at v2.6.34 149 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/slab.h> 84#include <linux/sched.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <linux/rtnetlink.h> 101#include <linux/proc_fs.h> 102#include <linux/seq_file.h> 103#include <linux/stat.h> 104#include <linux/if_bridge.h> 105#include <linux/if_macvlan.h> 106#include <net/dst.h> 107#include <net/pkt_sched.h> 108#include <net/checksum.h> 109#include <net/xfrm.h> 110#include <linux/highmem.h> 111#include <linux/init.h> 112#include <linux/kmod.h> 113#include <linux/module.h> 114#include <linux/netpoll.h> 115#include <linux/rcupdate.h> 116#include <linux/delay.h> 117#include <net/wext.h> 118#include <net/iw_handler.h> 119#include <asm/current.h> 120#include <linux/audit.h> 121#include <linux/dmaengine.h> 122#include <linux/err.h> 123#include <linux/ctype.h> 124#include <linux/if_arp.h> 125#include <linux/if_vlan.h> 126#include <linux/ip.h> 127#include <net/ip.h> 128#include <linux/ipv6.h> 129#include <linux/in.h> 130#include <linux/jhash.h> 131#include <linux/random.h> 132#include <trace/events/napi.h> 133 134#include "net-sysfs.h" 135 136/* Instead of increasing this, you should create a hash table. */ 137#define MAX_GRO_SKBS 8 138 139/* This should be increased if a protocol with a bigger head is added. */ 140#define GRO_MAX_HEAD (MAX_HEADER + 128) 141 142/* 143 * The list of packet types we will receive (as opposed to discard) 144 * and the routines to invoke. 145 * 146 * Why 16. Because with 16 the only overlap we get on a hash of the 147 * low nibble of the protocol value is RARP/SNAP/X.25. 148 * 149 * NOTE: That is no longer true with the addition of VLAN tags. Not 150 * sure which should go first, but I bet it won't make much 151 * difference if we are running VLANs. The good news is that 152 * this protocol won't be in the list unless compiled in, so 153 * the average user (w/out VLANs) will not be adversely affected. 154 * --BLG 155 * 156 * 0800 IP 157 * 8100 802.1Q VLAN 158 * 0001 802.3 159 * 0002 AX.25 160 * 0004 802.2 161 * 8035 RARP 162 * 0005 SNAP 163 * 0805 X.25 164 * 0806 ARP 165 * 8137 IPX 166 * 0009 Localtalk 167 * 86DD IPv6 168 */ 169 170#define PTYPE_HASH_SIZE (16) 171#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 172 173static DEFINE_SPINLOCK(ptype_lock); 174static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 175static struct list_head ptype_all __read_mostly; /* Taps */ 176 177/* 178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 179 * semaphore. 180 * 181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 182 * 183 * Writers must hold the rtnl semaphore while they loop through the 184 * dev_base_head list, and hold dev_base_lock for writing when they do the 185 * actual updates. This allows pure readers to access the list even 186 * while a writer is preparing to update it. 187 * 188 * To put it another way, dev_base_lock is held for writing only to 189 * protect against pure readers; the rtnl semaphore provides the 190 * protection against other writers. 191 * 192 * See, for example usages, register_netdevice() and 193 * unregister_netdevice(), which must be called with the rtnl 194 * semaphore held. 195 */ 196DEFINE_RWLOCK(dev_base_lock); 197EXPORT_SYMBOL(dev_base_lock); 198 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200{ 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203} 204 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206{ 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208} 209 210/* Device list insertion */ 211static int list_netdevice(struct net_device *dev) 212{ 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224} 225 226/* Device list removal 227 * caller must respect a RCU grace period before freeing/reusing dev 228 */ 229static void unlist_netdevice(struct net_device *dev) 230{ 231 ASSERT_RTNL(); 232 233 /* Unlink dev from the device chain */ 234 write_lock_bh(&dev_base_lock); 235 list_del_rcu(&dev->dev_list); 236 hlist_del_rcu(&dev->name_hlist); 237 hlist_del_rcu(&dev->index_hlist); 238 write_unlock_bh(&dev_base_lock); 239} 240 241/* 242 * Our notifier list 243 */ 244 245static RAW_NOTIFIER_HEAD(netdev_chain); 246 247/* 248 * Device drivers call our routines to queue packets here. We empty the 249 * queue in the local softnet handler. 250 */ 251 252DEFINE_PER_CPU(struct softnet_data, softnet_data); 253EXPORT_PER_CPU_SYMBOL(softnet_data); 254 255#ifdef CONFIG_LOCKDEP 256/* 257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 258 * according to dev->type 259 */ 260static const unsigned short netdev_lock_type[] = 261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 276 ARPHRD_VOID, ARPHRD_NONE}; 277 278static const char *const netdev_lock_name[] = 279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 294 "_xmit_VOID", "_xmit_NONE"}; 295 296static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 299static inline unsigned short netdev_lock_pos(unsigned short dev_type) 300{ 301 int i; 302 303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 304 if (netdev_lock_type[i] == dev_type) 305 return i; 306 /* the last key is used by default */ 307 return ARRAY_SIZE(netdev_lock_type) - 1; 308} 309 310static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 311 unsigned short dev_type) 312{ 313 int i; 314 315 i = netdev_lock_pos(dev_type); 316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 317 netdev_lock_name[i]); 318} 319 320static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 321{ 322 int i; 323 324 i = netdev_lock_pos(dev->type); 325 lockdep_set_class_and_name(&dev->addr_list_lock, 326 &netdev_addr_lock_key[i], 327 netdev_lock_name[i]); 328} 329#else 330static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 331 unsigned short dev_type) 332{ 333} 334static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 335{ 336} 337#endif 338 339/******************************************************************************* 340 341 Protocol management and registration routines 342 343*******************************************************************************/ 344 345/* 346 * Add a protocol ID to the list. Now that the input handler is 347 * smarter we can dispense with all the messy stuff that used to be 348 * here. 349 * 350 * BEWARE!!! Protocol handlers, mangling input packets, 351 * MUST BE last in hash buckets and checking protocol handlers 352 * MUST start from promiscuous ptype_all chain in net_bh. 353 * It is true now, do not change it. 354 * Explanation follows: if protocol handler, mangling packet, will 355 * be the first on list, it is not able to sense, that packet 356 * is cloned and should be copied-on-write, so that it will 357 * change it and subsequent readers will get broken packet. 358 * --ANK (980803) 359 */ 360 361/** 362 * dev_add_pack - add packet handler 363 * @pt: packet type declaration 364 * 365 * Add a protocol handler to the networking stack. The passed &packet_type 366 * is linked into kernel lists and may not be freed until it has been 367 * removed from the kernel lists. 368 * 369 * This call does not sleep therefore it can not 370 * guarantee all CPU's that are in middle of receiving packets 371 * will see the new packet type (until the next received packet). 372 */ 373 374void dev_add_pack(struct packet_type *pt) 375{ 376 int hash; 377 378 spin_lock_bh(&ptype_lock); 379 if (pt->type == htons(ETH_P_ALL)) 380 list_add_rcu(&pt->list, &ptype_all); 381 else { 382 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 383 list_add_rcu(&pt->list, &ptype_base[hash]); 384 } 385 spin_unlock_bh(&ptype_lock); 386} 387EXPORT_SYMBOL(dev_add_pack); 388 389/** 390 * __dev_remove_pack - remove packet handler 391 * @pt: packet type declaration 392 * 393 * Remove a protocol handler that was previously added to the kernel 394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 395 * from the kernel lists and can be freed or reused once this function 396 * returns. 397 * 398 * The packet type might still be in use by receivers 399 * and must not be freed until after all the CPU's have gone 400 * through a quiescent state. 401 */ 402void __dev_remove_pack(struct packet_type *pt) 403{ 404 struct list_head *head; 405 struct packet_type *pt1; 406 407 spin_lock_bh(&ptype_lock); 408 409 if (pt->type == htons(ETH_P_ALL)) 410 head = &ptype_all; 411 else 412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 413 414 list_for_each_entry(pt1, head, list) { 415 if (pt == pt1) { 416 list_del_rcu(&pt->list); 417 goto out; 418 } 419 } 420 421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 422out: 423 spin_unlock_bh(&ptype_lock); 424} 425EXPORT_SYMBOL(__dev_remove_pack); 426 427/** 428 * dev_remove_pack - remove packet handler 429 * @pt: packet type declaration 430 * 431 * Remove a protocol handler that was previously added to the kernel 432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 433 * from the kernel lists and can be freed or reused once this function 434 * returns. 435 * 436 * This call sleeps to guarantee that no CPU is looking at the packet 437 * type after return. 438 */ 439void dev_remove_pack(struct packet_type *pt) 440{ 441 __dev_remove_pack(pt); 442 443 synchronize_net(); 444} 445EXPORT_SYMBOL(dev_remove_pack); 446 447/****************************************************************************** 448 449 Device Boot-time Settings Routines 450 451*******************************************************************************/ 452 453/* Boot time configuration table */ 454static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 455 456/** 457 * netdev_boot_setup_add - add new setup entry 458 * @name: name of the device 459 * @map: configured settings for the device 460 * 461 * Adds new setup entry to the dev_boot_setup list. The function 462 * returns 0 on error and 1 on success. This is a generic routine to 463 * all netdevices. 464 */ 465static int netdev_boot_setup_add(char *name, struct ifmap *map) 466{ 467 struct netdev_boot_setup *s; 468 int i; 469 470 s = dev_boot_setup; 471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 473 memset(s[i].name, 0, sizeof(s[i].name)); 474 strlcpy(s[i].name, name, IFNAMSIZ); 475 memcpy(&s[i].map, map, sizeof(s[i].map)); 476 break; 477 } 478 } 479 480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 481} 482 483/** 484 * netdev_boot_setup_check - check boot time settings 485 * @dev: the netdevice 486 * 487 * Check boot time settings for the device. 488 * The found settings are set for the device to be used 489 * later in the device probing. 490 * Returns 0 if no settings found, 1 if they are. 491 */ 492int netdev_boot_setup_check(struct net_device *dev) 493{ 494 struct netdev_boot_setup *s = dev_boot_setup; 495 int i; 496 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 499 !strcmp(dev->name, s[i].name)) { 500 dev->irq = s[i].map.irq; 501 dev->base_addr = s[i].map.base_addr; 502 dev->mem_start = s[i].map.mem_start; 503 dev->mem_end = s[i].map.mem_end; 504 return 1; 505 } 506 } 507 return 0; 508} 509EXPORT_SYMBOL(netdev_boot_setup_check); 510 511 512/** 513 * netdev_boot_base - get address from boot time settings 514 * @prefix: prefix for network device 515 * @unit: id for network device 516 * 517 * Check boot time settings for the base address of device. 518 * The found settings are set for the device to be used 519 * later in the device probing. 520 * Returns 0 if no settings found. 521 */ 522unsigned long netdev_boot_base(const char *prefix, int unit) 523{ 524 const struct netdev_boot_setup *s = dev_boot_setup; 525 char name[IFNAMSIZ]; 526 int i; 527 528 sprintf(name, "%s%d", prefix, unit); 529 530 /* 531 * If device already registered then return base of 1 532 * to indicate not to probe for this interface 533 */ 534 if (__dev_get_by_name(&init_net, name)) 535 return 1; 536 537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 538 if (!strcmp(name, s[i].name)) 539 return s[i].map.base_addr; 540 return 0; 541} 542 543/* 544 * Saves at boot time configured settings for any netdevice. 545 */ 546int __init netdev_boot_setup(char *str) 547{ 548 int ints[5]; 549 struct ifmap map; 550 551 str = get_options(str, ARRAY_SIZE(ints), ints); 552 if (!str || !*str) 553 return 0; 554 555 /* Save settings */ 556 memset(&map, 0, sizeof(map)); 557 if (ints[0] > 0) 558 map.irq = ints[1]; 559 if (ints[0] > 1) 560 map.base_addr = ints[2]; 561 if (ints[0] > 2) 562 map.mem_start = ints[3]; 563 if (ints[0] > 3) 564 map.mem_end = ints[4]; 565 566 /* Add new entry to the list */ 567 return netdev_boot_setup_add(str, &map); 568} 569 570__setup("netdev=", netdev_boot_setup); 571 572/******************************************************************************* 573 574 Device Interface Subroutines 575 576*******************************************************************************/ 577 578/** 579 * __dev_get_by_name - find a device by its name 580 * @net: the applicable net namespace 581 * @name: name to find 582 * 583 * Find an interface by name. Must be called under RTNL semaphore 584 * or @dev_base_lock. If the name is found a pointer to the device 585 * is returned. If the name is not found then %NULL is returned. The 586 * reference counters are not incremented so the caller must be 587 * careful with locks. 588 */ 589 590struct net_device *__dev_get_by_name(struct net *net, const char *name) 591{ 592 struct hlist_node *p; 593 struct net_device *dev; 594 struct hlist_head *head = dev_name_hash(net, name); 595 596 hlist_for_each_entry(dev, p, head, name_hlist) 597 if (!strncmp(dev->name, name, IFNAMSIZ)) 598 return dev; 599 600 return NULL; 601} 602EXPORT_SYMBOL(__dev_get_by_name); 603 604/** 605 * dev_get_by_name_rcu - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. 610 * If the name is found a pointer to the device is returned. 611 * If the name is not found then %NULL is returned. 612 * The reference counters are not incremented so the caller must be 613 * careful with locks. The caller must hold RCU lock. 614 */ 615 616struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 617{ 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627} 628EXPORT_SYMBOL(dev_get_by_name_rcu); 629 630/** 631 * dev_get_by_name - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. This can be called from any 636 * context and does its own locking. The returned handle has 637 * the usage count incremented and the caller must use dev_put() to 638 * release it when it is no longer needed. %NULL is returned if no 639 * matching device is found. 640 */ 641 642struct net_device *dev_get_by_name(struct net *net, const char *name) 643{ 644 struct net_device *dev; 645 646 rcu_read_lock(); 647 dev = dev_get_by_name_rcu(net, name); 648 if (dev) 649 dev_hold(dev); 650 rcu_read_unlock(); 651 return dev; 652} 653EXPORT_SYMBOL(dev_get_by_name); 654 655/** 656 * __dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns %NULL if the device 661 * is not found or a pointer to the device. The device has not 662 * had its reference counter increased so the caller must be careful 663 * about locking. The caller must hold either the RTNL semaphore 664 * or @dev_base_lock. 665 */ 666 667struct net_device *__dev_get_by_index(struct net *net, int ifindex) 668{ 669 struct hlist_node *p; 670 struct net_device *dev; 671 struct hlist_head *head = dev_index_hash(net, ifindex); 672 673 hlist_for_each_entry(dev, p, head, index_hlist) 674 if (dev->ifindex == ifindex) 675 return dev; 676 677 return NULL; 678} 679EXPORT_SYMBOL(__dev_get_by_index); 680 681/** 682 * dev_get_by_index_rcu - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold RCU lock. 690 */ 691 692struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 693{ 694 struct hlist_node *p; 695 struct net_device *dev; 696 struct hlist_head *head = dev_index_hash(net, ifindex); 697 698 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 699 if (dev->ifindex == ifindex) 700 return dev; 701 702 return NULL; 703} 704EXPORT_SYMBOL(dev_get_by_index_rcu); 705 706 707/** 708 * dev_get_by_index - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns NULL if the device 713 * is not found or a pointer to the device. The device returned has 714 * had a reference added and the pointer is safe until the user calls 715 * dev_put to indicate they have finished with it. 716 */ 717 718struct net_device *dev_get_by_index(struct net *net, int ifindex) 719{ 720 struct net_device *dev; 721 722 rcu_read_lock(); 723 dev = dev_get_by_index_rcu(net, ifindex); 724 if (dev) 725 dev_hold(dev); 726 rcu_read_unlock(); 727 return dev; 728} 729EXPORT_SYMBOL(dev_get_by_index); 730 731/** 732 * dev_getbyhwaddr - find a device by its hardware address 733 * @net: the applicable net namespace 734 * @type: media type of device 735 * @ha: hardware address 736 * 737 * Search for an interface by MAC address. Returns NULL if the device 738 * is not found or a pointer to the device. The caller must hold the 739 * rtnl semaphore. The returned device has not had its ref count increased 740 * and the caller must therefore be careful about locking 741 * 742 * BUGS: 743 * If the API was consistent this would be __dev_get_by_hwaddr 744 */ 745 746struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 747{ 748 struct net_device *dev; 749 750 ASSERT_RTNL(); 751 752 for_each_netdev(net, dev) 753 if (dev->type == type && 754 !memcmp(dev->dev_addr, ha, dev->addr_len)) 755 return dev; 756 757 return NULL; 758} 759EXPORT_SYMBOL(dev_getbyhwaddr); 760 761struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 762{ 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 for_each_netdev(net, dev) 767 if (dev->type == type) 768 return dev; 769 770 return NULL; 771} 772EXPORT_SYMBOL(__dev_getfirstbyhwtype); 773 774struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 775{ 776 struct net_device *dev; 777 778 rtnl_lock(); 779 dev = __dev_getfirstbyhwtype(net, type); 780 if (dev) 781 dev_hold(dev); 782 rtnl_unlock(); 783 return dev; 784} 785EXPORT_SYMBOL(dev_getfirstbyhwtype); 786 787/** 788 * dev_get_by_flags - find any device with given flags 789 * @net: the applicable net namespace 790 * @if_flags: IFF_* values 791 * @mask: bitmask of bits in if_flags to check 792 * 793 * Search for any interface with the given flags. Returns NULL if a device 794 * is not found or a pointer to the device. The device returned has 795 * had a reference added and the pointer is safe until the user calls 796 * dev_put to indicate they have finished with it. 797 */ 798 799struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 800 unsigned short mask) 801{ 802 struct net_device *dev, *ret; 803 804 ret = NULL; 805 rcu_read_lock(); 806 for_each_netdev_rcu(net, dev) { 807 if (((dev->flags ^ if_flags) & mask) == 0) { 808 dev_hold(dev); 809 ret = dev; 810 break; 811 } 812 } 813 rcu_read_unlock(); 814 return ret; 815} 816EXPORT_SYMBOL(dev_get_by_flags); 817 818/** 819 * dev_valid_name - check if name is okay for network device 820 * @name: name string 821 * 822 * Network device names need to be valid file names to 823 * to allow sysfs to work. We also disallow any kind of 824 * whitespace. 825 */ 826int dev_valid_name(const char *name) 827{ 828 if (*name == '\0') 829 return 0; 830 if (strlen(name) >= IFNAMSIZ) 831 return 0; 832 if (!strcmp(name, ".") || !strcmp(name, "..")) 833 return 0; 834 835 while (*name) { 836 if (*name == '/' || isspace(*name)) 837 return 0; 838 name++; 839 } 840 return 1; 841} 842EXPORT_SYMBOL(dev_valid_name); 843 844/** 845 * __dev_alloc_name - allocate a name for a device 846 * @net: network namespace to allocate the device name in 847 * @name: name format string 848 * @buf: scratch buffer and result name string 849 * 850 * Passed a format string - eg "lt%d" it will try and find a suitable 851 * id. It scans list of devices to build up a free map, then chooses 852 * the first empty slot. The caller must hold the dev_base or rtnl lock 853 * while allocating the name and adding the device in order to avoid 854 * duplicates. 855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 856 * Returns the number of the unit assigned or a negative errno code. 857 */ 858 859static int __dev_alloc_name(struct net *net, const char *name, char *buf) 860{ 861 int i = 0; 862 const char *p; 863 const int max_netdevices = 8*PAGE_SIZE; 864 unsigned long *inuse; 865 struct net_device *d; 866 867 p = strnchr(name, IFNAMSIZ-1, '%'); 868 if (p) { 869 /* 870 * Verify the string as this thing may have come from 871 * the user. There must be either one "%d" and no other "%" 872 * characters. 873 */ 874 if (p[1] != 'd' || strchr(p + 2, '%')) 875 return -EINVAL; 876 877 /* Use one page as a bit array of possible slots */ 878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 879 if (!inuse) 880 return -ENOMEM; 881 882 for_each_netdev(net, d) { 883 if (!sscanf(d->name, name, &i)) 884 continue; 885 if (i < 0 || i >= max_netdevices) 886 continue; 887 888 /* avoid cases where sscanf is not exact inverse of printf */ 889 snprintf(buf, IFNAMSIZ, name, i); 890 if (!strncmp(buf, d->name, IFNAMSIZ)) 891 set_bit(i, inuse); 892 } 893 894 i = find_first_zero_bit(inuse, max_netdevices); 895 free_page((unsigned long) inuse); 896 } 897 898 if (buf != name) 899 snprintf(buf, IFNAMSIZ, name, i); 900 if (!__dev_get_by_name(net, buf)) 901 return i; 902 903 /* It is possible to run out of possible slots 904 * when the name is long and there isn't enough space left 905 * for the digits, or if all bits are used. 906 */ 907 return -ENFILE; 908} 909 910/** 911 * dev_alloc_name - allocate a name for a device 912 * @dev: device 913 * @name: name format string 914 * 915 * Passed a format string - eg "lt%d" it will try and find a suitable 916 * id. It scans list of devices to build up a free map, then chooses 917 * the first empty slot. The caller must hold the dev_base or rtnl lock 918 * while allocating the name and adding the device in order to avoid 919 * duplicates. 920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 921 * Returns the number of the unit assigned or a negative errno code. 922 */ 923 924int dev_alloc_name(struct net_device *dev, const char *name) 925{ 926 char buf[IFNAMSIZ]; 927 struct net *net; 928 int ret; 929 930 BUG_ON(!dev_net(dev)); 931 net = dev_net(dev); 932 ret = __dev_alloc_name(net, name, buf); 933 if (ret >= 0) 934 strlcpy(dev->name, buf, IFNAMSIZ); 935 return ret; 936} 937EXPORT_SYMBOL(dev_alloc_name); 938 939static int dev_get_valid_name(struct net *net, const char *name, char *buf, 940 bool fmt) 941{ 942 if (!dev_valid_name(name)) 943 return -EINVAL; 944 945 if (fmt && strchr(name, '%')) 946 return __dev_alloc_name(net, name, buf); 947 else if (__dev_get_by_name(net, name)) 948 return -EEXIST; 949 else if (buf != name) 950 strlcpy(buf, name, IFNAMSIZ); 951 952 return 0; 953} 954 955/** 956 * dev_change_name - change name of a device 957 * @dev: device 958 * @newname: name (or format string) must be at least IFNAMSIZ 959 * 960 * Change name of a device, can pass format strings "eth%d". 961 * for wildcarding. 962 */ 963int dev_change_name(struct net_device *dev, const char *newname) 964{ 965 char oldname[IFNAMSIZ]; 966 int err = 0; 967 int ret; 968 struct net *net; 969 970 ASSERT_RTNL(); 971 BUG_ON(!dev_net(dev)); 972 973 net = dev_net(dev); 974 if (dev->flags & IFF_UP) 975 return -EBUSY; 976 977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 978 return 0; 979 980 memcpy(oldname, dev->name, IFNAMSIZ); 981 982 err = dev_get_valid_name(net, newname, dev->name, 1); 983 if (err < 0) 984 return err; 985 986rollback: 987 /* For now only devices in the initial network namespace 988 * are in sysfs. 989 */ 990 if (net_eq(net, &init_net)) { 991 ret = device_rename(&dev->dev, dev->name); 992 if (ret) { 993 memcpy(dev->name, oldname, IFNAMSIZ); 994 return ret; 995 } 996 } 997 998 write_lock_bh(&dev_base_lock); 999 hlist_del(&dev->name_hlist); 1000 write_unlock_bh(&dev_base_lock); 1001 1002 synchronize_rcu(); 1003 1004 write_lock_bh(&dev_base_lock); 1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1006 write_unlock_bh(&dev_base_lock); 1007 1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1009 ret = notifier_to_errno(ret); 1010 1011 if (ret) { 1012 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1013 if (err >= 0) { 1014 err = ret; 1015 memcpy(dev->name, oldname, IFNAMSIZ); 1016 goto rollback; 1017 } else { 1018 printk(KERN_ERR 1019 "%s: name change rollback failed: %d.\n", 1020 dev->name, ret); 1021 } 1022 } 1023 1024 return err; 1025} 1026 1027/** 1028 * dev_set_alias - change ifalias of a device 1029 * @dev: device 1030 * @alias: name up to IFALIASZ 1031 * @len: limit of bytes to copy from info 1032 * 1033 * Set ifalias for a device, 1034 */ 1035int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1036{ 1037 ASSERT_RTNL(); 1038 1039 if (len >= IFALIASZ) 1040 return -EINVAL; 1041 1042 if (!len) { 1043 if (dev->ifalias) { 1044 kfree(dev->ifalias); 1045 dev->ifalias = NULL; 1046 } 1047 return 0; 1048 } 1049 1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1051 if (!dev->ifalias) 1052 return -ENOMEM; 1053 1054 strlcpy(dev->ifalias, alias, len+1); 1055 return len; 1056} 1057 1058 1059/** 1060 * netdev_features_change - device changes features 1061 * @dev: device to cause notification 1062 * 1063 * Called to indicate a device has changed features. 1064 */ 1065void netdev_features_change(struct net_device *dev) 1066{ 1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1068} 1069EXPORT_SYMBOL(netdev_features_change); 1070 1071/** 1072 * netdev_state_change - device changes state 1073 * @dev: device to cause notification 1074 * 1075 * Called to indicate a device has changed state. This function calls 1076 * the notifier chains for netdev_chain and sends a NEWLINK message 1077 * to the routing socket. 1078 */ 1079void netdev_state_change(struct net_device *dev) 1080{ 1081 if (dev->flags & IFF_UP) { 1082 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1084 } 1085} 1086EXPORT_SYMBOL(netdev_state_change); 1087 1088void netdev_bonding_change(struct net_device *dev, unsigned long event) 1089{ 1090 call_netdevice_notifiers(event, dev); 1091} 1092EXPORT_SYMBOL(netdev_bonding_change); 1093 1094/** 1095 * dev_load - load a network module 1096 * @net: the applicable net namespace 1097 * @name: name of interface 1098 * 1099 * If a network interface is not present and the process has suitable 1100 * privileges this function loads the module. If module loading is not 1101 * available in this kernel then it becomes a nop. 1102 */ 1103 1104void dev_load(struct net *net, const char *name) 1105{ 1106 struct net_device *dev; 1107 1108 rcu_read_lock(); 1109 dev = dev_get_by_name_rcu(net, name); 1110 rcu_read_unlock(); 1111 1112 if (!dev && capable(CAP_NET_ADMIN)) 1113 request_module("%s", name); 1114} 1115EXPORT_SYMBOL(dev_load); 1116 1117static int __dev_open(struct net_device *dev) 1118{ 1119 const struct net_device_ops *ops = dev->netdev_ops; 1120 int ret; 1121 1122 ASSERT_RTNL(); 1123 1124 /* 1125 * Is it even present? 1126 */ 1127 if (!netif_device_present(dev)) 1128 return -ENODEV; 1129 1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1131 ret = notifier_to_errno(ret); 1132 if (ret) 1133 return ret; 1134 1135 /* 1136 * Call device private open method 1137 */ 1138 set_bit(__LINK_STATE_START, &dev->state); 1139 1140 if (ops->ndo_validate_addr) 1141 ret = ops->ndo_validate_addr(dev); 1142 1143 if (!ret && ops->ndo_open) 1144 ret = ops->ndo_open(dev); 1145 1146 /* 1147 * If it went open OK then: 1148 */ 1149 1150 if (ret) 1151 clear_bit(__LINK_STATE_START, &dev->state); 1152 else { 1153 /* 1154 * Set the flags. 1155 */ 1156 dev->flags |= IFF_UP; 1157 1158 /* 1159 * Enable NET_DMA 1160 */ 1161 net_dmaengine_get(); 1162 1163 /* 1164 * Initialize multicasting status 1165 */ 1166 dev_set_rx_mode(dev); 1167 1168 /* 1169 * Wakeup transmit queue engine 1170 */ 1171 dev_activate(dev); 1172 } 1173 1174 return ret; 1175} 1176 1177/** 1178 * dev_open - prepare an interface for use. 1179 * @dev: device to open 1180 * 1181 * Takes a device from down to up state. The device's private open 1182 * function is invoked and then the multicast lists are loaded. Finally 1183 * the device is moved into the up state and a %NETDEV_UP message is 1184 * sent to the netdev notifier chain. 1185 * 1186 * Calling this function on an active interface is a nop. On a failure 1187 * a negative errno code is returned. 1188 */ 1189int dev_open(struct net_device *dev) 1190{ 1191 int ret; 1192 1193 /* 1194 * Is it already up? 1195 */ 1196 if (dev->flags & IFF_UP) 1197 return 0; 1198 1199 /* 1200 * Open device 1201 */ 1202 ret = __dev_open(dev); 1203 if (ret < 0) 1204 return ret; 1205 1206 /* 1207 * ... and announce new interface. 1208 */ 1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1210 call_netdevice_notifiers(NETDEV_UP, dev); 1211 1212 return ret; 1213} 1214EXPORT_SYMBOL(dev_open); 1215 1216static int __dev_close(struct net_device *dev) 1217{ 1218 const struct net_device_ops *ops = dev->netdev_ops; 1219 1220 ASSERT_RTNL(); 1221 might_sleep(); 1222 1223 /* 1224 * Tell people we are going down, so that they can 1225 * prepare to death, when device is still operating. 1226 */ 1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1228 1229 clear_bit(__LINK_STATE_START, &dev->state); 1230 1231 /* Synchronize to scheduled poll. We cannot touch poll list, 1232 * it can be even on different cpu. So just clear netif_running(). 1233 * 1234 * dev->stop() will invoke napi_disable() on all of it's 1235 * napi_struct instances on this device. 1236 */ 1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1238 1239 dev_deactivate(dev); 1240 1241 /* 1242 * Call the device specific close. This cannot fail. 1243 * Only if device is UP 1244 * 1245 * We allow it to be called even after a DETACH hot-plug 1246 * event. 1247 */ 1248 if (ops->ndo_stop) 1249 ops->ndo_stop(dev); 1250 1251 /* 1252 * Device is now down. 1253 */ 1254 1255 dev->flags &= ~IFF_UP; 1256 1257 /* 1258 * Shutdown NET_DMA 1259 */ 1260 net_dmaengine_put(); 1261 1262 return 0; 1263} 1264 1265/** 1266 * dev_close - shutdown an interface. 1267 * @dev: device to shutdown 1268 * 1269 * This function moves an active device into down state. A 1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1272 * chain. 1273 */ 1274int dev_close(struct net_device *dev) 1275{ 1276 if (!(dev->flags & IFF_UP)) 1277 return 0; 1278 1279 __dev_close(dev); 1280 1281 /* 1282 * Tell people we are down 1283 */ 1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1285 call_netdevice_notifiers(NETDEV_DOWN, dev); 1286 1287 return 0; 1288} 1289EXPORT_SYMBOL(dev_close); 1290 1291 1292/** 1293 * dev_disable_lro - disable Large Receive Offload on a device 1294 * @dev: device 1295 * 1296 * Disable Large Receive Offload (LRO) on a net device. Must be 1297 * called under RTNL. This is needed if received packets may be 1298 * forwarded to another interface. 1299 */ 1300void dev_disable_lro(struct net_device *dev) 1301{ 1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1303 dev->ethtool_ops->set_flags) { 1304 u32 flags = dev->ethtool_ops->get_flags(dev); 1305 if (flags & ETH_FLAG_LRO) { 1306 flags &= ~ETH_FLAG_LRO; 1307 dev->ethtool_ops->set_flags(dev, flags); 1308 } 1309 } 1310 WARN_ON(dev->features & NETIF_F_LRO); 1311} 1312EXPORT_SYMBOL(dev_disable_lro); 1313 1314 1315static int dev_boot_phase = 1; 1316 1317/* 1318 * Device change register/unregister. These are not inline or static 1319 * as we export them to the world. 1320 */ 1321 1322/** 1323 * register_netdevice_notifier - register a network notifier block 1324 * @nb: notifier 1325 * 1326 * Register a notifier to be called when network device events occur. 1327 * The notifier passed is linked into the kernel structures and must 1328 * not be reused until it has been unregistered. A negative errno code 1329 * is returned on a failure. 1330 * 1331 * When registered all registration and up events are replayed 1332 * to the new notifier to allow device to have a race free 1333 * view of the network device list. 1334 */ 1335 1336int register_netdevice_notifier(struct notifier_block *nb) 1337{ 1338 struct net_device *dev; 1339 struct net_device *last; 1340 struct net *net; 1341 int err; 1342 1343 rtnl_lock(); 1344 err = raw_notifier_chain_register(&netdev_chain, nb); 1345 if (err) 1346 goto unlock; 1347 if (dev_boot_phase) 1348 goto unlock; 1349 for_each_net(net) { 1350 for_each_netdev(net, dev) { 1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1352 err = notifier_to_errno(err); 1353 if (err) 1354 goto rollback; 1355 1356 if (!(dev->flags & IFF_UP)) 1357 continue; 1358 1359 nb->notifier_call(nb, NETDEV_UP, dev); 1360 } 1361 } 1362 1363unlock: 1364 rtnl_unlock(); 1365 return err; 1366 1367rollback: 1368 last = dev; 1369 for_each_net(net) { 1370 for_each_netdev(net, dev) { 1371 if (dev == last) 1372 break; 1373 1374 if (dev->flags & IFF_UP) { 1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1376 nb->notifier_call(nb, NETDEV_DOWN, dev); 1377 } 1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1380 } 1381 } 1382 1383 raw_notifier_chain_unregister(&netdev_chain, nb); 1384 goto unlock; 1385} 1386EXPORT_SYMBOL(register_netdevice_notifier); 1387 1388/** 1389 * unregister_netdevice_notifier - unregister a network notifier block 1390 * @nb: notifier 1391 * 1392 * Unregister a notifier previously registered by 1393 * register_netdevice_notifier(). The notifier is unlinked into the 1394 * kernel structures and may then be reused. A negative errno code 1395 * is returned on a failure. 1396 */ 1397 1398int unregister_netdevice_notifier(struct notifier_block *nb) 1399{ 1400 int err; 1401 1402 rtnl_lock(); 1403 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1404 rtnl_unlock(); 1405 return err; 1406} 1407EXPORT_SYMBOL(unregister_netdevice_notifier); 1408 1409/** 1410 * call_netdevice_notifiers - call all network notifier blocks 1411 * @val: value passed unmodified to notifier function 1412 * @dev: net_device pointer passed unmodified to notifier function 1413 * 1414 * Call all network notifier blocks. Parameters and return value 1415 * are as for raw_notifier_call_chain(). 1416 */ 1417 1418int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1419{ 1420 return raw_notifier_call_chain(&netdev_chain, val, dev); 1421} 1422 1423/* When > 0 there are consumers of rx skb time stamps */ 1424static atomic_t netstamp_needed = ATOMIC_INIT(0); 1425 1426void net_enable_timestamp(void) 1427{ 1428 atomic_inc(&netstamp_needed); 1429} 1430EXPORT_SYMBOL(net_enable_timestamp); 1431 1432void net_disable_timestamp(void) 1433{ 1434 atomic_dec(&netstamp_needed); 1435} 1436EXPORT_SYMBOL(net_disable_timestamp); 1437 1438static inline void net_timestamp(struct sk_buff *skb) 1439{ 1440 if (atomic_read(&netstamp_needed)) 1441 __net_timestamp(skb); 1442 else 1443 skb->tstamp.tv64 = 0; 1444} 1445 1446/** 1447 * dev_forward_skb - loopback an skb to another netif 1448 * 1449 * @dev: destination network device 1450 * @skb: buffer to forward 1451 * 1452 * return values: 1453 * NET_RX_SUCCESS (no congestion) 1454 * NET_RX_DROP (packet was dropped, but freed) 1455 * 1456 * dev_forward_skb can be used for injecting an skb from the 1457 * start_xmit function of one device into the receive queue 1458 * of another device. 1459 * 1460 * The receiving device may be in another namespace, so 1461 * we have to clear all information in the skb that could 1462 * impact namespace isolation. 1463 */ 1464int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1465{ 1466 skb_orphan(skb); 1467 1468 if (!(dev->flags & IFF_UP) || 1469 (skb->len > (dev->mtu + dev->hard_header_len))) { 1470 kfree_skb(skb); 1471 return NET_RX_DROP; 1472 } 1473 skb_set_dev(skb, dev); 1474 skb->tstamp.tv64 = 0; 1475 skb->pkt_type = PACKET_HOST; 1476 skb->protocol = eth_type_trans(skb, dev); 1477 return netif_rx(skb); 1478} 1479EXPORT_SYMBOL_GPL(dev_forward_skb); 1480 1481/* 1482 * Support routine. Sends outgoing frames to any network 1483 * taps currently in use. 1484 */ 1485 1486static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1487{ 1488 struct packet_type *ptype; 1489 1490#ifdef CONFIG_NET_CLS_ACT 1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1492 net_timestamp(skb); 1493#else 1494 net_timestamp(skb); 1495#endif 1496 1497 rcu_read_lock(); 1498 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1499 /* Never send packets back to the socket 1500 * they originated from - MvS (miquels@drinkel.ow.org) 1501 */ 1502 if ((ptype->dev == dev || !ptype->dev) && 1503 (ptype->af_packet_priv == NULL || 1504 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1506 if (!skb2) 1507 break; 1508 1509 /* skb->nh should be correctly 1510 set by sender, so that the second statement is 1511 just protection against buggy protocols. 1512 */ 1513 skb_reset_mac_header(skb2); 1514 1515 if (skb_network_header(skb2) < skb2->data || 1516 skb2->network_header > skb2->tail) { 1517 if (net_ratelimit()) 1518 printk(KERN_CRIT "protocol %04x is " 1519 "buggy, dev %s\n", 1520 skb2->protocol, dev->name); 1521 skb_reset_network_header(skb2); 1522 } 1523 1524 skb2->transport_header = skb2->network_header; 1525 skb2->pkt_type = PACKET_OUTGOING; 1526 ptype->func(skb2, skb->dev, ptype, skb->dev); 1527 } 1528 } 1529 rcu_read_unlock(); 1530} 1531 1532 1533static inline void __netif_reschedule(struct Qdisc *q) 1534{ 1535 struct softnet_data *sd; 1536 unsigned long flags; 1537 1538 local_irq_save(flags); 1539 sd = &__get_cpu_var(softnet_data); 1540 q->next_sched = sd->output_queue; 1541 sd->output_queue = q; 1542 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1543 local_irq_restore(flags); 1544} 1545 1546void __netif_schedule(struct Qdisc *q) 1547{ 1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1549 __netif_reschedule(q); 1550} 1551EXPORT_SYMBOL(__netif_schedule); 1552 1553void dev_kfree_skb_irq(struct sk_buff *skb) 1554{ 1555 if (atomic_dec_and_test(&skb->users)) { 1556 struct softnet_data *sd; 1557 unsigned long flags; 1558 1559 local_irq_save(flags); 1560 sd = &__get_cpu_var(softnet_data); 1561 skb->next = sd->completion_queue; 1562 sd->completion_queue = skb; 1563 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1564 local_irq_restore(flags); 1565 } 1566} 1567EXPORT_SYMBOL(dev_kfree_skb_irq); 1568 1569void dev_kfree_skb_any(struct sk_buff *skb) 1570{ 1571 if (in_irq() || irqs_disabled()) 1572 dev_kfree_skb_irq(skb); 1573 else 1574 dev_kfree_skb(skb); 1575} 1576EXPORT_SYMBOL(dev_kfree_skb_any); 1577 1578 1579/** 1580 * netif_device_detach - mark device as removed 1581 * @dev: network device 1582 * 1583 * Mark device as removed from system and therefore no longer available. 1584 */ 1585void netif_device_detach(struct net_device *dev) 1586{ 1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1588 netif_running(dev)) { 1589 netif_tx_stop_all_queues(dev); 1590 } 1591} 1592EXPORT_SYMBOL(netif_device_detach); 1593 1594/** 1595 * netif_device_attach - mark device as attached 1596 * @dev: network device 1597 * 1598 * Mark device as attached from system and restart if needed. 1599 */ 1600void netif_device_attach(struct net_device *dev) 1601{ 1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1603 netif_running(dev)) { 1604 netif_tx_wake_all_queues(dev); 1605 __netdev_watchdog_up(dev); 1606 } 1607} 1608EXPORT_SYMBOL(netif_device_attach); 1609 1610static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1611{ 1612 return ((features & NETIF_F_GEN_CSUM) || 1613 ((features & NETIF_F_IP_CSUM) && 1614 protocol == htons(ETH_P_IP)) || 1615 ((features & NETIF_F_IPV6_CSUM) && 1616 protocol == htons(ETH_P_IPV6)) || 1617 ((features & NETIF_F_FCOE_CRC) && 1618 protocol == htons(ETH_P_FCOE))); 1619} 1620 1621static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1622{ 1623 if (can_checksum_protocol(dev->features, skb->protocol)) 1624 return true; 1625 1626 if (skb->protocol == htons(ETH_P_8021Q)) { 1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1628 if (can_checksum_protocol(dev->features & dev->vlan_features, 1629 veh->h_vlan_encapsulated_proto)) 1630 return true; 1631 } 1632 1633 return false; 1634} 1635 1636/** 1637 * skb_dev_set -- assign a new device to a buffer 1638 * @skb: buffer for the new device 1639 * @dev: network device 1640 * 1641 * If an skb is owned by a device already, we have to reset 1642 * all data private to the namespace a device belongs to 1643 * before assigning it a new device. 1644 */ 1645#ifdef CONFIG_NET_NS 1646void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1647{ 1648 skb_dst_drop(skb); 1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1650 secpath_reset(skb); 1651 nf_reset(skb); 1652 skb_init_secmark(skb); 1653 skb->mark = 0; 1654 skb->priority = 0; 1655 skb->nf_trace = 0; 1656 skb->ipvs_property = 0; 1657#ifdef CONFIG_NET_SCHED 1658 skb->tc_index = 0; 1659#endif 1660 } 1661 skb->dev = dev; 1662} 1663EXPORT_SYMBOL(skb_set_dev); 1664#endif /* CONFIG_NET_NS */ 1665 1666/* 1667 * Invalidate hardware checksum when packet is to be mangled, and 1668 * complete checksum manually on outgoing path. 1669 */ 1670int skb_checksum_help(struct sk_buff *skb) 1671{ 1672 __wsum csum; 1673 int ret = 0, offset; 1674 1675 if (skb->ip_summed == CHECKSUM_COMPLETE) 1676 goto out_set_summed; 1677 1678 if (unlikely(skb_shinfo(skb)->gso_size)) { 1679 /* Let GSO fix up the checksum. */ 1680 goto out_set_summed; 1681 } 1682 1683 offset = skb->csum_start - skb_headroom(skb); 1684 BUG_ON(offset >= skb_headlen(skb)); 1685 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1686 1687 offset += skb->csum_offset; 1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1689 1690 if (skb_cloned(skb) && 1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1693 if (ret) 1694 goto out; 1695 } 1696 1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1698out_set_summed: 1699 skb->ip_summed = CHECKSUM_NONE; 1700out: 1701 return ret; 1702} 1703EXPORT_SYMBOL(skb_checksum_help); 1704 1705/** 1706 * skb_gso_segment - Perform segmentation on skb. 1707 * @skb: buffer to segment 1708 * @features: features for the output path (see dev->features) 1709 * 1710 * This function segments the given skb and returns a list of segments. 1711 * 1712 * It may return NULL if the skb requires no segmentation. This is 1713 * only possible when GSO is used for verifying header integrity. 1714 */ 1715struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1716{ 1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1718 struct packet_type *ptype; 1719 __be16 type = skb->protocol; 1720 int err; 1721 1722 skb_reset_mac_header(skb); 1723 skb->mac_len = skb->network_header - skb->mac_header; 1724 __skb_pull(skb, skb->mac_len); 1725 1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1727 struct net_device *dev = skb->dev; 1728 struct ethtool_drvinfo info = {}; 1729 1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1731 dev->ethtool_ops->get_drvinfo(dev, &info); 1732 1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1734 "ip_summed=%d", 1735 info.driver, dev ? dev->features : 0L, 1736 skb->sk ? skb->sk->sk_route_caps : 0L, 1737 skb->len, skb->data_len, skb->ip_summed); 1738 1739 if (skb_header_cloned(skb) && 1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1741 return ERR_PTR(err); 1742 } 1743 1744 rcu_read_lock(); 1745 list_for_each_entry_rcu(ptype, 1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1749 err = ptype->gso_send_check(skb); 1750 segs = ERR_PTR(err); 1751 if (err || skb_gso_ok(skb, features)) 1752 break; 1753 __skb_push(skb, (skb->data - 1754 skb_network_header(skb))); 1755 } 1756 segs = ptype->gso_segment(skb, features); 1757 break; 1758 } 1759 } 1760 rcu_read_unlock(); 1761 1762 __skb_push(skb, skb->data - skb_mac_header(skb)); 1763 1764 return segs; 1765} 1766EXPORT_SYMBOL(skb_gso_segment); 1767 1768/* Take action when hardware reception checksum errors are detected. */ 1769#ifdef CONFIG_BUG 1770void netdev_rx_csum_fault(struct net_device *dev) 1771{ 1772 if (net_ratelimit()) { 1773 printk(KERN_ERR "%s: hw csum failure.\n", 1774 dev ? dev->name : "<unknown>"); 1775 dump_stack(); 1776 } 1777} 1778EXPORT_SYMBOL(netdev_rx_csum_fault); 1779#endif 1780 1781/* Actually, we should eliminate this check as soon as we know, that: 1782 * 1. IOMMU is present and allows to map all the memory. 1783 * 2. No high memory really exists on this machine. 1784 */ 1785 1786static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1787{ 1788#ifdef CONFIG_HIGHMEM 1789 int i; 1790 1791 if (dev->features & NETIF_F_HIGHDMA) 1792 return 0; 1793 1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1796 return 1; 1797 1798#endif 1799 return 0; 1800} 1801 1802struct dev_gso_cb { 1803 void (*destructor)(struct sk_buff *skb); 1804}; 1805 1806#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1807 1808static void dev_gso_skb_destructor(struct sk_buff *skb) 1809{ 1810 struct dev_gso_cb *cb; 1811 1812 do { 1813 struct sk_buff *nskb = skb->next; 1814 1815 skb->next = nskb->next; 1816 nskb->next = NULL; 1817 kfree_skb(nskb); 1818 } while (skb->next); 1819 1820 cb = DEV_GSO_CB(skb); 1821 if (cb->destructor) 1822 cb->destructor(skb); 1823} 1824 1825/** 1826 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1827 * @skb: buffer to segment 1828 * 1829 * This function segments the given skb and stores the list of segments 1830 * in skb->next. 1831 */ 1832static int dev_gso_segment(struct sk_buff *skb) 1833{ 1834 struct net_device *dev = skb->dev; 1835 struct sk_buff *segs; 1836 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1837 NETIF_F_SG : 0); 1838 1839 segs = skb_gso_segment(skb, features); 1840 1841 /* Verifying header integrity only. */ 1842 if (!segs) 1843 return 0; 1844 1845 if (IS_ERR(segs)) 1846 return PTR_ERR(segs); 1847 1848 skb->next = segs; 1849 DEV_GSO_CB(skb)->destructor = skb->destructor; 1850 skb->destructor = dev_gso_skb_destructor; 1851 1852 return 0; 1853} 1854 1855int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1856 struct netdev_queue *txq) 1857{ 1858 const struct net_device_ops *ops = dev->netdev_ops; 1859 int rc = NETDEV_TX_OK; 1860 1861 if (likely(!skb->next)) { 1862 if (!list_empty(&ptype_all)) 1863 dev_queue_xmit_nit(skb, dev); 1864 1865 if (netif_needs_gso(dev, skb)) { 1866 if (unlikely(dev_gso_segment(skb))) 1867 goto out_kfree_skb; 1868 if (skb->next) 1869 goto gso; 1870 } 1871 1872 /* 1873 * If device doesnt need skb->dst, release it right now while 1874 * its hot in this cpu cache 1875 */ 1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1877 skb_dst_drop(skb); 1878 1879 rc = ops->ndo_start_xmit(skb, dev); 1880 if (rc == NETDEV_TX_OK) 1881 txq_trans_update(txq); 1882 /* 1883 * TODO: if skb_orphan() was called by 1884 * dev->hard_start_xmit() (for example, the unmodified 1885 * igb driver does that; bnx2 doesn't), then 1886 * skb_tx_software_timestamp() will be unable to send 1887 * back the time stamp. 1888 * 1889 * How can this be prevented? Always create another 1890 * reference to the socket before calling 1891 * dev->hard_start_xmit()? Prevent that skb_orphan() 1892 * does anything in dev->hard_start_xmit() by clearing 1893 * the skb destructor before the call and restoring it 1894 * afterwards, then doing the skb_orphan() ourselves? 1895 */ 1896 return rc; 1897 } 1898 1899gso: 1900 do { 1901 struct sk_buff *nskb = skb->next; 1902 1903 skb->next = nskb->next; 1904 nskb->next = NULL; 1905 1906 /* 1907 * If device doesnt need nskb->dst, release it right now while 1908 * its hot in this cpu cache 1909 */ 1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1911 skb_dst_drop(nskb); 1912 1913 rc = ops->ndo_start_xmit(nskb, dev); 1914 if (unlikely(rc != NETDEV_TX_OK)) { 1915 if (rc & ~NETDEV_TX_MASK) 1916 goto out_kfree_gso_skb; 1917 nskb->next = skb->next; 1918 skb->next = nskb; 1919 return rc; 1920 } 1921 txq_trans_update(txq); 1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1923 return NETDEV_TX_BUSY; 1924 } while (skb->next); 1925 1926out_kfree_gso_skb: 1927 if (likely(skb->next == NULL)) 1928 skb->destructor = DEV_GSO_CB(skb)->destructor; 1929out_kfree_skb: 1930 kfree_skb(skb); 1931 return rc; 1932} 1933 1934static u32 skb_tx_hashrnd; 1935 1936u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1937{ 1938 u32 hash; 1939 1940 if (skb_rx_queue_recorded(skb)) { 1941 hash = skb_get_rx_queue(skb); 1942 while (unlikely(hash >= dev->real_num_tx_queues)) 1943 hash -= dev->real_num_tx_queues; 1944 return hash; 1945 } 1946 1947 if (skb->sk && skb->sk->sk_hash) 1948 hash = skb->sk->sk_hash; 1949 else 1950 hash = skb->protocol; 1951 1952 hash = jhash_1word(hash, skb_tx_hashrnd); 1953 1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1955} 1956EXPORT_SYMBOL(skb_tx_hash); 1957 1958static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 1959{ 1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 1961 if (net_ratelimit()) { 1962 WARN(1, "%s selects TX queue %d, but " 1963 "real number of TX queues is %d\n", 1964 dev->name, queue_index, 1965 dev->real_num_tx_queues); 1966 } 1967 return 0; 1968 } 1969 return queue_index; 1970} 1971 1972static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1973 struct sk_buff *skb) 1974{ 1975 u16 queue_index; 1976 struct sock *sk = skb->sk; 1977 1978 if (sk_tx_queue_recorded(sk)) { 1979 queue_index = sk_tx_queue_get(sk); 1980 } else { 1981 const struct net_device_ops *ops = dev->netdev_ops; 1982 1983 if (ops->ndo_select_queue) { 1984 queue_index = ops->ndo_select_queue(dev, skb); 1985 queue_index = dev_cap_txqueue(dev, queue_index); 1986 } else { 1987 queue_index = 0; 1988 if (dev->real_num_tx_queues > 1) 1989 queue_index = skb_tx_hash(dev, skb); 1990 1991 if (sk) { 1992 struct dst_entry *dst = rcu_dereference_bh(sk->sk_dst_cache); 1993 1994 if (dst && skb_dst(skb) == dst) 1995 sk_tx_queue_set(sk, queue_index); 1996 } 1997 } 1998 } 1999 2000 skb_set_queue_mapping(skb, queue_index); 2001 return netdev_get_tx_queue(dev, queue_index); 2002} 2003 2004static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2005 struct net_device *dev, 2006 struct netdev_queue *txq) 2007{ 2008 spinlock_t *root_lock = qdisc_lock(q); 2009 int rc; 2010 2011 spin_lock(root_lock); 2012 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2013 kfree_skb(skb); 2014 rc = NET_XMIT_DROP; 2015 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2016 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2017 /* 2018 * This is a work-conserving queue; there are no old skbs 2019 * waiting to be sent out; and the qdisc is not running - 2020 * xmit the skb directly. 2021 */ 2022 __qdisc_update_bstats(q, skb->len); 2023 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2024 __qdisc_run(q); 2025 else 2026 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2027 2028 rc = NET_XMIT_SUCCESS; 2029 } else { 2030 rc = qdisc_enqueue_root(skb, q); 2031 qdisc_run(q); 2032 } 2033 spin_unlock(root_lock); 2034 2035 return rc; 2036} 2037 2038/* 2039 * Returns true if either: 2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2041 * 2. skb is fragmented and the device does not support SG, or if 2042 * at least one of fragments is in highmem and device does not 2043 * support DMA from it. 2044 */ 2045static inline int skb_needs_linearize(struct sk_buff *skb, 2046 struct net_device *dev) 2047{ 2048 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2049 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2050 illegal_highdma(dev, skb))); 2051} 2052 2053/** 2054 * dev_queue_xmit - transmit a buffer 2055 * @skb: buffer to transmit 2056 * 2057 * Queue a buffer for transmission to a network device. The caller must 2058 * have set the device and priority and built the buffer before calling 2059 * this function. The function can be called from an interrupt. 2060 * 2061 * A negative errno code is returned on a failure. A success does not 2062 * guarantee the frame will be transmitted as it may be dropped due 2063 * to congestion or traffic shaping. 2064 * 2065 * ----------------------------------------------------------------------------------- 2066 * I notice this method can also return errors from the queue disciplines, 2067 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2068 * be positive. 2069 * 2070 * Regardless of the return value, the skb is consumed, so it is currently 2071 * difficult to retry a send to this method. (You can bump the ref count 2072 * before sending to hold a reference for retry if you are careful.) 2073 * 2074 * When calling this method, interrupts MUST be enabled. This is because 2075 * the BH enable code must have IRQs enabled so that it will not deadlock. 2076 * --BLG 2077 */ 2078int dev_queue_xmit(struct sk_buff *skb) 2079{ 2080 struct net_device *dev = skb->dev; 2081 struct netdev_queue *txq; 2082 struct Qdisc *q; 2083 int rc = -ENOMEM; 2084 2085 /* GSO will handle the following emulations directly. */ 2086 if (netif_needs_gso(dev, skb)) 2087 goto gso; 2088 2089 /* Convert a paged skb to linear, if required */ 2090 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2091 goto out_kfree_skb; 2092 2093 /* If packet is not checksummed and device does not support 2094 * checksumming for this protocol, complete checksumming here. 2095 */ 2096 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2097 skb_set_transport_header(skb, skb->csum_start - 2098 skb_headroom(skb)); 2099 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2100 goto out_kfree_skb; 2101 } 2102 2103gso: 2104 /* Disable soft irqs for various locks below. Also 2105 * stops preemption for RCU. 2106 */ 2107 rcu_read_lock_bh(); 2108 2109 txq = dev_pick_tx(dev, skb); 2110 q = rcu_dereference_bh(txq->qdisc); 2111 2112#ifdef CONFIG_NET_CLS_ACT 2113 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2114#endif 2115 if (q->enqueue) { 2116 rc = __dev_xmit_skb(skb, q, dev, txq); 2117 goto out; 2118 } 2119 2120 /* The device has no queue. Common case for software devices: 2121 loopback, all the sorts of tunnels... 2122 2123 Really, it is unlikely that netif_tx_lock protection is necessary 2124 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2125 counters.) 2126 However, it is possible, that they rely on protection 2127 made by us here. 2128 2129 Check this and shot the lock. It is not prone from deadlocks. 2130 Either shot noqueue qdisc, it is even simpler 8) 2131 */ 2132 if (dev->flags & IFF_UP) { 2133 int cpu = smp_processor_id(); /* ok because BHs are off */ 2134 2135 if (txq->xmit_lock_owner != cpu) { 2136 2137 HARD_TX_LOCK(dev, txq, cpu); 2138 2139 if (!netif_tx_queue_stopped(txq)) { 2140 rc = dev_hard_start_xmit(skb, dev, txq); 2141 if (dev_xmit_complete(rc)) { 2142 HARD_TX_UNLOCK(dev, txq); 2143 goto out; 2144 } 2145 } 2146 HARD_TX_UNLOCK(dev, txq); 2147 if (net_ratelimit()) 2148 printk(KERN_CRIT "Virtual device %s asks to " 2149 "queue packet!\n", dev->name); 2150 } else { 2151 /* Recursion is detected! It is possible, 2152 * unfortunately */ 2153 if (net_ratelimit()) 2154 printk(KERN_CRIT "Dead loop on virtual device " 2155 "%s, fix it urgently!\n", dev->name); 2156 } 2157 } 2158 2159 rc = -ENETDOWN; 2160 rcu_read_unlock_bh(); 2161 2162out_kfree_skb: 2163 kfree_skb(skb); 2164 return rc; 2165out: 2166 rcu_read_unlock_bh(); 2167 return rc; 2168} 2169EXPORT_SYMBOL(dev_queue_xmit); 2170 2171 2172/*======================================================================= 2173 Receiver routines 2174 =======================================================================*/ 2175 2176int netdev_max_backlog __read_mostly = 1000; 2177int netdev_budget __read_mostly = 300; 2178int weight_p __read_mostly = 64; /* old backlog weight */ 2179 2180DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 2181 2182 2183/** 2184 * netif_rx - post buffer to the network code 2185 * @skb: buffer to post 2186 * 2187 * This function receives a packet from a device driver and queues it for 2188 * the upper (protocol) levels to process. It always succeeds. The buffer 2189 * may be dropped during processing for congestion control or by the 2190 * protocol layers. 2191 * 2192 * return values: 2193 * NET_RX_SUCCESS (no congestion) 2194 * NET_RX_DROP (packet was dropped) 2195 * 2196 */ 2197 2198int netif_rx(struct sk_buff *skb) 2199{ 2200 struct softnet_data *queue; 2201 unsigned long flags; 2202 2203 /* if netpoll wants it, pretend we never saw it */ 2204 if (netpoll_rx(skb)) 2205 return NET_RX_DROP; 2206 2207 if (!skb->tstamp.tv64) 2208 net_timestamp(skb); 2209 2210 /* 2211 * The code is rearranged so that the path is the most 2212 * short when CPU is congested, but is still operating. 2213 */ 2214 local_irq_save(flags); 2215 queue = &__get_cpu_var(softnet_data); 2216 2217 __get_cpu_var(netdev_rx_stat).total++; 2218 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2219 if (queue->input_pkt_queue.qlen) { 2220enqueue: 2221 __skb_queue_tail(&queue->input_pkt_queue, skb); 2222 local_irq_restore(flags); 2223 return NET_RX_SUCCESS; 2224 } 2225 2226 napi_schedule(&queue->backlog); 2227 goto enqueue; 2228 } 2229 2230 __get_cpu_var(netdev_rx_stat).dropped++; 2231 local_irq_restore(flags); 2232 2233 kfree_skb(skb); 2234 return NET_RX_DROP; 2235} 2236EXPORT_SYMBOL(netif_rx); 2237 2238int netif_rx_ni(struct sk_buff *skb) 2239{ 2240 int err; 2241 2242 preempt_disable(); 2243 err = netif_rx(skb); 2244 if (local_softirq_pending()) 2245 do_softirq(); 2246 preempt_enable(); 2247 2248 return err; 2249} 2250EXPORT_SYMBOL(netif_rx_ni); 2251 2252static void net_tx_action(struct softirq_action *h) 2253{ 2254 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2255 2256 if (sd->completion_queue) { 2257 struct sk_buff *clist; 2258 2259 local_irq_disable(); 2260 clist = sd->completion_queue; 2261 sd->completion_queue = NULL; 2262 local_irq_enable(); 2263 2264 while (clist) { 2265 struct sk_buff *skb = clist; 2266 clist = clist->next; 2267 2268 WARN_ON(atomic_read(&skb->users)); 2269 __kfree_skb(skb); 2270 } 2271 } 2272 2273 if (sd->output_queue) { 2274 struct Qdisc *head; 2275 2276 local_irq_disable(); 2277 head = sd->output_queue; 2278 sd->output_queue = NULL; 2279 local_irq_enable(); 2280 2281 while (head) { 2282 struct Qdisc *q = head; 2283 spinlock_t *root_lock; 2284 2285 head = head->next_sched; 2286 2287 root_lock = qdisc_lock(q); 2288 if (spin_trylock(root_lock)) { 2289 smp_mb__before_clear_bit(); 2290 clear_bit(__QDISC_STATE_SCHED, 2291 &q->state); 2292 qdisc_run(q); 2293 spin_unlock(root_lock); 2294 } else { 2295 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2296 &q->state)) { 2297 __netif_reschedule(q); 2298 } else { 2299 smp_mb__before_clear_bit(); 2300 clear_bit(__QDISC_STATE_SCHED, 2301 &q->state); 2302 } 2303 } 2304 } 2305 } 2306} 2307 2308static inline int deliver_skb(struct sk_buff *skb, 2309 struct packet_type *pt_prev, 2310 struct net_device *orig_dev) 2311{ 2312 atomic_inc(&skb->users); 2313 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2314} 2315 2316#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2317 2318#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2319/* This hook is defined here for ATM LANE */ 2320int (*br_fdb_test_addr_hook)(struct net_device *dev, 2321 unsigned char *addr) __read_mostly; 2322EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2323#endif 2324 2325/* 2326 * If bridge module is loaded call bridging hook. 2327 * returns NULL if packet was consumed. 2328 */ 2329struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2330 struct sk_buff *skb) __read_mostly; 2331EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2332 2333static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2334 struct packet_type **pt_prev, int *ret, 2335 struct net_device *orig_dev) 2336{ 2337 struct net_bridge_port *port; 2338 2339 if (skb->pkt_type == PACKET_LOOPBACK || 2340 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2341 return skb; 2342 2343 if (*pt_prev) { 2344 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2345 *pt_prev = NULL; 2346 } 2347 2348 return br_handle_frame_hook(port, skb); 2349} 2350#else 2351#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2352#endif 2353 2354#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2355struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2356EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2357 2358static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2359 struct packet_type **pt_prev, 2360 int *ret, 2361 struct net_device *orig_dev) 2362{ 2363 if (skb->dev->macvlan_port == NULL) 2364 return skb; 2365 2366 if (*pt_prev) { 2367 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2368 *pt_prev = NULL; 2369 } 2370 return macvlan_handle_frame_hook(skb); 2371} 2372#else 2373#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2374#endif 2375 2376#ifdef CONFIG_NET_CLS_ACT 2377/* TODO: Maybe we should just force sch_ingress to be compiled in 2378 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2379 * a compare and 2 stores extra right now if we dont have it on 2380 * but have CONFIG_NET_CLS_ACT 2381 * NOTE: This doesnt stop any functionality; if you dont have 2382 * the ingress scheduler, you just cant add policies on ingress. 2383 * 2384 */ 2385static int ing_filter(struct sk_buff *skb) 2386{ 2387 struct net_device *dev = skb->dev; 2388 u32 ttl = G_TC_RTTL(skb->tc_verd); 2389 struct netdev_queue *rxq; 2390 int result = TC_ACT_OK; 2391 struct Qdisc *q; 2392 2393 if (MAX_RED_LOOP < ttl++) { 2394 printk(KERN_WARNING 2395 "Redir loop detected Dropping packet (%d->%d)\n", 2396 skb->skb_iif, dev->ifindex); 2397 return TC_ACT_SHOT; 2398 } 2399 2400 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2401 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2402 2403 rxq = &dev->rx_queue; 2404 2405 q = rxq->qdisc; 2406 if (q != &noop_qdisc) { 2407 spin_lock(qdisc_lock(q)); 2408 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2409 result = qdisc_enqueue_root(skb, q); 2410 spin_unlock(qdisc_lock(q)); 2411 } 2412 2413 return result; 2414} 2415 2416static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2417 struct packet_type **pt_prev, 2418 int *ret, struct net_device *orig_dev) 2419{ 2420 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2421 goto out; 2422 2423 if (*pt_prev) { 2424 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2425 *pt_prev = NULL; 2426 } else { 2427 /* Huh? Why does turning on AF_PACKET affect this? */ 2428 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2429 } 2430 2431 switch (ing_filter(skb)) { 2432 case TC_ACT_SHOT: 2433 case TC_ACT_STOLEN: 2434 kfree_skb(skb); 2435 return NULL; 2436 } 2437 2438out: 2439 skb->tc_verd = 0; 2440 return skb; 2441} 2442#endif 2443 2444/* 2445 * netif_nit_deliver - deliver received packets to network taps 2446 * @skb: buffer 2447 * 2448 * This function is used to deliver incoming packets to network 2449 * taps. It should be used when the normal netif_receive_skb path 2450 * is bypassed, for example because of VLAN acceleration. 2451 */ 2452void netif_nit_deliver(struct sk_buff *skb) 2453{ 2454 struct packet_type *ptype; 2455 2456 if (list_empty(&ptype_all)) 2457 return; 2458 2459 skb_reset_network_header(skb); 2460 skb_reset_transport_header(skb); 2461 skb->mac_len = skb->network_header - skb->mac_header; 2462 2463 rcu_read_lock(); 2464 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2465 if (!ptype->dev || ptype->dev == skb->dev) 2466 deliver_skb(skb, ptype, skb->dev); 2467 } 2468 rcu_read_unlock(); 2469} 2470 2471/** 2472 * netif_receive_skb - process receive buffer from network 2473 * @skb: buffer to process 2474 * 2475 * netif_receive_skb() is the main receive data processing function. 2476 * It always succeeds. The buffer may be dropped during processing 2477 * for congestion control or by the protocol layers. 2478 * 2479 * This function may only be called from softirq context and interrupts 2480 * should be enabled. 2481 * 2482 * Return values (usually ignored): 2483 * NET_RX_SUCCESS: no congestion 2484 * NET_RX_DROP: packet was dropped 2485 */ 2486int netif_receive_skb(struct sk_buff *skb) 2487{ 2488 struct packet_type *ptype, *pt_prev; 2489 struct net_device *orig_dev; 2490 struct net_device *master; 2491 struct net_device *null_or_orig; 2492 struct net_device *null_or_bond; 2493 int ret = NET_RX_DROP; 2494 __be16 type; 2495 2496 if (!skb->tstamp.tv64) 2497 net_timestamp(skb); 2498 2499 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2500 return NET_RX_SUCCESS; 2501 2502 /* if we've gotten here through NAPI, check netpoll */ 2503 if (netpoll_receive_skb(skb)) 2504 return NET_RX_DROP; 2505 2506 if (!skb->skb_iif) 2507 skb->skb_iif = skb->dev->ifindex; 2508 2509 null_or_orig = NULL; 2510 orig_dev = skb->dev; 2511 master = ACCESS_ONCE(orig_dev->master); 2512 if (master) { 2513 if (skb_bond_should_drop(skb, master)) 2514 null_or_orig = orig_dev; /* deliver only exact match */ 2515 else 2516 skb->dev = master; 2517 } 2518 2519 __get_cpu_var(netdev_rx_stat).total++; 2520 2521 skb_reset_network_header(skb); 2522 skb_reset_transport_header(skb); 2523 skb->mac_len = skb->network_header - skb->mac_header; 2524 2525 pt_prev = NULL; 2526 2527 rcu_read_lock(); 2528 2529#ifdef CONFIG_NET_CLS_ACT 2530 if (skb->tc_verd & TC_NCLS) { 2531 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2532 goto ncls; 2533 } 2534#endif 2535 2536 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2537 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2538 ptype->dev == orig_dev) { 2539 if (pt_prev) 2540 ret = deliver_skb(skb, pt_prev, orig_dev); 2541 pt_prev = ptype; 2542 } 2543 } 2544 2545#ifdef CONFIG_NET_CLS_ACT 2546 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2547 if (!skb) 2548 goto out; 2549ncls: 2550#endif 2551 2552 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2553 if (!skb) 2554 goto out; 2555 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2556 if (!skb) 2557 goto out; 2558 2559 /* 2560 * Make sure frames received on VLAN interfaces stacked on 2561 * bonding interfaces still make their way to any base bonding 2562 * device that may have registered for a specific ptype. The 2563 * handler may have to adjust skb->dev and orig_dev. 2564 */ 2565 null_or_bond = NULL; 2566 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2567 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2568 null_or_bond = vlan_dev_real_dev(skb->dev); 2569 } 2570 2571 type = skb->protocol; 2572 list_for_each_entry_rcu(ptype, 2573 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2574 if (ptype->type == type && (ptype->dev == null_or_orig || 2575 ptype->dev == skb->dev || ptype->dev == orig_dev || 2576 ptype->dev == null_or_bond)) { 2577 if (pt_prev) 2578 ret = deliver_skb(skb, pt_prev, orig_dev); 2579 pt_prev = ptype; 2580 } 2581 } 2582 2583 if (pt_prev) { 2584 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2585 } else { 2586 kfree_skb(skb); 2587 /* Jamal, now you will not able to escape explaining 2588 * me how you were going to use this. :-) 2589 */ 2590 ret = NET_RX_DROP; 2591 } 2592 2593out: 2594 rcu_read_unlock(); 2595 return ret; 2596} 2597EXPORT_SYMBOL(netif_receive_skb); 2598 2599/* Network device is going away, flush any packets still pending */ 2600static void flush_backlog(void *arg) 2601{ 2602 struct net_device *dev = arg; 2603 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2604 struct sk_buff *skb, *tmp; 2605 2606 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2607 if (skb->dev == dev) { 2608 __skb_unlink(skb, &queue->input_pkt_queue); 2609 kfree_skb(skb); 2610 } 2611} 2612 2613static int napi_gro_complete(struct sk_buff *skb) 2614{ 2615 struct packet_type *ptype; 2616 __be16 type = skb->protocol; 2617 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2618 int err = -ENOENT; 2619 2620 if (NAPI_GRO_CB(skb)->count == 1) { 2621 skb_shinfo(skb)->gso_size = 0; 2622 goto out; 2623 } 2624 2625 rcu_read_lock(); 2626 list_for_each_entry_rcu(ptype, head, list) { 2627 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2628 continue; 2629 2630 err = ptype->gro_complete(skb); 2631 break; 2632 } 2633 rcu_read_unlock(); 2634 2635 if (err) { 2636 WARN_ON(&ptype->list == head); 2637 kfree_skb(skb); 2638 return NET_RX_SUCCESS; 2639 } 2640 2641out: 2642 return netif_receive_skb(skb); 2643} 2644 2645static void napi_gro_flush(struct napi_struct *napi) 2646{ 2647 struct sk_buff *skb, *next; 2648 2649 for (skb = napi->gro_list; skb; skb = next) { 2650 next = skb->next; 2651 skb->next = NULL; 2652 napi_gro_complete(skb); 2653 } 2654 2655 napi->gro_count = 0; 2656 napi->gro_list = NULL; 2657} 2658 2659enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2660{ 2661 struct sk_buff **pp = NULL; 2662 struct packet_type *ptype; 2663 __be16 type = skb->protocol; 2664 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2665 int same_flow; 2666 int mac_len; 2667 enum gro_result ret; 2668 2669 if (!(skb->dev->features & NETIF_F_GRO)) 2670 goto normal; 2671 2672 if (skb_is_gso(skb) || skb_has_frags(skb)) 2673 goto normal; 2674 2675 rcu_read_lock(); 2676 list_for_each_entry_rcu(ptype, head, list) { 2677 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2678 continue; 2679 2680 skb_set_network_header(skb, skb_gro_offset(skb)); 2681 mac_len = skb->network_header - skb->mac_header; 2682 skb->mac_len = mac_len; 2683 NAPI_GRO_CB(skb)->same_flow = 0; 2684 NAPI_GRO_CB(skb)->flush = 0; 2685 NAPI_GRO_CB(skb)->free = 0; 2686 2687 pp = ptype->gro_receive(&napi->gro_list, skb); 2688 break; 2689 } 2690 rcu_read_unlock(); 2691 2692 if (&ptype->list == head) 2693 goto normal; 2694 2695 same_flow = NAPI_GRO_CB(skb)->same_flow; 2696 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2697 2698 if (pp) { 2699 struct sk_buff *nskb = *pp; 2700 2701 *pp = nskb->next; 2702 nskb->next = NULL; 2703 napi_gro_complete(nskb); 2704 napi->gro_count--; 2705 } 2706 2707 if (same_flow) 2708 goto ok; 2709 2710 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2711 goto normal; 2712 2713 napi->gro_count++; 2714 NAPI_GRO_CB(skb)->count = 1; 2715 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2716 skb->next = napi->gro_list; 2717 napi->gro_list = skb; 2718 ret = GRO_HELD; 2719 2720pull: 2721 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2722 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2723 2724 BUG_ON(skb->end - skb->tail < grow); 2725 2726 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2727 2728 skb->tail += grow; 2729 skb->data_len -= grow; 2730 2731 skb_shinfo(skb)->frags[0].page_offset += grow; 2732 skb_shinfo(skb)->frags[0].size -= grow; 2733 2734 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2735 put_page(skb_shinfo(skb)->frags[0].page); 2736 memmove(skb_shinfo(skb)->frags, 2737 skb_shinfo(skb)->frags + 1, 2738 --skb_shinfo(skb)->nr_frags); 2739 } 2740 } 2741 2742ok: 2743 return ret; 2744 2745normal: 2746 ret = GRO_NORMAL; 2747 goto pull; 2748} 2749EXPORT_SYMBOL(dev_gro_receive); 2750 2751static gro_result_t 2752__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2753{ 2754 struct sk_buff *p; 2755 2756 if (netpoll_rx_on(skb)) 2757 return GRO_NORMAL; 2758 2759 for (p = napi->gro_list; p; p = p->next) { 2760 NAPI_GRO_CB(p)->same_flow = 2761 (p->dev == skb->dev) && 2762 !compare_ether_header(skb_mac_header(p), 2763 skb_gro_mac_header(skb)); 2764 NAPI_GRO_CB(p)->flush = 0; 2765 } 2766 2767 return dev_gro_receive(napi, skb); 2768} 2769 2770gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 2771{ 2772 switch (ret) { 2773 case GRO_NORMAL: 2774 if (netif_receive_skb(skb)) 2775 ret = GRO_DROP; 2776 break; 2777 2778 case GRO_DROP: 2779 case GRO_MERGED_FREE: 2780 kfree_skb(skb); 2781 break; 2782 2783 case GRO_HELD: 2784 case GRO_MERGED: 2785 break; 2786 } 2787 2788 return ret; 2789} 2790EXPORT_SYMBOL(napi_skb_finish); 2791 2792void skb_gro_reset_offset(struct sk_buff *skb) 2793{ 2794 NAPI_GRO_CB(skb)->data_offset = 0; 2795 NAPI_GRO_CB(skb)->frag0 = NULL; 2796 NAPI_GRO_CB(skb)->frag0_len = 0; 2797 2798 if (skb->mac_header == skb->tail && 2799 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2800 NAPI_GRO_CB(skb)->frag0 = 2801 page_address(skb_shinfo(skb)->frags[0].page) + 2802 skb_shinfo(skb)->frags[0].page_offset; 2803 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2804 } 2805} 2806EXPORT_SYMBOL(skb_gro_reset_offset); 2807 2808gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2809{ 2810 skb_gro_reset_offset(skb); 2811 2812 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2813} 2814EXPORT_SYMBOL(napi_gro_receive); 2815 2816void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2817{ 2818 __skb_pull(skb, skb_headlen(skb)); 2819 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2820 2821 napi->skb = skb; 2822} 2823EXPORT_SYMBOL(napi_reuse_skb); 2824 2825struct sk_buff *napi_get_frags(struct napi_struct *napi) 2826{ 2827 struct sk_buff *skb = napi->skb; 2828 2829 if (!skb) { 2830 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 2831 if (skb) 2832 napi->skb = skb; 2833 } 2834 return skb; 2835} 2836EXPORT_SYMBOL(napi_get_frags); 2837 2838gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 2839 gro_result_t ret) 2840{ 2841 switch (ret) { 2842 case GRO_NORMAL: 2843 case GRO_HELD: 2844 skb->protocol = eth_type_trans(skb, skb->dev); 2845 2846 if (ret == GRO_HELD) 2847 skb_gro_pull(skb, -ETH_HLEN); 2848 else if (netif_receive_skb(skb)) 2849 ret = GRO_DROP; 2850 break; 2851 2852 case GRO_DROP: 2853 case GRO_MERGED_FREE: 2854 napi_reuse_skb(napi, skb); 2855 break; 2856 2857 case GRO_MERGED: 2858 break; 2859 } 2860 2861 return ret; 2862} 2863EXPORT_SYMBOL(napi_frags_finish); 2864 2865struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2866{ 2867 struct sk_buff *skb = napi->skb; 2868 struct ethhdr *eth; 2869 unsigned int hlen; 2870 unsigned int off; 2871 2872 napi->skb = NULL; 2873 2874 skb_reset_mac_header(skb); 2875 skb_gro_reset_offset(skb); 2876 2877 off = skb_gro_offset(skb); 2878 hlen = off + sizeof(*eth); 2879 eth = skb_gro_header_fast(skb, off); 2880 if (skb_gro_header_hard(skb, hlen)) { 2881 eth = skb_gro_header_slow(skb, hlen, off); 2882 if (unlikely(!eth)) { 2883 napi_reuse_skb(napi, skb); 2884 skb = NULL; 2885 goto out; 2886 } 2887 } 2888 2889 skb_gro_pull(skb, sizeof(*eth)); 2890 2891 /* 2892 * This works because the only protocols we care about don't require 2893 * special handling. We'll fix it up properly at the end. 2894 */ 2895 skb->protocol = eth->h_proto; 2896 2897out: 2898 return skb; 2899} 2900EXPORT_SYMBOL(napi_frags_skb); 2901 2902gro_result_t napi_gro_frags(struct napi_struct *napi) 2903{ 2904 struct sk_buff *skb = napi_frags_skb(napi); 2905 2906 if (!skb) 2907 return GRO_DROP; 2908 2909 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2910} 2911EXPORT_SYMBOL(napi_gro_frags); 2912 2913static int process_backlog(struct napi_struct *napi, int quota) 2914{ 2915 int work = 0; 2916 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2917 unsigned long start_time = jiffies; 2918 2919 napi->weight = weight_p; 2920 do { 2921 struct sk_buff *skb; 2922 2923 local_irq_disable(); 2924 skb = __skb_dequeue(&queue->input_pkt_queue); 2925 if (!skb) { 2926 __napi_complete(napi); 2927 local_irq_enable(); 2928 break; 2929 } 2930 local_irq_enable(); 2931 2932 netif_receive_skb(skb); 2933 } while (++work < quota && jiffies == start_time); 2934 2935 return work; 2936} 2937 2938/** 2939 * __napi_schedule - schedule for receive 2940 * @n: entry to schedule 2941 * 2942 * The entry's receive function will be scheduled to run 2943 */ 2944void __napi_schedule(struct napi_struct *n) 2945{ 2946 unsigned long flags; 2947 2948 local_irq_save(flags); 2949 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2950 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2951 local_irq_restore(flags); 2952} 2953EXPORT_SYMBOL(__napi_schedule); 2954 2955void __napi_complete(struct napi_struct *n) 2956{ 2957 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2958 BUG_ON(n->gro_list); 2959 2960 list_del(&n->poll_list); 2961 smp_mb__before_clear_bit(); 2962 clear_bit(NAPI_STATE_SCHED, &n->state); 2963} 2964EXPORT_SYMBOL(__napi_complete); 2965 2966void napi_complete(struct napi_struct *n) 2967{ 2968 unsigned long flags; 2969 2970 /* 2971 * don't let napi dequeue from the cpu poll list 2972 * just in case its running on a different cpu 2973 */ 2974 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2975 return; 2976 2977 napi_gro_flush(n); 2978 local_irq_save(flags); 2979 __napi_complete(n); 2980 local_irq_restore(flags); 2981} 2982EXPORT_SYMBOL(napi_complete); 2983 2984void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2985 int (*poll)(struct napi_struct *, int), int weight) 2986{ 2987 INIT_LIST_HEAD(&napi->poll_list); 2988 napi->gro_count = 0; 2989 napi->gro_list = NULL; 2990 napi->skb = NULL; 2991 napi->poll = poll; 2992 napi->weight = weight; 2993 list_add(&napi->dev_list, &dev->napi_list); 2994 napi->dev = dev; 2995#ifdef CONFIG_NETPOLL 2996 spin_lock_init(&napi->poll_lock); 2997 napi->poll_owner = -1; 2998#endif 2999 set_bit(NAPI_STATE_SCHED, &napi->state); 3000} 3001EXPORT_SYMBOL(netif_napi_add); 3002 3003void netif_napi_del(struct napi_struct *napi) 3004{ 3005 struct sk_buff *skb, *next; 3006 3007 list_del_init(&napi->dev_list); 3008 napi_free_frags(napi); 3009 3010 for (skb = napi->gro_list; skb; skb = next) { 3011 next = skb->next; 3012 skb->next = NULL; 3013 kfree_skb(skb); 3014 } 3015 3016 napi->gro_list = NULL; 3017 napi->gro_count = 0; 3018} 3019EXPORT_SYMBOL(netif_napi_del); 3020 3021 3022static void net_rx_action(struct softirq_action *h) 3023{ 3024 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 3025 unsigned long time_limit = jiffies + 2; 3026 int budget = netdev_budget; 3027 void *have; 3028 3029 local_irq_disable(); 3030 3031 while (!list_empty(list)) { 3032 struct napi_struct *n; 3033 int work, weight; 3034 3035 /* If softirq window is exhuasted then punt. 3036 * Allow this to run for 2 jiffies since which will allow 3037 * an average latency of 1.5/HZ. 3038 */ 3039 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3040 goto softnet_break; 3041 3042 local_irq_enable(); 3043 3044 /* Even though interrupts have been re-enabled, this 3045 * access is safe because interrupts can only add new 3046 * entries to the tail of this list, and only ->poll() 3047 * calls can remove this head entry from the list. 3048 */ 3049 n = list_first_entry(list, struct napi_struct, poll_list); 3050 3051 have = netpoll_poll_lock(n); 3052 3053 weight = n->weight; 3054 3055 /* This NAPI_STATE_SCHED test is for avoiding a race 3056 * with netpoll's poll_napi(). Only the entity which 3057 * obtains the lock and sees NAPI_STATE_SCHED set will 3058 * actually make the ->poll() call. Therefore we avoid 3059 * accidently calling ->poll() when NAPI is not scheduled. 3060 */ 3061 work = 0; 3062 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3063 work = n->poll(n, weight); 3064 trace_napi_poll(n); 3065 } 3066 3067 WARN_ON_ONCE(work > weight); 3068 3069 budget -= work; 3070 3071 local_irq_disable(); 3072 3073 /* Drivers must not modify the NAPI state if they 3074 * consume the entire weight. In such cases this code 3075 * still "owns" the NAPI instance and therefore can 3076 * move the instance around on the list at-will. 3077 */ 3078 if (unlikely(work == weight)) { 3079 if (unlikely(napi_disable_pending(n))) { 3080 local_irq_enable(); 3081 napi_complete(n); 3082 local_irq_disable(); 3083 } else 3084 list_move_tail(&n->poll_list, list); 3085 } 3086 3087 netpoll_poll_unlock(have); 3088 } 3089out: 3090 local_irq_enable(); 3091 3092#ifdef CONFIG_NET_DMA 3093 /* 3094 * There may not be any more sk_buffs coming right now, so push 3095 * any pending DMA copies to hardware 3096 */ 3097 dma_issue_pending_all(); 3098#endif 3099 3100 return; 3101 3102softnet_break: 3103 __get_cpu_var(netdev_rx_stat).time_squeeze++; 3104 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3105 goto out; 3106} 3107 3108static gifconf_func_t *gifconf_list[NPROTO]; 3109 3110/** 3111 * register_gifconf - register a SIOCGIF handler 3112 * @family: Address family 3113 * @gifconf: Function handler 3114 * 3115 * Register protocol dependent address dumping routines. The handler 3116 * that is passed must not be freed or reused until it has been replaced 3117 * by another handler. 3118 */ 3119int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3120{ 3121 if (family >= NPROTO) 3122 return -EINVAL; 3123 gifconf_list[family] = gifconf; 3124 return 0; 3125} 3126EXPORT_SYMBOL(register_gifconf); 3127 3128 3129/* 3130 * Map an interface index to its name (SIOCGIFNAME) 3131 */ 3132 3133/* 3134 * We need this ioctl for efficient implementation of the 3135 * if_indextoname() function required by the IPv6 API. Without 3136 * it, we would have to search all the interfaces to find a 3137 * match. --pb 3138 */ 3139 3140static int dev_ifname(struct net *net, struct ifreq __user *arg) 3141{ 3142 struct net_device *dev; 3143 struct ifreq ifr; 3144 3145 /* 3146 * Fetch the caller's info block. 3147 */ 3148 3149 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3150 return -EFAULT; 3151 3152 rcu_read_lock(); 3153 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3154 if (!dev) { 3155 rcu_read_unlock(); 3156 return -ENODEV; 3157 } 3158 3159 strcpy(ifr.ifr_name, dev->name); 3160 rcu_read_unlock(); 3161 3162 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3163 return -EFAULT; 3164 return 0; 3165} 3166 3167/* 3168 * Perform a SIOCGIFCONF call. This structure will change 3169 * size eventually, and there is nothing I can do about it. 3170 * Thus we will need a 'compatibility mode'. 3171 */ 3172 3173static int dev_ifconf(struct net *net, char __user *arg) 3174{ 3175 struct ifconf ifc; 3176 struct net_device *dev; 3177 char __user *pos; 3178 int len; 3179 int total; 3180 int i; 3181 3182 /* 3183 * Fetch the caller's info block. 3184 */ 3185 3186 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3187 return -EFAULT; 3188 3189 pos = ifc.ifc_buf; 3190 len = ifc.ifc_len; 3191 3192 /* 3193 * Loop over the interfaces, and write an info block for each. 3194 */ 3195 3196 total = 0; 3197 for_each_netdev(net, dev) { 3198 for (i = 0; i < NPROTO; i++) { 3199 if (gifconf_list[i]) { 3200 int done; 3201 if (!pos) 3202 done = gifconf_list[i](dev, NULL, 0); 3203 else 3204 done = gifconf_list[i](dev, pos + total, 3205 len - total); 3206 if (done < 0) 3207 return -EFAULT; 3208 total += done; 3209 } 3210 } 3211 } 3212 3213 /* 3214 * All done. Write the updated control block back to the caller. 3215 */ 3216 ifc.ifc_len = total; 3217 3218 /* 3219 * Both BSD and Solaris return 0 here, so we do too. 3220 */ 3221 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3222} 3223 3224#ifdef CONFIG_PROC_FS 3225/* 3226 * This is invoked by the /proc filesystem handler to display a device 3227 * in detail. 3228 */ 3229void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3230 __acquires(RCU) 3231{ 3232 struct net *net = seq_file_net(seq); 3233 loff_t off; 3234 struct net_device *dev; 3235 3236 rcu_read_lock(); 3237 if (!*pos) 3238 return SEQ_START_TOKEN; 3239 3240 off = 1; 3241 for_each_netdev_rcu(net, dev) 3242 if (off++ == *pos) 3243 return dev; 3244 3245 return NULL; 3246} 3247 3248void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3249{ 3250 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3251 first_net_device(seq_file_net(seq)) : 3252 next_net_device((struct net_device *)v); 3253 3254 ++*pos; 3255 return rcu_dereference(dev); 3256} 3257 3258void dev_seq_stop(struct seq_file *seq, void *v) 3259 __releases(RCU) 3260{ 3261 rcu_read_unlock(); 3262} 3263 3264static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3265{ 3266 const struct net_device_stats *stats = dev_get_stats(dev); 3267 3268 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3269 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3270 dev->name, stats->rx_bytes, stats->rx_packets, 3271 stats->rx_errors, 3272 stats->rx_dropped + stats->rx_missed_errors, 3273 stats->rx_fifo_errors, 3274 stats->rx_length_errors + stats->rx_over_errors + 3275 stats->rx_crc_errors + stats->rx_frame_errors, 3276 stats->rx_compressed, stats->multicast, 3277 stats->tx_bytes, stats->tx_packets, 3278 stats->tx_errors, stats->tx_dropped, 3279 stats->tx_fifo_errors, stats->collisions, 3280 stats->tx_carrier_errors + 3281 stats->tx_aborted_errors + 3282 stats->tx_window_errors + 3283 stats->tx_heartbeat_errors, 3284 stats->tx_compressed); 3285} 3286 3287/* 3288 * Called from the PROCfs module. This now uses the new arbitrary sized 3289 * /proc/net interface to create /proc/net/dev 3290 */ 3291static int dev_seq_show(struct seq_file *seq, void *v) 3292{ 3293 if (v == SEQ_START_TOKEN) 3294 seq_puts(seq, "Inter-| Receive " 3295 " | Transmit\n" 3296 " face |bytes packets errs drop fifo frame " 3297 "compressed multicast|bytes packets errs " 3298 "drop fifo colls carrier compressed\n"); 3299 else 3300 dev_seq_printf_stats(seq, v); 3301 return 0; 3302} 3303 3304static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3305{ 3306 struct netif_rx_stats *rc = NULL; 3307 3308 while (*pos < nr_cpu_ids) 3309 if (cpu_online(*pos)) { 3310 rc = &per_cpu(netdev_rx_stat, *pos); 3311 break; 3312 } else 3313 ++*pos; 3314 return rc; 3315} 3316 3317static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3318{ 3319 return softnet_get_online(pos); 3320} 3321 3322static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3323{ 3324 ++*pos; 3325 return softnet_get_online(pos); 3326} 3327 3328static void softnet_seq_stop(struct seq_file *seq, void *v) 3329{ 3330} 3331 3332static int softnet_seq_show(struct seq_file *seq, void *v) 3333{ 3334 struct netif_rx_stats *s = v; 3335 3336 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3337 s->total, s->dropped, s->time_squeeze, 0, 3338 0, 0, 0, 0, /* was fastroute */ 3339 s->cpu_collision); 3340 return 0; 3341} 3342 3343static const struct seq_operations dev_seq_ops = { 3344 .start = dev_seq_start, 3345 .next = dev_seq_next, 3346 .stop = dev_seq_stop, 3347 .show = dev_seq_show, 3348}; 3349 3350static int dev_seq_open(struct inode *inode, struct file *file) 3351{ 3352 return seq_open_net(inode, file, &dev_seq_ops, 3353 sizeof(struct seq_net_private)); 3354} 3355 3356static const struct file_operations dev_seq_fops = { 3357 .owner = THIS_MODULE, 3358 .open = dev_seq_open, 3359 .read = seq_read, 3360 .llseek = seq_lseek, 3361 .release = seq_release_net, 3362}; 3363 3364static const struct seq_operations softnet_seq_ops = { 3365 .start = softnet_seq_start, 3366 .next = softnet_seq_next, 3367 .stop = softnet_seq_stop, 3368 .show = softnet_seq_show, 3369}; 3370 3371static int softnet_seq_open(struct inode *inode, struct file *file) 3372{ 3373 return seq_open(file, &softnet_seq_ops); 3374} 3375 3376static const struct file_operations softnet_seq_fops = { 3377 .owner = THIS_MODULE, 3378 .open = softnet_seq_open, 3379 .read = seq_read, 3380 .llseek = seq_lseek, 3381 .release = seq_release, 3382}; 3383 3384static void *ptype_get_idx(loff_t pos) 3385{ 3386 struct packet_type *pt = NULL; 3387 loff_t i = 0; 3388 int t; 3389 3390 list_for_each_entry_rcu(pt, &ptype_all, list) { 3391 if (i == pos) 3392 return pt; 3393 ++i; 3394 } 3395 3396 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3397 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3398 if (i == pos) 3399 return pt; 3400 ++i; 3401 } 3402 } 3403 return NULL; 3404} 3405 3406static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3407 __acquires(RCU) 3408{ 3409 rcu_read_lock(); 3410 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3411} 3412 3413static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3414{ 3415 struct packet_type *pt; 3416 struct list_head *nxt; 3417 int hash; 3418 3419 ++*pos; 3420 if (v == SEQ_START_TOKEN) 3421 return ptype_get_idx(0); 3422 3423 pt = v; 3424 nxt = pt->list.next; 3425 if (pt->type == htons(ETH_P_ALL)) { 3426 if (nxt != &ptype_all) 3427 goto found; 3428 hash = 0; 3429 nxt = ptype_base[0].next; 3430 } else 3431 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3432 3433 while (nxt == &ptype_base[hash]) { 3434 if (++hash >= PTYPE_HASH_SIZE) 3435 return NULL; 3436 nxt = ptype_base[hash].next; 3437 } 3438found: 3439 return list_entry(nxt, struct packet_type, list); 3440} 3441 3442static void ptype_seq_stop(struct seq_file *seq, void *v) 3443 __releases(RCU) 3444{ 3445 rcu_read_unlock(); 3446} 3447 3448static int ptype_seq_show(struct seq_file *seq, void *v) 3449{ 3450 struct packet_type *pt = v; 3451 3452 if (v == SEQ_START_TOKEN) 3453 seq_puts(seq, "Type Device Function\n"); 3454 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3455 if (pt->type == htons(ETH_P_ALL)) 3456 seq_puts(seq, "ALL "); 3457 else 3458 seq_printf(seq, "%04x", ntohs(pt->type)); 3459 3460 seq_printf(seq, " %-8s %pF\n", 3461 pt->dev ? pt->dev->name : "", pt->func); 3462 } 3463 3464 return 0; 3465} 3466 3467static const struct seq_operations ptype_seq_ops = { 3468 .start = ptype_seq_start, 3469 .next = ptype_seq_next, 3470 .stop = ptype_seq_stop, 3471 .show = ptype_seq_show, 3472}; 3473 3474static int ptype_seq_open(struct inode *inode, struct file *file) 3475{ 3476 return seq_open_net(inode, file, &ptype_seq_ops, 3477 sizeof(struct seq_net_private)); 3478} 3479 3480static const struct file_operations ptype_seq_fops = { 3481 .owner = THIS_MODULE, 3482 .open = ptype_seq_open, 3483 .read = seq_read, 3484 .llseek = seq_lseek, 3485 .release = seq_release_net, 3486}; 3487 3488 3489static int __net_init dev_proc_net_init(struct net *net) 3490{ 3491 int rc = -ENOMEM; 3492 3493 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3494 goto out; 3495 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3496 goto out_dev; 3497 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3498 goto out_softnet; 3499 3500 if (wext_proc_init(net)) 3501 goto out_ptype; 3502 rc = 0; 3503out: 3504 return rc; 3505out_ptype: 3506 proc_net_remove(net, "ptype"); 3507out_softnet: 3508 proc_net_remove(net, "softnet_stat"); 3509out_dev: 3510 proc_net_remove(net, "dev"); 3511 goto out; 3512} 3513 3514static void __net_exit dev_proc_net_exit(struct net *net) 3515{ 3516 wext_proc_exit(net); 3517 3518 proc_net_remove(net, "ptype"); 3519 proc_net_remove(net, "softnet_stat"); 3520 proc_net_remove(net, "dev"); 3521} 3522 3523static struct pernet_operations __net_initdata dev_proc_ops = { 3524 .init = dev_proc_net_init, 3525 .exit = dev_proc_net_exit, 3526}; 3527 3528static int __init dev_proc_init(void) 3529{ 3530 return register_pernet_subsys(&dev_proc_ops); 3531} 3532#else 3533#define dev_proc_init() 0 3534#endif /* CONFIG_PROC_FS */ 3535 3536 3537/** 3538 * netdev_set_master - set up master/slave pair 3539 * @slave: slave device 3540 * @master: new master device 3541 * 3542 * Changes the master device of the slave. Pass %NULL to break the 3543 * bonding. The caller must hold the RTNL semaphore. On a failure 3544 * a negative errno code is returned. On success the reference counts 3545 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3546 * function returns zero. 3547 */ 3548int netdev_set_master(struct net_device *slave, struct net_device *master) 3549{ 3550 struct net_device *old = slave->master; 3551 3552 ASSERT_RTNL(); 3553 3554 if (master) { 3555 if (old) 3556 return -EBUSY; 3557 dev_hold(master); 3558 } 3559 3560 slave->master = master; 3561 3562 synchronize_net(); 3563 3564 if (old) 3565 dev_put(old); 3566 3567 if (master) 3568 slave->flags |= IFF_SLAVE; 3569 else 3570 slave->flags &= ~IFF_SLAVE; 3571 3572 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3573 return 0; 3574} 3575EXPORT_SYMBOL(netdev_set_master); 3576 3577static void dev_change_rx_flags(struct net_device *dev, int flags) 3578{ 3579 const struct net_device_ops *ops = dev->netdev_ops; 3580 3581 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3582 ops->ndo_change_rx_flags(dev, flags); 3583} 3584 3585static int __dev_set_promiscuity(struct net_device *dev, int inc) 3586{ 3587 unsigned short old_flags = dev->flags; 3588 uid_t uid; 3589 gid_t gid; 3590 3591 ASSERT_RTNL(); 3592 3593 dev->flags |= IFF_PROMISC; 3594 dev->promiscuity += inc; 3595 if (dev->promiscuity == 0) { 3596 /* 3597 * Avoid overflow. 3598 * If inc causes overflow, untouch promisc and return error. 3599 */ 3600 if (inc < 0) 3601 dev->flags &= ~IFF_PROMISC; 3602 else { 3603 dev->promiscuity -= inc; 3604 printk(KERN_WARNING "%s: promiscuity touches roof, " 3605 "set promiscuity failed, promiscuity feature " 3606 "of device might be broken.\n", dev->name); 3607 return -EOVERFLOW; 3608 } 3609 } 3610 if (dev->flags != old_flags) { 3611 printk(KERN_INFO "device %s %s promiscuous mode\n", 3612 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3613 "left"); 3614 if (audit_enabled) { 3615 current_uid_gid(&uid, &gid); 3616 audit_log(current->audit_context, GFP_ATOMIC, 3617 AUDIT_ANOM_PROMISCUOUS, 3618 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3619 dev->name, (dev->flags & IFF_PROMISC), 3620 (old_flags & IFF_PROMISC), 3621 audit_get_loginuid(current), 3622 uid, gid, 3623 audit_get_sessionid(current)); 3624 } 3625 3626 dev_change_rx_flags(dev, IFF_PROMISC); 3627 } 3628 return 0; 3629} 3630 3631/** 3632 * dev_set_promiscuity - update promiscuity count on a device 3633 * @dev: device 3634 * @inc: modifier 3635 * 3636 * Add or remove promiscuity from a device. While the count in the device 3637 * remains above zero the interface remains promiscuous. Once it hits zero 3638 * the device reverts back to normal filtering operation. A negative inc 3639 * value is used to drop promiscuity on the device. 3640 * Return 0 if successful or a negative errno code on error. 3641 */ 3642int dev_set_promiscuity(struct net_device *dev, int inc) 3643{ 3644 unsigned short old_flags = dev->flags; 3645 int err; 3646 3647 err = __dev_set_promiscuity(dev, inc); 3648 if (err < 0) 3649 return err; 3650 if (dev->flags != old_flags) 3651 dev_set_rx_mode(dev); 3652 return err; 3653} 3654EXPORT_SYMBOL(dev_set_promiscuity); 3655 3656/** 3657 * dev_set_allmulti - update allmulti count on a device 3658 * @dev: device 3659 * @inc: modifier 3660 * 3661 * Add or remove reception of all multicast frames to a device. While the 3662 * count in the device remains above zero the interface remains listening 3663 * to all interfaces. Once it hits zero the device reverts back to normal 3664 * filtering operation. A negative @inc value is used to drop the counter 3665 * when releasing a resource needing all multicasts. 3666 * Return 0 if successful or a negative errno code on error. 3667 */ 3668 3669int dev_set_allmulti(struct net_device *dev, int inc) 3670{ 3671 unsigned short old_flags = dev->flags; 3672 3673 ASSERT_RTNL(); 3674 3675 dev->flags |= IFF_ALLMULTI; 3676 dev->allmulti += inc; 3677 if (dev->allmulti == 0) { 3678 /* 3679 * Avoid overflow. 3680 * If inc causes overflow, untouch allmulti and return error. 3681 */ 3682 if (inc < 0) 3683 dev->flags &= ~IFF_ALLMULTI; 3684 else { 3685 dev->allmulti -= inc; 3686 printk(KERN_WARNING "%s: allmulti touches roof, " 3687 "set allmulti failed, allmulti feature of " 3688 "device might be broken.\n", dev->name); 3689 return -EOVERFLOW; 3690 } 3691 } 3692 if (dev->flags ^ old_flags) { 3693 dev_change_rx_flags(dev, IFF_ALLMULTI); 3694 dev_set_rx_mode(dev); 3695 } 3696 return 0; 3697} 3698EXPORT_SYMBOL(dev_set_allmulti); 3699 3700/* 3701 * Upload unicast and multicast address lists to device and 3702 * configure RX filtering. When the device doesn't support unicast 3703 * filtering it is put in promiscuous mode while unicast addresses 3704 * are present. 3705 */ 3706void __dev_set_rx_mode(struct net_device *dev) 3707{ 3708 const struct net_device_ops *ops = dev->netdev_ops; 3709 3710 /* dev_open will call this function so the list will stay sane. */ 3711 if (!(dev->flags&IFF_UP)) 3712 return; 3713 3714 if (!netif_device_present(dev)) 3715 return; 3716 3717 if (ops->ndo_set_rx_mode) 3718 ops->ndo_set_rx_mode(dev); 3719 else { 3720 /* Unicast addresses changes may only happen under the rtnl, 3721 * therefore calling __dev_set_promiscuity here is safe. 3722 */ 3723 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 3724 __dev_set_promiscuity(dev, 1); 3725 dev->uc_promisc = 1; 3726 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 3727 __dev_set_promiscuity(dev, -1); 3728 dev->uc_promisc = 0; 3729 } 3730 3731 if (ops->ndo_set_multicast_list) 3732 ops->ndo_set_multicast_list(dev); 3733 } 3734} 3735 3736void dev_set_rx_mode(struct net_device *dev) 3737{ 3738 netif_addr_lock_bh(dev); 3739 __dev_set_rx_mode(dev); 3740 netif_addr_unlock_bh(dev); 3741} 3742 3743/* hw addresses list handling functions */ 3744 3745static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3746 int addr_len, unsigned char addr_type) 3747{ 3748 struct netdev_hw_addr *ha; 3749 int alloc_size; 3750 3751 if (addr_len > MAX_ADDR_LEN) 3752 return -EINVAL; 3753 3754 list_for_each_entry(ha, &list->list, list) { 3755 if (!memcmp(ha->addr, addr, addr_len) && 3756 ha->type == addr_type) { 3757 ha->refcount++; 3758 return 0; 3759 } 3760 } 3761 3762 3763 alloc_size = sizeof(*ha); 3764 if (alloc_size < L1_CACHE_BYTES) 3765 alloc_size = L1_CACHE_BYTES; 3766 ha = kmalloc(alloc_size, GFP_ATOMIC); 3767 if (!ha) 3768 return -ENOMEM; 3769 memcpy(ha->addr, addr, addr_len); 3770 ha->type = addr_type; 3771 ha->refcount = 1; 3772 ha->synced = false; 3773 list_add_tail_rcu(&ha->list, &list->list); 3774 list->count++; 3775 return 0; 3776} 3777 3778static void ha_rcu_free(struct rcu_head *head) 3779{ 3780 struct netdev_hw_addr *ha; 3781 3782 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3783 kfree(ha); 3784} 3785 3786static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3787 int addr_len, unsigned char addr_type) 3788{ 3789 struct netdev_hw_addr *ha; 3790 3791 list_for_each_entry(ha, &list->list, list) { 3792 if (!memcmp(ha->addr, addr, addr_len) && 3793 (ha->type == addr_type || !addr_type)) { 3794 if (--ha->refcount) 3795 return 0; 3796 list_del_rcu(&ha->list); 3797 call_rcu(&ha->rcu_head, ha_rcu_free); 3798 list->count--; 3799 return 0; 3800 } 3801 } 3802 return -ENOENT; 3803} 3804 3805static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3806 struct netdev_hw_addr_list *from_list, 3807 int addr_len, 3808 unsigned char addr_type) 3809{ 3810 int err; 3811 struct netdev_hw_addr *ha, *ha2; 3812 unsigned char type; 3813 3814 list_for_each_entry(ha, &from_list->list, list) { 3815 type = addr_type ? addr_type : ha->type; 3816 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3817 if (err) 3818 goto unroll; 3819 } 3820 return 0; 3821 3822unroll: 3823 list_for_each_entry(ha2, &from_list->list, list) { 3824 if (ha2 == ha) 3825 break; 3826 type = addr_type ? addr_type : ha2->type; 3827 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3828 } 3829 return err; 3830} 3831 3832static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3833 struct netdev_hw_addr_list *from_list, 3834 int addr_len, 3835 unsigned char addr_type) 3836{ 3837 struct netdev_hw_addr *ha; 3838 unsigned char type; 3839 3840 list_for_each_entry(ha, &from_list->list, list) { 3841 type = addr_type ? addr_type : ha->type; 3842 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3843 } 3844} 3845 3846static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3847 struct netdev_hw_addr_list *from_list, 3848 int addr_len) 3849{ 3850 int err = 0; 3851 struct netdev_hw_addr *ha, *tmp; 3852 3853 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3854 if (!ha->synced) { 3855 err = __hw_addr_add(to_list, ha->addr, 3856 addr_len, ha->type); 3857 if (err) 3858 break; 3859 ha->synced = true; 3860 ha->refcount++; 3861 } else if (ha->refcount == 1) { 3862 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3863 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3864 } 3865 } 3866 return err; 3867} 3868 3869static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3870 struct netdev_hw_addr_list *from_list, 3871 int addr_len) 3872{ 3873 struct netdev_hw_addr *ha, *tmp; 3874 3875 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3876 if (ha->synced) { 3877 __hw_addr_del(to_list, ha->addr, 3878 addr_len, ha->type); 3879 ha->synced = false; 3880 __hw_addr_del(from_list, ha->addr, 3881 addr_len, ha->type); 3882 } 3883 } 3884} 3885 3886static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3887{ 3888 struct netdev_hw_addr *ha, *tmp; 3889 3890 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3891 list_del_rcu(&ha->list); 3892 call_rcu(&ha->rcu_head, ha_rcu_free); 3893 } 3894 list->count = 0; 3895} 3896 3897static void __hw_addr_init(struct netdev_hw_addr_list *list) 3898{ 3899 INIT_LIST_HEAD(&list->list); 3900 list->count = 0; 3901} 3902 3903/* Device addresses handling functions */ 3904 3905static void dev_addr_flush(struct net_device *dev) 3906{ 3907 /* rtnl_mutex must be held here */ 3908 3909 __hw_addr_flush(&dev->dev_addrs); 3910 dev->dev_addr = NULL; 3911} 3912 3913static int dev_addr_init(struct net_device *dev) 3914{ 3915 unsigned char addr[MAX_ADDR_LEN]; 3916 struct netdev_hw_addr *ha; 3917 int err; 3918 3919 /* rtnl_mutex must be held here */ 3920 3921 __hw_addr_init(&dev->dev_addrs); 3922 memset(addr, 0, sizeof(addr)); 3923 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3924 NETDEV_HW_ADDR_T_LAN); 3925 if (!err) { 3926 /* 3927 * Get the first (previously created) address from the list 3928 * and set dev_addr pointer to this location. 3929 */ 3930 ha = list_first_entry(&dev->dev_addrs.list, 3931 struct netdev_hw_addr, list); 3932 dev->dev_addr = ha->addr; 3933 } 3934 return err; 3935} 3936 3937/** 3938 * dev_addr_add - Add a device address 3939 * @dev: device 3940 * @addr: address to add 3941 * @addr_type: address type 3942 * 3943 * Add a device address to the device or increase the reference count if 3944 * it already exists. 3945 * 3946 * The caller must hold the rtnl_mutex. 3947 */ 3948int dev_addr_add(struct net_device *dev, unsigned char *addr, 3949 unsigned char addr_type) 3950{ 3951 int err; 3952 3953 ASSERT_RTNL(); 3954 3955 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3956 if (!err) 3957 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3958 return err; 3959} 3960EXPORT_SYMBOL(dev_addr_add); 3961 3962/** 3963 * dev_addr_del - Release a device address. 3964 * @dev: device 3965 * @addr: address to delete 3966 * @addr_type: address type 3967 * 3968 * Release reference to a device address and remove it from the device 3969 * if the reference count drops to zero. 3970 * 3971 * The caller must hold the rtnl_mutex. 3972 */ 3973int dev_addr_del(struct net_device *dev, unsigned char *addr, 3974 unsigned char addr_type) 3975{ 3976 int err; 3977 struct netdev_hw_addr *ha; 3978 3979 ASSERT_RTNL(); 3980 3981 /* 3982 * We can not remove the first address from the list because 3983 * dev->dev_addr points to that. 3984 */ 3985 ha = list_first_entry(&dev->dev_addrs.list, 3986 struct netdev_hw_addr, list); 3987 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3988 return -ENOENT; 3989 3990 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3991 addr_type); 3992 if (!err) 3993 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3994 return err; 3995} 3996EXPORT_SYMBOL(dev_addr_del); 3997 3998/** 3999 * dev_addr_add_multiple - Add device addresses from another device 4000 * @to_dev: device to which addresses will be added 4001 * @from_dev: device from which addresses will be added 4002 * @addr_type: address type - 0 means type will be used from from_dev 4003 * 4004 * Add device addresses of the one device to another. 4005 ** 4006 * The caller must hold the rtnl_mutex. 4007 */ 4008int dev_addr_add_multiple(struct net_device *to_dev, 4009 struct net_device *from_dev, 4010 unsigned char addr_type) 4011{ 4012 int err; 4013 4014 ASSERT_RTNL(); 4015 4016 if (from_dev->addr_len != to_dev->addr_len) 4017 return -EINVAL; 4018 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4019 to_dev->addr_len, addr_type); 4020 if (!err) 4021 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4022 return err; 4023} 4024EXPORT_SYMBOL(dev_addr_add_multiple); 4025 4026/** 4027 * dev_addr_del_multiple - Delete device addresses by another device 4028 * @to_dev: device where the addresses will be deleted 4029 * @from_dev: device by which addresses the addresses will be deleted 4030 * @addr_type: address type - 0 means type will used from from_dev 4031 * 4032 * Deletes addresses in to device by the list of addresses in from device. 4033 * 4034 * The caller must hold the rtnl_mutex. 4035 */ 4036int dev_addr_del_multiple(struct net_device *to_dev, 4037 struct net_device *from_dev, 4038 unsigned char addr_type) 4039{ 4040 ASSERT_RTNL(); 4041 4042 if (from_dev->addr_len != to_dev->addr_len) 4043 return -EINVAL; 4044 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4045 to_dev->addr_len, addr_type); 4046 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4047 return 0; 4048} 4049EXPORT_SYMBOL(dev_addr_del_multiple); 4050 4051/* multicast addresses handling functions */ 4052 4053int __dev_addr_delete(struct dev_addr_list **list, int *count, 4054 void *addr, int alen, int glbl) 4055{ 4056 struct dev_addr_list *da; 4057 4058 for (; (da = *list) != NULL; list = &da->next) { 4059 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4060 alen == da->da_addrlen) { 4061 if (glbl) { 4062 int old_glbl = da->da_gusers; 4063 da->da_gusers = 0; 4064 if (old_glbl == 0) 4065 break; 4066 } 4067 if (--da->da_users) 4068 return 0; 4069 4070 *list = da->next; 4071 kfree(da); 4072 (*count)--; 4073 return 0; 4074 } 4075 } 4076 return -ENOENT; 4077} 4078 4079int __dev_addr_add(struct dev_addr_list **list, int *count, 4080 void *addr, int alen, int glbl) 4081{ 4082 struct dev_addr_list *da; 4083 4084 for (da = *list; da != NULL; da = da->next) { 4085 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4086 da->da_addrlen == alen) { 4087 if (glbl) { 4088 int old_glbl = da->da_gusers; 4089 da->da_gusers = 1; 4090 if (old_glbl) 4091 return 0; 4092 } 4093 da->da_users++; 4094 return 0; 4095 } 4096 } 4097 4098 da = kzalloc(sizeof(*da), GFP_ATOMIC); 4099 if (da == NULL) 4100 return -ENOMEM; 4101 memcpy(da->da_addr, addr, alen); 4102 da->da_addrlen = alen; 4103 da->da_users = 1; 4104 da->da_gusers = glbl ? 1 : 0; 4105 da->next = *list; 4106 *list = da; 4107 (*count)++; 4108 return 0; 4109} 4110 4111/** 4112 * dev_unicast_delete - Release secondary unicast address. 4113 * @dev: device 4114 * @addr: address to delete 4115 * 4116 * Release reference to a secondary unicast address and remove it 4117 * from the device if the reference count drops to zero. 4118 * 4119 * The caller must hold the rtnl_mutex. 4120 */ 4121int dev_unicast_delete(struct net_device *dev, void *addr) 4122{ 4123 int err; 4124 4125 ASSERT_RTNL(); 4126 4127 netif_addr_lock_bh(dev); 4128 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 4129 NETDEV_HW_ADDR_T_UNICAST); 4130 if (!err) 4131 __dev_set_rx_mode(dev); 4132 netif_addr_unlock_bh(dev); 4133 return err; 4134} 4135EXPORT_SYMBOL(dev_unicast_delete); 4136 4137/** 4138 * dev_unicast_add - add a secondary unicast address 4139 * @dev: device 4140 * @addr: address to add 4141 * 4142 * Add a secondary unicast address to the device or increase 4143 * the reference count if it already exists. 4144 * 4145 * The caller must hold the rtnl_mutex. 4146 */ 4147int dev_unicast_add(struct net_device *dev, void *addr) 4148{ 4149 int err; 4150 4151 ASSERT_RTNL(); 4152 4153 netif_addr_lock_bh(dev); 4154 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 4155 NETDEV_HW_ADDR_T_UNICAST); 4156 if (!err) 4157 __dev_set_rx_mode(dev); 4158 netif_addr_unlock_bh(dev); 4159 return err; 4160} 4161EXPORT_SYMBOL(dev_unicast_add); 4162 4163int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 4164 struct dev_addr_list **from, int *from_count) 4165{ 4166 struct dev_addr_list *da, *next; 4167 int err = 0; 4168 4169 da = *from; 4170 while (da != NULL) { 4171 next = da->next; 4172 if (!da->da_synced) { 4173 err = __dev_addr_add(to, to_count, 4174 da->da_addr, da->da_addrlen, 0); 4175 if (err < 0) 4176 break; 4177 da->da_synced = 1; 4178 da->da_users++; 4179 } else if (da->da_users == 1) { 4180 __dev_addr_delete(to, to_count, 4181 da->da_addr, da->da_addrlen, 0); 4182 __dev_addr_delete(from, from_count, 4183 da->da_addr, da->da_addrlen, 0); 4184 } 4185 da = next; 4186 } 4187 return err; 4188} 4189EXPORT_SYMBOL_GPL(__dev_addr_sync); 4190 4191void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 4192 struct dev_addr_list **from, int *from_count) 4193{ 4194 struct dev_addr_list *da, *next; 4195 4196 da = *from; 4197 while (da != NULL) { 4198 next = da->next; 4199 if (da->da_synced) { 4200 __dev_addr_delete(to, to_count, 4201 da->da_addr, da->da_addrlen, 0); 4202 da->da_synced = 0; 4203 __dev_addr_delete(from, from_count, 4204 da->da_addr, da->da_addrlen, 0); 4205 } 4206 da = next; 4207 } 4208} 4209EXPORT_SYMBOL_GPL(__dev_addr_unsync); 4210 4211/** 4212 * dev_unicast_sync - Synchronize device's unicast list to another device 4213 * @to: destination device 4214 * @from: source device 4215 * 4216 * Add newly added addresses to the destination device and release 4217 * addresses that have no users left. The source device must be 4218 * locked by netif_tx_lock_bh. 4219 * 4220 * This function is intended to be called from the dev->set_rx_mode 4221 * function of layered software devices. 4222 */ 4223int dev_unicast_sync(struct net_device *to, struct net_device *from) 4224{ 4225 int err = 0; 4226 4227 if (to->addr_len != from->addr_len) 4228 return -EINVAL; 4229 4230 netif_addr_lock_bh(to); 4231 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4232 if (!err) 4233 __dev_set_rx_mode(to); 4234 netif_addr_unlock_bh(to); 4235 return err; 4236} 4237EXPORT_SYMBOL(dev_unicast_sync); 4238 4239/** 4240 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4241 * @to: destination device 4242 * @from: source device 4243 * 4244 * Remove all addresses that were added to the destination device by 4245 * dev_unicast_sync(). This function is intended to be called from the 4246 * dev->stop function of layered software devices. 4247 */ 4248void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4249{ 4250 if (to->addr_len != from->addr_len) 4251 return; 4252 4253 netif_addr_lock_bh(from); 4254 netif_addr_lock(to); 4255 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4256 __dev_set_rx_mode(to); 4257 netif_addr_unlock(to); 4258 netif_addr_unlock_bh(from); 4259} 4260EXPORT_SYMBOL(dev_unicast_unsync); 4261 4262static void dev_unicast_flush(struct net_device *dev) 4263{ 4264 netif_addr_lock_bh(dev); 4265 __hw_addr_flush(&dev->uc); 4266 netif_addr_unlock_bh(dev); 4267} 4268 4269static void dev_unicast_init(struct net_device *dev) 4270{ 4271 __hw_addr_init(&dev->uc); 4272} 4273 4274 4275static void __dev_addr_discard(struct dev_addr_list **list) 4276{ 4277 struct dev_addr_list *tmp; 4278 4279 while (*list != NULL) { 4280 tmp = *list; 4281 *list = tmp->next; 4282 if (tmp->da_users > tmp->da_gusers) 4283 printk("__dev_addr_discard: address leakage! " 4284 "da_users=%d\n", tmp->da_users); 4285 kfree(tmp); 4286 } 4287} 4288 4289static void dev_addr_discard(struct net_device *dev) 4290{ 4291 netif_addr_lock_bh(dev); 4292 4293 __dev_addr_discard(&dev->mc_list); 4294 netdev_mc_count(dev) = 0; 4295 4296 netif_addr_unlock_bh(dev); 4297} 4298 4299/** 4300 * dev_get_flags - get flags reported to userspace 4301 * @dev: device 4302 * 4303 * Get the combination of flag bits exported through APIs to userspace. 4304 */ 4305unsigned dev_get_flags(const struct net_device *dev) 4306{ 4307 unsigned flags; 4308 4309 flags = (dev->flags & ~(IFF_PROMISC | 4310 IFF_ALLMULTI | 4311 IFF_RUNNING | 4312 IFF_LOWER_UP | 4313 IFF_DORMANT)) | 4314 (dev->gflags & (IFF_PROMISC | 4315 IFF_ALLMULTI)); 4316 4317 if (netif_running(dev)) { 4318 if (netif_oper_up(dev)) 4319 flags |= IFF_RUNNING; 4320 if (netif_carrier_ok(dev)) 4321 flags |= IFF_LOWER_UP; 4322 if (netif_dormant(dev)) 4323 flags |= IFF_DORMANT; 4324 } 4325 4326 return flags; 4327} 4328EXPORT_SYMBOL(dev_get_flags); 4329 4330int __dev_change_flags(struct net_device *dev, unsigned int flags) 4331{ 4332 int old_flags = dev->flags; 4333 int ret; 4334 4335 ASSERT_RTNL(); 4336 4337 /* 4338 * Set the flags on our device. 4339 */ 4340 4341 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4342 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4343 IFF_AUTOMEDIA)) | 4344 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4345 IFF_ALLMULTI)); 4346 4347 /* 4348 * Load in the correct multicast list now the flags have changed. 4349 */ 4350 4351 if ((old_flags ^ flags) & IFF_MULTICAST) 4352 dev_change_rx_flags(dev, IFF_MULTICAST); 4353 4354 dev_set_rx_mode(dev); 4355 4356 /* 4357 * Have we downed the interface. We handle IFF_UP ourselves 4358 * according to user attempts to set it, rather than blindly 4359 * setting it. 4360 */ 4361 4362 ret = 0; 4363 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4364 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4365 4366 if (!ret) 4367 dev_set_rx_mode(dev); 4368 } 4369 4370 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4371 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4372 4373 dev->gflags ^= IFF_PROMISC; 4374 dev_set_promiscuity(dev, inc); 4375 } 4376 4377 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4378 is important. Some (broken) drivers set IFF_PROMISC, when 4379 IFF_ALLMULTI is requested not asking us and not reporting. 4380 */ 4381 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4382 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4383 4384 dev->gflags ^= IFF_ALLMULTI; 4385 dev_set_allmulti(dev, inc); 4386 } 4387 4388 return ret; 4389} 4390 4391void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4392{ 4393 unsigned int changes = dev->flags ^ old_flags; 4394 4395 if (changes & IFF_UP) { 4396 if (dev->flags & IFF_UP) 4397 call_netdevice_notifiers(NETDEV_UP, dev); 4398 else 4399 call_netdevice_notifiers(NETDEV_DOWN, dev); 4400 } 4401 4402 if (dev->flags & IFF_UP && 4403 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4404 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4405} 4406 4407/** 4408 * dev_change_flags - change device settings 4409 * @dev: device 4410 * @flags: device state flags 4411 * 4412 * Change settings on device based state flags. The flags are 4413 * in the userspace exported format. 4414 */ 4415int dev_change_flags(struct net_device *dev, unsigned flags) 4416{ 4417 int ret, changes; 4418 int old_flags = dev->flags; 4419 4420 ret = __dev_change_flags(dev, flags); 4421 if (ret < 0) 4422 return ret; 4423 4424 changes = old_flags ^ dev->flags; 4425 if (changes) 4426 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4427 4428 __dev_notify_flags(dev, old_flags); 4429 return ret; 4430} 4431EXPORT_SYMBOL(dev_change_flags); 4432 4433/** 4434 * dev_set_mtu - Change maximum transfer unit 4435 * @dev: device 4436 * @new_mtu: new transfer unit 4437 * 4438 * Change the maximum transfer size of the network device. 4439 */ 4440int dev_set_mtu(struct net_device *dev, int new_mtu) 4441{ 4442 const struct net_device_ops *ops = dev->netdev_ops; 4443 int err; 4444 4445 if (new_mtu == dev->mtu) 4446 return 0; 4447 4448 /* MTU must be positive. */ 4449 if (new_mtu < 0) 4450 return -EINVAL; 4451 4452 if (!netif_device_present(dev)) 4453 return -ENODEV; 4454 4455 err = 0; 4456 if (ops->ndo_change_mtu) 4457 err = ops->ndo_change_mtu(dev, new_mtu); 4458 else 4459 dev->mtu = new_mtu; 4460 4461 if (!err && dev->flags & IFF_UP) 4462 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4463 return err; 4464} 4465EXPORT_SYMBOL(dev_set_mtu); 4466 4467/** 4468 * dev_set_mac_address - Change Media Access Control Address 4469 * @dev: device 4470 * @sa: new address 4471 * 4472 * Change the hardware (MAC) address of the device 4473 */ 4474int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4475{ 4476 const struct net_device_ops *ops = dev->netdev_ops; 4477 int err; 4478 4479 if (!ops->ndo_set_mac_address) 4480 return -EOPNOTSUPP; 4481 if (sa->sa_family != dev->type) 4482 return -EINVAL; 4483 if (!netif_device_present(dev)) 4484 return -ENODEV; 4485 err = ops->ndo_set_mac_address(dev, sa); 4486 if (!err) 4487 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4488 return err; 4489} 4490EXPORT_SYMBOL(dev_set_mac_address); 4491 4492/* 4493 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4494 */ 4495static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4496{ 4497 int err; 4498 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4499 4500 if (!dev) 4501 return -ENODEV; 4502 4503 switch (cmd) { 4504 case SIOCGIFFLAGS: /* Get interface flags */ 4505 ifr->ifr_flags = (short) dev_get_flags(dev); 4506 return 0; 4507 4508 case SIOCGIFMETRIC: /* Get the metric on the interface 4509 (currently unused) */ 4510 ifr->ifr_metric = 0; 4511 return 0; 4512 4513 case SIOCGIFMTU: /* Get the MTU of a device */ 4514 ifr->ifr_mtu = dev->mtu; 4515 return 0; 4516 4517 case SIOCGIFHWADDR: 4518 if (!dev->addr_len) 4519 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4520 else 4521 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4522 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4523 ifr->ifr_hwaddr.sa_family = dev->type; 4524 return 0; 4525 4526 case SIOCGIFSLAVE: 4527 err = -EINVAL; 4528 break; 4529 4530 case SIOCGIFMAP: 4531 ifr->ifr_map.mem_start = dev->mem_start; 4532 ifr->ifr_map.mem_end = dev->mem_end; 4533 ifr->ifr_map.base_addr = dev->base_addr; 4534 ifr->ifr_map.irq = dev->irq; 4535 ifr->ifr_map.dma = dev->dma; 4536 ifr->ifr_map.port = dev->if_port; 4537 return 0; 4538 4539 case SIOCGIFINDEX: 4540 ifr->ifr_ifindex = dev->ifindex; 4541 return 0; 4542 4543 case SIOCGIFTXQLEN: 4544 ifr->ifr_qlen = dev->tx_queue_len; 4545 return 0; 4546 4547 default: 4548 /* dev_ioctl() should ensure this case 4549 * is never reached 4550 */ 4551 WARN_ON(1); 4552 err = -EINVAL; 4553 break; 4554 4555 } 4556 return err; 4557} 4558 4559/* 4560 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4561 */ 4562static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4563{ 4564 int err; 4565 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4566 const struct net_device_ops *ops; 4567 4568 if (!dev) 4569 return -ENODEV; 4570 4571 ops = dev->netdev_ops; 4572 4573 switch (cmd) { 4574 case SIOCSIFFLAGS: /* Set interface flags */ 4575 return dev_change_flags(dev, ifr->ifr_flags); 4576 4577 case SIOCSIFMETRIC: /* Set the metric on the interface 4578 (currently unused) */ 4579 return -EOPNOTSUPP; 4580 4581 case SIOCSIFMTU: /* Set the MTU of a device */ 4582 return dev_set_mtu(dev, ifr->ifr_mtu); 4583 4584 case SIOCSIFHWADDR: 4585 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4586 4587 case SIOCSIFHWBROADCAST: 4588 if (ifr->ifr_hwaddr.sa_family != dev->type) 4589 return -EINVAL; 4590 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4591 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4592 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4593 return 0; 4594 4595 case SIOCSIFMAP: 4596 if (ops->ndo_set_config) { 4597 if (!netif_device_present(dev)) 4598 return -ENODEV; 4599 return ops->ndo_set_config(dev, &ifr->ifr_map); 4600 } 4601 return -EOPNOTSUPP; 4602 4603 case SIOCADDMULTI: 4604 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4605 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4606 return -EINVAL; 4607 if (!netif_device_present(dev)) 4608 return -ENODEV; 4609 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4610 dev->addr_len, 1); 4611 4612 case SIOCDELMULTI: 4613 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4615 return -EINVAL; 4616 if (!netif_device_present(dev)) 4617 return -ENODEV; 4618 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4619 dev->addr_len, 1); 4620 4621 case SIOCSIFTXQLEN: 4622 if (ifr->ifr_qlen < 0) 4623 return -EINVAL; 4624 dev->tx_queue_len = ifr->ifr_qlen; 4625 return 0; 4626 4627 case SIOCSIFNAME: 4628 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4629 return dev_change_name(dev, ifr->ifr_newname); 4630 4631 /* 4632 * Unknown or private ioctl 4633 */ 4634 default: 4635 if ((cmd >= SIOCDEVPRIVATE && 4636 cmd <= SIOCDEVPRIVATE + 15) || 4637 cmd == SIOCBONDENSLAVE || 4638 cmd == SIOCBONDRELEASE || 4639 cmd == SIOCBONDSETHWADDR || 4640 cmd == SIOCBONDSLAVEINFOQUERY || 4641 cmd == SIOCBONDINFOQUERY || 4642 cmd == SIOCBONDCHANGEACTIVE || 4643 cmd == SIOCGMIIPHY || 4644 cmd == SIOCGMIIREG || 4645 cmd == SIOCSMIIREG || 4646 cmd == SIOCBRADDIF || 4647 cmd == SIOCBRDELIF || 4648 cmd == SIOCSHWTSTAMP || 4649 cmd == SIOCWANDEV) { 4650 err = -EOPNOTSUPP; 4651 if (ops->ndo_do_ioctl) { 4652 if (netif_device_present(dev)) 4653 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4654 else 4655 err = -ENODEV; 4656 } 4657 } else 4658 err = -EINVAL; 4659 4660 } 4661 return err; 4662} 4663 4664/* 4665 * This function handles all "interface"-type I/O control requests. The actual 4666 * 'doing' part of this is dev_ifsioc above. 4667 */ 4668 4669/** 4670 * dev_ioctl - network device ioctl 4671 * @net: the applicable net namespace 4672 * @cmd: command to issue 4673 * @arg: pointer to a struct ifreq in user space 4674 * 4675 * Issue ioctl functions to devices. This is normally called by the 4676 * user space syscall interfaces but can sometimes be useful for 4677 * other purposes. The return value is the return from the syscall if 4678 * positive or a negative errno code on error. 4679 */ 4680 4681int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4682{ 4683 struct ifreq ifr; 4684 int ret; 4685 char *colon; 4686 4687 /* One special case: SIOCGIFCONF takes ifconf argument 4688 and requires shared lock, because it sleeps writing 4689 to user space. 4690 */ 4691 4692 if (cmd == SIOCGIFCONF) { 4693 rtnl_lock(); 4694 ret = dev_ifconf(net, (char __user *) arg); 4695 rtnl_unlock(); 4696 return ret; 4697 } 4698 if (cmd == SIOCGIFNAME) 4699 return dev_ifname(net, (struct ifreq __user *)arg); 4700 4701 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4702 return -EFAULT; 4703 4704 ifr.ifr_name[IFNAMSIZ-1] = 0; 4705 4706 colon = strchr(ifr.ifr_name, ':'); 4707 if (colon) 4708 *colon = 0; 4709 4710 /* 4711 * See which interface the caller is talking about. 4712 */ 4713 4714 switch (cmd) { 4715 /* 4716 * These ioctl calls: 4717 * - can be done by all. 4718 * - atomic and do not require locking. 4719 * - return a value 4720 */ 4721 case SIOCGIFFLAGS: 4722 case SIOCGIFMETRIC: 4723 case SIOCGIFMTU: 4724 case SIOCGIFHWADDR: 4725 case SIOCGIFSLAVE: 4726 case SIOCGIFMAP: 4727 case SIOCGIFINDEX: 4728 case SIOCGIFTXQLEN: 4729 dev_load(net, ifr.ifr_name); 4730 rcu_read_lock(); 4731 ret = dev_ifsioc_locked(net, &ifr, cmd); 4732 rcu_read_unlock(); 4733 if (!ret) { 4734 if (colon) 4735 *colon = ':'; 4736 if (copy_to_user(arg, &ifr, 4737 sizeof(struct ifreq))) 4738 ret = -EFAULT; 4739 } 4740 return ret; 4741 4742 case SIOCETHTOOL: 4743 dev_load(net, ifr.ifr_name); 4744 rtnl_lock(); 4745 ret = dev_ethtool(net, &ifr); 4746 rtnl_unlock(); 4747 if (!ret) { 4748 if (colon) 4749 *colon = ':'; 4750 if (copy_to_user(arg, &ifr, 4751 sizeof(struct ifreq))) 4752 ret = -EFAULT; 4753 } 4754 return ret; 4755 4756 /* 4757 * These ioctl calls: 4758 * - require superuser power. 4759 * - require strict serialization. 4760 * - return a value 4761 */ 4762 case SIOCGMIIPHY: 4763 case SIOCGMIIREG: 4764 case SIOCSIFNAME: 4765 if (!capable(CAP_NET_ADMIN)) 4766 return -EPERM; 4767 dev_load(net, ifr.ifr_name); 4768 rtnl_lock(); 4769 ret = dev_ifsioc(net, &ifr, cmd); 4770 rtnl_unlock(); 4771 if (!ret) { 4772 if (colon) 4773 *colon = ':'; 4774 if (copy_to_user(arg, &ifr, 4775 sizeof(struct ifreq))) 4776 ret = -EFAULT; 4777 } 4778 return ret; 4779 4780 /* 4781 * These ioctl calls: 4782 * - require superuser power. 4783 * - require strict serialization. 4784 * - do not return a value 4785 */ 4786 case SIOCSIFFLAGS: 4787 case SIOCSIFMETRIC: 4788 case SIOCSIFMTU: 4789 case SIOCSIFMAP: 4790 case SIOCSIFHWADDR: 4791 case SIOCSIFSLAVE: 4792 case SIOCADDMULTI: 4793 case SIOCDELMULTI: 4794 case SIOCSIFHWBROADCAST: 4795 case SIOCSIFTXQLEN: 4796 case SIOCSMIIREG: 4797 case SIOCBONDENSLAVE: 4798 case SIOCBONDRELEASE: 4799 case SIOCBONDSETHWADDR: 4800 case SIOCBONDCHANGEACTIVE: 4801 case SIOCBRADDIF: 4802 case SIOCBRDELIF: 4803 case SIOCSHWTSTAMP: 4804 if (!capable(CAP_NET_ADMIN)) 4805 return -EPERM; 4806 /* fall through */ 4807 case SIOCBONDSLAVEINFOQUERY: 4808 case SIOCBONDINFOQUERY: 4809 dev_load(net, ifr.ifr_name); 4810 rtnl_lock(); 4811 ret = dev_ifsioc(net, &ifr, cmd); 4812 rtnl_unlock(); 4813 return ret; 4814 4815 case SIOCGIFMEM: 4816 /* Get the per device memory space. We can add this but 4817 * currently do not support it */ 4818 case SIOCSIFMEM: 4819 /* Set the per device memory buffer space. 4820 * Not applicable in our case */ 4821 case SIOCSIFLINK: 4822 return -EINVAL; 4823 4824 /* 4825 * Unknown or private ioctl. 4826 */ 4827 default: 4828 if (cmd == SIOCWANDEV || 4829 (cmd >= SIOCDEVPRIVATE && 4830 cmd <= SIOCDEVPRIVATE + 15)) { 4831 dev_load(net, ifr.ifr_name); 4832 rtnl_lock(); 4833 ret = dev_ifsioc(net, &ifr, cmd); 4834 rtnl_unlock(); 4835 if (!ret && copy_to_user(arg, &ifr, 4836 sizeof(struct ifreq))) 4837 ret = -EFAULT; 4838 return ret; 4839 } 4840 /* Take care of Wireless Extensions */ 4841 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4842 return wext_handle_ioctl(net, &ifr, cmd, arg); 4843 return -EINVAL; 4844 } 4845} 4846 4847 4848/** 4849 * dev_new_index - allocate an ifindex 4850 * @net: the applicable net namespace 4851 * 4852 * Returns a suitable unique value for a new device interface 4853 * number. The caller must hold the rtnl semaphore or the 4854 * dev_base_lock to be sure it remains unique. 4855 */ 4856static int dev_new_index(struct net *net) 4857{ 4858 static int ifindex; 4859 for (;;) { 4860 if (++ifindex <= 0) 4861 ifindex = 1; 4862 if (!__dev_get_by_index(net, ifindex)) 4863 return ifindex; 4864 } 4865} 4866 4867/* Delayed registration/unregisteration */ 4868static LIST_HEAD(net_todo_list); 4869 4870static void net_set_todo(struct net_device *dev) 4871{ 4872 list_add_tail(&dev->todo_list, &net_todo_list); 4873} 4874 4875static void rollback_registered_many(struct list_head *head) 4876{ 4877 struct net_device *dev, *tmp; 4878 4879 BUG_ON(dev_boot_phase); 4880 ASSERT_RTNL(); 4881 4882 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4883 /* Some devices call without registering 4884 * for initialization unwind. Remove those 4885 * devices and proceed with the remaining. 4886 */ 4887 if (dev->reg_state == NETREG_UNINITIALIZED) { 4888 pr_debug("unregister_netdevice: device %s/%p never " 4889 "was registered\n", dev->name, dev); 4890 4891 WARN_ON(1); 4892 list_del(&dev->unreg_list); 4893 continue; 4894 } 4895 4896 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4897 4898 /* If device is running, close it first. */ 4899 dev_close(dev); 4900 4901 /* And unlink it from device chain. */ 4902 unlist_netdevice(dev); 4903 4904 dev->reg_state = NETREG_UNREGISTERING; 4905 } 4906 4907 synchronize_net(); 4908 4909 list_for_each_entry(dev, head, unreg_list) { 4910 /* Shutdown queueing discipline. */ 4911 dev_shutdown(dev); 4912 4913 4914 /* Notify protocols, that we are about to destroy 4915 this device. They should clean all the things. 4916 */ 4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4918 4919 if (!dev->rtnl_link_ops || 4920 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4921 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4922 4923 /* 4924 * Flush the unicast and multicast chains 4925 */ 4926 dev_unicast_flush(dev); 4927 dev_addr_discard(dev); 4928 4929 if (dev->netdev_ops->ndo_uninit) 4930 dev->netdev_ops->ndo_uninit(dev); 4931 4932 /* Notifier chain MUST detach us from master device. */ 4933 WARN_ON(dev->master); 4934 4935 /* Remove entries from kobject tree */ 4936 netdev_unregister_kobject(dev); 4937 } 4938 4939 /* Process any work delayed until the end of the batch */ 4940 dev = list_first_entry(head, struct net_device, unreg_list); 4941 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4942 4943 synchronize_net(); 4944 4945 list_for_each_entry(dev, head, unreg_list) 4946 dev_put(dev); 4947} 4948 4949static void rollback_registered(struct net_device *dev) 4950{ 4951 LIST_HEAD(single); 4952 4953 list_add(&dev->unreg_list, &single); 4954 rollback_registered_many(&single); 4955} 4956 4957static void __netdev_init_queue_locks_one(struct net_device *dev, 4958 struct netdev_queue *dev_queue, 4959 void *_unused) 4960{ 4961 spin_lock_init(&dev_queue->_xmit_lock); 4962 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4963 dev_queue->xmit_lock_owner = -1; 4964} 4965 4966static void netdev_init_queue_locks(struct net_device *dev) 4967{ 4968 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4969 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4970} 4971 4972unsigned long netdev_fix_features(unsigned long features, const char *name) 4973{ 4974 /* Fix illegal SG+CSUM combinations. */ 4975 if ((features & NETIF_F_SG) && 4976 !(features & NETIF_F_ALL_CSUM)) { 4977 if (name) 4978 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4979 "checksum feature.\n", name); 4980 features &= ~NETIF_F_SG; 4981 } 4982 4983 /* TSO requires that SG is present as well. */ 4984 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4985 if (name) 4986 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4987 "SG feature.\n", name); 4988 features &= ~NETIF_F_TSO; 4989 } 4990 4991 if (features & NETIF_F_UFO) { 4992 if (!(features & NETIF_F_GEN_CSUM)) { 4993 if (name) 4994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4995 "since no NETIF_F_HW_CSUM feature.\n", 4996 name); 4997 features &= ~NETIF_F_UFO; 4998 } 4999 5000 if (!(features & NETIF_F_SG)) { 5001 if (name) 5002 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5003 "since no NETIF_F_SG feature.\n", name); 5004 features &= ~NETIF_F_UFO; 5005 } 5006 } 5007 5008 return features; 5009} 5010EXPORT_SYMBOL(netdev_fix_features); 5011 5012/** 5013 * netif_stacked_transfer_operstate - transfer operstate 5014 * @rootdev: the root or lower level device to transfer state from 5015 * @dev: the device to transfer operstate to 5016 * 5017 * Transfer operational state from root to device. This is normally 5018 * called when a stacking relationship exists between the root 5019 * device and the device(a leaf device). 5020 */ 5021void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5022 struct net_device *dev) 5023{ 5024 if (rootdev->operstate == IF_OPER_DORMANT) 5025 netif_dormant_on(dev); 5026 else 5027 netif_dormant_off(dev); 5028 5029 if (netif_carrier_ok(rootdev)) { 5030 if (!netif_carrier_ok(dev)) 5031 netif_carrier_on(dev); 5032 } else { 5033 if (netif_carrier_ok(dev)) 5034 netif_carrier_off(dev); 5035 } 5036} 5037EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5038 5039/** 5040 * register_netdevice - register a network device 5041 * @dev: device to register 5042 * 5043 * Take a completed network device structure and add it to the kernel 5044 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5045 * chain. 0 is returned on success. A negative errno code is returned 5046 * on a failure to set up the device, or if the name is a duplicate. 5047 * 5048 * Callers must hold the rtnl semaphore. You may want 5049 * register_netdev() instead of this. 5050 * 5051 * BUGS: 5052 * The locking appears insufficient to guarantee two parallel registers 5053 * will not get the same name. 5054 */ 5055 5056int register_netdevice(struct net_device *dev) 5057{ 5058 int ret; 5059 struct net *net = dev_net(dev); 5060 5061 BUG_ON(dev_boot_phase); 5062 ASSERT_RTNL(); 5063 5064 might_sleep(); 5065 5066 /* When net_device's are persistent, this will be fatal. */ 5067 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5068 BUG_ON(!net); 5069 5070 spin_lock_init(&dev->addr_list_lock); 5071 netdev_set_addr_lockdep_class(dev); 5072 netdev_init_queue_locks(dev); 5073 5074 dev->iflink = -1; 5075 5076 /* Init, if this function is available */ 5077 if (dev->netdev_ops->ndo_init) { 5078 ret = dev->netdev_ops->ndo_init(dev); 5079 if (ret) { 5080 if (ret > 0) 5081 ret = -EIO; 5082 goto out; 5083 } 5084 } 5085 5086 ret = dev_get_valid_name(net, dev->name, dev->name, 0); 5087 if (ret) 5088 goto err_uninit; 5089 5090 dev->ifindex = dev_new_index(net); 5091 if (dev->iflink == -1) 5092 dev->iflink = dev->ifindex; 5093 5094 /* Fix illegal checksum combinations */ 5095 if ((dev->features & NETIF_F_HW_CSUM) && 5096 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5097 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5098 dev->name); 5099 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5100 } 5101 5102 if ((dev->features & NETIF_F_NO_CSUM) && 5103 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5104 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5105 dev->name); 5106 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5107 } 5108 5109 dev->features = netdev_fix_features(dev->features, dev->name); 5110 5111 /* Enable software GSO if SG is supported. */ 5112 if (dev->features & NETIF_F_SG) 5113 dev->features |= NETIF_F_GSO; 5114 5115 netdev_initialize_kobject(dev); 5116 5117 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5118 ret = notifier_to_errno(ret); 5119 if (ret) 5120 goto err_uninit; 5121 5122 ret = netdev_register_kobject(dev); 5123 if (ret) 5124 goto err_uninit; 5125 dev->reg_state = NETREG_REGISTERED; 5126 5127 /* 5128 * Default initial state at registry is that the 5129 * device is present. 5130 */ 5131 5132 set_bit(__LINK_STATE_PRESENT, &dev->state); 5133 5134 dev_init_scheduler(dev); 5135 dev_hold(dev); 5136 list_netdevice(dev); 5137 5138 /* Notify protocols, that a new device appeared. */ 5139 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5140 ret = notifier_to_errno(ret); 5141 if (ret) { 5142 rollback_registered(dev); 5143 dev->reg_state = NETREG_UNREGISTERED; 5144 } 5145 /* 5146 * Prevent userspace races by waiting until the network 5147 * device is fully setup before sending notifications. 5148 */ 5149 if (!dev->rtnl_link_ops || 5150 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5152 5153out: 5154 return ret; 5155 5156err_uninit: 5157 if (dev->netdev_ops->ndo_uninit) 5158 dev->netdev_ops->ndo_uninit(dev); 5159 goto out; 5160} 5161EXPORT_SYMBOL(register_netdevice); 5162 5163/** 5164 * init_dummy_netdev - init a dummy network device for NAPI 5165 * @dev: device to init 5166 * 5167 * This takes a network device structure and initialize the minimum 5168 * amount of fields so it can be used to schedule NAPI polls without 5169 * registering a full blown interface. This is to be used by drivers 5170 * that need to tie several hardware interfaces to a single NAPI 5171 * poll scheduler due to HW limitations. 5172 */ 5173int init_dummy_netdev(struct net_device *dev) 5174{ 5175 /* Clear everything. Note we don't initialize spinlocks 5176 * are they aren't supposed to be taken by any of the 5177 * NAPI code and this dummy netdev is supposed to be 5178 * only ever used for NAPI polls 5179 */ 5180 memset(dev, 0, sizeof(struct net_device)); 5181 5182 /* make sure we BUG if trying to hit standard 5183 * register/unregister code path 5184 */ 5185 dev->reg_state = NETREG_DUMMY; 5186 5187 /* initialize the ref count */ 5188 atomic_set(&dev->refcnt, 1); 5189 5190 /* NAPI wants this */ 5191 INIT_LIST_HEAD(&dev->napi_list); 5192 5193 /* a dummy interface is started by default */ 5194 set_bit(__LINK_STATE_PRESENT, &dev->state); 5195 set_bit(__LINK_STATE_START, &dev->state); 5196 5197 return 0; 5198} 5199EXPORT_SYMBOL_GPL(init_dummy_netdev); 5200 5201 5202/** 5203 * register_netdev - register a network device 5204 * @dev: device to register 5205 * 5206 * Take a completed network device structure and add it to the kernel 5207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5208 * chain. 0 is returned on success. A negative errno code is returned 5209 * on a failure to set up the device, or if the name is a duplicate. 5210 * 5211 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5212 * and expands the device name if you passed a format string to 5213 * alloc_netdev. 5214 */ 5215int register_netdev(struct net_device *dev) 5216{ 5217 int err; 5218 5219 rtnl_lock(); 5220 5221 /* 5222 * If the name is a format string the caller wants us to do a 5223 * name allocation. 5224 */ 5225 if (strchr(dev->name, '%')) { 5226 err = dev_alloc_name(dev, dev->name); 5227 if (err < 0) 5228 goto out; 5229 } 5230 5231 err = register_netdevice(dev); 5232out: 5233 rtnl_unlock(); 5234 return err; 5235} 5236EXPORT_SYMBOL(register_netdev); 5237 5238/* 5239 * netdev_wait_allrefs - wait until all references are gone. 5240 * 5241 * This is called when unregistering network devices. 5242 * 5243 * Any protocol or device that holds a reference should register 5244 * for netdevice notification, and cleanup and put back the 5245 * reference if they receive an UNREGISTER event. 5246 * We can get stuck here if buggy protocols don't correctly 5247 * call dev_put. 5248 */ 5249static void netdev_wait_allrefs(struct net_device *dev) 5250{ 5251 unsigned long rebroadcast_time, warning_time; 5252 5253 linkwatch_forget_dev(dev); 5254 5255 rebroadcast_time = warning_time = jiffies; 5256 while (atomic_read(&dev->refcnt) != 0) { 5257 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5258 rtnl_lock(); 5259 5260 /* Rebroadcast unregister notification */ 5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5262 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5263 * should have already handle it the first time */ 5264 5265 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5266 &dev->state)) { 5267 /* We must not have linkwatch events 5268 * pending on unregister. If this 5269 * happens, we simply run the queue 5270 * unscheduled, resulting in a noop 5271 * for this device. 5272 */ 5273 linkwatch_run_queue(); 5274 } 5275 5276 __rtnl_unlock(); 5277 5278 rebroadcast_time = jiffies; 5279 } 5280 5281 msleep(250); 5282 5283 if (time_after(jiffies, warning_time + 10 * HZ)) { 5284 printk(KERN_EMERG "unregister_netdevice: " 5285 "waiting for %s to become free. Usage " 5286 "count = %d\n", 5287 dev->name, atomic_read(&dev->refcnt)); 5288 warning_time = jiffies; 5289 } 5290 } 5291} 5292 5293/* The sequence is: 5294 * 5295 * rtnl_lock(); 5296 * ... 5297 * register_netdevice(x1); 5298 * register_netdevice(x2); 5299 * ... 5300 * unregister_netdevice(y1); 5301 * unregister_netdevice(y2); 5302 * ... 5303 * rtnl_unlock(); 5304 * free_netdev(y1); 5305 * free_netdev(y2); 5306 * 5307 * We are invoked by rtnl_unlock(). 5308 * This allows us to deal with problems: 5309 * 1) We can delete sysfs objects which invoke hotplug 5310 * without deadlocking with linkwatch via keventd. 5311 * 2) Since we run with the RTNL semaphore not held, we can sleep 5312 * safely in order to wait for the netdev refcnt to drop to zero. 5313 * 5314 * We must not return until all unregister events added during 5315 * the interval the lock was held have been completed. 5316 */ 5317void netdev_run_todo(void) 5318{ 5319 struct list_head list; 5320 5321 /* Snapshot list, allow later requests */ 5322 list_replace_init(&net_todo_list, &list); 5323 5324 __rtnl_unlock(); 5325 5326 while (!list_empty(&list)) { 5327 struct net_device *dev 5328 = list_first_entry(&list, struct net_device, todo_list); 5329 list_del(&dev->todo_list); 5330 5331 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5332 printk(KERN_ERR "network todo '%s' but state %d\n", 5333 dev->name, dev->reg_state); 5334 dump_stack(); 5335 continue; 5336 } 5337 5338 dev->reg_state = NETREG_UNREGISTERED; 5339 5340 on_each_cpu(flush_backlog, dev, 1); 5341 5342 netdev_wait_allrefs(dev); 5343 5344 /* paranoia */ 5345 BUG_ON(atomic_read(&dev->refcnt)); 5346 WARN_ON(dev->ip_ptr); 5347 WARN_ON(dev->ip6_ptr); 5348 WARN_ON(dev->dn_ptr); 5349 5350 if (dev->destructor) 5351 dev->destructor(dev); 5352 5353 /* Free network device */ 5354 kobject_put(&dev->dev.kobj); 5355 } 5356} 5357 5358/** 5359 * dev_txq_stats_fold - fold tx_queues stats 5360 * @dev: device to get statistics from 5361 * @stats: struct net_device_stats to hold results 5362 */ 5363void dev_txq_stats_fold(const struct net_device *dev, 5364 struct net_device_stats *stats) 5365{ 5366 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5367 unsigned int i; 5368 struct netdev_queue *txq; 5369 5370 for (i = 0; i < dev->num_tx_queues; i++) { 5371 txq = netdev_get_tx_queue(dev, i); 5372 tx_bytes += txq->tx_bytes; 5373 tx_packets += txq->tx_packets; 5374 tx_dropped += txq->tx_dropped; 5375 } 5376 if (tx_bytes || tx_packets || tx_dropped) { 5377 stats->tx_bytes = tx_bytes; 5378 stats->tx_packets = tx_packets; 5379 stats->tx_dropped = tx_dropped; 5380 } 5381} 5382EXPORT_SYMBOL(dev_txq_stats_fold); 5383 5384/** 5385 * dev_get_stats - get network device statistics 5386 * @dev: device to get statistics from 5387 * 5388 * Get network statistics from device. The device driver may provide 5389 * its own method by setting dev->netdev_ops->get_stats; otherwise 5390 * the internal statistics structure is used. 5391 */ 5392const struct net_device_stats *dev_get_stats(struct net_device *dev) 5393{ 5394 const struct net_device_ops *ops = dev->netdev_ops; 5395 5396 if (ops->ndo_get_stats) 5397 return ops->ndo_get_stats(dev); 5398 5399 dev_txq_stats_fold(dev, &dev->stats); 5400 return &dev->stats; 5401} 5402EXPORT_SYMBOL(dev_get_stats); 5403 5404static void netdev_init_one_queue(struct net_device *dev, 5405 struct netdev_queue *queue, 5406 void *_unused) 5407{ 5408 queue->dev = dev; 5409} 5410 5411static void netdev_init_queues(struct net_device *dev) 5412{ 5413 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5414 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5415 spin_lock_init(&dev->tx_global_lock); 5416} 5417 5418/** 5419 * alloc_netdev_mq - allocate network device 5420 * @sizeof_priv: size of private data to allocate space for 5421 * @name: device name format string 5422 * @setup: callback to initialize device 5423 * @queue_count: the number of subqueues to allocate 5424 * 5425 * Allocates a struct net_device with private data area for driver use 5426 * and performs basic initialization. Also allocates subquue structs 5427 * for each queue on the device at the end of the netdevice. 5428 */ 5429struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5430 void (*setup)(struct net_device *), unsigned int queue_count) 5431{ 5432 struct netdev_queue *tx; 5433 struct net_device *dev; 5434 size_t alloc_size; 5435 struct net_device *p; 5436 5437 BUG_ON(strlen(name) >= sizeof(dev->name)); 5438 5439 alloc_size = sizeof(struct net_device); 5440 if (sizeof_priv) { 5441 /* ensure 32-byte alignment of private area */ 5442 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5443 alloc_size += sizeof_priv; 5444 } 5445 /* ensure 32-byte alignment of whole construct */ 5446 alloc_size += NETDEV_ALIGN - 1; 5447 5448 p = kzalloc(alloc_size, GFP_KERNEL); 5449 if (!p) { 5450 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5451 return NULL; 5452 } 5453 5454 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5455 if (!tx) { 5456 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5457 "tx qdiscs.\n"); 5458 goto free_p; 5459 } 5460 5461 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5462 dev->padded = (char *)dev - (char *)p; 5463 5464 if (dev_addr_init(dev)) 5465 goto free_tx; 5466 5467 dev_unicast_init(dev); 5468 5469 dev_net_set(dev, &init_net); 5470 5471 dev->_tx = tx; 5472 dev->num_tx_queues = queue_count; 5473 dev->real_num_tx_queues = queue_count; 5474 5475 dev->gso_max_size = GSO_MAX_SIZE; 5476 5477 netdev_init_queues(dev); 5478 5479 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5480 dev->ethtool_ntuple_list.count = 0; 5481 INIT_LIST_HEAD(&dev->napi_list); 5482 INIT_LIST_HEAD(&dev->unreg_list); 5483 INIT_LIST_HEAD(&dev->link_watch_list); 5484 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5485 setup(dev); 5486 strcpy(dev->name, name); 5487 return dev; 5488 5489free_tx: 5490 kfree(tx); 5491 5492free_p: 5493 kfree(p); 5494 return NULL; 5495} 5496EXPORT_SYMBOL(alloc_netdev_mq); 5497 5498/** 5499 * free_netdev - free network device 5500 * @dev: device 5501 * 5502 * This function does the last stage of destroying an allocated device 5503 * interface. The reference to the device object is released. 5504 * If this is the last reference then it will be freed. 5505 */ 5506void free_netdev(struct net_device *dev) 5507{ 5508 struct napi_struct *p, *n; 5509 5510 release_net(dev_net(dev)); 5511 5512 kfree(dev->_tx); 5513 5514 /* Flush device addresses */ 5515 dev_addr_flush(dev); 5516 5517 /* Clear ethtool n-tuple list */ 5518 ethtool_ntuple_flush(dev); 5519 5520 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5521 netif_napi_del(p); 5522 5523 /* Compatibility with error handling in drivers */ 5524 if (dev->reg_state == NETREG_UNINITIALIZED) { 5525 kfree((char *)dev - dev->padded); 5526 return; 5527 } 5528 5529 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5530 dev->reg_state = NETREG_RELEASED; 5531 5532 /* will free via device release */ 5533 put_device(&dev->dev); 5534} 5535EXPORT_SYMBOL(free_netdev); 5536 5537/** 5538 * synchronize_net - Synchronize with packet receive processing 5539 * 5540 * Wait for packets currently being received to be done. 5541 * Does not block later packets from starting. 5542 */ 5543void synchronize_net(void) 5544{ 5545 might_sleep(); 5546 synchronize_rcu(); 5547} 5548EXPORT_SYMBOL(synchronize_net); 5549 5550/** 5551 * unregister_netdevice_queue - remove device from the kernel 5552 * @dev: device 5553 * @head: list 5554 * 5555 * This function shuts down a device interface and removes it 5556 * from the kernel tables. 5557 * If head not NULL, device is queued to be unregistered later. 5558 * 5559 * Callers must hold the rtnl semaphore. You may want 5560 * unregister_netdev() instead of this. 5561 */ 5562 5563void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5564{ 5565 ASSERT_RTNL(); 5566 5567 if (head) { 5568 list_move_tail(&dev->unreg_list, head); 5569 } else { 5570 rollback_registered(dev); 5571 /* Finish processing unregister after unlock */ 5572 net_set_todo(dev); 5573 } 5574} 5575EXPORT_SYMBOL(unregister_netdevice_queue); 5576 5577/** 5578 * unregister_netdevice_many - unregister many devices 5579 * @head: list of devices 5580 */ 5581void unregister_netdevice_many(struct list_head *head) 5582{ 5583 struct net_device *dev; 5584 5585 if (!list_empty(head)) { 5586 rollback_registered_many(head); 5587 list_for_each_entry(dev, head, unreg_list) 5588 net_set_todo(dev); 5589 } 5590} 5591EXPORT_SYMBOL(unregister_netdevice_many); 5592 5593/** 5594 * unregister_netdev - remove device from the kernel 5595 * @dev: device 5596 * 5597 * This function shuts down a device interface and removes it 5598 * from the kernel tables. 5599 * 5600 * This is just a wrapper for unregister_netdevice that takes 5601 * the rtnl semaphore. In general you want to use this and not 5602 * unregister_netdevice. 5603 */ 5604void unregister_netdev(struct net_device *dev) 5605{ 5606 rtnl_lock(); 5607 unregister_netdevice(dev); 5608 rtnl_unlock(); 5609} 5610EXPORT_SYMBOL(unregister_netdev); 5611 5612/** 5613 * dev_change_net_namespace - move device to different nethost namespace 5614 * @dev: device 5615 * @net: network namespace 5616 * @pat: If not NULL name pattern to try if the current device name 5617 * is already taken in the destination network namespace. 5618 * 5619 * This function shuts down a device interface and moves it 5620 * to a new network namespace. On success 0 is returned, on 5621 * a failure a netagive errno code is returned. 5622 * 5623 * Callers must hold the rtnl semaphore. 5624 */ 5625 5626int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5627{ 5628 int err; 5629 5630 ASSERT_RTNL(); 5631 5632 /* Don't allow namespace local devices to be moved. */ 5633 err = -EINVAL; 5634 if (dev->features & NETIF_F_NETNS_LOCAL) 5635 goto out; 5636 5637#ifdef CONFIG_SYSFS 5638 /* Don't allow real devices to be moved when sysfs 5639 * is enabled. 5640 */ 5641 err = -EINVAL; 5642 if (dev->dev.parent) 5643 goto out; 5644#endif 5645 5646 /* Ensure the device has been registrered */ 5647 err = -EINVAL; 5648 if (dev->reg_state != NETREG_REGISTERED) 5649 goto out; 5650 5651 /* Get out if there is nothing todo */ 5652 err = 0; 5653 if (net_eq(dev_net(dev), net)) 5654 goto out; 5655 5656 /* Pick the destination device name, and ensure 5657 * we can use it in the destination network namespace. 5658 */ 5659 err = -EEXIST; 5660 if (__dev_get_by_name(net, dev->name)) { 5661 /* We get here if we can't use the current device name */ 5662 if (!pat) 5663 goto out; 5664 if (dev_get_valid_name(net, pat, dev->name, 1)) 5665 goto out; 5666 } 5667 5668 /* 5669 * And now a mini version of register_netdevice unregister_netdevice. 5670 */ 5671 5672 /* If device is running close it first. */ 5673 dev_close(dev); 5674 5675 /* And unlink it from device chain */ 5676 err = -ENODEV; 5677 unlist_netdevice(dev); 5678 5679 synchronize_net(); 5680 5681 /* Shutdown queueing discipline. */ 5682 dev_shutdown(dev); 5683 5684 /* Notify protocols, that we are about to destroy 5685 this device. They should clean all the things. 5686 */ 5687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5688 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5689 5690 /* 5691 * Flush the unicast and multicast chains 5692 */ 5693 dev_unicast_flush(dev); 5694 dev_addr_discard(dev); 5695 5696 netdev_unregister_kobject(dev); 5697 5698 /* Actually switch the network namespace */ 5699 dev_net_set(dev, net); 5700 5701 /* If there is an ifindex conflict assign a new one */ 5702 if (__dev_get_by_index(net, dev->ifindex)) { 5703 int iflink = (dev->iflink == dev->ifindex); 5704 dev->ifindex = dev_new_index(net); 5705 if (iflink) 5706 dev->iflink = dev->ifindex; 5707 } 5708 5709 /* Fixup kobjects */ 5710 err = netdev_register_kobject(dev); 5711 WARN_ON(err); 5712 5713 /* Add the device back in the hashes */ 5714 list_netdevice(dev); 5715 5716 /* Notify protocols, that a new device appeared. */ 5717 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5718 5719 /* 5720 * Prevent userspace races by waiting until the network 5721 * device is fully setup before sending notifications. 5722 */ 5723 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5724 5725 synchronize_net(); 5726 err = 0; 5727out: 5728 return err; 5729} 5730EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5731 5732static int dev_cpu_callback(struct notifier_block *nfb, 5733 unsigned long action, 5734 void *ocpu) 5735{ 5736 struct sk_buff **list_skb; 5737 struct Qdisc **list_net; 5738 struct sk_buff *skb; 5739 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5740 struct softnet_data *sd, *oldsd; 5741 5742 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5743 return NOTIFY_OK; 5744 5745 local_irq_disable(); 5746 cpu = smp_processor_id(); 5747 sd = &per_cpu(softnet_data, cpu); 5748 oldsd = &per_cpu(softnet_data, oldcpu); 5749 5750 /* Find end of our completion_queue. */ 5751 list_skb = &sd->completion_queue; 5752 while (*list_skb) 5753 list_skb = &(*list_skb)->next; 5754 /* Append completion queue from offline CPU. */ 5755 *list_skb = oldsd->completion_queue; 5756 oldsd->completion_queue = NULL; 5757 5758 /* Find end of our output_queue. */ 5759 list_net = &sd->output_queue; 5760 while (*list_net) 5761 list_net = &(*list_net)->next_sched; 5762 /* Append output queue from offline CPU. */ 5763 *list_net = oldsd->output_queue; 5764 oldsd->output_queue = NULL; 5765 5766 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5767 local_irq_enable(); 5768 5769 /* Process offline CPU's input_pkt_queue */ 5770 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5771 netif_rx(skb); 5772 5773 return NOTIFY_OK; 5774} 5775 5776 5777/** 5778 * netdev_increment_features - increment feature set by one 5779 * @all: current feature set 5780 * @one: new feature set 5781 * @mask: mask feature set 5782 * 5783 * Computes a new feature set after adding a device with feature set 5784 * @one to the master device with current feature set @all. Will not 5785 * enable anything that is off in @mask. Returns the new feature set. 5786 */ 5787unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5788 unsigned long mask) 5789{ 5790 /* If device needs checksumming, downgrade to it. */ 5791 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5792 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5793 else if (mask & NETIF_F_ALL_CSUM) { 5794 /* If one device supports v4/v6 checksumming, set for all. */ 5795 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5796 !(all & NETIF_F_GEN_CSUM)) { 5797 all &= ~NETIF_F_ALL_CSUM; 5798 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5799 } 5800 5801 /* If one device supports hw checksumming, set for all. */ 5802 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5803 all &= ~NETIF_F_ALL_CSUM; 5804 all |= NETIF_F_HW_CSUM; 5805 } 5806 } 5807 5808 one |= NETIF_F_ALL_CSUM; 5809 5810 one |= all & NETIF_F_ONE_FOR_ALL; 5811 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5812 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5813 5814 return all; 5815} 5816EXPORT_SYMBOL(netdev_increment_features); 5817 5818static struct hlist_head *netdev_create_hash(void) 5819{ 5820 int i; 5821 struct hlist_head *hash; 5822 5823 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5824 if (hash != NULL) 5825 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5826 INIT_HLIST_HEAD(&hash[i]); 5827 5828 return hash; 5829} 5830 5831/* Initialize per network namespace state */ 5832static int __net_init netdev_init(struct net *net) 5833{ 5834 INIT_LIST_HEAD(&net->dev_base_head); 5835 5836 net->dev_name_head = netdev_create_hash(); 5837 if (net->dev_name_head == NULL) 5838 goto err_name; 5839 5840 net->dev_index_head = netdev_create_hash(); 5841 if (net->dev_index_head == NULL) 5842 goto err_idx; 5843 5844 return 0; 5845 5846err_idx: 5847 kfree(net->dev_name_head); 5848err_name: 5849 return -ENOMEM; 5850} 5851 5852/** 5853 * netdev_drivername - network driver for the device 5854 * @dev: network device 5855 * @buffer: buffer for resulting name 5856 * @len: size of buffer 5857 * 5858 * Determine network driver for device. 5859 */ 5860char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5861{ 5862 const struct device_driver *driver; 5863 const struct device *parent; 5864 5865 if (len <= 0 || !buffer) 5866 return buffer; 5867 buffer[0] = 0; 5868 5869 parent = dev->dev.parent; 5870 5871 if (!parent) 5872 return buffer; 5873 5874 driver = parent->driver; 5875 if (driver && driver->name) 5876 strlcpy(buffer, driver->name, len); 5877 return buffer; 5878} 5879 5880static void __net_exit netdev_exit(struct net *net) 5881{ 5882 kfree(net->dev_name_head); 5883 kfree(net->dev_index_head); 5884} 5885 5886static struct pernet_operations __net_initdata netdev_net_ops = { 5887 .init = netdev_init, 5888 .exit = netdev_exit, 5889}; 5890 5891static void __net_exit default_device_exit(struct net *net) 5892{ 5893 struct net_device *dev, *aux; 5894 /* 5895 * Push all migratable network devices back to the 5896 * initial network namespace 5897 */ 5898 rtnl_lock(); 5899 for_each_netdev_safe(net, dev, aux) { 5900 int err; 5901 char fb_name[IFNAMSIZ]; 5902 5903 /* Ignore unmoveable devices (i.e. loopback) */ 5904 if (dev->features & NETIF_F_NETNS_LOCAL) 5905 continue; 5906 5907 /* Leave virtual devices for the generic cleanup */ 5908 if (dev->rtnl_link_ops) 5909 continue; 5910 5911 /* Push remaing network devices to init_net */ 5912 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5913 err = dev_change_net_namespace(dev, &init_net, fb_name); 5914 if (err) { 5915 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5916 __func__, dev->name, err); 5917 BUG(); 5918 } 5919 } 5920 rtnl_unlock(); 5921} 5922 5923static void __net_exit default_device_exit_batch(struct list_head *net_list) 5924{ 5925 /* At exit all network devices most be removed from a network 5926 * namespace. Do this in the reverse order of registeration. 5927 * Do this across as many network namespaces as possible to 5928 * improve batching efficiency. 5929 */ 5930 struct net_device *dev; 5931 struct net *net; 5932 LIST_HEAD(dev_kill_list); 5933 5934 rtnl_lock(); 5935 list_for_each_entry(net, net_list, exit_list) { 5936 for_each_netdev_reverse(net, dev) { 5937 if (dev->rtnl_link_ops) 5938 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5939 else 5940 unregister_netdevice_queue(dev, &dev_kill_list); 5941 } 5942 } 5943 unregister_netdevice_many(&dev_kill_list); 5944 rtnl_unlock(); 5945} 5946 5947static struct pernet_operations __net_initdata default_device_ops = { 5948 .exit = default_device_exit, 5949 .exit_batch = default_device_exit_batch, 5950}; 5951 5952/* 5953 * Initialize the DEV module. At boot time this walks the device list and 5954 * unhooks any devices that fail to initialise (normally hardware not 5955 * present) and leaves us with a valid list of present and active devices. 5956 * 5957 */ 5958 5959/* 5960 * This is called single threaded during boot, so no need 5961 * to take the rtnl semaphore. 5962 */ 5963static int __init net_dev_init(void) 5964{ 5965 int i, rc = -ENOMEM; 5966 5967 BUG_ON(!dev_boot_phase); 5968 5969 if (dev_proc_init()) 5970 goto out; 5971 5972 if (netdev_kobject_init()) 5973 goto out; 5974 5975 INIT_LIST_HEAD(&ptype_all); 5976 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5977 INIT_LIST_HEAD(&ptype_base[i]); 5978 5979 if (register_pernet_subsys(&netdev_net_ops)) 5980 goto out; 5981 5982 /* 5983 * Initialise the packet receive queues. 5984 */ 5985 5986 for_each_possible_cpu(i) { 5987 struct softnet_data *queue; 5988 5989 queue = &per_cpu(softnet_data, i); 5990 skb_queue_head_init(&queue->input_pkt_queue); 5991 queue->completion_queue = NULL; 5992 INIT_LIST_HEAD(&queue->poll_list); 5993 5994 queue->backlog.poll = process_backlog; 5995 queue->backlog.weight = weight_p; 5996 queue->backlog.gro_list = NULL; 5997 queue->backlog.gro_count = 0; 5998 } 5999 6000 dev_boot_phase = 0; 6001 6002 /* The loopback device is special if any other network devices 6003 * is present in a network namespace the loopback device must 6004 * be present. Since we now dynamically allocate and free the 6005 * loopback device ensure this invariant is maintained by 6006 * keeping the loopback device as the first device on the 6007 * list of network devices. Ensuring the loopback devices 6008 * is the first device that appears and the last network device 6009 * that disappears. 6010 */ 6011 if (register_pernet_device(&loopback_net_ops)) 6012 goto out; 6013 6014 if (register_pernet_device(&default_device_ops)) 6015 goto out; 6016 6017 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6018 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6019 6020 hotcpu_notifier(dev_cpu_callback, 0); 6021 dst_init(); 6022 dev_mcast_init(); 6023 rc = 0; 6024out: 6025 return rc; 6026} 6027 6028subsys_initcall(net_dev_init); 6029 6030static int __init initialize_hashrnd(void) 6031{ 6032 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 6033 return 0; 6034} 6035 6036late_initcall_sync(initialize_hashrnd); 6037