at v2.6.34 63 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * - a SuperSpeed endpoint has a companion descriptor 40 * 41 * And there might be other descriptors mixed in with those. 42 * 43 * Devices may also have class-specific or vendor-specific descriptors. 44 */ 45 46struct ep_device; 47 48/* For SS devices */ 49/** 50 * struct usb_host_ss_ep_comp - Valid for SuperSpeed devices only 51 * @desc: endpoint companion descriptor, wMaxPacketSize in native byteorder 52 * @extra: descriptors following this endpoint companion descriptor 53 * @extralen: how many bytes of "extra" are valid 54 */ 55struct usb_host_ss_ep_comp { 56 struct usb_ss_ep_comp_descriptor desc; 57 unsigned char *extra; /* Extra descriptors */ 58 int extralen; 59}; 60 61/** 62 * struct usb_host_endpoint - host-side endpoint descriptor and queue 63 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 64 * @urb_list: urbs queued to this endpoint; maintained by usbcore 65 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 66 * with one or more transfer descriptors (TDs) per urb 67 * @ep_dev: ep_device for sysfs info 68 * @ss_ep_comp: companion descriptor information for this endpoint 69 * @extra: descriptors following this endpoint in the configuration 70 * @extralen: how many bytes of "extra" are valid 71 * @enabled: URBs may be submitted to this endpoint 72 * 73 * USB requests are always queued to a given endpoint, identified by a 74 * descriptor within an active interface in a given USB configuration. 75 */ 76struct usb_host_endpoint { 77 struct usb_endpoint_descriptor desc; 78 struct list_head urb_list; 79 void *hcpriv; 80 struct ep_device *ep_dev; /* For sysfs info */ 81 struct usb_host_ss_ep_comp *ss_ep_comp; /* For SS devices */ 82 83 unsigned char *extra; /* Extra descriptors */ 84 int extralen; 85 int enabled; 86}; 87 88/* host-side wrapper for one interface setting's parsed descriptors */ 89struct usb_host_interface { 90 struct usb_interface_descriptor desc; 91 92 /* array of desc.bNumEndpoint endpoints associated with this 93 * interface setting. these will be in no particular order. 94 */ 95 struct usb_host_endpoint *endpoint; 96 97 char *string; /* iInterface string, if present */ 98 unsigned char *extra; /* Extra descriptors */ 99 int extralen; 100}; 101 102enum usb_interface_condition { 103 USB_INTERFACE_UNBOUND = 0, 104 USB_INTERFACE_BINDING, 105 USB_INTERFACE_BOUND, 106 USB_INTERFACE_UNBINDING, 107}; 108 109/** 110 * struct usb_interface - what usb device drivers talk to 111 * @altsetting: array of interface structures, one for each alternate 112 * setting that may be selected. Each one includes a set of 113 * endpoint configurations. They will be in no particular order. 114 * @cur_altsetting: the current altsetting. 115 * @num_altsetting: number of altsettings defined. 116 * @intf_assoc: interface association descriptor 117 * @minor: the minor number assigned to this interface, if this 118 * interface is bound to a driver that uses the USB major number. 119 * If this interface does not use the USB major, this field should 120 * be unused. The driver should set this value in the probe() 121 * function of the driver, after it has been assigned a minor 122 * number from the USB core by calling usb_register_dev(). 123 * @condition: binding state of the interface: not bound, binding 124 * (in probe()), bound to a driver, or unbinding (in disconnect()) 125 * @sysfs_files_created: sysfs attributes exist 126 * @ep_devs_created: endpoint child pseudo-devices exist 127 * @unregistering: flag set when the interface is being unregistered 128 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 129 * capability during autosuspend. 130 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 131 * has been deferred. 132 * @needs_binding: flag set when the driver should be re-probed or unbound 133 * following a reset or suspend operation it doesn't support. 134 * @dev: driver model's view of this device 135 * @usb_dev: if an interface is bound to the USB major, this will point 136 * to the sysfs representation for that device. 137 * @pm_usage_cnt: PM usage counter for this interface 138 * @reset_ws: Used for scheduling resets from atomic context. 139 * @reset_running: set to 1 if the interface is currently running a 140 * queued reset so that usb_cancel_queued_reset() doesn't try to 141 * remove from the workqueue when running inside the worker 142 * thread. See __usb_queue_reset_device(). 143 * 144 * USB device drivers attach to interfaces on a physical device. Each 145 * interface encapsulates a single high level function, such as feeding 146 * an audio stream to a speaker or reporting a change in a volume control. 147 * Many USB devices only have one interface. The protocol used to talk to 148 * an interface's endpoints can be defined in a usb "class" specification, 149 * or by a product's vendor. The (default) control endpoint is part of 150 * every interface, but is never listed among the interface's descriptors. 151 * 152 * The driver that is bound to the interface can use standard driver model 153 * calls such as dev_get_drvdata() on the dev member of this structure. 154 * 155 * Each interface may have alternate settings. The initial configuration 156 * of a device sets altsetting 0, but the device driver can change 157 * that setting using usb_set_interface(). Alternate settings are often 158 * used to control the use of periodic endpoints, such as by having 159 * different endpoints use different amounts of reserved USB bandwidth. 160 * All standards-conformant USB devices that use isochronous endpoints 161 * will use them in non-default settings. 162 * 163 * The USB specification says that alternate setting numbers must run from 164 * 0 to one less than the total number of alternate settings. But some 165 * devices manage to mess this up, and the structures aren't necessarily 166 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 167 * look up an alternate setting in the altsetting array based on its number. 168 */ 169struct usb_interface { 170 /* array of alternate settings for this interface, 171 * stored in no particular order */ 172 struct usb_host_interface *altsetting; 173 174 struct usb_host_interface *cur_altsetting; /* the currently 175 * active alternate setting */ 176 unsigned num_altsetting; /* number of alternate settings */ 177 178 /* If there is an interface association descriptor then it will list 179 * the associated interfaces */ 180 struct usb_interface_assoc_descriptor *intf_assoc; 181 182 int minor; /* minor number this interface is 183 * bound to */ 184 enum usb_interface_condition condition; /* state of binding */ 185 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 186 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 187 unsigned unregistering:1; /* unregistration is in progress */ 188 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 189 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 190 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 191 unsigned reset_running:1; 192 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 193 194 struct device dev; /* interface specific device info */ 195 struct device *usb_dev; 196 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 197 struct work_struct reset_ws; /* for resets in atomic context */ 198}; 199#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 200#define interface_to_usbdev(intf) \ 201 container_of(intf->dev.parent, struct usb_device, dev) 202 203static inline void *usb_get_intfdata(struct usb_interface *intf) 204{ 205 return dev_get_drvdata(&intf->dev); 206} 207 208static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 209{ 210 dev_set_drvdata(&intf->dev, data); 211} 212 213struct usb_interface *usb_get_intf(struct usb_interface *intf); 214void usb_put_intf(struct usb_interface *intf); 215 216/* this maximum is arbitrary */ 217#define USB_MAXINTERFACES 32 218#define USB_MAXIADS USB_MAXINTERFACES/2 219 220/** 221 * struct usb_interface_cache - long-term representation of a device interface 222 * @num_altsetting: number of altsettings defined. 223 * @ref: reference counter. 224 * @altsetting: variable-length array of interface structures, one for 225 * each alternate setting that may be selected. Each one includes a 226 * set of endpoint configurations. They will be in no particular order. 227 * 228 * These structures persist for the lifetime of a usb_device, unlike 229 * struct usb_interface (which persists only as long as its configuration 230 * is installed). The altsetting arrays can be accessed through these 231 * structures at any time, permitting comparison of configurations and 232 * providing support for the /proc/bus/usb/devices pseudo-file. 233 */ 234struct usb_interface_cache { 235 unsigned num_altsetting; /* number of alternate settings */ 236 struct kref ref; /* reference counter */ 237 238 /* variable-length array of alternate settings for this interface, 239 * stored in no particular order */ 240 struct usb_host_interface altsetting[0]; 241}; 242#define ref_to_usb_interface_cache(r) \ 243 container_of(r, struct usb_interface_cache, ref) 244#define altsetting_to_usb_interface_cache(a) \ 245 container_of(a, struct usb_interface_cache, altsetting[0]) 246 247/** 248 * struct usb_host_config - representation of a device's configuration 249 * @desc: the device's configuration descriptor. 250 * @string: pointer to the cached version of the iConfiguration string, if 251 * present for this configuration. 252 * @intf_assoc: list of any interface association descriptors in this config 253 * @interface: array of pointers to usb_interface structures, one for each 254 * interface in the configuration. The number of interfaces is stored 255 * in desc.bNumInterfaces. These pointers are valid only while the 256 * the configuration is active. 257 * @intf_cache: array of pointers to usb_interface_cache structures, one 258 * for each interface in the configuration. These structures exist 259 * for the entire life of the device. 260 * @extra: pointer to buffer containing all extra descriptors associated 261 * with this configuration (those preceding the first interface 262 * descriptor). 263 * @extralen: length of the extra descriptors buffer. 264 * 265 * USB devices may have multiple configurations, but only one can be active 266 * at any time. Each encapsulates a different operational environment; 267 * for example, a dual-speed device would have separate configurations for 268 * full-speed and high-speed operation. The number of configurations 269 * available is stored in the device descriptor as bNumConfigurations. 270 * 271 * A configuration can contain multiple interfaces. Each corresponds to 272 * a different function of the USB device, and all are available whenever 273 * the configuration is active. The USB standard says that interfaces 274 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 275 * of devices get this wrong. In addition, the interface array is not 276 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 277 * look up an interface entry based on its number. 278 * 279 * Device drivers should not attempt to activate configurations. The choice 280 * of which configuration to install is a policy decision based on such 281 * considerations as available power, functionality provided, and the user's 282 * desires (expressed through userspace tools). However, drivers can call 283 * usb_reset_configuration() to reinitialize the current configuration and 284 * all its interfaces. 285 */ 286struct usb_host_config { 287 struct usb_config_descriptor desc; 288 289 char *string; /* iConfiguration string, if present */ 290 291 /* List of any Interface Association Descriptors in this 292 * configuration. */ 293 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 294 295 /* the interfaces associated with this configuration, 296 * stored in no particular order */ 297 struct usb_interface *interface[USB_MAXINTERFACES]; 298 299 /* Interface information available even when this is not the 300 * active configuration */ 301 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 302 303 unsigned char *extra; /* Extra descriptors */ 304 int extralen; 305}; 306 307int __usb_get_extra_descriptor(char *buffer, unsigned size, 308 unsigned char type, void **ptr); 309#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 310 __usb_get_extra_descriptor((ifpoint)->extra, \ 311 (ifpoint)->extralen, \ 312 type, (void **)ptr) 313 314/* ----------------------------------------------------------------------- */ 315 316/* USB device number allocation bitmap */ 317struct usb_devmap { 318 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 319}; 320 321/* 322 * Allocated per bus (tree of devices) we have: 323 */ 324struct usb_bus { 325 struct device *controller; /* host/master side hardware */ 326 int busnum; /* Bus number (in order of reg) */ 327 const char *bus_name; /* stable id (PCI slot_name etc) */ 328 u8 uses_dma; /* Does the host controller use DMA? */ 329 u8 otg_port; /* 0, or number of OTG/HNP port */ 330 unsigned is_b_host:1; /* true during some HNP roleswitches */ 331 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 332 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 333 334 int devnum_next; /* Next open device number in 335 * round-robin allocation */ 336 337 struct usb_devmap devmap; /* device address allocation map */ 338 struct usb_device *root_hub; /* Root hub */ 339 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 340 struct list_head bus_list; /* list of busses */ 341 342 int bandwidth_allocated; /* on this bus: how much of the time 343 * reserved for periodic (intr/iso) 344 * requests is used, on average? 345 * Units: microseconds/frame. 346 * Limits: Full/low speed reserve 90%, 347 * while high speed reserves 80%. 348 */ 349 int bandwidth_int_reqs; /* number of Interrupt requests */ 350 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 351 352#ifdef CONFIG_USB_DEVICEFS 353 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 354#endif 355 356#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 357 struct mon_bus *mon_bus; /* non-null when associated */ 358 int monitored; /* non-zero when monitored */ 359#endif 360}; 361 362/* ----------------------------------------------------------------------- */ 363 364/* This is arbitrary. 365 * From USB 2.0 spec Table 11-13, offset 7, a hub can 366 * have up to 255 ports. The most yet reported is 10. 367 * 368 * Current Wireless USB host hardware (Intel i1480 for example) allows 369 * up to 22 devices to connect. Upcoming hardware might raise that 370 * limit. Because the arrays need to add a bit for hub status data, we 371 * do 31, so plus one evens out to four bytes. 372 */ 373#define USB_MAXCHILDREN (31) 374 375struct usb_tt; 376 377/** 378 * struct usb_device - kernel's representation of a USB device 379 * @devnum: device number; address on a USB bus 380 * @devpath: device ID string for use in messages (e.g., /port/...) 381 * @route: tree topology hex string for use with xHCI 382 * @state: device state: configured, not attached, etc. 383 * @speed: device speed: high/full/low (or error) 384 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 385 * @ttport: device port on that tt hub 386 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 387 * @parent: our hub, unless we're the root 388 * @bus: bus we're part of 389 * @ep0: endpoint 0 data (default control pipe) 390 * @dev: generic device interface 391 * @descriptor: USB device descriptor 392 * @config: all of the device's configs 393 * @actconfig: the active configuration 394 * @ep_in: array of IN endpoints 395 * @ep_out: array of OUT endpoints 396 * @rawdescriptors: raw descriptors for each config 397 * @bus_mA: Current available from the bus 398 * @portnum: parent port number (origin 1) 399 * @level: number of USB hub ancestors 400 * @can_submit: URBs may be submitted 401 * @persist_enabled: USB_PERSIST enabled for this device 402 * @have_langid: whether string_langid is valid 403 * @authorized: policy has said we can use it; 404 * (user space) policy determines if we authorize this device to be 405 * used or not. By default, wired USB devices are authorized. 406 * WUSB devices are not, until we authorize them from user space. 407 * FIXME -- complete doc 408 * @authenticated: Crypto authentication passed 409 * @wusb: device is Wireless USB 410 * @string_langid: language ID for strings 411 * @product: iProduct string, if present (static) 412 * @manufacturer: iManufacturer string, if present (static) 413 * @serial: iSerialNumber string, if present (static) 414 * @filelist: usbfs files that are open to this device 415 * @usb_classdev: USB class device that was created for usbfs device 416 * access from userspace 417 * @usbfs_dentry: usbfs dentry entry for the device 418 * @maxchild: number of ports if hub 419 * @children: child devices - USB devices that are attached to this hub 420 * @quirks: quirks of the whole device 421 * @urbnum: number of URBs submitted for the whole device 422 * @active_duration: total time device is not suspended 423 * @last_busy: time of last use 424 * @autosuspend_delay: in jiffies 425 * @connect_time: time device was first connected 426 * @do_remote_wakeup: remote wakeup should be enabled 427 * @reset_resume: needs reset instead of resume 428 * @autosuspend_disabled: autosuspend disabled by the user 429 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 430 * specific data for the device. 431 * @slot_id: Slot ID assigned by xHCI 432 * 433 * Notes: 434 * Usbcore drivers should not set usbdev->state directly. Instead use 435 * usb_set_device_state(). 436 */ 437struct usb_device { 438 int devnum; 439 char devpath [16]; 440 u32 route; 441 enum usb_device_state state; 442 enum usb_device_speed speed; 443 444 struct usb_tt *tt; 445 int ttport; 446 447 unsigned int toggle[2]; 448 449 struct usb_device *parent; 450 struct usb_bus *bus; 451 struct usb_host_endpoint ep0; 452 453 struct device dev; 454 455 struct usb_device_descriptor descriptor; 456 struct usb_host_config *config; 457 458 struct usb_host_config *actconfig; 459 struct usb_host_endpoint *ep_in[16]; 460 struct usb_host_endpoint *ep_out[16]; 461 462 char **rawdescriptors; 463 464 unsigned short bus_mA; 465 u8 portnum; 466 u8 level; 467 468 unsigned can_submit:1; 469 unsigned persist_enabled:1; 470 unsigned have_langid:1; 471 unsigned authorized:1; 472 unsigned authenticated:1; 473 unsigned wusb:1; 474 int string_langid; 475 476 /* static strings from the device */ 477 char *product; 478 char *manufacturer; 479 char *serial; 480 481 struct list_head filelist; 482#ifdef CONFIG_USB_DEVICE_CLASS 483 struct device *usb_classdev; 484#endif 485#ifdef CONFIG_USB_DEVICEFS 486 struct dentry *usbfs_dentry; 487#endif 488 489 int maxchild; 490 struct usb_device *children[USB_MAXCHILDREN]; 491 492 u32 quirks; 493 atomic_t urbnum; 494 495 unsigned long active_duration; 496 497#ifdef CONFIG_PM 498 unsigned long last_busy; 499 int autosuspend_delay; 500 unsigned long connect_time; 501 502 unsigned do_remote_wakeup:1; 503 unsigned reset_resume:1; 504 unsigned autosuspend_disabled:1; 505#endif 506 struct wusb_dev *wusb_dev; 507 int slot_id; 508}; 509#define to_usb_device(d) container_of(d, struct usb_device, dev) 510 511extern struct usb_device *usb_get_dev(struct usb_device *dev); 512extern void usb_put_dev(struct usb_device *dev); 513 514/* USB device locking */ 515#define usb_lock_device(udev) device_lock(&(udev)->dev) 516#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 517#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 518extern int usb_lock_device_for_reset(struct usb_device *udev, 519 const struct usb_interface *iface); 520 521/* USB port reset for device reinitialization */ 522extern int usb_reset_device(struct usb_device *dev); 523extern void usb_queue_reset_device(struct usb_interface *dev); 524 525extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 526 527/* USB autosuspend and autoresume */ 528#ifdef CONFIG_USB_SUSPEND 529extern int usb_enable_autosuspend(struct usb_device *udev); 530extern int usb_disable_autosuspend(struct usb_device *udev); 531 532extern int usb_autopm_get_interface(struct usb_interface *intf); 533extern void usb_autopm_put_interface(struct usb_interface *intf); 534extern int usb_autopm_get_interface_async(struct usb_interface *intf); 535extern void usb_autopm_put_interface_async(struct usb_interface *intf); 536extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 537extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 538 539static inline void usb_mark_last_busy(struct usb_device *udev) 540{ 541 udev->last_busy = jiffies; 542} 543 544#else 545 546static inline int usb_enable_autosuspend(struct usb_device *udev) 547{ return 0; } 548static inline int usb_disable_autosuspend(struct usb_device *udev) 549{ return 0; } 550 551static inline int usb_autopm_get_interface(struct usb_interface *intf) 552{ return 0; } 553static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 554{ return 0; } 555 556static inline void usb_autopm_put_interface(struct usb_interface *intf) 557{ } 558static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 559{ } 560static inline void usb_autopm_get_interface_no_resume( 561 struct usb_interface *intf) 562{ } 563static inline void usb_autopm_put_interface_no_suspend( 564 struct usb_interface *intf) 565{ } 566static inline void usb_mark_last_busy(struct usb_device *udev) 567{ } 568#endif 569 570/*-------------------------------------------------------------------------*/ 571 572/* for drivers using iso endpoints */ 573extern int usb_get_current_frame_number(struct usb_device *usb_dev); 574 575/* used these for multi-interface device registration */ 576extern int usb_driver_claim_interface(struct usb_driver *driver, 577 struct usb_interface *iface, void *priv); 578 579/** 580 * usb_interface_claimed - returns true iff an interface is claimed 581 * @iface: the interface being checked 582 * 583 * Returns true (nonzero) iff the interface is claimed, else false (zero). 584 * Callers must own the driver model's usb bus readlock. So driver 585 * probe() entries don't need extra locking, but other call contexts 586 * may need to explicitly claim that lock. 587 * 588 */ 589static inline int usb_interface_claimed(struct usb_interface *iface) 590{ 591 return (iface->dev.driver != NULL); 592} 593 594extern void usb_driver_release_interface(struct usb_driver *driver, 595 struct usb_interface *iface); 596const struct usb_device_id *usb_match_id(struct usb_interface *interface, 597 const struct usb_device_id *id); 598extern int usb_match_one_id(struct usb_interface *interface, 599 const struct usb_device_id *id); 600 601extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 602 int minor); 603extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 604 unsigned ifnum); 605extern struct usb_host_interface *usb_altnum_to_altsetting( 606 const struct usb_interface *intf, unsigned int altnum); 607extern struct usb_host_interface *usb_find_alt_setting( 608 struct usb_host_config *config, 609 unsigned int iface_num, 610 unsigned int alt_num); 611 612 613/** 614 * usb_make_path - returns stable device path in the usb tree 615 * @dev: the device whose path is being constructed 616 * @buf: where to put the string 617 * @size: how big is "buf"? 618 * 619 * Returns length of the string (> 0) or negative if size was too small. 620 * 621 * This identifier is intended to be "stable", reflecting physical paths in 622 * hardware such as physical bus addresses for host controllers or ports on 623 * USB hubs. That makes it stay the same until systems are physically 624 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 625 * controllers. Adding and removing devices, including virtual root hubs 626 * in host controller driver modules, does not change these path identifers; 627 * neither does rebooting or re-enumerating. These are more useful identifiers 628 * than changeable ("unstable") ones like bus numbers or device addresses. 629 * 630 * With a partial exception for devices connected to USB 2.0 root hubs, these 631 * identifiers are also predictable. So long as the device tree isn't changed, 632 * plugging any USB device into a given hub port always gives it the same path. 633 * Because of the use of "companion" controllers, devices connected to ports on 634 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 635 * high speed, and a different one if they are full or low speed. 636 */ 637static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 638{ 639 int actual; 640 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 641 dev->devpath); 642 return (actual >= (int)size) ? -1 : actual; 643} 644 645/*-------------------------------------------------------------------------*/ 646 647#define USB_DEVICE_ID_MATCH_DEVICE \ 648 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 649#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 650 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 651#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 652 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 653#define USB_DEVICE_ID_MATCH_DEV_INFO \ 654 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 655 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 656 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 657#define USB_DEVICE_ID_MATCH_INT_INFO \ 658 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 659 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 660 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 661 662/** 663 * USB_DEVICE - macro used to describe a specific usb device 664 * @vend: the 16 bit USB Vendor ID 665 * @prod: the 16 bit USB Product ID 666 * 667 * This macro is used to create a struct usb_device_id that matches a 668 * specific device. 669 */ 670#define USB_DEVICE(vend,prod) \ 671 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 672 .idVendor = (vend), \ 673 .idProduct = (prod) 674/** 675 * USB_DEVICE_VER - describe a specific usb device with a version range 676 * @vend: the 16 bit USB Vendor ID 677 * @prod: the 16 bit USB Product ID 678 * @lo: the bcdDevice_lo value 679 * @hi: the bcdDevice_hi value 680 * 681 * This macro is used to create a struct usb_device_id that matches a 682 * specific device, with a version range. 683 */ 684#define USB_DEVICE_VER(vend, prod, lo, hi) \ 685 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 686 .idVendor = (vend), \ 687 .idProduct = (prod), \ 688 .bcdDevice_lo = (lo), \ 689 .bcdDevice_hi = (hi) 690 691/** 692 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 693 * @vend: the 16 bit USB Vendor ID 694 * @prod: the 16 bit USB Product ID 695 * @pr: bInterfaceProtocol value 696 * 697 * This macro is used to create a struct usb_device_id that matches a 698 * specific interface protocol of devices. 699 */ 700#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 701 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 702 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 703 .idVendor = (vend), \ 704 .idProduct = (prod), \ 705 .bInterfaceProtocol = (pr) 706 707/** 708 * USB_DEVICE_INFO - macro used to describe a class of usb devices 709 * @cl: bDeviceClass value 710 * @sc: bDeviceSubClass value 711 * @pr: bDeviceProtocol value 712 * 713 * This macro is used to create a struct usb_device_id that matches a 714 * specific class of devices. 715 */ 716#define USB_DEVICE_INFO(cl, sc, pr) \ 717 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 718 .bDeviceClass = (cl), \ 719 .bDeviceSubClass = (sc), \ 720 .bDeviceProtocol = (pr) 721 722/** 723 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 724 * @cl: bInterfaceClass value 725 * @sc: bInterfaceSubClass value 726 * @pr: bInterfaceProtocol value 727 * 728 * This macro is used to create a struct usb_device_id that matches a 729 * specific class of interfaces. 730 */ 731#define USB_INTERFACE_INFO(cl, sc, pr) \ 732 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 733 .bInterfaceClass = (cl), \ 734 .bInterfaceSubClass = (sc), \ 735 .bInterfaceProtocol = (pr) 736 737/** 738 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 739 * @vend: the 16 bit USB Vendor ID 740 * @prod: the 16 bit USB Product ID 741 * @cl: bInterfaceClass value 742 * @sc: bInterfaceSubClass value 743 * @pr: bInterfaceProtocol value 744 * 745 * This macro is used to create a struct usb_device_id that matches a 746 * specific device with a specific class of interfaces. 747 * 748 * This is especially useful when explicitly matching devices that have 749 * vendor specific bDeviceClass values, but standards-compliant interfaces. 750 */ 751#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 752 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 753 | USB_DEVICE_ID_MATCH_DEVICE, \ 754 .idVendor = (vend), \ 755 .idProduct = (prod), \ 756 .bInterfaceClass = (cl), \ 757 .bInterfaceSubClass = (sc), \ 758 .bInterfaceProtocol = (pr) 759 760/* ----------------------------------------------------------------------- */ 761 762/* Stuff for dynamic usb ids */ 763struct usb_dynids { 764 spinlock_t lock; 765 struct list_head list; 766}; 767 768struct usb_dynid { 769 struct list_head node; 770 struct usb_device_id id; 771}; 772 773extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 774 struct device_driver *driver, 775 const char *buf, size_t count); 776 777/** 778 * struct usbdrv_wrap - wrapper for driver-model structure 779 * @driver: The driver-model core driver structure. 780 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 781 */ 782struct usbdrv_wrap { 783 struct device_driver driver; 784 int for_devices; 785}; 786 787/** 788 * struct usb_driver - identifies USB interface driver to usbcore 789 * @name: The driver name should be unique among USB drivers, 790 * and should normally be the same as the module name. 791 * @probe: Called to see if the driver is willing to manage a particular 792 * interface on a device. If it is, probe returns zero and uses 793 * usb_set_intfdata() to associate driver-specific data with the 794 * interface. It may also use usb_set_interface() to specify the 795 * appropriate altsetting. If unwilling to manage the interface, 796 * return -ENODEV, if genuine IO errors occured, an appropriate 797 * negative errno value. 798 * @disconnect: Called when the interface is no longer accessible, usually 799 * because its device has been (or is being) disconnected or the 800 * driver module is being unloaded. 801 * @ioctl: Used for drivers that want to talk to userspace through 802 * the "usbfs" filesystem. This lets devices provide ways to 803 * expose information to user space regardless of where they 804 * do (or don't) show up otherwise in the filesystem. 805 * @suspend: Called when the device is going to be suspended by the system. 806 * @resume: Called when the device is being resumed by the system. 807 * @reset_resume: Called when the suspended device has been reset instead 808 * of being resumed. 809 * @pre_reset: Called by usb_reset_device() when the device 810 * is about to be reset. 811 * @post_reset: Called by usb_reset_device() after the device 812 * has been reset 813 * @id_table: USB drivers use ID table to support hotplugging. 814 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 815 * or your driver's probe function will never get called. 816 * @dynids: used internally to hold the list of dynamically added device 817 * ids for this driver. 818 * @drvwrap: Driver-model core structure wrapper. 819 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 820 * added to this driver by preventing the sysfs file from being created. 821 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 822 * for interfaces bound to this driver. 823 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 824 * endpoints before calling the driver's disconnect method. 825 * 826 * USB interface drivers must provide a name, probe() and disconnect() 827 * methods, and an id_table. Other driver fields are optional. 828 * 829 * The id_table is used in hotplugging. It holds a set of descriptors, 830 * and specialized data may be associated with each entry. That table 831 * is used by both user and kernel mode hotplugging support. 832 * 833 * The probe() and disconnect() methods are called in a context where 834 * they can sleep, but they should avoid abusing the privilege. Most 835 * work to connect to a device should be done when the device is opened, 836 * and undone at the last close. The disconnect code needs to address 837 * concurrency issues with respect to open() and close() methods, as 838 * well as forcing all pending I/O requests to complete (by unlinking 839 * them as necessary, and blocking until the unlinks complete). 840 */ 841struct usb_driver { 842 const char *name; 843 844 int (*probe) (struct usb_interface *intf, 845 const struct usb_device_id *id); 846 847 void (*disconnect) (struct usb_interface *intf); 848 849 int (*ioctl) (struct usb_interface *intf, unsigned int code, 850 void *buf); 851 852 int (*suspend) (struct usb_interface *intf, pm_message_t message); 853 int (*resume) (struct usb_interface *intf); 854 int (*reset_resume)(struct usb_interface *intf); 855 856 int (*pre_reset)(struct usb_interface *intf); 857 int (*post_reset)(struct usb_interface *intf); 858 859 const struct usb_device_id *id_table; 860 861 struct usb_dynids dynids; 862 struct usbdrv_wrap drvwrap; 863 unsigned int no_dynamic_id:1; 864 unsigned int supports_autosuspend:1; 865 unsigned int soft_unbind:1; 866}; 867#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 868 869/** 870 * struct usb_device_driver - identifies USB device driver to usbcore 871 * @name: The driver name should be unique among USB drivers, 872 * and should normally be the same as the module name. 873 * @probe: Called to see if the driver is willing to manage a particular 874 * device. If it is, probe returns zero and uses dev_set_drvdata() 875 * to associate driver-specific data with the device. If unwilling 876 * to manage the device, return a negative errno value. 877 * @disconnect: Called when the device is no longer accessible, usually 878 * because it has been (or is being) disconnected or the driver's 879 * module is being unloaded. 880 * @suspend: Called when the device is going to be suspended by the system. 881 * @resume: Called when the device is being resumed by the system. 882 * @drvwrap: Driver-model core structure wrapper. 883 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 884 * for devices bound to this driver. 885 * 886 * USB drivers must provide all the fields listed above except drvwrap. 887 */ 888struct usb_device_driver { 889 const char *name; 890 891 int (*probe) (struct usb_device *udev); 892 void (*disconnect) (struct usb_device *udev); 893 894 int (*suspend) (struct usb_device *udev, pm_message_t message); 895 int (*resume) (struct usb_device *udev, pm_message_t message); 896 struct usbdrv_wrap drvwrap; 897 unsigned int supports_autosuspend:1; 898}; 899#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 900 drvwrap.driver) 901 902extern struct bus_type usb_bus_type; 903 904/** 905 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 906 * @name: the usb class device name for this driver. Will show up in sysfs. 907 * @devnode: Callback to provide a naming hint for a possible 908 * device node to create. 909 * @fops: pointer to the struct file_operations of this driver. 910 * @minor_base: the start of the minor range for this driver. 911 * 912 * This structure is used for the usb_register_dev() and 913 * usb_unregister_dev() functions, to consolidate a number of the 914 * parameters used for them. 915 */ 916struct usb_class_driver { 917 char *name; 918 char *(*devnode)(struct device *dev, mode_t *mode); 919 const struct file_operations *fops; 920 int minor_base; 921}; 922 923/* 924 * use these in module_init()/module_exit() 925 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 926 */ 927extern int usb_register_driver(struct usb_driver *, struct module *, 928 const char *); 929static inline int usb_register(struct usb_driver *driver) 930{ 931 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 932} 933extern void usb_deregister(struct usb_driver *); 934 935extern int usb_register_device_driver(struct usb_device_driver *, 936 struct module *); 937extern void usb_deregister_device_driver(struct usb_device_driver *); 938 939extern int usb_register_dev(struct usb_interface *intf, 940 struct usb_class_driver *class_driver); 941extern void usb_deregister_dev(struct usb_interface *intf, 942 struct usb_class_driver *class_driver); 943 944extern int usb_disabled(void); 945 946/* ----------------------------------------------------------------------- */ 947 948/* 949 * URB support, for asynchronous request completions 950 */ 951 952/* 953 * urb->transfer_flags: 954 * 955 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 956 */ 957#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 958#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 959 * ignored */ 960#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 961#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 962#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 963#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 964#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 965 * needed */ 966#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 967 968#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 969#define URB_DIR_OUT 0 970#define URB_DIR_MASK URB_DIR_IN 971 972struct usb_iso_packet_descriptor { 973 unsigned int offset; 974 unsigned int length; /* expected length */ 975 unsigned int actual_length; 976 int status; 977}; 978 979struct urb; 980 981struct usb_anchor { 982 struct list_head urb_list; 983 wait_queue_head_t wait; 984 spinlock_t lock; 985 unsigned int poisoned:1; 986}; 987 988static inline void init_usb_anchor(struct usb_anchor *anchor) 989{ 990 INIT_LIST_HEAD(&anchor->urb_list); 991 init_waitqueue_head(&anchor->wait); 992 spin_lock_init(&anchor->lock); 993} 994 995typedef void (*usb_complete_t)(struct urb *); 996 997/** 998 * struct urb - USB Request Block 999 * @urb_list: For use by current owner of the URB. 1000 * @anchor_list: membership in the list of an anchor 1001 * @anchor: to anchor URBs to a common mooring 1002 * @ep: Points to the endpoint's data structure. Will eventually 1003 * replace @pipe. 1004 * @pipe: Holds endpoint number, direction, type, and more. 1005 * Create these values with the eight macros available; 1006 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1007 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1008 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1009 * numbers range from zero to fifteen. Note that "in" endpoint two 1010 * is a different endpoint (and pipe) from "out" endpoint two. 1011 * The current configuration controls the existence, type, and 1012 * maximum packet size of any given endpoint. 1013 * @dev: Identifies the USB device to perform the request. 1014 * @status: This is read in non-iso completion functions to get the 1015 * status of the particular request. ISO requests only use it 1016 * to tell whether the URB was unlinked; detailed status for 1017 * each frame is in the fields of the iso_frame-desc. 1018 * @transfer_flags: A variety of flags may be used to affect how URB 1019 * submission, unlinking, or operation are handled. Different 1020 * kinds of URB can use different flags. 1021 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1022 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1023 * (however, do not leave garbage in transfer_buffer even then). 1024 * This buffer must be suitable for DMA; allocate it with 1025 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1026 * of this buffer will be modified. This buffer is used for the data 1027 * stage of control transfers. 1028 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1029 * the device driver is saying that it provided this DMA address, 1030 * which the host controller driver should use in preference to the 1031 * transfer_buffer. 1032 * @sg: scatter gather buffer list 1033 * @num_sgs: number of entries in the sg list 1034 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1035 * be broken up into chunks according to the current maximum packet 1036 * size for the endpoint, which is a function of the configuration 1037 * and is encoded in the pipe. When the length is zero, neither 1038 * transfer_buffer nor transfer_dma is used. 1039 * @actual_length: This is read in non-iso completion functions, and 1040 * it tells how many bytes (out of transfer_buffer_length) were 1041 * transferred. It will normally be the same as requested, unless 1042 * either an error was reported or a short read was performed. 1043 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1044 * short reads be reported as errors. 1045 * @setup_packet: Only used for control transfers, this points to eight bytes 1046 * of setup data. Control transfers always start by sending this data 1047 * to the device. Then transfer_buffer is read or written, if needed. 1048 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1049 * device driver has provided this DMA address for the setup packet. 1050 * The host controller driver should use this in preference to 1051 * setup_packet, but the HCD may chose to ignore the address if it must 1052 * copy the setup packet into internal structures. Therefore, setup_packet 1053 * must always point to a valid buffer. 1054 * @start_frame: Returns the initial frame for isochronous transfers. 1055 * @number_of_packets: Lists the number of ISO transfer buffers. 1056 * @interval: Specifies the polling interval for interrupt or isochronous 1057 * transfers. The units are frames (milliseconds) for full and low 1058 * speed devices, and microframes (1/8 millisecond) for highspeed 1059 * and SuperSpeed devices. 1060 * @error_count: Returns the number of ISO transfers that reported errors. 1061 * @context: For use in completion functions. This normally points to 1062 * request-specific driver context. 1063 * @complete: Completion handler. This URB is passed as the parameter to the 1064 * completion function. The completion function may then do what 1065 * it likes with the URB, including resubmitting or freeing it. 1066 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1067 * collect the transfer status for each buffer. 1068 * 1069 * This structure identifies USB transfer requests. URBs must be allocated by 1070 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1071 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1072 * are submitted using usb_submit_urb(), and pending requests may be canceled 1073 * using usb_unlink_urb() or usb_kill_urb(). 1074 * 1075 * Data Transfer Buffers: 1076 * 1077 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1078 * taken from the general page pool. That is provided by transfer_buffer 1079 * (control requests also use setup_packet), and host controller drivers 1080 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1081 * mapping operations can be expensive on some platforms (perhaps using a dma 1082 * bounce buffer or talking to an IOMMU), 1083 * although they're cheap on commodity x86 and ppc hardware. 1084 * 1085 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1086 * which tell the host controller driver that no such mapping is needed since 1087 * the device driver is DMA-aware. For example, a device driver might 1088 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1089 * When these transfer flags are provided, host controller drivers will 1090 * attempt to use the dma addresses found in the transfer_dma and/or 1091 * setup_dma fields rather than determining a dma address themselves. 1092 * 1093 * Note that transfer_buffer must still be set if the controller 1094 * does not support DMA (as indicated by bus.uses_dma) and when talking 1095 * to root hub. If you have to trasfer between highmem zone and the device 1096 * on such controller, create a bounce buffer or bail out with an error. 1097 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1098 * capable, assign NULL to it, so that usbmon knows not to use the value. 1099 * The setup_packet must always be set, so it cannot be located in highmem. 1100 * 1101 * Initialization: 1102 * 1103 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1104 * zero), and complete fields. All URBs must also initialize 1105 * transfer_buffer and transfer_buffer_length. They may provide the 1106 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1107 * to be treated as errors; that flag is invalid for write requests. 1108 * 1109 * Bulk URBs may 1110 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1111 * should always terminate with a short packet, even if it means adding an 1112 * extra zero length packet. 1113 * 1114 * Control URBs must provide a setup_packet. The setup_packet and 1115 * transfer_buffer may each be mapped for DMA or not, independently of 1116 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1117 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1118 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1119 * 1120 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1121 * or, for highspeed devices, 125 microsecond units) 1122 * to poll for transfers. After the URB has been submitted, the interval 1123 * field reflects how the transfer was actually scheduled. 1124 * The polling interval may be more frequent than requested. 1125 * For example, some controllers have a maximum interval of 32 milliseconds, 1126 * while others support intervals of up to 1024 milliseconds. 1127 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1128 * endpoints, as well as high speed interrupt endpoints, the encoding of 1129 * the transfer interval in the endpoint descriptor is logarithmic. 1130 * Device drivers must convert that value to linear units themselves.) 1131 * 1132 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1133 * the host controller to schedule the transfer as soon as bandwidth 1134 * utilization allows, and then set start_frame to reflect the actual frame 1135 * selected during submission. Otherwise drivers must specify the start_frame 1136 * and handle the case where the transfer can't begin then. However, drivers 1137 * won't know how bandwidth is currently allocated, and while they can 1138 * find the current frame using usb_get_current_frame_number () they can't 1139 * know the range for that frame number. (Ranges for frame counter values 1140 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1141 * 1142 * Isochronous URBs have a different data transfer model, in part because 1143 * the quality of service is only "best effort". Callers provide specially 1144 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1145 * at the end. Each such packet is an individual ISO transfer. Isochronous 1146 * URBs are normally queued, submitted by drivers to arrange that 1147 * transfers are at least double buffered, and then explicitly resubmitted 1148 * in completion handlers, so 1149 * that data (such as audio or video) streams at as constant a rate as the 1150 * host controller scheduler can support. 1151 * 1152 * Completion Callbacks: 1153 * 1154 * The completion callback is made in_interrupt(), and one of the first 1155 * things that a completion handler should do is check the status field. 1156 * The status field is provided for all URBs. It is used to report 1157 * unlinked URBs, and status for all non-ISO transfers. It should not 1158 * be examined before the URB is returned to the completion handler. 1159 * 1160 * The context field is normally used to link URBs back to the relevant 1161 * driver or request state. 1162 * 1163 * When the completion callback is invoked for non-isochronous URBs, the 1164 * actual_length field tells how many bytes were transferred. This field 1165 * is updated even when the URB terminated with an error or was unlinked. 1166 * 1167 * ISO transfer status is reported in the status and actual_length fields 1168 * of the iso_frame_desc array, and the number of errors is reported in 1169 * error_count. Completion callbacks for ISO transfers will normally 1170 * (re)submit URBs to ensure a constant transfer rate. 1171 * 1172 * Note that even fields marked "public" should not be touched by the driver 1173 * when the urb is owned by the hcd, that is, since the call to 1174 * usb_submit_urb() till the entry into the completion routine. 1175 */ 1176struct urb { 1177 /* private: usb core and host controller only fields in the urb */ 1178 struct kref kref; /* reference count of the URB */ 1179 void *hcpriv; /* private data for host controller */ 1180 atomic_t use_count; /* concurrent submissions counter */ 1181 atomic_t reject; /* submissions will fail */ 1182 int unlinked; /* unlink error code */ 1183 1184 /* public: documented fields in the urb that can be used by drivers */ 1185 struct list_head urb_list; /* list head for use by the urb's 1186 * current owner */ 1187 struct list_head anchor_list; /* the URB may be anchored */ 1188 struct usb_anchor *anchor; 1189 struct usb_device *dev; /* (in) pointer to associated device */ 1190 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1191 unsigned int pipe; /* (in) pipe information */ 1192 int status; /* (return) non-ISO status */ 1193 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1194 void *transfer_buffer; /* (in) associated data buffer */ 1195 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1196 struct usb_sg_request *sg; /* (in) scatter gather buffer list */ 1197 int num_sgs; /* (in) number of entries in the sg list */ 1198 u32 transfer_buffer_length; /* (in) data buffer length */ 1199 u32 actual_length; /* (return) actual transfer length */ 1200 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1201 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1202 int start_frame; /* (modify) start frame (ISO) */ 1203 int number_of_packets; /* (in) number of ISO packets */ 1204 int interval; /* (modify) transfer interval 1205 * (INT/ISO) */ 1206 int error_count; /* (return) number of ISO errors */ 1207 void *context; /* (in) context for completion */ 1208 usb_complete_t complete; /* (in) completion routine */ 1209 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1210 /* (in) ISO ONLY */ 1211}; 1212 1213/* ----------------------------------------------------------------------- */ 1214 1215/** 1216 * usb_fill_control_urb - initializes a control urb 1217 * @urb: pointer to the urb to initialize. 1218 * @dev: pointer to the struct usb_device for this urb. 1219 * @pipe: the endpoint pipe 1220 * @setup_packet: pointer to the setup_packet buffer 1221 * @transfer_buffer: pointer to the transfer buffer 1222 * @buffer_length: length of the transfer buffer 1223 * @complete_fn: pointer to the usb_complete_t function 1224 * @context: what to set the urb context to. 1225 * 1226 * Initializes a control urb with the proper information needed to submit 1227 * it to a device. 1228 */ 1229static inline void usb_fill_control_urb(struct urb *urb, 1230 struct usb_device *dev, 1231 unsigned int pipe, 1232 unsigned char *setup_packet, 1233 void *transfer_buffer, 1234 int buffer_length, 1235 usb_complete_t complete_fn, 1236 void *context) 1237{ 1238 urb->dev = dev; 1239 urb->pipe = pipe; 1240 urb->setup_packet = setup_packet; 1241 urb->transfer_buffer = transfer_buffer; 1242 urb->transfer_buffer_length = buffer_length; 1243 urb->complete = complete_fn; 1244 urb->context = context; 1245} 1246 1247/** 1248 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1249 * @urb: pointer to the urb to initialize. 1250 * @dev: pointer to the struct usb_device for this urb. 1251 * @pipe: the endpoint pipe 1252 * @transfer_buffer: pointer to the transfer buffer 1253 * @buffer_length: length of the transfer buffer 1254 * @complete_fn: pointer to the usb_complete_t function 1255 * @context: what to set the urb context to. 1256 * 1257 * Initializes a bulk urb with the proper information needed to submit it 1258 * to a device. 1259 */ 1260static inline void usb_fill_bulk_urb(struct urb *urb, 1261 struct usb_device *dev, 1262 unsigned int pipe, 1263 void *transfer_buffer, 1264 int buffer_length, 1265 usb_complete_t complete_fn, 1266 void *context) 1267{ 1268 urb->dev = dev; 1269 urb->pipe = pipe; 1270 urb->transfer_buffer = transfer_buffer; 1271 urb->transfer_buffer_length = buffer_length; 1272 urb->complete = complete_fn; 1273 urb->context = context; 1274} 1275 1276/** 1277 * usb_fill_int_urb - macro to help initialize a interrupt urb 1278 * @urb: pointer to the urb to initialize. 1279 * @dev: pointer to the struct usb_device for this urb. 1280 * @pipe: the endpoint pipe 1281 * @transfer_buffer: pointer to the transfer buffer 1282 * @buffer_length: length of the transfer buffer 1283 * @complete_fn: pointer to the usb_complete_t function 1284 * @context: what to set the urb context to. 1285 * @interval: what to set the urb interval to, encoded like 1286 * the endpoint descriptor's bInterval value. 1287 * 1288 * Initializes a interrupt urb with the proper information needed to submit 1289 * it to a device. 1290 * 1291 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1292 * encoding of the endpoint interval, and express polling intervals in 1293 * microframes (eight per millisecond) rather than in frames (one per 1294 * millisecond). 1295 * 1296 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1297 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1298 * through to the host controller, rather than being translated into microframe 1299 * units. 1300 */ 1301static inline void usb_fill_int_urb(struct urb *urb, 1302 struct usb_device *dev, 1303 unsigned int pipe, 1304 void *transfer_buffer, 1305 int buffer_length, 1306 usb_complete_t complete_fn, 1307 void *context, 1308 int interval) 1309{ 1310 urb->dev = dev; 1311 urb->pipe = pipe; 1312 urb->transfer_buffer = transfer_buffer; 1313 urb->transfer_buffer_length = buffer_length; 1314 urb->complete = complete_fn; 1315 urb->context = context; 1316 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1317 urb->interval = 1 << (interval - 1); 1318 else 1319 urb->interval = interval; 1320 urb->start_frame = -1; 1321} 1322 1323extern void usb_init_urb(struct urb *urb); 1324extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1325extern void usb_free_urb(struct urb *urb); 1326#define usb_put_urb usb_free_urb 1327extern struct urb *usb_get_urb(struct urb *urb); 1328extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1329extern int usb_unlink_urb(struct urb *urb); 1330extern void usb_kill_urb(struct urb *urb); 1331extern void usb_poison_urb(struct urb *urb); 1332extern void usb_unpoison_urb(struct urb *urb); 1333extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1334extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1335extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1336extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1337extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1338extern void usb_unanchor_urb(struct urb *urb); 1339extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1340 unsigned int timeout); 1341extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1342extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1343extern int usb_anchor_empty(struct usb_anchor *anchor); 1344 1345/** 1346 * usb_urb_dir_in - check if an URB describes an IN transfer 1347 * @urb: URB to be checked 1348 * 1349 * Returns 1 if @urb describes an IN transfer (device-to-host), 1350 * otherwise 0. 1351 */ 1352static inline int usb_urb_dir_in(struct urb *urb) 1353{ 1354 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1355} 1356 1357/** 1358 * usb_urb_dir_out - check if an URB describes an OUT transfer 1359 * @urb: URB to be checked 1360 * 1361 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1362 * otherwise 0. 1363 */ 1364static inline int usb_urb_dir_out(struct urb *urb) 1365{ 1366 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1367} 1368 1369void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1370 gfp_t mem_flags, dma_addr_t *dma); 1371void usb_free_coherent(struct usb_device *dev, size_t size, 1372 void *addr, dma_addr_t dma); 1373 1374/* Compatible macros while we switch over */ 1375static inline void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1376 gfp_t mem_flags, dma_addr_t *dma) 1377{ 1378 return usb_alloc_coherent(dev, size, mem_flags, dma); 1379} 1380static inline void usb_buffer_free(struct usb_device *dev, size_t size, 1381 void *addr, dma_addr_t dma) 1382{ 1383 return usb_free_coherent(dev, size, addr, dma); 1384} 1385 1386#if 0 1387struct urb *usb_buffer_map(struct urb *urb); 1388void usb_buffer_dmasync(struct urb *urb); 1389void usb_buffer_unmap(struct urb *urb); 1390#endif 1391 1392struct scatterlist; 1393int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1394 struct scatterlist *sg, int nents); 1395#if 0 1396void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1397 struct scatterlist *sg, int n_hw_ents); 1398#endif 1399void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1400 struct scatterlist *sg, int n_hw_ents); 1401 1402/*-------------------------------------------------------------------* 1403 * SYNCHRONOUS CALL SUPPORT * 1404 *-------------------------------------------------------------------*/ 1405 1406extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1407 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1408 void *data, __u16 size, int timeout); 1409extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1410 void *data, int len, int *actual_length, int timeout); 1411extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1412 void *data, int len, int *actual_length, 1413 int timeout); 1414 1415/* wrappers around usb_control_msg() for the most common standard requests */ 1416extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1417 unsigned char descindex, void *buf, int size); 1418extern int usb_get_status(struct usb_device *dev, 1419 int type, int target, void *data); 1420extern int usb_string(struct usb_device *dev, int index, 1421 char *buf, size_t size); 1422 1423/* wrappers that also update important state inside usbcore */ 1424extern int usb_clear_halt(struct usb_device *dev, int pipe); 1425extern int usb_reset_configuration(struct usb_device *dev); 1426extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1427extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1428 1429/* this request isn't really synchronous, but it belongs with the others */ 1430extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1431 1432/* 1433 * timeouts, in milliseconds, used for sending/receiving control messages 1434 * they typically complete within a few frames (msec) after they're issued 1435 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1436 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1437 */ 1438#define USB_CTRL_GET_TIMEOUT 5000 1439#define USB_CTRL_SET_TIMEOUT 5000 1440 1441 1442/** 1443 * struct usb_sg_request - support for scatter/gather I/O 1444 * @status: zero indicates success, else negative errno 1445 * @bytes: counts bytes transferred. 1446 * 1447 * These requests are initialized using usb_sg_init(), and then are used 1448 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1449 * members of the request object aren't for driver access. 1450 * 1451 * The status and bytecount values are valid only after usb_sg_wait() 1452 * returns. If the status is zero, then the bytecount matches the total 1453 * from the request. 1454 * 1455 * After an error completion, drivers may need to clear a halt condition 1456 * on the endpoint. 1457 */ 1458struct usb_sg_request { 1459 int status; 1460 size_t bytes; 1461 1462 /* private: 1463 * members below are private to usbcore, 1464 * and are not provided for driver access! 1465 */ 1466 spinlock_t lock; 1467 1468 struct usb_device *dev; 1469 int pipe; 1470 struct scatterlist *sg; 1471 int nents; 1472 1473 int entries; 1474 struct urb **urbs; 1475 1476 int count; 1477 struct completion complete; 1478}; 1479 1480int usb_sg_init( 1481 struct usb_sg_request *io, 1482 struct usb_device *dev, 1483 unsigned pipe, 1484 unsigned period, 1485 struct scatterlist *sg, 1486 int nents, 1487 size_t length, 1488 gfp_t mem_flags 1489); 1490void usb_sg_cancel(struct usb_sg_request *io); 1491void usb_sg_wait(struct usb_sg_request *io); 1492 1493 1494/* ----------------------------------------------------------------------- */ 1495 1496/* 1497 * For various legacy reasons, Linux has a small cookie that's paired with 1498 * a struct usb_device to identify an endpoint queue. Queue characteristics 1499 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1500 * an unsigned int encoded as: 1501 * 1502 * - direction: bit 7 (0 = Host-to-Device [Out], 1503 * 1 = Device-to-Host [In] ... 1504 * like endpoint bEndpointAddress) 1505 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1506 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1507 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1508 * 10 = control, 11 = bulk) 1509 * 1510 * Given the device address and endpoint descriptor, pipes are redundant. 1511 */ 1512 1513/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1514/* (yet ... they're the values used by usbfs) */ 1515#define PIPE_ISOCHRONOUS 0 1516#define PIPE_INTERRUPT 1 1517#define PIPE_CONTROL 2 1518#define PIPE_BULK 3 1519 1520#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1521#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1522 1523#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1524#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1525 1526#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1527#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1528#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1529#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1530#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1531 1532static inline unsigned int __create_pipe(struct usb_device *dev, 1533 unsigned int endpoint) 1534{ 1535 return (dev->devnum << 8) | (endpoint << 15); 1536} 1537 1538/* Create various pipes... */ 1539#define usb_sndctrlpipe(dev,endpoint) \ 1540 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1541#define usb_rcvctrlpipe(dev,endpoint) \ 1542 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1543#define usb_sndisocpipe(dev,endpoint) \ 1544 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1545#define usb_rcvisocpipe(dev,endpoint) \ 1546 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1547#define usb_sndbulkpipe(dev,endpoint) \ 1548 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1549#define usb_rcvbulkpipe(dev,endpoint) \ 1550 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1551#define usb_sndintpipe(dev,endpoint) \ 1552 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1553#define usb_rcvintpipe(dev,endpoint) \ 1554 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1555 1556/*-------------------------------------------------------------------------*/ 1557 1558static inline __u16 1559usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1560{ 1561 struct usb_host_endpoint *ep; 1562 unsigned epnum = usb_pipeendpoint(pipe); 1563 1564 if (is_out) { 1565 WARN_ON(usb_pipein(pipe)); 1566 ep = udev->ep_out[epnum]; 1567 } else { 1568 WARN_ON(usb_pipeout(pipe)); 1569 ep = udev->ep_in[epnum]; 1570 } 1571 if (!ep) 1572 return 0; 1573 1574 /* NOTE: only 0x07ff bits are for packet size... */ 1575 return le16_to_cpu(ep->desc.wMaxPacketSize); 1576} 1577 1578/* ----------------------------------------------------------------------- */ 1579 1580/* Events from the usb core */ 1581#define USB_DEVICE_ADD 0x0001 1582#define USB_DEVICE_REMOVE 0x0002 1583#define USB_BUS_ADD 0x0003 1584#define USB_BUS_REMOVE 0x0004 1585extern void usb_register_notify(struct notifier_block *nb); 1586extern void usb_unregister_notify(struct notifier_block *nb); 1587 1588#ifdef DEBUG 1589#define dbg(format, arg...) \ 1590 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1591#else 1592#define dbg(format, arg...) \ 1593do { \ 1594 if (0) \ 1595 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1596} while (0) 1597#endif 1598 1599#define err(format, arg...) \ 1600 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg) 1601 1602/* debugfs stuff */ 1603extern struct dentry *usb_debug_root; 1604 1605#endif /* __KERNEL__ */ 1606 1607#endif