at v2.6.35-rc2 1762 lines 43 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/smp_lock.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/buffer_head.h> 21#include <linux/pagevec.h> 22#include <linux/writeback.h> 23#include <linux/mpage.h> 24#include <linux/mount.h> 25#include <linux/uio.h> 26#include <linux/namei.h> 27#include <linux/log2.h> 28#include <linux/kmemleak.h> 29#include <asm/uaccess.h> 30#include "internal.h" 31 32struct bdev_inode { 33 struct block_device bdev; 34 struct inode vfs_inode; 35}; 36 37static const struct address_space_operations def_blk_aops; 38 39static inline struct bdev_inode *BDEV_I(struct inode *inode) 40{ 41 return container_of(inode, struct bdev_inode, vfs_inode); 42} 43 44inline struct block_device *I_BDEV(struct inode *inode) 45{ 46 return &BDEV_I(inode)->bdev; 47} 48 49EXPORT_SYMBOL(I_BDEV); 50 51static sector_t max_block(struct block_device *bdev) 52{ 53 sector_t retval = ~((sector_t)0); 54 loff_t sz = i_size_read(bdev->bd_inode); 55 56 if (sz) { 57 unsigned int size = block_size(bdev); 58 unsigned int sizebits = blksize_bits(size); 59 retval = (sz >> sizebits); 60 } 61 return retval; 62} 63 64/* Kill _all_ buffers and pagecache , dirty or not.. */ 65static void kill_bdev(struct block_device *bdev) 66{ 67 if (bdev->bd_inode->i_mapping->nrpages == 0) 68 return; 69 invalidate_bh_lrus(); 70 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 71} 72 73int set_blocksize(struct block_device *bdev, int size) 74{ 75 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 76 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 77 return -EINVAL; 78 79 /* Size cannot be smaller than the size supported by the device */ 80 if (size < bdev_logical_block_size(bdev)) 81 return -EINVAL; 82 83 /* Don't change the size if it is same as current */ 84 if (bdev->bd_block_size != size) { 85 sync_blockdev(bdev); 86 bdev->bd_block_size = size; 87 bdev->bd_inode->i_blkbits = blksize_bits(size); 88 kill_bdev(bdev); 89 } 90 return 0; 91} 92 93EXPORT_SYMBOL(set_blocksize); 94 95int sb_set_blocksize(struct super_block *sb, int size) 96{ 97 if (set_blocksize(sb->s_bdev, size)) 98 return 0; 99 /* If we get here, we know size is power of two 100 * and it's value is between 512 and PAGE_SIZE */ 101 sb->s_blocksize = size; 102 sb->s_blocksize_bits = blksize_bits(size); 103 return sb->s_blocksize; 104} 105 106EXPORT_SYMBOL(sb_set_blocksize); 107 108int sb_min_blocksize(struct super_block *sb, int size) 109{ 110 int minsize = bdev_logical_block_size(sb->s_bdev); 111 if (size < minsize) 112 size = minsize; 113 return sb_set_blocksize(sb, size); 114} 115 116EXPORT_SYMBOL(sb_min_blocksize); 117 118static int 119blkdev_get_block(struct inode *inode, sector_t iblock, 120 struct buffer_head *bh, int create) 121{ 122 if (iblock >= max_block(I_BDEV(inode))) { 123 if (create) 124 return -EIO; 125 126 /* 127 * for reads, we're just trying to fill a partial page. 128 * return a hole, they will have to call get_block again 129 * before they can fill it, and they will get -EIO at that 130 * time 131 */ 132 return 0; 133 } 134 bh->b_bdev = I_BDEV(inode); 135 bh->b_blocknr = iblock; 136 set_buffer_mapped(bh); 137 return 0; 138} 139 140static int 141blkdev_get_blocks(struct inode *inode, sector_t iblock, 142 struct buffer_head *bh, int create) 143{ 144 sector_t end_block = max_block(I_BDEV(inode)); 145 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 146 147 if ((iblock + max_blocks) > end_block) { 148 max_blocks = end_block - iblock; 149 if ((long)max_blocks <= 0) { 150 if (create) 151 return -EIO; /* write fully beyond EOF */ 152 /* 153 * It is a read which is fully beyond EOF. We return 154 * a !buffer_mapped buffer 155 */ 156 max_blocks = 0; 157 } 158 } 159 160 bh->b_bdev = I_BDEV(inode); 161 bh->b_blocknr = iblock; 162 bh->b_size = max_blocks << inode->i_blkbits; 163 if (max_blocks) 164 set_buffer_mapped(bh); 165 return 0; 166} 167 168static ssize_t 169blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 170 loff_t offset, unsigned long nr_segs) 171{ 172 struct file *file = iocb->ki_filp; 173 struct inode *inode = file->f_mapping->host; 174 175 return blockdev_direct_IO_no_locking_newtrunc(rw, iocb, inode, 176 I_BDEV(inode), iov, offset, nr_segs, 177 blkdev_get_blocks, NULL); 178} 179 180int __sync_blockdev(struct block_device *bdev, int wait) 181{ 182 if (!bdev) 183 return 0; 184 if (!wait) 185 return filemap_flush(bdev->bd_inode->i_mapping); 186 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 187} 188 189/* 190 * Write out and wait upon all the dirty data associated with a block 191 * device via its mapping. Does not take the superblock lock. 192 */ 193int sync_blockdev(struct block_device *bdev) 194{ 195 return __sync_blockdev(bdev, 1); 196} 197EXPORT_SYMBOL(sync_blockdev); 198 199/* 200 * Write out and wait upon all dirty data associated with this 201 * device. Filesystem data as well as the underlying block 202 * device. Takes the superblock lock. 203 */ 204int fsync_bdev(struct block_device *bdev) 205{ 206 struct super_block *sb = get_super(bdev); 207 if (sb) { 208 int res = sync_filesystem(sb); 209 drop_super(sb); 210 return res; 211 } 212 return sync_blockdev(bdev); 213} 214EXPORT_SYMBOL(fsync_bdev); 215 216/** 217 * freeze_bdev -- lock a filesystem and force it into a consistent state 218 * @bdev: blockdevice to lock 219 * 220 * If a superblock is found on this device, we take the s_umount semaphore 221 * on it to make sure nobody unmounts until the snapshot creation is done. 222 * The reference counter (bd_fsfreeze_count) guarantees that only the last 223 * unfreeze process can unfreeze the frozen filesystem actually when multiple 224 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 225 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 226 * actually. 227 */ 228struct super_block *freeze_bdev(struct block_device *bdev) 229{ 230 struct super_block *sb; 231 int error = 0; 232 233 mutex_lock(&bdev->bd_fsfreeze_mutex); 234 if (++bdev->bd_fsfreeze_count > 1) { 235 /* 236 * We don't even need to grab a reference - the first call 237 * to freeze_bdev grab an active reference and only the last 238 * thaw_bdev drops it. 239 */ 240 sb = get_super(bdev); 241 drop_super(sb); 242 mutex_unlock(&bdev->bd_fsfreeze_mutex); 243 return sb; 244 } 245 246 sb = get_active_super(bdev); 247 if (!sb) 248 goto out; 249 error = freeze_super(sb); 250 if (error) { 251 deactivate_super(sb); 252 bdev->bd_fsfreeze_count--; 253 mutex_unlock(&bdev->bd_fsfreeze_mutex); 254 return ERR_PTR(error); 255 } 256 deactivate_super(sb); 257 out: 258 sync_blockdev(bdev); 259 mutex_unlock(&bdev->bd_fsfreeze_mutex); 260 return sb; /* thaw_bdev releases s->s_umount */ 261} 262EXPORT_SYMBOL(freeze_bdev); 263 264/** 265 * thaw_bdev -- unlock filesystem 266 * @bdev: blockdevice to unlock 267 * @sb: associated superblock 268 * 269 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 270 */ 271int thaw_bdev(struct block_device *bdev, struct super_block *sb) 272{ 273 int error = -EINVAL; 274 275 mutex_lock(&bdev->bd_fsfreeze_mutex); 276 if (!bdev->bd_fsfreeze_count) 277 goto out; 278 279 error = 0; 280 if (--bdev->bd_fsfreeze_count > 0) 281 goto out; 282 283 if (!sb) 284 goto out; 285 286 error = thaw_super(sb); 287 if (error) { 288 bdev->bd_fsfreeze_count++; 289 mutex_unlock(&bdev->bd_fsfreeze_mutex); 290 return error; 291 } 292out: 293 mutex_unlock(&bdev->bd_fsfreeze_mutex); 294 return 0; 295} 296EXPORT_SYMBOL(thaw_bdev); 297 298static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 299{ 300 return block_write_full_page(page, blkdev_get_block, wbc); 301} 302 303static int blkdev_readpage(struct file * file, struct page * page) 304{ 305 return block_read_full_page(page, blkdev_get_block); 306} 307 308static int blkdev_write_begin(struct file *file, struct address_space *mapping, 309 loff_t pos, unsigned len, unsigned flags, 310 struct page **pagep, void **fsdata) 311{ 312 *pagep = NULL; 313 return block_write_begin_newtrunc(file, mapping, pos, len, flags, 314 pagep, fsdata, blkdev_get_block); 315} 316 317static int blkdev_write_end(struct file *file, struct address_space *mapping, 318 loff_t pos, unsigned len, unsigned copied, 319 struct page *page, void *fsdata) 320{ 321 int ret; 322 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 323 324 unlock_page(page); 325 page_cache_release(page); 326 327 return ret; 328} 329 330/* 331 * private llseek: 332 * for a block special file file->f_path.dentry->d_inode->i_size is zero 333 * so we compute the size by hand (just as in block_read/write above) 334 */ 335static loff_t block_llseek(struct file *file, loff_t offset, int origin) 336{ 337 struct inode *bd_inode = file->f_mapping->host; 338 loff_t size; 339 loff_t retval; 340 341 mutex_lock(&bd_inode->i_mutex); 342 size = i_size_read(bd_inode); 343 344 switch (origin) { 345 case 2: 346 offset += size; 347 break; 348 case 1: 349 offset += file->f_pos; 350 } 351 retval = -EINVAL; 352 if (offset >= 0 && offset <= size) { 353 if (offset != file->f_pos) { 354 file->f_pos = offset; 355 } 356 retval = offset; 357 } 358 mutex_unlock(&bd_inode->i_mutex); 359 return retval; 360} 361 362int blkdev_fsync(struct file *filp, int datasync) 363{ 364 struct inode *bd_inode = filp->f_mapping->host; 365 struct block_device *bdev = I_BDEV(bd_inode); 366 int error; 367 368 /* 369 * There is no need to serialise calls to blkdev_issue_flush with 370 * i_mutex and doing so causes performance issues with concurrent 371 * O_SYNC writers to a block device. 372 */ 373 mutex_unlock(&bd_inode->i_mutex); 374 375 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL, BLKDEV_IFL_WAIT); 376 if (error == -EOPNOTSUPP) 377 error = 0; 378 379 mutex_lock(&bd_inode->i_mutex); 380 381 return error; 382} 383EXPORT_SYMBOL(blkdev_fsync); 384 385/* 386 * pseudo-fs 387 */ 388 389static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 390static struct kmem_cache * bdev_cachep __read_mostly; 391 392static struct inode *bdev_alloc_inode(struct super_block *sb) 393{ 394 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 395 if (!ei) 396 return NULL; 397 return &ei->vfs_inode; 398} 399 400static void bdev_destroy_inode(struct inode *inode) 401{ 402 struct bdev_inode *bdi = BDEV_I(inode); 403 404 kmem_cache_free(bdev_cachep, bdi); 405} 406 407static void init_once(void *foo) 408{ 409 struct bdev_inode *ei = (struct bdev_inode *) foo; 410 struct block_device *bdev = &ei->bdev; 411 412 memset(bdev, 0, sizeof(*bdev)); 413 mutex_init(&bdev->bd_mutex); 414 INIT_LIST_HEAD(&bdev->bd_inodes); 415 INIT_LIST_HEAD(&bdev->bd_list); 416#ifdef CONFIG_SYSFS 417 INIT_LIST_HEAD(&bdev->bd_holder_list); 418#endif 419 inode_init_once(&ei->vfs_inode); 420 /* Initialize mutex for freeze. */ 421 mutex_init(&bdev->bd_fsfreeze_mutex); 422} 423 424static inline void __bd_forget(struct inode *inode) 425{ 426 list_del_init(&inode->i_devices); 427 inode->i_bdev = NULL; 428 inode->i_mapping = &inode->i_data; 429} 430 431static void bdev_clear_inode(struct inode *inode) 432{ 433 struct block_device *bdev = &BDEV_I(inode)->bdev; 434 struct list_head *p; 435 spin_lock(&bdev_lock); 436 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 437 __bd_forget(list_entry(p, struct inode, i_devices)); 438 } 439 list_del_init(&bdev->bd_list); 440 spin_unlock(&bdev_lock); 441} 442 443static const struct super_operations bdev_sops = { 444 .statfs = simple_statfs, 445 .alloc_inode = bdev_alloc_inode, 446 .destroy_inode = bdev_destroy_inode, 447 .drop_inode = generic_delete_inode, 448 .clear_inode = bdev_clear_inode, 449}; 450 451static int bd_get_sb(struct file_system_type *fs_type, 452 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 453{ 454 return get_sb_pseudo(fs_type, "bdev:", &bdev_sops, 0x62646576, mnt); 455} 456 457static struct file_system_type bd_type = { 458 .name = "bdev", 459 .get_sb = bd_get_sb, 460 .kill_sb = kill_anon_super, 461}; 462 463struct super_block *blockdev_superblock __read_mostly; 464 465void __init bdev_cache_init(void) 466{ 467 int err; 468 struct vfsmount *bd_mnt; 469 470 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 471 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 472 SLAB_MEM_SPREAD|SLAB_PANIC), 473 init_once); 474 err = register_filesystem(&bd_type); 475 if (err) 476 panic("Cannot register bdev pseudo-fs"); 477 bd_mnt = kern_mount(&bd_type); 478 if (IS_ERR(bd_mnt)) 479 panic("Cannot create bdev pseudo-fs"); 480 /* 481 * This vfsmount structure is only used to obtain the 482 * blockdev_superblock, so tell kmemleak not to report it. 483 */ 484 kmemleak_not_leak(bd_mnt); 485 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 486} 487 488/* 489 * Most likely _very_ bad one - but then it's hardly critical for small 490 * /dev and can be fixed when somebody will need really large one. 491 * Keep in mind that it will be fed through icache hash function too. 492 */ 493static inline unsigned long hash(dev_t dev) 494{ 495 return MAJOR(dev)+MINOR(dev); 496} 497 498static int bdev_test(struct inode *inode, void *data) 499{ 500 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 501} 502 503static int bdev_set(struct inode *inode, void *data) 504{ 505 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 506 return 0; 507} 508 509static LIST_HEAD(all_bdevs); 510 511struct block_device *bdget(dev_t dev) 512{ 513 struct block_device *bdev; 514 struct inode *inode; 515 516 inode = iget5_locked(blockdev_superblock, hash(dev), 517 bdev_test, bdev_set, &dev); 518 519 if (!inode) 520 return NULL; 521 522 bdev = &BDEV_I(inode)->bdev; 523 524 if (inode->i_state & I_NEW) { 525 bdev->bd_contains = NULL; 526 bdev->bd_inode = inode; 527 bdev->bd_block_size = (1 << inode->i_blkbits); 528 bdev->bd_part_count = 0; 529 bdev->bd_invalidated = 0; 530 inode->i_mode = S_IFBLK; 531 inode->i_rdev = dev; 532 inode->i_bdev = bdev; 533 inode->i_data.a_ops = &def_blk_aops; 534 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 535 inode->i_data.backing_dev_info = &default_backing_dev_info; 536 spin_lock(&bdev_lock); 537 list_add(&bdev->bd_list, &all_bdevs); 538 spin_unlock(&bdev_lock); 539 unlock_new_inode(inode); 540 } 541 return bdev; 542} 543 544EXPORT_SYMBOL(bdget); 545 546/** 547 * bdgrab -- Grab a reference to an already referenced block device 548 * @bdev: Block device to grab a reference to. 549 */ 550struct block_device *bdgrab(struct block_device *bdev) 551{ 552 atomic_inc(&bdev->bd_inode->i_count); 553 return bdev; 554} 555 556long nr_blockdev_pages(void) 557{ 558 struct block_device *bdev; 559 long ret = 0; 560 spin_lock(&bdev_lock); 561 list_for_each_entry(bdev, &all_bdevs, bd_list) { 562 ret += bdev->bd_inode->i_mapping->nrpages; 563 } 564 spin_unlock(&bdev_lock); 565 return ret; 566} 567 568void bdput(struct block_device *bdev) 569{ 570 iput(bdev->bd_inode); 571} 572 573EXPORT_SYMBOL(bdput); 574 575static struct block_device *bd_acquire(struct inode *inode) 576{ 577 struct block_device *bdev; 578 579 spin_lock(&bdev_lock); 580 bdev = inode->i_bdev; 581 if (bdev) { 582 atomic_inc(&bdev->bd_inode->i_count); 583 spin_unlock(&bdev_lock); 584 return bdev; 585 } 586 spin_unlock(&bdev_lock); 587 588 bdev = bdget(inode->i_rdev); 589 if (bdev) { 590 spin_lock(&bdev_lock); 591 if (!inode->i_bdev) { 592 /* 593 * We take an additional bd_inode->i_count for inode, 594 * and it's released in clear_inode() of inode. 595 * So, we can access it via ->i_mapping always 596 * without igrab(). 597 */ 598 atomic_inc(&bdev->bd_inode->i_count); 599 inode->i_bdev = bdev; 600 inode->i_mapping = bdev->bd_inode->i_mapping; 601 list_add(&inode->i_devices, &bdev->bd_inodes); 602 } 603 spin_unlock(&bdev_lock); 604 } 605 return bdev; 606} 607 608/* Call when you free inode */ 609 610void bd_forget(struct inode *inode) 611{ 612 struct block_device *bdev = NULL; 613 614 spin_lock(&bdev_lock); 615 if (inode->i_bdev) { 616 if (!sb_is_blkdev_sb(inode->i_sb)) 617 bdev = inode->i_bdev; 618 __bd_forget(inode); 619 } 620 spin_unlock(&bdev_lock); 621 622 if (bdev) 623 iput(bdev->bd_inode); 624} 625 626/** 627 * bd_may_claim - test whether a block device can be claimed 628 * @bdev: block device of interest 629 * @whole: whole block device containing @bdev, may equal @bdev 630 * @holder: holder trying to claim @bdev 631 * 632 * Test whther @bdev can be claimed by @holder. 633 * 634 * CONTEXT: 635 * spin_lock(&bdev_lock). 636 * 637 * RETURNS: 638 * %true if @bdev can be claimed, %false otherwise. 639 */ 640static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 641 void *holder) 642{ 643 if (bdev->bd_holder == holder) 644 return true; /* already a holder */ 645 else if (bdev->bd_holder != NULL) 646 return false; /* held by someone else */ 647 else if (bdev->bd_contains == bdev) 648 return true; /* is a whole device which isn't held */ 649 650 else if (whole->bd_holder == bd_claim) 651 return true; /* is a partition of a device that is being partitioned */ 652 else if (whole->bd_holder != NULL) 653 return false; /* is a partition of a held device */ 654 else 655 return true; /* is a partition of an un-held device */ 656} 657 658/** 659 * bd_prepare_to_claim - prepare to claim a block device 660 * @bdev: block device of interest 661 * @whole: the whole device containing @bdev, may equal @bdev 662 * @holder: holder trying to claim @bdev 663 * 664 * Prepare to claim @bdev. This function fails if @bdev is already 665 * claimed by another holder and waits if another claiming is in 666 * progress. This function doesn't actually claim. On successful 667 * return, the caller has ownership of bd_claiming and bd_holder[s]. 668 * 669 * CONTEXT: 670 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 671 * it multiple times. 672 * 673 * RETURNS: 674 * 0 if @bdev can be claimed, -EBUSY otherwise. 675 */ 676static int bd_prepare_to_claim(struct block_device *bdev, 677 struct block_device *whole, void *holder) 678{ 679retry: 680 /* if someone else claimed, fail */ 681 if (!bd_may_claim(bdev, whole, holder)) 682 return -EBUSY; 683 684 /* if someone else is claiming, wait for it to finish */ 685 if (whole->bd_claiming && whole->bd_claiming != holder) { 686 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 687 DEFINE_WAIT(wait); 688 689 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 690 spin_unlock(&bdev_lock); 691 schedule(); 692 finish_wait(wq, &wait); 693 spin_lock(&bdev_lock); 694 goto retry; 695 } 696 697 /* yay, all mine */ 698 return 0; 699} 700 701/** 702 * bd_start_claiming - start claiming a block device 703 * @bdev: block device of interest 704 * @holder: holder trying to claim @bdev 705 * 706 * @bdev is about to be opened exclusively. Check @bdev can be opened 707 * exclusively and mark that an exclusive open is in progress. Each 708 * successful call to this function must be matched with a call to 709 * either bd_claim() or bd_abort_claiming(). If this function 710 * succeeds, the matching bd_claim() is guaranteed to succeed. 711 * 712 * CONTEXT: 713 * Might sleep. 714 * 715 * RETURNS: 716 * Pointer to the block device containing @bdev on success, ERR_PTR() 717 * value on failure. 718 */ 719static struct block_device *bd_start_claiming(struct block_device *bdev, 720 void *holder) 721{ 722 struct gendisk *disk; 723 struct block_device *whole; 724 int partno, err; 725 726 might_sleep(); 727 728 /* 729 * @bdev might not have been initialized properly yet, look up 730 * and grab the outer block device the hard way. 731 */ 732 disk = get_gendisk(bdev->bd_dev, &partno); 733 if (!disk) 734 return ERR_PTR(-ENXIO); 735 736 whole = bdget_disk(disk, 0); 737 put_disk(disk); 738 if (!whole) 739 return ERR_PTR(-ENOMEM); 740 741 /* prepare to claim, if successful, mark claiming in progress */ 742 spin_lock(&bdev_lock); 743 744 err = bd_prepare_to_claim(bdev, whole, holder); 745 if (err == 0) { 746 whole->bd_claiming = holder; 747 spin_unlock(&bdev_lock); 748 return whole; 749 } else { 750 spin_unlock(&bdev_lock); 751 bdput(whole); 752 return ERR_PTR(err); 753 } 754} 755 756/* releases bdev_lock */ 757static void __bd_abort_claiming(struct block_device *whole, void *holder) 758{ 759 BUG_ON(whole->bd_claiming != holder); 760 whole->bd_claiming = NULL; 761 wake_up_bit(&whole->bd_claiming, 0); 762 763 spin_unlock(&bdev_lock); 764 bdput(whole); 765} 766 767/** 768 * bd_abort_claiming - abort claiming a block device 769 * @whole: whole block device returned by bd_start_claiming() 770 * @holder: holder trying to claim @bdev 771 * 772 * Abort a claiming block started by bd_start_claiming(). Note that 773 * @whole is not the block device to be claimed but the whole device 774 * returned by bd_start_claiming(). 775 * 776 * CONTEXT: 777 * Grabs and releases bdev_lock. 778 */ 779static void bd_abort_claiming(struct block_device *whole, void *holder) 780{ 781 spin_lock(&bdev_lock); 782 __bd_abort_claiming(whole, holder); /* releases bdev_lock */ 783} 784 785/** 786 * bd_claim - claim a block device 787 * @bdev: block device to claim 788 * @holder: holder trying to claim @bdev 789 * 790 * Try to claim @bdev which must have been opened successfully. This 791 * function may be called with or without preceding 792 * blk_start_claiming(). In the former case, this function is always 793 * successful and terminates the claiming block. 794 * 795 * CONTEXT: 796 * Might sleep. 797 * 798 * RETURNS: 799 * 0 if successful, -EBUSY if @bdev is already claimed. 800 */ 801int bd_claim(struct block_device *bdev, void *holder) 802{ 803 struct block_device *whole = bdev->bd_contains; 804 int res; 805 806 might_sleep(); 807 808 spin_lock(&bdev_lock); 809 810 res = bd_prepare_to_claim(bdev, whole, holder); 811 if (res == 0) { 812 /* note that for a whole device bd_holders 813 * will be incremented twice, and bd_holder will 814 * be set to bd_claim before being set to holder 815 */ 816 whole->bd_holders++; 817 whole->bd_holder = bd_claim; 818 bdev->bd_holders++; 819 bdev->bd_holder = holder; 820 } 821 822 if (whole->bd_claiming) 823 __bd_abort_claiming(whole, holder); /* releases bdev_lock */ 824 else 825 spin_unlock(&bdev_lock); 826 827 return res; 828} 829EXPORT_SYMBOL(bd_claim); 830 831void bd_release(struct block_device *bdev) 832{ 833 spin_lock(&bdev_lock); 834 if (!--bdev->bd_contains->bd_holders) 835 bdev->bd_contains->bd_holder = NULL; 836 if (!--bdev->bd_holders) 837 bdev->bd_holder = NULL; 838 spin_unlock(&bdev_lock); 839} 840 841EXPORT_SYMBOL(bd_release); 842 843#ifdef CONFIG_SYSFS 844/* 845 * Functions for bd_claim_by_kobject / bd_release_from_kobject 846 * 847 * If a kobject is passed to bd_claim_by_kobject() 848 * and the kobject has a parent directory, 849 * following symlinks are created: 850 * o from the kobject to the claimed bdev 851 * o from "holders" directory of the bdev to the parent of the kobject 852 * bd_release_from_kobject() removes these symlinks. 853 * 854 * Example: 855 * If /dev/dm-0 maps to /dev/sda, kobject corresponding to 856 * /sys/block/dm-0/slaves is passed to bd_claim_by_kobject(), then: 857 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 858 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 859 */ 860 861static int add_symlink(struct kobject *from, struct kobject *to) 862{ 863 if (!from || !to) 864 return 0; 865 return sysfs_create_link(from, to, kobject_name(to)); 866} 867 868static void del_symlink(struct kobject *from, struct kobject *to) 869{ 870 if (!from || !to) 871 return; 872 sysfs_remove_link(from, kobject_name(to)); 873} 874 875/* 876 * 'struct bd_holder' contains pointers to kobjects symlinked by 877 * bd_claim_by_kobject. 878 * It's connected to bd_holder_list which is protected by bdev->bd_sem. 879 */ 880struct bd_holder { 881 struct list_head list; /* chain of holders of the bdev */ 882 int count; /* references from the holder */ 883 struct kobject *sdir; /* holder object, e.g. "/block/dm-0/slaves" */ 884 struct kobject *hdev; /* e.g. "/block/dm-0" */ 885 struct kobject *hdir; /* e.g. "/block/sda/holders" */ 886 struct kobject *sdev; /* e.g. "/block/sda" */ 887}; 888 889/* 890 * Get references of related kobjects at once. 891 * Returns 1 on success. 0 on failure. 892 * 893 * Should call bd_holder_release_dirs() after successful use. 894 */ 895static int bd_holder_grab_dirs(struct block_device *bdev, 896 struct bd_holder *bo) 897{ 898 if (!bdev || !bo) 899 return 0; 900 901 bo->sdir = kobject_get(bo->sdir); 902 if (!bo->sdir) 903 return 0; 904 905 bo->hdev = kobject_get(bo->sdir->parent); 906 if (!bo->hdev) 907 goto fail_put_sdir; 908 909 bo->sdev = kobject_get(&part_to_dev(bdev->bd_part)->kobj); 910 if (!bo->sdev) 911 goto fail_put_hdev; 912 913 bo->hdir = kobject_get(bdev->bd_part->holder_dir); 914 if (!bo->hdir) 915 goto fail_put_sdev; 916 917 return 1; 918 919fail_put_sdev: 920 kobject_put(bo->sdev); 921fail_put_hdev: 922 kobject_put(bo->hdev); 923fail_put_sdir: 924 kobject_put(bo->sdir); 925 926 return 0; 927} 928 929/* Put references of related kobjects at once. */ 930static void bd_holder_release_dirs(struct bd_holder *bo) 931{ 932 kobject_put(bo->hdir); 933 kobject_put(bo->sdev); 934 kobject_put(bo->hdev); 935 kobject_put(bo->sdir); 936} 937 938static struct bd_holder *alloc_bd_holder(struct kobject *kobj) 939{ 940 struct bd_holder *bo; 941 942 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 943 if (!bo) 944 return NULL; 945 946 bo->count = 1; 947 bo->sdir = kobj; 948 949 return bo; 950} 951 952static void free_bd_holder(struct bd_holder *bo) 953{ 954 kfree(bo); 955} 956 957/** 958 * find_bd_holder - find matching struct bd_holder from the block device 959 * 960 * @bdev: struct block device to be searched 961 * @bo: target struct bd_holder 962 * 963 * Returns matching entry with @bo in @bdev->bd_holder_list. 964 * If found, increment the reference count and return the pointer. 965 * If not found, returns NULL. 966 */ 967static struct bd_holder *find_bd_holder(struct block_device *bdev, 968 struct bd_holder *bo) 969{ 970 struct bd_holder *tmp; 971 972 list_for_each_entry(tmp, &bdev->bd_holder_list, list) 973 if (tmp->sdir == bo->sdir) { 974 tmp->count++; 975 return tmp; 976 } 977 978 return NULL; 979} 980 981/** 982 * add_bd_holder - create sysfs symlinks for bd_claim() relationship 983 * 984 * @bdev: block device to be bd_claimed 985 * @bo: preallocated and initialized by alloc_bd_holder() 986 * 987 * Add @bo to @bdev->bd_holder_list, create symlinks. 988 * 989 * Returns 0 if symlinks are created. 990 * Returns -ve if something fails. 991 */ 992static int add_bd_holder(struct block_device *bdev, struct bd_holder *bo) 993{ 994 int err; 995 996 if (!bo) 997 return -EINVAL; 998 999 if (!bd_holder_grab_dirs(bdev, bo)) 1000 return -EBUSY; 1001 1002 err = add_symlink(bo->sdir, bo->sdev); 1003 if (err) 1004 return err; 1005 1006 err = add_symlink(bo->hdir, bo->hdev); 1007 if (err) { 1008 del_symlink(bo->sdir, bo->sdev); 1009 return err; 1010 } 1011 1012 list_add_tail(&bo->list, &bdev->bd_holder_list); 1013 return 0; 1014} 1015 1016/** 1017 * del_bd_holder - delete sysfs symlinks for bd_claim() relationship 1018 * 1019 * @bdev: block device to be bd_claimed 1020 * @kobj: holder's kobject 1021 * 1022 * If there is matching entry with @kobj in @bdev->bd_holder_list 1023 * and no other bd_claim() from the same kobject, 1024 * remove the struct bd_holder from the list, delete symlinks for it. 1025 * 1026 * Returns a pointer to the struct bd_holder when it's removed from the list 1027 * and ready to be freed. 1028 * Returns NULL if matching claim isn't found or there is other bd_claim() 1029 * by the same kobject. 1030 */ 1031static struct bd_holder *del_bd_holder(struct block_device *bdev, 1032 struct kobject *kobj) 1033{ 1034 struct bd_holder *bo; 1035 1036 list_for_each_entry(bo, &bdev->bd_holder_list, list) { 1037 if (bo->sdir == kobj) { 1038 bo->count--; 1039 BUG_ON(bo->count < 0); 1040 if (!bo->count) { 1041 list_del(&bo->list); 1042 del_symlink(bo->sdir, bo->sdev); 1043 del_symlink(bo->hdir, bo->hdev); 1044 bd_holder_release_dirs(bo); 1045 return bo; 1046 } 1047 break; 1048 } 1049 } 1050 1051 return NULL; 1052} 1053 1054/** 1055 * bd_claim_by_kobject - bd_claim() with additional kobject signature 1056 * 1057 * @bdev: block device to be claimed 1058 * @holder: holder's signature 1059 * @kobj: holder's kobject 1060 * 1061 * Do bd_claim() and if it succeeds, create sysfs symlinks between 1062 * the bdev and the holder's kobject. 1063 * Use bd_release_from_kobject() when relesing the claimed bdev. 1064 * 1065 * Returns 0 on success. (same as bd_claim()) 1066 * Returns errno on failure. 1067 */ 1068static int bd_claim_by_kobject(struct block_device *bdev, void *holder, 1069 struct kobject *kobj) 1070{ 1071 int err; 1072 struct bd_holder *bo, *found; 1073 1074 if (!kobj) 1075 return -EINVAL; 1076 1077 bo = alloc_bd_holder(kobj); 1078 if (!bo) 1079 return -ENOMEM; 1080 1081 mutex_lock(&bdev->bd_mutex); 1082 1083 err = bd_claim(bdev, holder); 1084 if (err) 1085 goto fail; 1086 1087 found = find_bd_holder(bdev, bo); 1088 if (found) 1089 goto fail; 1090 1091 err = add_bd_holder(bdev, bo); 1092 if (err) 1093 bd_release(bdev); 1094 else 1095 bo = NULL; 1096fail: 1097 mutex_unlock(&bdev->bd_mutex); 1098 free_bd_holder(bo); 1099 return err; 1100} 1101 1102/** 1103 * bd_release_from_kobject - bd_release() with additional kobject signature 1104 * 1105 * @bdev: block device to be released 1106 * @kobj: holder's kobject 1107 * 1108 * Do bd_release() and remove sysfs symlinks created by bd_claim_by_kobject(). 1109 */ 1110static void bd_release_from_kobject(struct block_device *bdev, 1111 struct kobject *kobj) 1112{ 1113 if (!kobj) 1114 return; 1115 1116 mutex_lock(&bdev->bd_mutex); 1117 bd_release(bdev); 1118 free_bd_holder(del_bd_holder(bdev, kobj)); 1119 mutex_unlock(&bdev->bd_mutex); 1120} 1121 1122/** 1123 * bd_claim_by_disk - wrapper function for bd_claim_by_kobject() 1124 * 1125 * @bdev: block device to be claimed 1126 * @holder: holder's signature 1127 * @disk: holder's gendisk 1128 * 1129 * Call bd_claim_by_kobject() with getting @disk->slave_dir. 1130 */ 1131int bd_claim_by_disk(struct block_device *bdev, void *holder, 1132 struct gendisk *disk) 1133{ 1134 return bd_claim_by_kobject(bdev, holder, kobject_get(disk->slave_dir)); 1135} 1136EXPORT_SYMBOL_GPL(bd_claim_by_disk); 1137 1138/** 1139 * bd_release_from_disk - wrapper function for bd_release_from_kobject() 1140 * 1141 * @bdev: block device to be claimed 1142 * @disk: holder's gendisk 1143 * 1144 * Call bd_release_from_kobject() and put @disk->slave_dir. 1145 */ 1146void bd_release_from_disk(struct block_device *bdev, struct gendisk *disk) 1147{ 1148 bd_release_from_kobject(bdev, disk->slave_dir); 1149 kobject_put(disk->slave_dir); 1150} 1151EXPORT_SYMBOL_GPL(bd_release_from_disk); 1152#endif 1153 1154/* 1155 * Tries to open block device by device number. Use it ONLY if you 1156 * really do not have anything better - i.e. when you are behind a 1157 * truly sucky interface and all you are given is a device number. _Never_ 1158 * to be used for internal purposes. If you ever need it - reconsider 1159 * your API. 1160 */ 1161struct block_device *open_by_devnum(dev_t dev, fmode_t mode) 1162{ 1163 struct block_device *bdev = bdget(dev); 1164 int err = -ENOMEM; 1165 if (bdev) 1166 err = blkdev_get(bdev, mode); 1167 return err ? ERR_PTR(err) : bdev; 1168} 1169 1170EXPORT_SYMBOL(open_by_devnum); 1171 1172/** 1173 * flush_disk - invalidates all buffer-cache entries on a disk 1174 * 1175 * @bdev: struct block device to be flushed 1176 * 1177 * Invalidates all buffer-cache entries on a disk. It should be called 1178 * when a disk has been changed -- either by a media change or online 1179 * resize. 1180 */ 1181static void flush_disk(struct block_device *bdev) 1182{ 1183 if (__invalidate_device(bdev)) { 1184 char name[BDEVNAME_SIZE] = ""; 1185 1186 if (bdev->bd_disk) 1187 disk_name(bdev->bd_disk, 0, name); 1188 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1189 "resized disk %s\n", name); 1190 } 1191 1192 if (!bdev->bd_disk) 1193 return; 1194 if (disk_partitionable(bdev->bd_disk)) 1195 bdev->bd_invalidated = 1; 1196} 1197 1198/** 1199 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1200 * @disk: struct gendisk to check 1201 * @bdev: struct bdev to adjust. 1202 * 1203 * This routine checks to see if the bdev size does not match the disk size 1204 * and adjusts it if it differs. 1205 */ 1206void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1207{ 1208 loff_t disk_size, bdev_size; 1209 1210 disk_size = (loff_t)get_capacity(disk) << 9; 1211 bdev_size = i_size_read(bdev->bd_inode); 1212 if (disk_size != bdev_size) { 1213 char name[BDEVNAME_SIZE]; 1214 1215 disk_name(disk, 0, name); 1216 printk(KERN_INFO 1217 "%s: detected capacity change from %lld to %lld\n", 1218 name, bdev_size, disk_size); 1219 i_size_write(bdev->bd_inode, disk_size); 1220 flush_disk(bdev); 1221 } 1222} 1223EXPORT_SYMBOL(check_disk_size_change); 1224 1225/** 1226 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1227 * @disk: struct gendisk to be revalidated 1228 * 1229 * This routine is a wrapper for lower-level driver's revalidate_disk 1230 * call-backs. It is used to do common pre and post operations needed 1231 * for all revalidate_disk operations. 1232 */ 1233int revalidate_disk(struct gendisk *disk) 1234{ 1235 struct block_device *bdev; 1236 int ret = 0; 1237 1238 if (disk->fops->revalidate_disk) 1239 ret = disk->fops->revalidate_disk(disk); 1240 1241 bdev = bdget_disk(disk, 0); 1242 if (!bdev) 1243 return ret; 1244 1245 mutex_lock(&bdev->bd_mutex); 1246 check_disk_size_change(disk, bdev); 1247 mutex_unlock(&bdev->bd_mutex); 1248 bdput(bdev); 1249 return ret; 1250} 1251EXPORT_SYMBOL(revalidate_disk); 1252 1253/* 1254 * This routine checks whether a removable media has been changed, 1255 * and invalidates all buffer-cache-entries in that case. This 1256 * is a relatively slow routine, so we have to try to minimize using 1257 * it. Thus it is called only upon a 'mount' or 'open'. This 1258 * is the best way of combining speed and utility, I think. 1259 * People changing diskettes in the middle of an operation deserve 1260 * to lose :-) 1261 */ 1262int check_disk_change(struct block_device *bdev) 1263{ 1264 struct gendisk *disk = bdev->bd_disk; 1265 const struct block_device_operations *bdops = disk->fops; 1266 1267 if (!bdops->media_changed) 1268 return 0; 1269 if (!bdops->media_changed(bdev->bd_disk)) 1270 return 0; 1271 1272 flush_disk(bdev); 1273 if (bdops->revalidate_disk) 1274 bdops->revalidate_disk(bdev->bd_disk); 1275 return 1; 1276} 1277 1278EXPORT_SYMBOL(check_disk_change); 1279 1280void bd_set_size(struct block_device *bdev, loff_t size) 1281{ 1282 unsigned bsize = bdev_logical_block_size(bdev); 1283 1284 bdev->bd_inode->i_size = size; 1285 while (bsize < PAGE_CACHE_SIZE) { 1286 if (size & bsize) 1287 break; 1288 bsize <<= 1; 1289 } 1290 bdev->bd_block_size = bsize; 1291 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1292} 1293EXPORT_SYMBOL(bd_set_size); 1294 1295static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1296 1297/* 1298 * bd_mutex locking: 1299 * 1300 * mutex_lock(part->bd_mutex) 1301 * mutex_lock_nested(whole->bd_mutex, 1) 1302 */ 1303 1304static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1305{ 1306 struct gendisk *disk; 1307 int ret; 1308 int partno; 1309 int perm = 0; 1310 1311 if (mode & FMODE_READ) 1312 perm |= MAY_READ; 1313 if (mode & FMODE_WRITE) 1314 perm |= MAY_WRITE; 1315 /* 1316 * hooks: /n/, see "layering violations". 1317 */ 1318 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1319 if (ret != 0) { 1320 bdput(bdev); 1321 return ret; 1322 } 1323 1324 lock_kernel(); 1325 restart: 1326 1327 ret = -ENXIO; 1328 disk = get_gendisk(bdev->bd_dev, &partno); 1329 if (!disk) 1330 goto out_unlock_kernel; 1331 1332 mutex_lock_nested(&bdev->bd_mutex, for_part); 1333 if (!bdev->bd_openers) { 1334 bdev->bd_disk = disk; 1335 bdev->bd_contains = bdev; 1336 if (!partno) { 1337 struct backing_dev_info *bdi; 1338 1339 ret = -ENXIO; 1340 bdev->bd_part = disk_get_part(disk, partno); 1341 if (!bdev->bd_part) 1342 goto out_clear; 1343 1344 if (disk->fops->open) { 1345 ret = disk->fops->open(bdev, mode); 1346 if (ret == -ERESTARTSYS) { 1347 /* Lost a race with 'disk' being 1348 * deleted, try again. 1349 * See md.c 1350 */ 1351 disk_put_part(bdev->bd_part); 1352 bdev->bd_part = NULL; 1353 module_put(disk->fops->owner); 1354 put_disk(disk); 1355 bdev->bd_disk = NULL; 1356 mutex_unlock(&bdev->bd_mutex); 1357 goto restart; 1358 } 1359 if (ret) 1360 goto out_clear; 1361 } 1362 if (!bdev->bd_openers) { 1363 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1364 bdi = blk_get_backing_dev_info(bdev); 1365 if (bdi == NULL) 1366 bdi = &default_backing_dev_info; 1367 bdev->bd_inode->i_data.backing_dev_info = bdi; 1368 } 1369 if (bdev->bd_invalidated) 1370 rescan_partitions(disk, bdev); 1371 } else { 1372 struct block_device *whole; 1373 whole = bdget_disk(disk, 0); 1374 ret = -ENOMEM; 1375 if (!whole) 1376 goto out_clear; 1377 BUG_ON(for_part); 1378 ret = __blkdev_get(whole, mode, 1); 1379 if (ret) 1380 goto out_clear; 1381 bdev->bd_contains = whole; 1382 bdev->bd_inode->i_data.backing_dev_info = 1383 whole->bd_inode->i_data.backing_dev_info; 1384 bdev->bd_part = disk_get_part(disk, partno); 1385 if (!(disk->flags & GENHD_FL_UP) || 1386 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1387 ret = -ENXIO; 1388 goto out_clear; 1389 } 1390 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1391 } 1392 } else { 1393 module_put(disk->fops->owner); 1394 put_disk(disk); 1395 disk = NULL; 1396 if (bdev->bd_contains == bdev) { 1397 if (bdev->bd_disk->fops->open) { 1398 ret = bdev->bd_disk->fops->open(bdev, mode); 1399 if (ret) 1400 goto out_unlock_bdev; 1401 } 1402 if (bdev->bd_invalidated) 1403 rescan_partitions(bdev->bd_disk, bdev); 1404 } 1405 } 1406 bdev->bd_openers++; 1407 if (for_part) 1408 bdev->bd_part_count++; 1409 mutex_unlock(&bdev->bd_mutex); 1410 unlock_kernel(); 1411 return 0; 1412 1413 out_clear: 1414 disk_put_part(bdev->bd_part); 1415 bdev->bd_disk = NULL; 1416 bdev->bd_part = NULL; 1417 bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; 1418 if (bdev != bdev->bd_contains) 1419 __blkdev_put(bdev->bd_contains, mode, 1); 1420 bdev->bd_contains = NULL; 1421 out_unlock_bdev: 1422 mutex_unlock(&bdev->bd_mutex); 1423 out_unlock_kernel: 1424 unlock_kernel(); 1425 1426 if (disk) 1427 module_put(disk->fops->owner); 1428 put_disk(disk); 1429 bdput(bdev); 1430 1431 return ret; 1432} 1433 1434int blkdev_get(struct block_device *bdev, fmode_t mode) 1435{ 1436 return __blkdev_get(bdev, mode, 0); 1437} 1438EXPORT_SYMBOL(blkdev_get); 1439 1440static int blkdev_open(struct inode * inode, struct file * filp) 1441{ 1442 struct block_device *whole = NULL; 1443 struct block_device *bdev; 1444 int res; 1445 1446 /* 1447 * Preserve backwards compatibility and allow large file access 1448 * even if userspace doesn't ask for it explicitly. Some mkfs 1449 * binary needs it. We might want to drop this workaround 1450 * during an unstable branch. 1451 */ 1452 filp->f_flags |= O_LARGEFILE; 1453 1454 if (filp->f_flags & O_NDELAY) 1455 filp->f_mode |= FMODE_NDELAY; 1456 if (filp->f_flags & O_EXCL) 1457 filp->f_mode |= FMODE_EXCL; 1458 if ((filp->f_flags & O_ACCMODE) == 3) 1459 filp->f_mode |= FMODE_WRITE_IOCTL; 1460 1461 bdev = bd_acquire(inode); 1462 if (bdev == NULL) 1463 return -ENOMEM; 1464 1465 if (filp->f_mode & FMODE_EXCL) { 1466 whole = bd_start_claiming(bdev, filp); 1467 if (IS_ERR(whole)) { 1468 bdput(bdev); 1469 return PTR_ERR(whole); 1470 } 1471 } 1472 1473 filp->f_mapping = bdev->bd_inode->i_mapping; 1474 1475 res = blkdev_get(bdev, filp->f_mode); 1476 1477 if (whole) { 1478 if (res == 0) 1479 BUG_ON(bd_claim(bdev, filp) != 0); 1480 else 1481 bd_abort_claiming(whole, filp); 1482 } 1483 1484 return res; 1485} 1486 1487static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1488{ 1489 int ret = 0; 1490 struct gendisk *disk = bdev->bd_disk; 1491 struct block_device *victim = NULL; 1492 1493 mutex_lock_nested(&bdev->bd_mutex, for_part); 1494 lock_kernel(); 1495 if (for_part) 1496 bdev->bd_part_count--; 1497 1498 if (!--bdev->bd_openers) { 1499 sync_blockdev(bdev); 1500 kill_bdev(bdev); 1501 } 1502 if (bdev->bd_contains == bdev) { 1503 if (disk->fops->release) 1504 ret = disk->fops->release(disk, mode); 1505 } 1506 if (!bdev->bd_openers) { 1507 struct module *owner = disk->fops->owner; 1508 1509 put_disk(disk); 1510 module_put(owner); 1511 disk_put_part(bdev->bd_part); 1512 bdev->bd_part = NULL; 1513 bdev->bd_disk = NULL; 1514 bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; 1515 if (bdev != bdev->bd_contains) 1516 victim = bdev->bd_contains; 1517 bdev->bd_contains = NULL; 1518 } 1519 unlock_kernel(); 1520 mutex_unlock(&bdev->bd_mutex); 1521 bdput(bdev); 1522 if (victim) 1523 __blkdev_put(victim, mode, 1); 1524 return ret; 1525} 1526 1527int blkdev_put(struct block_device *bdev, fmode_t mode) 1528{ 1529 return __blkdev_put(bdev, mode, 0); 1530} 1531EXPORT_SYMBOL(blkdev_put); 1532 1533static int blkdev_close(struct inode * inode, struct file * filp) 1534{ 1535 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1536 if (bdev->bd_holder == filp) 1537 bd_release(bdev); 1538 return blkdev_put(bdev, filp->f_mode); 1539} 1540 1541static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1542{ 1543 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1544 fmode_t mode = file->f_mode; 1545 1546 /* 1547 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1548 * to updated it before every ioctl. 1549 */ 1550 if (file->f_flags & O_NDELAY) 1551 mode |= FMODE_NDELAY; 1552 else 1553 mode &= ~FMODE_NDELAY; 1554 1555 return blkdev_ioctl(bdev, mode, cmd, arg); 1556} 1557 1558/* 1559 * Write data to the block device. Only intended for the block device itself 1560 * and the raw driver which basically is a fake block device. 1561 * 1562 * Does not take i_mutex for the write and thus is not for general purpose 1563 * use. 1564 */ 1565ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1566 unsigned long nr_segs, loff_t pos) 1567{ 1568 struct file *file = iocb->ki_filp; 1569 ssize_t ret; 1570 1571 BUG_ON(iocb->ki_pos != pos); 1572 1573 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1574 if (ret > 0 || ret == -EIOCBQUEUED) { 1575 ssize_t err; 1576 1577 err = generic_write_sync(file, pos, ret); 1578 if (err < 0 && ret > 0) 1579 ret = err; 1580 } 1581 return ret; 1582} 1583EXPORT_SYMBOL_GPL(blkdev_aio_write); 1584 1585/* 1586 * Try to release a page associated with block device when the system 1587 * is under memory pressure. 1588 */ 1589static int blkdev_releasepage(struct page *page, gfp_t wait) 1590{ 1591 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1592 1593 if (super && super->s_op->bdev_try_to_free_page) 1594 return super->s_op->bdev_try_to_free_page(super, page, wait); 1595 1596 return try_to_free_buffers(page); 1597} 1598 1599static const struct address_space_operations def_blk_aops = { 1600 .readpage = blkdev_readpage, 1601 .writepage = blkdev_writepage, 1602 .sync_page = block_sync_page, 1603 .write_begin = blkdev_write_begin, 1604 .write_end = blkdev_write_end, 1605 .writepages = generic_writepages, 1606 .releasepage = blkdev_releasepage, 1607 .direct_IO = blkdev_direct_IO, 1608}; 1609 1610const struct file_operations def_blk_fops = { 1611 .open = blkdev_open, 1612 .release = blkdev_close, 1613 .llseek = block_llseek, 1614 .read = do_sync_read, 1615 .write = do_sync_write, 1616 .aio_read = generic_file_aio_read, 1617 .aio_write = blkdev_aio_write, 1618 .mmap = generic_file_mmap, 1619 .fsync = blkdev_fsync, 1620 .unlocked_ioctl = block_ioctl, 1621#ifdef CONFIG_COMPAT 1622 .compat_ioctl = compat_blkdev_ioctl, 1623#endif 1624 .splice_read = generic_file_splice_read, 1625 .splice_write = generic_file_splice_write, 1626}; 1627 1628int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1629{ 1630 int res; 1631 mm_segment_t old_fs = get_fs(); 1632 set_fs(KERNEL_DS); 1633 res = blkdev_ioctl(bdev, 0, cmd, arg); 1634 set_fs(old_fs); 1635 return res; 1636} 1637 1638EXPORT_SYMBOL(ioctl_by_bdev); 1639 1640/** 1641 * lookup_bdev - lookup a struct block_device by name 1642 * @pathname: special file representing the block device 1643 * 1644 * Get a reference to the blockdevice at @pathname in the current 1645 * namespace if possible and return it. Return ERR_PTR(error) 1646 * otherwise. 1647 */ 1648struct block_device *lookup_bdev(const char *pathname) 1649{ 1650 struct block_device *bdev; 1651 struct inode *inode; 1652 struct path path; 1653 int error; 1654 1655 if (!pathname || !*pathname) 1656 return ERR_PTR(-EINVAL); 1657 1658 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1659 if (error) 1660 return ERR_PTR(error); 1661 1662 inode = path.dentry->d_inode; 1663 error = -ENOTBLK; 1664 if (!S_ISBLK(inode->i_mode)) 1665 goto fail; 1666 error = -EACCES; 1667 if (path.mnt->mnt_flags & MNT_NODEV) 1668 goto fail; 1669 error = -ENOMEM; 1670 bdev = bd_acquire(inode); 1671 if (!bdev) 1672 goto fail; 1673out: 1674 path_put(&path); 1675 return bdev; 1676fail: 1677 bdev = ERR_PTR(error); 1678 goto out; 1679} 1680EXPORT_SYMBOL(lookup_bdev); 1681 1682/** 1683 * open_bdev_exclusive - open a block device by name and set it up for use 1684 * 1685 * @path: special file representing the block device 1686 * @mode: FMODE_... combination to pass be used 1687 * @holder: owner for exclusion 1688 * 1689 * Open the blockdevice described by the special file at @path, claim it 1690 * for the @holder. 1691 */ 1692struct block_device *open_bdev_exclusive(const char *path, fmode_t mode, void *holder) 1693{ 1694 struct block_device *bdev, *whole; 1695 int error; 1696 1697 bdev = lookup_bdev(path); 1698 if (IS_ERR(bdev)) 1699 return bdev; 1700 1701 whole = bd_start_claiming(bdev, holder); 1702 if (IS_ERR(whole)) { 1703 bdput(bdev); 1704 return whole; 1705 } 1706 1707 error = blkdev_get(bdev, mode); 1708 if (error) 1709 goto out_abort_claiming; 1710 1711 error = -EACCES; 1712 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) 1713 goto out_blkdev_put; 1714 1715 BUG_ON(bd_claim(bdev, holder) != 0); 1716 return bdev; 1717 1718out_blkdev_put: 1719 blkdev_put(bdev, mode); 1720out_abort_claiming: 1721 bd_abort_claiming(whole, holder); 1722 return ERR_PTR(error); 1723} 1724 1725EXPORT_SYMBOL(open_bdev_exclusive); 1726 1727/** 1728 * close_bdev_exclusive - close a blockdevice opened by open_bdev_exclusive() 1729 * 1730 * @bdev: blockdevice to close 1731 * @mode: mode, must match that used to open. 1732 * 1733 * This is the counterpart to open_bdev_exclusive(). 1734 */ 1735void close_bdev_exclusive(struct block_device *bdev, fmode_t mode) 1736{ 1737 bd_release(bdev); 1738 blkdev_put(bdev, mode); 1739} 1740 1741EXPORT_SYMBOL(close_bdev_exclusive); 1742 1743int __invalidate_device(struct block_device *bdev) 1744{ 1745 struct super_block *sb = get_super(bdev); 1746 int res = 0; 1747 1748 if (sb) { 1749 /* 1750 * no need to lock the super, get_super holds the 1751 * read mutex so the filesystem cannot go away 1752 * under us (->put_super runs with the write lock 1753 * hold). 1754 */ 1755 shrink_dcache_sb(sb); 1756 res = invalidate_inodes(sb); 1757 drop_super(sb); 1758 } 1759 invalidate_bdev(bdev); 1760 return res; 1761} 1762EXPORT_SYMBOL(__invalidate_device);