846 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5847 __func__, dev->name, err);
5848 BUG();
5849 }
5850 }
5851 rtnl_unlock();
5852}
5853
5854static void __net_exit default_device_exit_batch(struct list_head *net_list)
5855{
5856 /* At exit all network devices most be removed from a network
5857 * namespace. Do this in the reverse order of registeration.
5858 * Do this across as many network namespaces as possible to
5859 * improve batching efficiency.
5860 */
5861 struct net_device *dev;
5862 struct net *net;
5863 LIST_HEAD(dev_kill_list);
5864
5865 rtnl_lock();
5866 list_for_each_entry(net, net_list, exit_list) {
5867 for_each_netdev_reverse(net, dev) {
5868 if (dev->rtnl_link_ops)
5869 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5870 else
5871 unregister_netdevice_queue(dev, &dev_kill_list);
5872 }
5873 }
5874 unregister_netdevice_many(&dev_kill_list);
5875 rtnl_unlock();
5876}
5877
5878static struct pernet_operations __net_initdata default_device_ops = {
5879 .exit = default_device_exit,
5880 .exit_batch = default_device_exit_batch,
5881};
5882
5883/*
5884 * Initialize the DEV module. At boot time this walks the device list and
5885 * unhooks any devices that fail to initialise (normally hardware not
5886 * present) and leaves us with a valid list of present and active devices.
5887 *
5888 */
5889
5890/*
5891 * This is called single threaded during boot, so no need
5892 * to take the rtnl semaphore.
5893 */
5894static int __init net_dev_init(void)
5895{
5896 int i, rc = -ENOMEM;
5897
5898 BUG_ON(!dev_boot_phase);
5899
5900 if (dev_proc_init())
5901 goto out;
5902
5903 if (netdev_kobject_init())
5904 goto out;
5905
5906 INIT_LIST_HEAD(&ptype_all);
5907 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5908 INIT_LIST_HEAD(&ptype_base[i]);
5909
5910 if (register_pernet_subsys(&netdev_net_ops))
5911 goto out;
5912
5913 /*
5914 * Initialise the packet receive queues.
5915 */
5916
5917 for_each_possible_cpu(i) {
5918 struct softnet_data *sd = &per_cpu(softnet_data, i);
5919
5920 memset(sd, 0, sizeof(*sd));
5921 skb_queue_head_init(&sd->input_pkt_queue);
5922 skb_queue_head_init(&sd->process_queue);
5923 sd->completion_queue = NULL;
5924 INIT_LIST_HEAD(&sd->poll_list);
5925 sd->output_queue = NULL;
5926 sd->output_queue_tailp = &sd->output_queue;
5927#ifdef CONFIG_RPS
5928 sd->csd.func = rps_trigger_softirq;
5929 sd->csd.info = sd;
5930 sd->csd.flags = 0;
5931 sd->cpu = i;
5932#endif
5933
5934 sd->backlog.poll = process_backlog;
5935 sd->backlog.weight = weight_p;
5936 sd->backlog.gro_list = NULL;
5937 sd->backlog.gro_count = 0;
5938 }
5939
5940 dev_boot_phase = 0;
5941
5942 /* The loopback device is special if any other network devices
5943 * is present in a network namespace the loopback device must
5944 * be present. Since we now dynamically allocate and free the
5945 * loopback device ensure this invariant is maintained by
5946 * keeping the loopback device as the first device on the
5947 * list of network devices. Ensuring the loopback devices
5948 * is the first device that appears and the last network device
5949 * that disappears.
5950 */
5951 if (register_pernet_device(&loopback_net_ops))
5952 goto out;
5953
5954 if (register_pernet_device(&default_device_ops))
5955 goto out;
5956
5957 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5958 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5959
5960 hotcpu_notifier(dev_cpu_callback, 0);
5961 dst_init();
5962 dev_mcast_init();
5963 rc = 0;
5964out:
5965 return rc;
5966}
5967
5968subsys_initcall(net_dev_init);
5969
5970static int __init initialize_hashrnd(void)
5971{
5972 get_random_bytes(&hashrnd, sizeof(hashrnd));
5973 return 0;
5974}
5975
5976late_initcall_sync(initialize_hashrnd);
5977