at v2.6.34 34 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/ima.h> 20 21/* Boot-time LSM user choice */ 22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25/* things that live in capability.c */ 26extern void security_fixup_ops(struct security_operations *ops); 27 28static struct security_operations *security_ops; 29static struct security_operations default_security_ops = { 30 .name = "default", 31}; 32 33static inline int verify(struct security_operations *ops) 34{ 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40} 41 42static void __init do_security_initcalls(void) 43{ 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50} 51 52/** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57int __init security_init(void) 58{ 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66} 67 68void reset_security_ops(void) 69{ 70 security_ops = &default_security_ops; 71} 72 73/* Save user chosen LSM */ 74static int __init choose_lsm(char *str) 75{ 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78} 79__setup("security=", choose_lsm); 80 81/** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time, 93 * -or there is no default LSM set and the user didn't specify a 94 * specific LSM and we're the first to ask for registration permission, 95 * -or the passed LSM is currently loaded. 96 * Otherwise, return false. 97 */ 98int __init security_module_enable(struct security_operations *ops) 99{ 100 if (!*chosen_lsm) 101 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 102 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 103 return 0; 104 105 return 1; 106} 107 108/** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120int register_security(struct security_operations *ops) 121{ 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134} 135 136/* Security operations */ 137 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139{ 140 return security_ops->ptrace_access_check(child, mode); 141} 142 143int security_ptrace_traceme(struct task_struct *parent) 144{ 145 return security_ops->ptrace_traceme(parent); 146} 147 148int security_capget(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152{ 153 return security_ops->capget(target, effective, inheritable, permitted); 154} 155 156int security_capset(struct cred *new, const struct cred *old, 157 const kernel_cap_t *effective, 158 const kernel_cap_t *inheritable, 159 const kernel_cap_t *permitted) 160{ 161 return security_ops->capset(new, old, 162 effective, inheritable, permitted); 163} 164 165int security_capable(int cap) 166{ 167 return security_ops->capable(current, current_cred(), cap, 168 SECURITY_CAP_AUDIT); 169} 170 171int security_real_capable(struct task_struct *tsk, int cap) 172{ 173 const struct cred *cred; 174 int ret; 175 176 cred = get_task_cred(tsk); 177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 178 put_cred(cred); 179 return ret; 180} 181 182int security_real_capable_noaudit(struct task_struct *tsk, int cap) 183{ 184 const struct cred *cred; 185 int ret; 186 187 cred = get_task_cred(tsk); 188 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 189 put_cred(cred); 190 return ret; 191} 192 193int security_acct(struct file *file) 194{ 195 return security_ops->acct(file); 196} 197 198int security_sysctl(struct ctl_table *table, int op) 199{ 200 return security_ops->sysctl(table, op); 201} 202 203int security_quotactl(int cmds, int type, int id, struct super_block *sb) 204{ 205 return security_ops->quotactl(cmds, type, id, sb); 206} 207 208int security_quota_on(struct dentry *dentry) 209{ 210 return security_ops->quota_on(dentry); 211} 212 213int security_syslog(int type, bool from_file) 214{ 215 return security_ops->syslog(type, from_file); 216} 217 218int security_settime(struct timespec *ts, struct timezone *tz) 219{ 220 return security_ops->settime(ts, tz); 221} 222 223int security_vm_enough_memory(long pages) 224{ 225 WARN_ON(current->mm == NULL); 226 return security_ops->vm_enough_memory(current->mm, pages); 227} 228 229int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 230{ 231 WARN_ON(mm == NULL); 232 return security_ops->vm_enough_memory(mm, pages); 233} 234 235int security_vm_enough_memory_kern(long pages) 236{ 237 /* If current->mm is a kernel thread then we will pass NULL, 238 for this specific case that is fine */ 239 return security_ops->vm_enough_memory(current->mm, pages); 240} 241 242int security_bprm_set_creds(struct linux_binprm *bprm) 243{ 244 return security_ops->bprm_set_creds(bprm); 245} 246 247int security_bprm_check(struct linux_binprm *bprm) 248{ 249 int ret; 250 251 ret = security_ops->bprm_check_security(bprm); 252 if (ret) 253 return ret; 254 return ima_bprm_check(bprm); 255} 256 257void security_bprm_committing_creds(struct linux_binprm *bprm) 258{ 259 security_ops->bprm_committing_creds(bprm); 260} 261 262void security_bprm_committed_creds(struct linux_binprm *bprm) 263{ 264 security_ops->bprm_committed_creds(bprm); 265} 266 267int security_bprm_secureexec(struct linux_binprm *bprm) 268{ 269 return security_ops->bprm_secureexec(bprm); 270} 271 272int security_sb_alloc(struct super_block *sb) 273{ 274 return security_ops->sb_alloc_security(sb); 275} 276 277void security_sb_free(struct super_block *sb) 278{ 279 security_ops->sb_free_security(sb); 280} 281 282int security_sb_copy_data(char *orig, char *copy) 283{ 284 return security_ops->sb_copy_data(orig, copy); 285} 286EXPORT_SYMBOL(security_sb_copy_data); 287 288int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 289{ 290 return security_ops->sb_kern_mount(sb, flags, data); 291} 292 293int security_sb_show_options(struct seq_file *m, struct super_block *sb) 294{ 295 return security_ops->sb_show_options(m, sb); 296} 297 298int security_sb_statfs(struct dentry *dentry) 299{ 300 return security_ops->sb_statfs(dentry); 301} 302 303int security_sb_mount(char *dev_name, struct path *path, 304 char *type, unsigned long flags, void *data) 305{ 306 return security_ops->sb_mount(dev_name, path, type, flags, data); 307} 308 309int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 310{ 311 return security_ops->sb_check_sb(mnt, path); 312} 313 314int security_sb_umount(struct vfsmount *mnt, int flags) 315{ 316 return security_ops->sb_umount(mnt, flags); 317} 318 319void security_sb_umount_close(struct vfsmount *mnt) 320{ 321 security_ops->sb_umount_close(mnt); 322} 323 324void security_sb_umount_busy(struct vfsmount *mnt) 325{ 326 security_ops->sb_umount_busy(mnt); 327} 328 329void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 330{ 331 security_ops->sb_post_remount(mnt, flags, data); 332} 333 334void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 335{ 336 security_ops->sb_post_addmount(mnt, mountpoint); 337} 338 339int security_sb_pivotroot(struct path *old_path, struct path *new_path) 340{ 341 return security_ops->sb_pivotroot(old_path, new_path); 342} 343 344void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 345{ 346 security_ops->sb_post_pivotroot(old_path, new_path); 347} 348 349int security_sb_set_mnt_opts(struct super_block *sb, 350 struct security_mnt_opts *opts) 351{ 352 return security_ops->sb_set_mnt_opts(sb, opts); 353} 354EXPORT_SYMBOL(security_sb_set_mnt_opts); 355 356void security_sb_clone_mnt_opts(const struct super_block *oldsb, 357 struct super_block *newsb) 358{ 359 security_ops->sb_clone_mnt_opts(oldsb, newsb); 360} 361EXPORT_SYMBOL(security_sb_clone_mnt_opts); 362 363int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 364{ 365 return security_ops->sb_parse_opts_str(options, opts); 366} 367EXPORT_SYMBOL(security_sb_parse_opts_str); 368 369int security_inode_alloc(struct inode *inode) 370{ 371 int ret; 372 373 inode->i_security = NULL; 374 ret = security_ops->inode_alloc_security(inode); 375 if (ret) 376 return ret; 377 ret = ima_inode_alloc(inode); 378 if (ret) 379 security_inode_free(inode); 380 return ret; 381} 382 383void security_inode_free(struct inode *inode) 384{ 385 ima_inode_free(inode); 386 security_ops->inode_free_security(inode); 387} 388 389int security_inode_init_security(struct inode *inode, struct inode *dir, 390 char **name, void **value, size_t *len) 391{ 392 if (unlikely(IS_PRIVATE(inode))) 393 return -EOPNOTSUPP; 394 return security_ops->inode_init_security(inode, dir, name, value, len); 395} 396EXPORT_SYMBOL(security_inode_init_security); 397 398#ifdef CONFIG_SECURITY_PATH 399int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 400 unsigned int dev) 401{ 402 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 403 return 0; 404 return security_ops->path_mknod(dir, dentry, mode, dev); 405} 406EXPORT_SYMBOL(security_path_mknod); 407 408int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 409{ 410 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 411 return 0; 412 return security_ops->path_mkdir(dir, dentry, mode); 413} 414 415int security_path_rmdir(struct path *dir, struct dentry *dentry) 416{ 417 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 418 return 0; 419 return security_ops->path_rmdir(dir, dentry); 420} 421 422int security_path_unlink(struct path *dir, struct dentry *dentry) 423{ 424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 425 return 0; 426 return security_ops->path_unlink(dir, dentry); 427} 428 429int security_path_symlink(struct path *dir, struct dentry *dentry, 430 const char *old_name) 431{ 432 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 433 return 0; 434 return security_ops->path_symlink(dir, dentry, old_name); 435} 436 437int security_path_link(struct dentry *old_dentry, struct path *new_dir, 438 struct dentry *new_dentry) 439{ 440 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 441 return 0; 442 return security_ops->path_link(old_dentry, new_dir, new_dentry); 443} 444 445int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 446 struct path *new_dir, struct dentry *new_dentry) 447{ 448 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 449 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 450 return 0; 451 return security_ops->path_rename(old_dir, old_dentry, new_dir, 452 new_dentry); 453} 454 455int security_path_truncate(struct path *path, loff_t length, 456 unsigned int time_attrs) 457{ 458 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 459 return 0; 460 return security_ops->path_truncate(path, length, time_attrs); 461} 462 463int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 464 mode_t mode) 465{ 466 if (unlikely(IS_PRIVATE(dentry->d_inode))) 467 return 0; 468 return security_ops->path_chmod(dentry, mnt, mode); 469} 470 471int security_path_chown(struct path *path, uid_t uid, gid_t gid) 472{ 473 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 474 return 0; 475 return security_ops->path_chown(path, uid, gid); 476} 477 478int security_path_chroot(struct path *path) 479{ 480 return security_ops->path_chroot(path); 481} 482#endif 483 484int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 485{ 486 if (unlikely(IS_PRIVATE(dir))) 487 return 0; 488 return security_ops->inode_create(dir, dentry, mode); 489} 490EXPORT_SYMBOL_GPL(security_inode_create); 491 492int security_inode_link(struct dentry *old_dentry, struct inode *dir, 493 struct dentry *new_dentry) 494{ 495 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 496 return 0; 497 return security_ops->inode_link(old_dentry, dir, new_dentry); 498} 499 500int security_inode_unlink(struct inode *dir, struct dentry *dentry) 501{ 502 if (unlikely(IS_PRIVATE(dentry->d_inode))) 503 return 0; 504 return security_ops->inode_unlink(dir, dentry); 505} 506 507int security_inode_symlink(struct inode *dir, struct dentry *dentry, 508 const char *old_name) 509{ 510 if (unlikely(IS_PRIVATE(dir))) 511 return 0; 512 return security_ops->inode_symlink(dir, dentry, old_name); 513} 514 515int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 516{ 517 if (unlikely(IS_PRIVATE(dir))) 518 return 0; 519 return security_ops->inode_mkdir(dir, dentry, mode); 520} 521EXPORT_SYMBOL_GPL(security_inode_mkdir); 522 523int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 524{ 525 if (unlikely(IS_PRIVATE(dentry->d_inode))) 526 return 0; 527 return security_ops->inode_rmdir(dir, dentry); 528} 529 530int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 531{ 532 if (unlikely(IS_PRIVATE(dir))) 533 return 0; 534 return security_ops->inode_mknod(dir, dentry, mode, dev); 535} 536 537int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 538 struct inode *new_dir, struct dentry *new_dentry) 539{ 540 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 541 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 542 return 0; 543 return security_ops->inode_rename(old_dir, old_dentry, 544 new_dir, new_dentry); 545} 546 547int security_inode_readlink(struct dentry *dentry) 548{ 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_readlink(dentry); 552} 553 554int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 555{ 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_follow_link(dentry, nd); 559} 560 561int security_inode_permission(struct inode *inode, int mask) 562{ 563 if (unlikely(IS_PRIVATE(inode))) 564 return 0; 565 return security_ops->inode_permission(inode, mask); 566} 567 568int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 569{ 570 if (unlikely(IS_PRIVATE(dentry->d_inode))) 571 return 0; 572 return security_ops->inode_setattr(dentry, attr); 573} 574EXPORT_SYMBOL_GPL(security_inode_setattr); 575 576int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 577{ 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_getattr(mnt, dentry); 581} 582 583void security_inode_delete(struct inode *inode) 584{ 585 if (unlikely(IS_PRIVATE(inode))) 586 return; 587 security_ops->inode_delete(inode); 588} 589 590int security_inode_setxattr(struct dentry *dentry, const char *name, 591 const void *value, size_t size, int flags) 592{ 593 if (unlikely(IS_PRIVATE(dentry->d_inode))) 594 return 0; 595 return security_ops->inode_setxattr(dentry, name, value, size, flags); 596} 597 598void security_inode_post_setxattr(struct dentry *dentry, const char *name, 599 const void *value, size_t size, int flags) 600{ 601 if (unlikely(IS_PRIVATE(dentry->d_inode))) 602 return; 603 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 604} 605 606int security_inode_getxattr(struct dentry *dentry, const char *name) 607{ 608 if (unlikely(IS_PRIVATE(dentry->d_inode))) 609 return 0; 610 return security_ops->inode_getxattr(dentry, name); 611} 612 613int security_inode_listxattr(struct dentry *dentry) 614{ 615 if (unlikely(IS_PRIVATE(dentry->d_inode))) 616 return 0; 617 return security_ops->inode_listxattr(dentry); 618} 619 620int security_inode_removexattr(struct dentry *dentry, const char *name) 621{ 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 return security_ops->inode_removexattr(dentry, name); 625} 626 627int security_inode_need_killpriv(struct dentry *dentry) 628{ 629 return security_ops->inode_need_killpriv(dentry); 630} 631 632int security_inode_killpriv(struct dentry *dentry) 633{ 634 return security_ops->inode_killpriv(dentry); 635} 636 637int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 638{ 639 if (unlikely(IS_PRIVATE(inode))) 640 return -EOPNOTSUPP; 641 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 642} 643 644int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 645{ 646 if (unlikely(IS_PRIVATE(inode))) 647 return -EOPNOTSUPP; 648 return security_ops->inode_setsecurity(inode, name, value, size, flags); 649} 650 651int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 652{ 653 if (unlikely(IS_PRIVATE(inode))) 654 return 0; 655 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 656} 657 658void security_inode_getsecid(const struct inode *inode, u32 *secid) 659{ 660 security_ops->inode_getsecid(inode, secid); 661} 662 663int security_file_permission(struct file *file, int mask) 664{ 665 return security_ops->file_permission(file, mask); 666} 667 668int security_file_alloc(struct file *file) 669{ 670 return security_ops->file_alloc_security(file); 671} 672 673void security_file_free(struct file *file) 674{ 675 security_ops->file_free_security(file); 676} 677 678int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 679{ 680 return security_ops->file_ioctl(file, cmd, arg); 681} 682 683int security_file_mmap(struct file *file, unsigned long reqprot, 684 unsigned long prot, unsigned long flags, 685 unsigned long addr, unsigned long addr_only) 686{ 687 int ret; 688 689 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 690 if (ret) 691 return ret; 692 return ima_file_mmap(file, prot); 693} 694 695int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 696 unsigned long prot) 697{ 698 return security_ops->file_mprotect(vma, reqprot, prot); 699} 700 701int security_file_lock(struct file *file, unsigned int cmd) 702{ 703 return security_ops->file_lock(file, cmd); 704} 705 706int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 707{ 708 return security_ops->file_fcntl(file, cmd, arg); 709} 710 711int security_file_set_fowner(struct file *file) 712{ 713 return security_ops->file_set_fowner(file); 714} 715 716int security_file_send_sigiotask(struct task_struct *tsk, 717 struct fown_struct *fown, int sig) 718{ 719 return security_ops->file_send_sigiotask(tsk, fown, sig); 720} 721 722int security_file_receive(struct file *file) 723{ 724 return security_ops->file_receive(file); 725} 726 727int security_dentry_open(struct file *file, const struct cred *cred) 728{ 729 return security_ops->dentry_open(file, cred); 730} 731 732int security_task_create(unsigned long clone_flags) 733{ 734 return security_ops->task_create(clone_flags); 735} 736 737int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 738{ 739 return security_ops->cred_alloc_blank(cred, gfp); 740} 741 742void security_cred_free(struct cred *cred) 743{ 744 security_ops->cred_free(cred); 745} 746 747int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 748{ 749 return security_ops->cred_prepare(new, old, gfp); 750} 751 752void security_commit_creds(struct cred *new, const struct cred *old) 753{ 754 security_ops->cred_commit(new, old); 755} 756 757void security_transfer_creds(struct cred *new, const struct cred *old) 758{ 759 security_ops->cred_transfer(new, old); 760} 761 762int security_kernel_act_as(struct cred *new, u32 secid) 763{ 764 return security_ops->kernel_act_as(new, secid); 765} 766 767int security_kernel_create_files_as(struct cred *new, struct inode *inode) 768{ 769 return security_ops->kernel_create_files_as(new, inode); 770} 771 772int security_kernel_module_request(char *kmod_name) 773{ 774 return security_ops->kernel_module_request(kmod_name); 775} 776 777int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 778{ 779 return security_ops->task_setuid(id0, id1, id2, flags); 780} 781 782int security_task_fix_setuid(struct cred *new, const struct cred *old, 783 int flags) 784{ 785 return security_ops->task_fix_setuid(new, old, flags); 786} 787 788int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 789{ 790 return security_ops->task_setgid(id0, id1, id2, flags); 791} 792 793int security_task_setpgid(struct task_struct *p, pid_t pgid) 794{ 795 return security_ops->task_setpgid(p, pgid); 796} 797 798int security_task_getpgid(struct task_struct *p) 799{ 800 return security_ops->task_getpgid(p); 801} 802 803int security_task_getsid(struct task_struct *p) 804{ 805 return security_ops->task_getsid(p); 806} 807 808void security_task_getsecid(struct task_struct *p, u32 *secid) 809{ 810 security_ops->task_getsecid(p, secid); 811} 812EXPORT_SYMBOL(security_task_getsecid); 813 814int security_task_setgroups(struct group_info *group_info) 815{ 816 return security_ops->task_setgroups(group_info); 817} 818 819int security_task_setnice(struct task_struct *p, int nice) 820{ 821 return security_ops->task_setnice(p, nice); 822} 823 824int security_task_setioprio(struct task_struct *p, int ioprio) 825{ 826 return security_ops->task_setioprio(p, ioprio); 827} 828 829int security_task_getioprio(struct task_struct *p) 830{ 831 return security_ops->task_getioprio(p); 832} 833 834int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 835{ 836 return security_ops->task_setrlimit(resource, new_rlim); 837} 838 839int security_task_setscheduler(struct task_struct *p, 840 int policy, struct sched_param *lp) 841{ 842 return security_ops->task_setscheduler(p, policy, lp); 843} 844 845int security_task_getscheduler(struct task_struct *p) 846{ 847 return security_ops->task_getscheduler(p); 848} 849 850int security_task_movememory(struct task_struct *p) 851{ 852 return security_ops->task_movememory(p); 853} 854 855int security_task_kill(struct task_struct *p, struct siginfo *info, 856 int sig, u32 secid) 857{ 858 return security_ops->task_kill(p, info, sig, secid); 859} 860 861int security_task_wait(struct task_struct *p) 862{ 863 return security_ops->task_wait(p); 864} 865 866int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 867 unsigned long arg4, unsigned long arg5) 868{ 869 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 870} 871 872void security_task_to_inode(struct task_struct *p, struct inode *inode) 873{ 874 security_ops->task_to_inode(p, inode); 875} 876 877int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 878{ 879 return security_ops->ipc_permission(ipcp, flag); 880} 881 882void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 883{ 884 security_ops->ipc_getsecid(ipcp, secid); 885} 886 887int security_msg_msg_alloc(struct msg_msg *msg) 888{ 889 return security_ops->msg_msg_alloc_security(msg); 890} 891 892void security_msg_msg_free(struct msg_msg *msg) 893{ 894 security_ops->msg_msg_free_security(msg); 895} 896 897int security_msg_queue_alloc(struct msg_queue *msq) 898{ 899 return security_ops->msg_queue_alloc_security(msq); 900} 901 902void security_msg_queue_free(struct msg_queue *msq) 903{ 904 security_ops->msg_queue_free_security(msq); 905} 906 907int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 908{ 909 return security_ops->msg_queue_associate(msq, msqflg); 910} 911 912int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 913{ 914 return security_ops->msg_queue_msgctl(msq, cmd); 915} 916 917int security_msg_queue_msgsnd(struct msg_queue *msq, 918 struct msg_msg *msg, int msqflg) 919{ 920 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 921} 922 923int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 924 struct task_struct *target, long type, int mode) 925{ 926 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 927} 928 929int security_shm_alloc(struct shmid_kernel *shp) 930{ 931 return security_ops->shm_alloc_security(shp); 932} 933 934void security_shm_free(struct shmid_kernel *shp) 935{ 936 security_ops->shm_free_security(shp); 937} 938 939int security_shm_associate(struct shmid_kernel *shp, int shmflg) 940{ 941 return security_ops->shm_associate(shp, shmflg); 942} 943 944int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 945{ 946 return security_ops->shm_shmctl(shp, cmd); 947} 948 949int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 950{ 951 return security_ops->shm_shmat(shp, shmaddr, shmflg); 952} 953 954int security_sem_alloc(struct sem_array *sma) 955{ 956 return security_ops->sem_alloc_security(sma); 957} 958 959void security_sem_free(struct sem_array *sma) 960{ 961 security_ops->sem_free_security(sma); 962} 963 964int security_sem_associate(struct sem_array *sma, int semflg) 965{ 966 return security_ops->sem_associate(sma, semflg); 967} 968 969int security_sem_semctl(struct sem_array *sma, int cmd) 970{ 971 return security_ops->sem_semctl(sma, cmd); 972} 973 974int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 975 unsigned nsops, int alter) 976{ 977 return security_ops->sem_semop(sma, sops, nsops, alter); 978} 979 980void security_d_instantiate(struct dentry *dentry, struct inode *inode) 981{ 982 if (unlikely(inode && IS_PRIVATE(inode))) 983 return; 984 security_ops->d_instantiate(dentry, inode); 985} 986EXPORT_SYMBOL(security_d_instantiate); 987 988int security_getprocattr(struct task_struct *p, char *name, char **value) 989{ 990 return security_ops->getprocattr(p, name, value); 991} 992 993int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 994{ 995 return security_ops->setprocattr(p, name, value, size); 996} 997 998int security_netlink_send(struct sock *sk, struct sk_buff *skb) 999{ 1000 return security_ops->netlink_send(sk, skb); 1001} 1002 1003int security_netlink_recv(struct sk_buff *skb, int cap) 1004{ 1005 return security_ops->netlink_recv(skb, cap); 1006} 1007EXPORT_SYMBOL(security_netlink_recv); 1008 1009int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1010{ 1011 return security_ops->secid_to_secctx(secid, secdata, seclen); 1012} 1013EXPORT_SYMBOL(security_secid_to_secctx); 1014 1015int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1016{ 1017 return security_ops->secctx_to_secid(secdata, seclen, secid); 1018} 1019EXPORT_SYMBOL(security_secctx_to_secid); 1020 1021void security_release_secctx(char *secdata, u32 seclen) 1022{ 1023 security_ops->release_secctx(secdata, seclen); 1024} 1025EXPORT_SYMBOL(security_release_secctx); 1026 1027int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1028{ 1029 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1030} 1031EXPORT_SYMBOL(security_inode_notifysecctx); 1032 1033int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1034{ 1035 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1036} 1037EXPORT_SYMBOL(security_inode_setsecctx); 1038 1039int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1040{ 1041 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1042} 1043EXPORT_SYMBOL(security_inode_getsecctx); 1044 1045#ifdef CONFIG_SECURITY_NETWORK 1046 1047int security_unix_stream_connect(struct socket *sock, struct socket *other, 1048 struct sock *newsk) 1049{ 1050 return security_ops->unix_stream_connect(sock, other, newsk); 1051} 1052EXPORT_SYMBOL(security_unix_stream_connect); 1053 1054int security_unix_may_send(struct socket *sock, struct socket *other) 1055{ 1056 return security_ops->unix_may_send(sock, other); 1057} 1058EXPORT_SYMBOL(security_unix_may_send); 1059 1060int security_socket_create(int family, int type, int protocol, int kern) 1061{ 1062 return security_ops->socket_create(family, type, protocol, kern); 1063} 1064 1065int security_socket_post_create(struct socket *sock, int family, 1066 int type, int protocol, int kern) 1067{ 1068 return security_ops->socket_post_create(sock, family, type, 1069 protocol, kern); 1070} 1071 1072int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1073{ 1074 return security_ops->socket_bind(sock, address, addrlen); 1075} 1076 1077int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1078{ 1079 return security_ops->socket_connect(sock, address, addrlen); 1080} 1081 1082int security_socket_listen(struct socket *sock, int backlog) 1083{ 1084 return security_ops->socket_listen(sock, backlog); 1085} 1086 1087int security_socket_accept(struct socket *sock, struct socket *newsock) 1088{ 1089 return security_ops->socket_accept(sock, newsock); 1090} 1091 1092int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1093{ 1094 return security_ops->socket_sendmsg(sock, msg, size); 1095} 1096 1097int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1098 int size, int flags) 1099{ 1100 return security_ops->socket_recvmsg(sock, msg, size, flags); 1101} 1102 1103int security_socket_getsockname(struct socket *sock) 1104{ 1105 return security_ops->socket_getsockname(sock); 1106} 1107 1108int security_socket_getpeername(struct socket *sock) 1109{ 1110 return security_ops->socket_getpeername(sock); 1111} 1112 1113int security_socket_getsockopt(struct socket *sock, int level, int optname) 1114{ 1115 return security_ops->socket_getsockopt(sock, level, optname); 1116} 1117 1118int security_socket_setsockopt(struct socket *sock, int level, int optname) 1119{ 1120 return security_ops->socket_setsockopt(sock, level, optname); 1121} 1122 1123int security_socket_shutdown(struct socket *sock, int how) 1124{ 1125 return security_ops->socket_shutdown(sock, how); 1126} 1127 1128int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1129{ 1130 return security_ops->socket_sock_rcv_skb(sk, skb); 1131} 1132EXPORT_SYMBOL(security_sock_rcv_skb); 1133 1134int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1135 int __user *optlen, unsigned len) 1136{ 1137 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1138} 1139 1140int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1141{ 1142 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1143} 1144EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1145 1146int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1147{ 1148 return security_ops->sk_alloc_security(sk, family, priority); 1149} 1150 1151void security_sk_free(struct sock *sk) 1152{ 1153 security_ops->sk_free_security(sk); 1154} 1155 1156void security_sk_clone(const struct sock *sk, struct sock *newsk) 1157{ 1158 security_ops->sk_clone_security(sk, newsk); 1159} 1160 1161void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1162{ 1163 security_ops->sk_getsecid(sk, &fl->secid); 1164} 1165EXPORT_SYMBOL(security_sk_classify_flow); 1166 1167void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1168{ 1169 security_ops->req_classify_flow(req, fl); 1170} 1171EXPORT_SYMBOL(security_req_classify_flow); 1172 1173void security_sock_graft(struct sock *sk, struct socket *parent) 1174{ 1175 security_ops->sock_graft(sk, parent); 1176} 1177EXPORT_SYMBOL(security_sock_graft); 1178 1179int security_inet_conn_request(struct sock *sk, 1180 struct sk_buff *skb, struct request_sock *req) 1181{ 1182 return security_ops->inet_conn_request(sk, skb, req); 1183} 1184EXPORT_SYMBOL(security_inet_conn_request); 1185 1186void security_inet_csk_clone(struct sock *newsk, 1187 const struct request_sock *req) 1188{ 1189 security_ops->inet_csk_clone(newsk, req); 1190} 1191 1192void security_inet_conn_established(struct sock *sk, 1193 struct sk_buff *skb) 1194{ 1195 security_ops->inet_conn_established(sk, skb); 1196} 1197 1198int security_tun_dev_create(void) 1199{ 1200 return security_ops->tun_dev_create(); 1201} 1202EXPORT_SYMBOL(security_tun_dev_create); 1203 1204void security_tun_dev_post_create(struct sock *sk) 1205{ 1206 return security_ops->tun_dev_post_create(sk); 1207} 1208EXPORT_SYMBOL(security_tun_dev_post_create); 1209 1210int security_tun_dev_attach(struct sock *sk) 1211{ 1212 return security_ops->tun_dev_attach(sk); 1213} 1214EXPORT_SYMBOL(security_tun_dev_attach); 1215 1216#endif /* CONFIG_SECURITY_NETWORK */ 1217 1218#ifdef CONFIG_SECURITY_NETWORK_XFRM 1219 1220int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1221{ 1222 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1223} 1224EXPORT_SYMBOL(security_xfrm_policy_alloc); 1225 1226int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1227 struct xfrm_sec_ctx **new_ctxp) 1228{ 1229 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1230} 1231 1232void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1233{ 1234 security_ops->xfrm_policy_free_security(ctx); 1235} 1236EXPORT_SYMBOL(security_xfrm_policy_free); 1237 1238int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1239{ 1240 return security_ops->xfrm_policy_delete_security(ctx); 1241} 1242 1243int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1244{ 1245 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1246} 1247EXPORT_SYMBOL(security_xfrm_state_alloc); 1248 1249int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1250 struct xfrm_sec_ctx *polsec, u32 secid) 1251{ 1252 if (!polsec) 1253 return 0; 1254 /* 1255 * We want the context to be taken from secid which is usually 1256 * from the sock. 1257 */ 1258 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1259} 1260 1261int security_xfrm_state_delete(struct xfrm_state *x) 1262{ 1263 return security_ops->xfrm_state_delete_security(x); 1264} 1265EXPORT_SYMBOL(security_xfrm_state_delete); 1266 1267void security_xfrm_state_free(struct xfrm_state *x) 1268{ 1269 security_ops->xfrm_state_free_security(x); 1270} 1271 1272int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1273{ 1274 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1275} 1276 1277int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1278 struct xfrm_policy *xp, struct flowi *fl) 1279{ 1280 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1281} 1282 1283int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1284{ 1285 return security_ops->xfrm_decode_session(skb, secid, 1); 1286} 1287 1288void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1289{ 1290 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1291 1292 BUG_ON(rc); 1293} 1294EXPORT_SYMBOL(security_skb_classify_flow); 1295 1296#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1297 1298#ifdef CONFIG_KEYS 1299 1300int security_key_alloc(struct key *key, const struct cred *cred, 1301 unsigned long flags) 1302{ 1303 return security_ops->key_alloc(key, cred, flags); 1304} 1305 1306void security_key_free(struct key *key) 1307{ 1308 security_ops->key_free(key); 1309} 1310 1311int security_key_permission(key_ref_t key_ref, 1312 const struct cred *cred, key_perm_t perm) 1313{ 1314 return security_ops->key_permission(key_ref, cred, perm); 1315} 1316 1317int security_key_getsecurity(struct key *key, char **_buffer) 1318{ 1319 return security_ops->key_getsecurity(key, _buffer); 1320} 1321 1322int security_key_session_to_parent(const struct cred *cred, 1323 const struct cred *parent_cred, 1324 struct key *key) 1325{ 1326 return security_ops->key_session_to_parent(cred, parent_cred, key); 1327} 1328 1329#endif /* CONFIG_KEYS */ 1330 1331#ifdef CONFIG_AUDIT 1332 1333int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1334{ 1335 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1336} 1337 1338int security_audit_rule_known(struct audit_krule *krule) 1339{ 1340 return security_ops->audit_rule_known(krule); 1341} 1342 1343void security_audit_rule_free(void *lsmrule) 1344{ 1345 security_ops->audit_rule_free(lsmrule); 1346} 1347 1348int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1349 struct audit_context *actx) 1350{ 1351 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1352} 1353 1354#endif /* CONFIG_AUDIT */