at v2.6.34 59 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134}; 135 136#define HAVE_HW_TIME_STAMP 137 138/** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164}; 165 166/** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 atomic_t dataref; 191 unsigned short nr_frags; 192 unsigned short gso_size; 193 /* Warning: this field is not always filled in (UFO)! */ 194 unsigned short gso_segs; 195 unsigned short gso_type; 196 __be32 ip6_frag_id; 197 union skb_shared_tx tx_flags; 198 struct sk_buff *frag_list; 199 struct skb_shared_hwtstamps hwtstamps; 200 skb_frag_t frags[MAX_SKB_FRAGS]; 201 /* Intermediate layers must ensure that destructor_arg 202 * remains valid until skb destructor */ 203 void * destructor_arg; 204}; 205 206/* We divide dataref into two halves. The higher 16 bits hold references 207 * to the payload part of skb->data. The lower 16 bits hold references to 208 * the entire skb->data. A clone of a headerless skb holds the length of 209 * the header in skb->hdr_len. 210 * 211 * All users must obey the rule that the skb->data reference count must be 212 * greater than or equal to the payload reference count. 213 * 214 * Holding a reference to the payload part means that the user does not 215 * care about modifications to the header part of skb->data. 216 */ 217#define SKB_DATAREF_SHIFT 16 218#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 219 220 221enum { 222 SKB_FCLONE_UNAVAILABLE, 223 SKB_FCLONE_ORIG, 224 SKB_FCLONE_CLONE, 225}; 226 227enum { 228 SKB_GSO_TCPV4 = 1 << 0, 229 SKB_GSO_UDP = 1 << 1, 230 231 /* This indicates the skb is from an untrusted source. */ 232 SKB_GSO_DODGY = 1 << 2, 233 234 /* This indicates the tcp segment has CWR set. */ 235 SKB_GSO_TCP_ECN = 1 << 3, 236 237 SKB_GSO_TCPV6 = 1 << 4, 238 239 SKB_GSO_FCOE = 1 << 5, 240}; 241 242#if BITS_PER_LONG > 32 243#define NET_SKBUFF_DATA_USES_OFFSET 1 244#endif 245 246#ifdef NET_SKBUFF_DATA_USES_OFFSET 247typedef unsigned int sk_buff_data_t; 248#else 249typedef unsigned char *sk_buff_data_t; 250#endif 251 252/** 253 * struct sk_buff - socket buffer 254 * @next: Next buffer in list 255 * @prev: Previous buffer in list 256 * @sk: Socket we are owned by 257 * @tstamp: Time we arrived 258 * @dev: Device we arrived on/are leaving by 259 * @transport_header: Transport layer header 260 * @network_header: Network layer header 261 * @mac_header: Link layer header 262 * @_skb_dst: destination entry 263 * @sp: the security path, used for xfrm 264 * @cb: Control buffer. Free for use by every layer. Put private vars here 265 * @len: Length of actual data 266 * @data_len: Data length 267 * @mac_len: Length of link layer header 268 * @hdr_len: writable header length of cloned skb 269 * @csum: Checksum (must include start/offset pair) 270 * @csum_start: Offset from skb->head where checksumming should start 271 * @csum_offset: Offset from csum_start where checksum should be stored 272 * @local_df: allow local fragmentation 273 * @cloned: Head may be cloned (check refcnt to be sure) 274 * @nohdr: Payload reference only, must not modify header 275 * @pkt_type: Packet class 276 * @fclone: skbuff clone status 277 * @ip_summed: Driver fed us an IP checksum 278 * @priority: Packet queueing priority 279 * @users: User count - see {datagram,tcp}.c 280 * @protocol: Packet protocol from driver 281 * @truesize: Buffer size 282 * @head: Head of buffer 283 * @data: Data head pointer 284 * @tail: Tail pointer 285 * @end: End pointer 286 * @destructor: Destruct function 287 * @mark: Generic packet mark 288 * @nfct: Associated connection, if any 289 * @ipvs_property: skbuff is owned by ipvs 290 * @peeked: this packet has been seen already, so stats have been 291 * done for it, don't do them again 292 * @nf_trace: netfilter packet trace flag 293 * @nfctinfo: Relationship of this skb to the connection 294 * @nfct_reasm: netfilter conntrack re-assembly pointer 295 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 296 * @skb_iif: ifindex of device we arrived on 297 * @queue_mapping: Queue mapping for multiqueue devices 298 * @tc_index: Traffic control index 299 * @tc_verd: traffic control verdict 300 * @ndisc_nodetype: router type (from link layer) 301 * @dma_cookie: a cookie to one of several possible DMA operations 302 * done by skb DMA functions 303 * @secmark: security marking 304 * @vlan_tci: vlan tag control information 305 */ 306 307struct sk_buff { 308 /* These two members must be first. */ 309 struct sk_buff *next; 310 struct sk_buff *prev; 311 312 ktime_t tstamp; 313 314 struct sock *sk; 315 struct net_device *dev; 316 317 /* 318 * This is the control buffer. It is free to use for every 319 * layer. Please put your private variables there. If you 320 * want to keep them across layers you have to do a skb_clone() 321 * first. This is owned by whoever has the skb queued ATM. 322 */ 323 char cb[48] __aligned(8); 324 325 unsigned long _skb_dst; 326#ifdef CONFIG_XFRM 327 struct sec_path *sp; 328#endif 329 unsigned int len, 330 data_len; 331 __u16 mac_len, 332 hdr_len; 333 union { 334 __wsum csum; 335 struct { 336 __u16 csum_start; 337 __u16 csum_offset; 338 }; 339 }; 340 __u32 priority; 341 kmemcheck_bitfield_begin(flags1); 342 __u8 local_df:1, 343 cloned:1, 344 ip_summed:2, 345 nohdr:1, 346 nfctinfo:3; 347 __u8 pkt_type:3, 348 fclone:2, 349 ipvs_property:1, 350 peeked:1, 351 nf_trace:1; 352 kmemcheck_bitfield_end(flags1); 353 __be16 protocol; 354 355 void (*destructor)(struct sk_buff *skb); 356#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 357 struct nf_conntrack *nfct; 358 struct sk_buff *nfct_reasm; 359#endif 360#ifdef CONFIG_BRIDGE_NETFILTER 361 struct nf_bridge_info *nf_bridge; 362#endif 363 364 int skb_iif; 365#ifdef CONFIG_NET_SCHED 366 __u16 tc_index; /* traffic control index */ 367#ifdef CONFIG_NET_CLS_ACT 368 __u16 tc_verd; /* traffic control verdict */ 369#endif 370#endif 371 372 kmemcheck_bitfield_begin(flags2); 373 __u16 queue_mapping:16; 374#ifdef CONFIG_IPV6_NDISC_NODETYPE 375 __u8 ndisc_nodetype:2; 376#endif 377 kmemcheck_bitfield_end(flags2); 378 379 /* 0/14 bit hole */ 380 381#ifdef CONFIG_NET_DMA 382 dma_cookie_t dma_cookie; 383#endif 384#ifdef CONFIG_NETWORK_SECMARK 385 __u32 secmark; 386#endif 387 union { 388 __u32 mark; 389 __u32 dropcount; 390 }; 391 392 __u16 vlan_tci; 393 394 sk_buff_data_t transport_header; 395 sk_buff_data_t network_header; 396 sk_buff_data_t mac_header; 397 /* These elements must be at the end, see alloc_skb() for details. */ 398 sk_buff_data_t tail; 399 sk_buff_data_t end; 400 unsigned char *head, 401 *data; 402 unsigned int truesize; 403 atomic_t users; 404}; 405 406#ifdef __KERNEL__ 407/* 408 * Handling routines are only of interest to the kernel 409 */ 410#include <linux/slab.h> 411 412#include <asm/system.h> 413 414static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 415{ 416 return (struct dst_entry *)skb->_skb_dst; 417} 418 419static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 420{ 421 skb->_skb_dst = (unsigned long)dst; 422} 423 424static inline struct rtable *skb_rtable(const struct sk_buff *skb) 425{ 426 return (struct rtable *)skb_dst(skb); 427} 428 429extern void kfree_skb(struct sk_buff *skb); 430extern void consume_skb(struct sk_buff *skb); 431extern void __kfree_skb(struct sk_buff *skb); 432extern struct sk_buff *__alloc_skb(unsigned int size, 433 gfp_t priority, int fclone, int node); 434static inline struct sk_buff *alloc_skb(unsigned int size, 435 gfp_t priority) 436{ 437 return __alloc_skb(size, priority, 0, -1); 438} 439 440static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 441 gfp_t priority) 442{ 443 return __alloc_skb(size, priority, 1, -1); 444} 445 446extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 447 448extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 449extern struct sk_buff *skb_clone(struct sk_buff *skb, 450 gfp_t priority); 451extern struct sk_buff *skb_copy(const struct sk_buff *skb, 452 gfp_t priority); 453extern struct sk_buff *pskb_copy(struct sk_buff *skb, 454 gfp_t gfp_mask); 455extern int pskb_expand_head(struct sk_buff *skb, 456 int nhead, int ntail, 457 gfp_t gfp_mask); 458extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 459 unsigned int headroom); 460extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 461 int newheadroom, int newtailroom, 462 gfp_t priority); 463extern int skb_to_sgvec(struct sk_buff *skb, 464 struct scatterlist *sg, int offset, 465 int len); 466extern int skb_cow_data(struct sk_buff *skb, int tailbits, 467 struct sk_buff **trailer); 468extern int skb_pad(struct sk_buff *skb, int pad); 469#define dev_kfree_skb(a) consume_skb(a) 470#define dev_consume_skb(a) kfree_skb_clean(a) 471extern void skb_over_panic(struct sk_buff *skb, int len, 472 void *here); 473extern void skb_under_panic(struct sk_buff *skb, int len, 474 void *here); 475 476extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 477 int getfrag(void *from, char *to, int offset, 478 int len,int odd, struct sk_buff *skb), 479 void *from, int length); 480 481struct skb_seq_state { 482 __u32 lower_offset; 483 __u32 upper_offset; 484 __u32 frag_idx; 485 __u32 stepped_offset; 486 struct sk_buff *root_skb; 487 struct sk_buff *cur_skb; 488 __u8 *frag_data; 489}; 490 491extern void skb_prepare_seq_read(struct sk_buff *skb, 492 unsigned int from, unsigned int to, 493 struct skb_seq_state *st); 494extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 495 struct skb_seq_state *st); 496extern void skb_abort_seq_read(struct skb_seq_state *st); 497 498extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 499 unsigned int to, struct ts_config *config, 500 struct ts_state *state); 501 502#ifdef NET_SKBUFF_DATA_USES_OFFSET 503static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 504{ 505 return skb->head + skb->end; 506} 507#else 508static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 509{ 510 return skb->end; 511} 512#endif 513 514/* Internal */ 515#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 516 517static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 518{ 519 return &skb_shinfo(skb)->hwtstamps; 520} 521 522static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 523{ 524 return &skb_shinfo(skb)->tx_flags; 525} 526 527/** 528 * skb_queue_empty - check if a queue is empty 529 * @list: queue head 530 * 531 * Returns true if the queue is empty, false otherwise. 532 */ 533static inline int skb_queue_empty(const struct sk_buff_head *list) 534{ 535 return list->next == (struct sk_buff *)list; 536} 537 538/** 539 * skb_queue_is_last - check if skb is the last entry in the queue 540 * @list: queue head 541 * @skb: buffer 542 * 543 * Returns true if @skb is the last buffer on the list. 544 */ 545static inline bool skb_queue_is_last(const struct sk_buff_head *list, 546 const struct sk_buff *skb) 547{ 548 return (skb->next == (struct sk_buff *) list); 549} 550 551/** 552 * skb_queue_is_first - check if skb is the first entry in the queue 553 * @list: queue head 554 * @skb: buffer 555 * 556 * Returns true if @skb is the first buffer on the list. 557 */ 558static inline bool skb_queue_is_first(const struct sk_buff_head *list, 559 const struct sk_buff *skb) 560{ 561 return (skb->prev == (struct sk_buff *) list); 562} 563 564/** 565 * skb_queue_next - return the next packet in the queue 566 * @list: queue head 567 * @skb: current buffer 568 * 569 * Return the next packet in @list after @skb. It is only valid to 570 * call this if skb_queue_is_last() evaluates to false. 571 */ 572static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 573 const struct sk_buff *skb) 574{ 575 /* This BUG_ON may seem severe, but if we just return then we 576 * are going to dereference garbage. 577 */ 578 BUG_ON(skb_queue_is_last(list, skb)); 579 return skb->next; 580} 581 582/** 583 * skb_queue_prev - return the prev packet in the queue 584 * @list: queue head 585 * @skb: current buffer 586 * 587 * Return the prev packet in @list before @skb. It is only valid to 588 * call this if skb_queue_is_first() evaluates to false. 589 */ 590static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 591 const struct sk_buff *skb) 592{ 593 /* This BUG_ON may seem severe, but if we just return then we 594 * are going to dereference garbage. 595 */ 596 BUG_ON(skb_queue_is_first(list, skb)); 597 return skb->prev; 598} 599 600/** 601 * skb_get - reference buffer 602 * @skb: buffer to reference 603 * 604 * Makes another reference to a socket buffer and returns a pointer 605 * to the buffer. 606 */ 607static inline struct sk_buff *skb_get(struct sk_buff *skb) 608{ 609 atomic_inc(&skb->users); 610 return skb; 611} 612 613/* 614 * If users == 1, we are the only owner and are can avoid redundant 615 * atomic change. 616 */ 617 618/** 619 * skb_cloned - is the buffer a clone 620 * @skb: buffer to check 621 * 622 * Returns true if the buffer was generated with skb_clone() and is 623 * one of multiple shared copies of the buffer. Cloned buffers are 624 * shared data so must not be written to under normal circumstances. 625 */ 626static inline int skb_cloned(const struct sk_buff *skb) 627{ 628 return skb->cloned && 629 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 630} 631 632/** 633 * skb_header_cloned - is the header a clone 634 * @skb: buffer to check 635 * 636 * Returns true if modifying the header part of the buffer requires 637 * the data to be copied. 638 */ 639static inline int skb_header_cloned(const struct sk_buff *skb) 640{ 641 int dataref; 642 643 if (!skb->cloned) 644 return 0; 645 646 dataref = atomic_read(&skb_shinfo(skb)->dataref); 647 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 648 return dataref != 1; 649} 650 651/** 652 * skb_header_release - release reference to header 653 * @skb: buffer to operate on 654 * 655 * Drop a reference to the header part of the buffer. This is done 656 * by acquiring a payload reference. You must not read from the header 657 * part of skb->data after this. 658 */ 659static inline void skb_header_release(struct sk_buff *skb) 660{ 661 BUG_ON(skb->nohdr); 662 skb->nohdr = 1; 663 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 664} 665 666/** 667 * skb_shared - is the buffer shared 668 * @skb: buffer to check 669 * 670 * Returns true if more than one person has a reference to this 671 * buffer. 672 */ 673static inline int skb_shared(const struct sk_buff *skb) 674{ 675 return atomic_read(&skb->users) != 1; 676} 677 678/** 679 * skb_share_check - check if buffer is shared and if so clone it 680 * @skb: buffer to check 681 * @pri: priority for memory allocation 682 * 683 * If the buffer is shared the buffer is cloned and the old copy 684 * drops a reference. A new clone with a single reference is returned. 685 * If the buffer is not shared the original buffer is returned. When 686 * being called from interrupt status or with spinlocks held pri must 687 * be GFP_ATOMIC. 688 * 689 * NULL is returned on a memory allocation failure. 690 */ 691static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 692 gfp_t pri) 693{ 694 might_sleep_if(pri & __GFP_WAIT); 695 if (skb_shared(skb)) { 696 struct sk_buff *nskb = skb_clone(skb, pri); 697 kfree_skb(skb); 698 skb = nskb; 699 } 700 return skb; 701} 702 703/* 704 * Copy shared buffers into a new sk_buff. We effectively do COW on 705 * packets to handle cases where we have a local reader and forward 706 * and a couple of other messy ones. The normal one is tcpdumping 707 * a packet thats being forwarded. 708 */ 709 710/** 711 * skb_unshare - make a copy of a shared buffer 712 * @skb: buffer to check 713 * @pri: priority for memory allocation 714 * 715 * If the socket buffer is a clone then this function creates a new 716 * copy of the data, drops a reference count on the old copy and returns 717 * the new copy with the reference count at 1. If the buffer is not a clone 718 * the original buffer is returned. When called with a spinlock held or 719 * from interrupt state @pri must be %GFP_ATOMIC 720 * 721 * %NULL is returned on a memory allocation failure. 722 */ 723static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 724 gfp_t pri) 725{ 726 might_sleep_if(pri & __GFP_WAIT); 727 if (skb_cloned(skb)) { 728 struct sk_buff *nskb = skb_copy(skb, pri); 729 kfree_skb(skb); /* Free our shared copy */ 730 skb = nskb; 731 } 732 return skb; 733} 734 735/** 736 * skb_peek - peek at the head of an &sk_buff_head 737 * @list_: list to peek at 738 * 739 * Peek an &sk_buff. Unlike most other operations you _MUST_ 740 * be careful with this one. A peek leaves the buffer on the 741 * list and someone else may run off with it. You must hold 742 * the appropriate locks or have a private queue to do this. 743 * 744 * Returns %NULL for an empty list or a pointer to the head element. 745 * The reference count is not incremented and the reference is therefore 746 * volatile. Use with caution. 747 */ 748static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 749{ 750 struct sk_buff *list = ((struct sk_buff *)list_)->next; 751 if (list == (struct sk_buff *)list_) 752 list = NULL; 753 return list; 754} 755 756/** 757 * skb_peek_tail - peek at the tail of an &sk_buff_head 758 * @list_: list to peek at 759 * 760 * Peek an &sk_buff. Unlike most other operations you _MUST_ 761 * be careful with this one. A peek leaves the buffer on the 762 * list and someone else may run off with it. You must hold 763 * the appropriate locks or have a private queue to do this. 764 * 765 * Returns %NULL for an empty list or a pointer to the tail element. 766 * The reference count is not incremented and the reference is therefore 767 * volatile. Use with caution. 768 */ 769static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 770{ 771 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 772 if (list == (struct sk_buff *)list_) 773 list = NULL; 774 return list; 775} 776 777/** 778 * skb_queue_len - get queue length 779 * @list_: list to measure 780 * 781 * Return the length of an &sk_buff queue. 782 */ 783static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 784{ 785 return list_->qlen; 786} 787 788/** 789 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 790 * @list: queue to initialize 791 * 792 * This initializes only the list and queue length aspects of 793 * an sk_buff_head object. This allows to initialize the list 794 * aspects of an sk_buff_head without reinitializing things like 795 * the spinlock. It can also be used for on-stack sk_buff_head 796 * objects where the spinlock is known to not be used. 797 */ 798static inline void __skb_queue_head_init(struct sk_buff_head *list) 799{ 800 list->prev = list->next = (struct sk_buff *)list; 801 list->qlen = 0; 802} 803 804/* 805 * This function creates a split out lock class for each invocation; 806 * this is needed for now since a whole lot of users of the skb-queue 807 * infrastructure in drivers have different locking usage (in hardirq) 808 * than the networking core (in softirq only). In the long run either the 809 * network layer or drivers should need annotation to consolidate the 810 * main types of usage into 3 classes. 811 */ 812static inline void skb_queue_head_init(struct sk_buff_head *list) 813{ 814 spin_lock_init(&list->lock); 815 __skb_queue_head_init(list); 816} 817 818static inline void skb_queue_head_init_class(struct sk_buff_head *list, 819 struct lock_class_key *class) 820{ 821 skb_queue_head_init(list); 822 lockdep_set_class(&list->lock, class); 823} 824 825/* 826 * Insert an sk_buff on a list. 827 * 828 * The "__skb_xxxx()" functions are the non-atomic ones that 829 * can only be called with interrupts disabled. 830 */ 831extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 832static inline void __skb_insert(struct sk_buff *newsk, 833 struct sk_buff *prev, struct sk_buff *next, 834 struct sk_buff_head *list) 835{ 836 newsk->next = next; 837 newsk->prev = prev; 838 next->prev = prev->next = newsk; 839 list->qlen++; 840} 841 842static inline void __skb_queue_splice(const struct sk_buff_head *list, 843 struct sk_buff *prev, 844 struct sk_buff *next) 845{ 846 struct sk_buff *first = list->next; 847 struct sk_buff *last = list->prev; 848 849 first->prev = prev; 850 prev->next = first; 851 852 last->next = next; 853 next->prev = last; 854} 855 856/** 857 * skb_queue_splice - join two skb lists, this is designed for stacks 858 * @list: the new list to add 859 * @head: the place to add it in the first list 860 */ 861static inline void skb_queue_splice(const struct sk_buff_head *list, 862 struct sk_buff_head *head) 863{ 864 if (!skb_queue_empty(list)) { 865 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 866 head->qlen += list->qlen; 867 } 868} 869 870/** 871 * skb_queue_splice - join two skb lists and reinitialise the emptied list 872 * @list: the new list to add 873 * @head: the place to add it in the first list 874 * 875 * The list at @list is reinitialised 876 */ 877static inline void skb_queue_splice_init(struct sk_buff_head *list, 878 struct sk_buff_head *head) 879{ 880 if (!skb_queue_empty(list)) { 881 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 882 head->qlen += list->qlen; 883 __skb_queue_head_init(list); 884 } 885} 886 887/** 888 * skb_queue_splice_tail - join two skb lists, each list being a queue 889 * @list: the new list to add 890 * @head: the place to add it in the first list 891 */ 892static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 893 struct sk_buff_head *head) 894{ 895 if (!skb_queue_empty(list)) { 896 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 897 head->qlen += list->qlen; 898 } 899} 900 901/** 902 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 903 * @list: the new list to add 904 * @head: the place to add it in the first list 905 * 906 * Each of the lists is a queue. 907 * The list at @list is reinitialised 908 */ 909static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 910 struct sk_buff_head *head) 911{ 912 if (!skb_queue_empty(list)) { 913 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 914 head->qlen += list->qlen; 915 __skb_queue_head_init(list); 916 } 917} 918 919/** 920 * __skb_queue_after - queue a buffer at the list head 921 * @list: list to use 922 * @prev: place after this buffer 923 * @newsk: buffer to queue 924 * 925 * Queue a buffer int the middle of a list. This function takes no locks 926 * and you must therefore hold required locks before calling it. 927 * 928 * A buffer cannot be placed on two lists at the same time. 929 */ 930static inline void __skb_queue_after(struct sk_buff_head *list, 931 struct sk_buff *prev, 932 struct sk_buff *newsk) 933{ 934 __skb_insert(newsk, prev, prev->next, list); 935} 936 937extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 938 struct sk_buff_head *list); 939 940static inline void __skb_queue_before(struct sk_buff_head *list, 941 struct sk_buff *next, 942 struct sk_buff *newsk) 943{ 944 __skb_insert(newsk, next->prev, next, list); 945} 946 947/** 948 * __skb_queue_head - queue a buffer at the list head 949 * @list: list to use 950 * @newsk: buffer to queue 951 * 952 * Queue a buffer at the start of a list. This function takes no locks 953 * and you must therefore hold required locks before calling it. 954 * 955 * A buffer cannot be placed on two lists at the same time. 956 */ 957extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 958static inline void __skb_queue_head(struct sk_buff_head *list, 959 struct sk_buff *newsk) 960{ 961 __skb_queue_after(list, (struct sk_buff *)list, newsk); 962} 963 964/** 965 * __skb_queue_tail - queue a buffer at the list tail 966 * @list: list to use 967 * @newsk: buffer to queue 968 * 969 * Queue a buffer at the end of a list. This function takes no locks 970 * and you must therefore hold required locks before calling it. 971 * 972 * A buffer cannot be placed on two lists at the same time. 973 */ 974extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 975static inline void __skb_queue_tail(struct sk_buff_head *list, 976 struct sk_buff *newsk) 977{ 978 __skb_queue_before(list, (struct sk_buff *)list, newsk); 979} 980 981/* 982 * remove sk_buff from list. _Must_ be called atomically, and with 983 * the list known.. 984 */ 985extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 986static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 987{ 988 struct sk_buff *next, *prev; 989 990 list->qlen--; 991 next = skb->next; 992 prev = skb->prev; 993 skb->next = skb->prev = NULL; 994 next->prev = prev; 995 prev->next = next; 996} 997 998/** 999 * __skb_dequeue - remove from the head of the queue 1000 * @list: list to dequeue from 1001 * 1002 * Remove the head of the list. This function does not take any locks 1003 * so must be used with appropriate locks held only. The head item is 1004 * returned or %NULL if the list is empty. 1005 */ 1006extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1007static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1008{ 1009 struct sk_buff *skb = skb_peek(list); 1010 if (skb) 1011 __skb_unlink(skb, list); 1012 return skb; 1013} 1014 1015/** 1016 * __skb_dequeue_tail - remove from the tail of the queue 1017 * @list: list to dequeue from 1018 * 1019 * Remove the tail of the list. This function does not take any locks 1020 * so must be used with appropriate locks held only. The tail item is 1021 * returned or %NULL if the list is empty. 1022 */ 1023extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1024static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1025{ 1026 struct sk_buff *skb = skb_peek_tail(list); 1027 if (skb) 1028 __skb_unlink(skb, list); 1029 return skb; 1030} 1031 1032 1033static inline int skb_is_nonlinear(const struct sk_buff *skb) 1034{ 1035 return skb->data_len; 1036} 1037 1038static inline unsigned int skb_headlen(const struct sk_buff *skb) 1039{ 1040 return skb->len - skb->data_len; 1041} 1042 1043static inline int skb_pagelen(const struct sk_buff *skb) 1044{ 1045 int i, len = 0; 1046 1047 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1048 len += skb_shinfo(skb)->frags[i].size; 1049 return len + skb_headlen(skb); 1050} 1051 1052static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1053 struct page *page, int off, int size) 1054{ 1055 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1056 1057 frag->page = page; 1058 frag->page_offset = off; 1059 frag->size = size; 1060 skb_shinfo(skb)->nr_frags = i + 1; 1061} 1062 1063extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1064 int off, int size); 1065 1066#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1067#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1068#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1069 1070#ifdef NET_SKBUFF_DATA_USES_OFFSET 1071static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1072{ 1073 return skb->head + skb->tail; 1074} 1075 1076static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1077{ 1078 skb->tail = skb->data - skb->head; 1079} 1080 1081static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1082{ 1083 skb_reset_tail_pointer(skb); 1084 skb->tail += offset; 1085} 1086#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1087static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1088{ 1089 return skb->tail; 1090} 1091 1092static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1093{ 1094 skb->tail = skb->data; 1095} 1096 1097static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1098{ 1099 skb->tail = skb->data + offset; 1100} 1101 1102#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1103 1104/* 1105 * Add data to an sk_buff 1106 */ 1107extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1108static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1109{ 1110 unsigned char *tmp = skb_tail_pointer(skb); 1111 SKB_LINEAR_ASSERT(skb); 1112 skb->tail += len; 1113 skb->len += len; 1114 return tmp; 1115} 1116 1117extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1118static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1119{ 1120 skb->data -= len; 1121 skb->len += len; 1122 return skb->data; 1123} 1124 1125extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1126static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1127{ 1128 skb->len -= len; 1129 BUG_ON(skb->len < skb->data_len); 1130 return skb->data += len; 1131} 1132 1133extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1134 1135static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1136{ 1137 if (len > skb_headlen(skb) && 1138 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1139 return NULL; 1140 skb->len -= len; 1141 return skb->data += len; 1142} 1143 1144static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1145{ 1146 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1147} 1148 1149static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1150{ 1151 if (likely(len <= skb_headlen(skb))) 1152 return 1; 1153 if (unlikely(len > skb->len)) 1154 return 0; 1155 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1156} 1157 1158/** 1159 * skb_headroom - bytes at buffer head 1160 * @skb: buffer to check 1161 * 1162 * Return the number of bytes of free space at the head of an &sk_buff. 1163 */ 1164static inline unsigned int skb_headroom(const struct sk_buff *skb) 1165{ 1166 return skb->data - skb->head; 1167} 1168 1169/** 1170 * skb_tailroom - bytes at buffer end 1171 * @skb: buffer to check 1172 * 1173 * Return the number of bytes of free space at the tail of an sk_buff 1174 */ 1175static inline int skb_tailroom(const struct sk_buff *skb) 1176{ 1177 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1178} 1179 1180/** 1181 * skb_reserve - adjust headroom 1182 * @skb: buffer to alter 1183 * @len: bytes to move 1184 * 1185 * Increase the headroom of an empty &sk_buff by reducing the tail 1186 * room. This is only allowed for an empty buffer. 1187 */ 1188static inline void skb_reserve(struct sk_buff *skb, int len) 1189{ 1190 skb->data += len; 1191 skb->tail += len; 1192} 1193 1194#ifdef NET_SKBUFF_DATA_USES_OFFSET 1195static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1196{ 1197 return skb->head + skb->transport_header; 1198} 1199 1200static inline void skb_reset_transport_header(struct sk_buff *skb) 1201{ 1202 skb->transport_header = skb->data - skb->head; 1203} 1204 1205static inline void skb_set_transport_header(struct sk_buff *skb, 1206 const int offset) 1207{ 1208 skb_reset_transport_header(skb); 1209 skb->transport_header += offset; 1210} 1211 1212static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1213{ 1214 return skb->head + skb->network_header; 1215} 1216 1217static inline void skb_reset_network_header(struct sk_buff *skb) 1218{ 1219 skb->network_header = skb->data - skb->head; 1220} 1221 1222static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1223{ 1224 skb_reset_network_header(skb); 1225 skb->network_header += offset; 1226} 1227 1228static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1229{ 1230 return skb->head + skb->mac_header; 1231} 1232 1233static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1234{ 1235 return skb->mac_header != ~0U; 1236} 1237 1238static inline void skb_reset_mac_header(struct sk_buff *skb) 1239{ 1240 skb->mac_header = skb->data - skb->head; 1241} 1242 1243static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1244{ 1245 skb_reset_mac_header(skb); 1246 skb->mac_header += offset; 1247} 1248 1249#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1250 1251static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1252{ 1253 return skb->transport_header; 1254} 1255 1256static inline void skb_reset_transport_header(struct sk_buff *skb) 1257{ 1258 skb->transport_header = skb->data; 1259} 1260 1261static inline void skb_set_transport_header(struct sk_buff *skb, 1262 const int offset) 1263{ 1264 skb->transport_header = skb->data + offset; 1265} 1266 1267static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1268{ 1269 return skb->network_header; 1270} 1271 1272static inline void skb_reset_network_header(struct sk_buff *skb) 1273{ 1274 skb->network_header = skb->data; 1275} 1276 1277static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1278{ 1279 skb->network_header = skb->data + offset; 1280} 1281 1282static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1283{ 1284 return skb->mac_header; 1285} 1286 1287static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1288{ 1289 return skb->mac_header != NULL; 1290} 1291 1292static inline void skb_reset_mac_header(struct sk_buff *skb) 1293{ 1294 skb->mac_header = skb->data; 1295} 1296 1297static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1298{ 1299 skb->mac_header = skb->data + offset; 1300} 1301#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1302 1303static inline int skb_transport_offset(const struct sk_buff *skb) 1304{ 1305 return skb_transport_header(skb) - skb->data; 1306} 1307 1308static inline u32 skb_network_header_len(const struct sk_buff *skb) 1309{ 1310 return skb->transport_header - skb->network_header; 1311} 1312 1313static inline int skb_network_offset(const struct sk_buff *skb) 1314{ 1315 return skb_network_header(skb) - skb->data; 1316} 1317 1318/* 1319 * CPUs often take a performance hit when accessing unaligned memory 1320 * locations. The actual performance hit varies, it can be small if the 1321 * hardware handles it or large if we have to take an exception and fix it 1322 * in software. 1323 * 1324 * Since an ethernet header is 14 bytes network drivers often end up with 1325 * the IP header at an unaligned offset. The IP header can be aligned by 1326 * shifting the start of the packet by 2 bytes. Drivers should do this 1327 * with: 1328 * 1329 * skb_reserve(skb, NET_IP_ALIGN); 1330 * 1331 * The downside to this alignment of the IP header is that the DMA is now 1332 * unaligned. On some architectures the cost of an unaligned DMA is high 1333 * and this cost outweighs the gains made by aligning the IP header. 1334 * 1335 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1336 * to be overridden. 1337 */ 1338#ifndef NET_IP_ALIGN 1339#define NET_IP_ALIGN 2 1340#endif 1341 1342/* 1343 * The networking layer reserves some headroom in skb data (via 1344 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1345 * the header has to grow. In the default case, if the header has to grow 1346 * 32 bytes or less we avoid the reallocation. 1347 * 1348 * Unfortunately this headroom changes the DMA alignment of the resulting 1349 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1350 * on some architectures. An architecture can override this value, 1351 * perhaps setting it to a cacheline in size (since that will maintain 1352 * cacheline alignment of the DMA). It must be a power of 2. 1353 * 1354 * Various parts of the networking layer expect at least 32 bytes of 1355 * headroom, you should not reduce this. 1356 */ 1357#ifndef NET_SKB_PAD 1358#define NET_SKB_PAD 32 1359#endif 1360 1361extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1362 1363static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1364{ 1365 if (unlikely(skb->data_len)) { 1366 WARN_ON(1); 1367 return; 1368 } 1369 skb->len = len; 1370 skb_set_tail_pointer(skb, len); 1371} 1372 1373extern void skb_trim(struct sk_buff *skb, unsigned int len); 1374 1375static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1376{ 1377 if (skb->data_len) 1378 return ___pskb_trim(skb, len); 1379 __skb_trim(skb, len); 1380 return 0; 1381} 1382 1383static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1384{ 1385 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1386} 1387 1388/** 1389 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1390 * @skb: buffer to alter 1391 * @len: new length 1392 * 1393 * This is identical to pskb_trim except that the caller knows that 1394 * the skb is not cloned so we should never get an error due to out- 1395 * of-memory. 1396 */ 1397static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1398{ 1399 int err = pskb_trim(skb, len); 1400 BUG_ON(err); 1401} 1402 1403/** 1404 * skb_orphan - orphan a buffer 1405 * @skb: buffer to orphan 1406 * 1407 * If a buffer currently has an owner then we call the owner's 1408 * destructor function and make the @skb unowned. The buffer continues 1409 * to exist but is no longer charged to its former owner. 1410 */ 1411static inline void skb_orphan(struct sk_buff *skb) 1412{ 1413 if (skb->destructor) 1414 skb->destructor(skb); 1415 skb->destructor = NULL; 1416 skb->sk = NULL; 1417} 1418 1419/** 1420 * __skb_queue_purge - empty a list 1421 * @list: list to empty 1422 * 1423 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1424 * the list and one reference dropped. This function does not take the 1425 * list lock and the caller must hold the relevant locks to use it. 1426 */ 1427extern void skb_queue_purge(struct sk_buff_head *list); 1428static inline void __skb_queue_purge(struct sk_buff_head *list) 1429{ 1430 struct sk_buff *skb; 1431 while ((skb = __skb_dequeue(list)) != NULL) 1432 kfree_skb(skb); 1433} 1434 1435/** 1436 * __dev_alloc_skb - allocate an skbuff for receiving 1437 * @length: length to allocate 1438 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1439 * 1440 * Allocate a new &sk_buff and assign it a usage count of one. The 1441 * buffer has unspecified headroom built in. Users should allocate 1442 * the headroom they think they need without accounting for the 1443 * built in space. The built in space is used for optimisations. 1444 * 1445 * %NULL is returned if there is no free memory. 1446 */ 1447static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1448 gfp_t gfp_mask) 1449{ 1450 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1451 if (likely(skb)) 1452 skb_reserve(skb, NET_SKB_PAD); 1453 return skb; 1454} 1455 1456extern struct sk_buff *dev_alloc_skb(unsigned int length); 1457 1458extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1459 unsigned int length, gfp_t gfp_mask); 1460 1461/** 1462 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1463 * @dev: network device to receive on 1464 * @length: length to allocate 1465 * 1466 * Allocate a new &sk_buff and assign it a usage count of one. The 1467 * buffer has unspecified headroom built in. Users should allocate 1468 * the headroom they think they need without accounting for the 1469 * built in space. The built in space is used for optimisations. 1470 * 1471 * %NULL is returned if there is no free memory. Although this function 1472 * allocates memory it can be called from an interrupt. 1473 */ 1474static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1475 unsigned int length) 1476{ 1477 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1478} 1479 1480static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1481 unsigned int length) 1482{ 1483 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1484 1485 if (NET_IP_ALIGN && skb) 1486 skb_reserve(skb, NET_IP_ALIGN); 1487 return skb; 1488} 1489 1490extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1491 1492/** 1493 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1494 * @dev: network device to receive on 1495 * 1496 * Allocate a new page node local to the specified device. 1497 * 1498 * %NULL is returned if there is no free memory. 1499 */ 1500static inline struct page *netdev_alloc_page(struct net_device *dev) 1501{ 1502 return __netdev_alloc_page(dev, GFP_ATOMIC); 1503} 1504 1505static inline void netdev_free_page(struct net_device *dev, struct page *page) 1506{ 1507 __free_page(page); 1508} 1509 1510/** 1511 * skb_clone_writable - is the header of a clone writable 1512 * @skb: buffer to check 1513 * @len: length up to which to write 1514 * 1515 * Returns true if modifying the header part of the cloned buffer 1516 * does not requires the data to be copied. 1517 */ 1518static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1519{ 1520 return !skb_header_cloned(skb) && 1521 skb_headroom(skb) + len <= skb->hdr_len; 1522} 1523 1524static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1525 int cloned) 1526{ 1527 int delta = 0; 1528 1529 if (headroom < NET_SKB_PAD) 1530 headroom = NET_SKB_PAD; 1531 if (headroom > skb_headroom(skb)) 1532 delta = headroom - skb_headroom(skb); 1533 1534 if (delta || cloned) 1535 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1536 GFP_ATOMIC); 1537 return 0; 1538} 1539 1540/** 1541 * skb_cow - copy header of skb when it is required 1542 * @skb: buffer to cow 1543 * @headroom: needed headroom 1544 * 1545 * If the skb passed lacks sufficient headroom or its data part 1546 * is shared, data is reallocated. If reallocation fails, an error 1547 * is returned and original skb is not changed. 1548 * 1549 * The result is skb with writable area skb->head...skb->tail 1550 * and at least @headroom of space at head. 1551 */ 1552static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1553{ 1554 return __skb_cow(skb, headroom, skb_cloned(skb)); 1555} 1556 1557/** 1558 * skb_cow_head - skb_cow but only making the head writable 1559 * @skb: buffer to cow 1560 * @headroom: needed headroom 1561 * 1562 * This function is identical to skb_cow except that we replace the 1563 * skb_cloned check by skb_header_cloned. It should be used when 1564 * you only need to push on some header and do not need to modify 1565 * the data. 1566 */ 1567static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1568{ 1569 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1570} 1571 1572/** 1573 * skb_padto - pad an skbuff up to a minimal size 1574 * @skb: buffer to pad 1575 * @len: minimal length 1576 * 1577 * Pads up a buffer to ensure the trailing bytes exist and are 1578 * blanked. If the buffer already contains sufficient data it 1579 * is untouched. Otherwise it is extended. Returns zero on 1580 * success. The skb is freed on error. 1581 */ 1582 1583static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1584{ 1585 unsigned int size = skb->len; 1586 if (likely(size >= len)) 1587 return 0; 1588 return skb_pad(skb, len - size); 1589} 1590 1591static inline int skb_add_data(struct sk_buff *skb, 1592 char __user *from, int copy) 1593{ 1594 const int off = skb->len; 1595 1596 if (skb->ip_summed == CHECKSUM_NONE) { 1597 int err = 0; 1598 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1599 copy, 0, &err); 1600 if (!err) { 1601 skb->csum = csum_block_add(skb->csum, csum, off); 1602 return 0; 1603 } 1604 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1605 return 0; 1606 1607 __skb_trim(skb, off); 1608 return -EFAULT; 1609} 1610 1611static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1612 struct page *page, int off) 1613{ 1614 if (i) { 1615 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1616 1617 return page == frag->page && 1618 off == frag->page_offset + frag->size; 1619 } 1620 return 0; 1621} 1622 1623static inline int __skb_linearize(struct sk_buff *skb) 1624{ 1625 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1626} 1627 1628/** 1629 * skb_linearize - convert paged skb to linear one 1630 * @skb: buffer to linarize 1631 * 1632 * If there is no free memory -ENOMEM is returned, otherwise zero 1633 * is returned and the old skb data released. 1634 */ 1635static inline int skb_linearize(struct sk_buff *skb) 1636{ 1637 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1638} 1639 1640/** 1641 * skb_linearize_cow - make sure skb is linear and writable 1642 * @skb: buffer to process 1643 * 1644 * If there is no free memory -ENOMEM is returned, otherwise zero 1645 * is returned and the old skb data released. 1646 */ 1647static inline int skb_linearize_cow(struct sk_buff *skb) 1648{ 1649 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1650 __skb_linearize(skb) : 0; 1651} 1652 1653/** 1654 * skb_postpull_rcsum - update checksum for received skb after pull 1655 * @skb: buffer to update 1656 * @start: start of data before pull 1657 * @len: length of data pulled 1658 * 1659 * After doing a pull on a received packet, you need to call this to 1660 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1661 * CHECKSUM_NONE so that it can be recomputed from scratch. 1662 */ 1663 1664static inline void skb_postpull_rcsum(struct sk_buff *skb, 1665 const void *start, unsigned int len) 1666{ 1667 if (skb->ip_summed == CHECKSUM_COMPLETE) 1668 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1669} 1670 1671unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1672 1673/** 1674 * pskb_trim_rcsum - trim received skb and update checksum 1675 * @skb: buffer to trim 1676 * @len: new length 1677 * 1678 * This is exactly the same as pskb_trim except that it ensures the 1679 * checksum of received packets are still valid after the operation. 1680 */ 1681 1682static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1683{ 1684 if (likely(len >= skb->len)) 1685 return 0; 1686 if (skb->ip_summed == CHECKSUM_COMPLETE) 1687 skb->ip_summed = CHECKSUM_NONE; 1688 return __pskb_trim(skb, len); 1689} 1690 1691#define skb_queue_walk(queue, skb) \ 1692 for (skb = (queue)->next; \ 1693 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1694 skb = skb->next) 1695 1696#define skb_queue_walk_safe(queue, skb, tmp) \ 1697 for (skb = (queue)->next, tmp = skb->next; \ 1698 skb != (struct sk_buff *)(queue); \ 1699 skb = tmp, tmp = skb->next) 1700 1701#define skb_queue_walk_from(queue, skb) \ 1702 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1703 skb = skb->next) 1704 1705#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1706 for (tmp = skb->next; \ 1707 skb != (struct sk_buff *)(queue); \ 1708 skb = tmp, tmp = skb->next) 1709 1710#define skb_queue_reverse_walk(queue, skb) \ 1711 for (skb = (queue)->prev; \ 1712 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1713 skb = skb->prev) 1714 1715 1716static inline bool skb_has_frags(const struct sk_buff *skb) 1717{ 1718 return skb_shinfo(skb)->frag_list != NULL; 1719} 1720 1721static inline void skb_frag_list_init(struct sk_buff *skb) 1722{ 1723 skb_shinfo(skb)->frag_list = NULL; 1724} 1725 1726static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1727{ 1728 frag->next = skb_shinfo(skb)->frag_list; 1729 skb_shinfo(skb)->frag_list = frag; 1730} 1731 1732#define skb_walk_frags(skb, iter) \ 1733 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1734 1735extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1736 int *peeked, int *err); 1737extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1738 int noblock, int *err); 1739extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1740 struct poll_table_struct *wait); 1741extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1742 int offset, struct iovec *to, 1743 int size); 1744extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1745 int hlen, 1746 struct iovec *iov); 1747extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1748 int offset, 1749 const struct iovec *from, 1750 int from_offset, 1751 int len); 1752extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1753 int offset, 1754 const struct iovec *to, 1755 int to_offset, 1756 int size); 1757extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1758extern void skb_free_datagram_locked(struct sock *sk, 1759 struct sk_buff *skb); 1760extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1761 unsigned int flags); 1762extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1763 int len, __wsum csum); 1764extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1765 void *to, int len); 1766extern int skb_store_bits(struct sk_buff *skb, int offset, 1767 const void *from, int len); 1768extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1769 int offset, u8 *to, int len, 1770 __wsum csum); 1771extern int skb_splice_bits(struct sk_buff *skb, 1772 unsigned int offset, 1773 struct pipe_inode_info *pipe, 1774 unsigned int len, 1775 unsigned int flags); 1776extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1777extern void skb_split(struct sk_buff *skb, 1778 struct sk_buff *skb1, const u32 len); 1779extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1780 int shiftlen); 1781 1782extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1783 1784static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1785 int len, void *buffer) 1786{ 1787 int hlen = skb_headlen(skb); 1788 1789 if (hlen - offset >= len) 1790 return skb->data + offset; 1791 1792 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1793 return NULL; 1794 1795 return buffer; 1796} 1797 1798static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1799 void *to, 1800 const unsigned int len) 1801{ 1802 memcpy(to, skb->data, len); 1803} 1804 1805static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1806 const int offset, void *to, 1807 const unsigned int len) 1808{ 1809 memcpy(to, skb->data + offset, len); 1810} 1811 1812static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1813 const void *from, 1814 const unsigned int len) 1815{ 1816 memcpy(skb->data, from, len); 1817} 1818 1819static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1820 const int offset, 1821 const void *from, 1822 const unsigned int len) 1823{ 1824 memcpy(skb->data + offset, from, len); 1825} 1826 1827extern void skb_init(void); 1828 1829static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1830{ 1831 return skb->tstamp; 1832} 1833 1834/** 1835 * skb_get_timestamp - get timestamp from a skb 1836 * @skb: skb to get stamp from 1837 * @stamp: pointer to struct timeval to store stamp in 1838 * 1839 * Timestamps are stored in the skb as offsets to a base timestamp. 1840 * This function converts the offset back to a struct timeval and stores 1841 * it in stamp. 1842 */ 1843static inline void skb_get_timestamp(const struct sk_buff *skb, 1844 struct timeval *stamp) 1845{ 1846 *stamp = ktime_to_timeval(skb->tstamp); 1847} 1848 1849static inline void skb_get_timestampns(const struct sk_buff *skb, 1850 struct timespec *stamp) 1851{ 1852 *stamp = ktime_to_timespec(skb->tstamp); 1853} 1854 1855static inline void __net_timestamp(struct sk_buff *skb) 1856{ 1857 skb->tstamp = ktime_get_real(); 1858} 1859 1860static inline ktime_t net_timedelta(ktime_t t) 1861{ 1862 return ktime_sub(ktime_get_real(), t); 1863} 1864 1865static inline ktime_t net_invalid_timestamp(void) 1866{ 1867 return ktime_set(0, 0); 1868} 1869 1870/** 1871 * skb_tstamp_tx - queue clone of skb with send time stamps 1872 * @orig_skb: the original outgoing packet 1873 * @hwtstamps: hardware time stamps, may be NULL if not available 1874 * 1875 * If the skb has a socket associated, then this function clones the 1876 * skb (thus sharing the actual data and optional structures), stores 1877 * the optional hardware time stamping information (if non NULL) or 1878 * generates a software time stamp (otherwise), then queues the clone 1879 * to the error queue of the socket. Errors are silently ignored. 1880 */ 1881extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1882 struct skb_shared_hwtstamps *hwtstamps); 1883 1884extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1885extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1886 1887static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1888{ 1889 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1890} 1891 1892/** 1893 * skb_checksum_complete - Calculate checksum of an entire packet 1894 * @skb: packet to process 1895 * 1896 * This function calculates the checksum over the entire packet plus 1897 * the value of skb->csum. The latter can be used to supply the 1898 * checksum of a pseudo header as used by TCP/UDP. It returns the 1899 * checksum. 1900 * 1901 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1902 * this function can be used to verify that checksum on received 1903 * packets. In that case the function should return zero if the 1904 * checksum is correct. In particular, this function will return zero 1905 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1906 * hardware has already verified the correctness of the checksum. 1907 */ 1908static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1909{ 1910 return skb_csum_unnecessary(skb) ? 1911 0 : __skb_checksum_complete(skb); 1912} 1913 1914#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1915extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1916static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1917{ 1918 if (nfct && atomic_dec_and_test(&nfct->use)) 1919 nf_conntrack_destroy(nfct); 1920} 1921static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1922{ 1923 if (nfct) 1924 atomic_inc(&nfct->use); 1925} 1926static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1927{ 1928 if (skb) 1929 atomic_inc(&skb->users); 1930} 1931static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1932{ 1933 if (skb) 1934 kfree_skb(skb); 1935} 1936#endif 1937#ifdef CONFIG_BRIDGE_NETFILTER 1938static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1939{ 1940 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1941 kfree(nf_bridge); 1942} 1943static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1944{ 1945 if (nf_bridge) 1946 atomic_inc(&nf_bridge->use); 1947} 1948#endif /* CONFIG_BRIDGE_NETFILTER */ 1949static inline void nf_reset(struct sk_buff *skb) 1950{ 1951#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1952 nf_conntrack_put(skb->nfct); 1953 skb->nfct = NULL; 1954 nf_conntrack_put_reasm(skb->nfct_reasm); 1955 skb->nfct_reasm = NULL; 1956#endif 1957#ifdef CONFIG_BRIDGE_NETFILTER 1958 nf_bridge_put(skb->nf_bridge); 1959 skb->nf_bridge = NULL; 1960#endif 1961} 1962 1963/* Note: This doesn't put any conntrack and bridge info in dst. */ 1964static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1965{ 1966#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1967 dst->nfct = src->nfct; 1968 nf_conntrack_get(src->nfct); 1969 dst->nfctinfo = src->nfctinfo; 1970 dst->nfct_reasm = src->nfct_reasm; 1971 nf_conntrack_get_reasm(src->nfct_reasm); 1972#endif 1973#ifdef CONFIG_BRIDGE_NETFILTER 1974 dst->nf_bridge = src->nf_bridge; 1975 nf_bridge_get(src->nf_bridge); 1976#endif 1977} 1978 1979static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1980{ 1981#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1982 nf_conntrack_put(dst->nfct); 1983 nf_conntrack_put_reasm(dst->nfct_reasm); 1984#endif 1985#ifdef CONFIG_BRIDGE_NETFILTER 1986 nf_bridge_put(dst->nf_bridge); 1987#endif 1988 __nf_copy(dst, src); 1989} 1990 1991#ifdef CONFIG_NETWORK_SECMARK 1992static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1993{ 1994 to->secmark = from->secmark; 1995} 1996 1997static inline void skb_init_secmark(struct sk_buff *skb) 1998{ 1999 skb->secmark = 0; 2000} 2001#else 2002static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2003{ } 2004 2005static inline void skb_init_secmark(struct sk_buff *skb) 2006{ } 2007#endif 2008 2009static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2010{ 2011 skb->queue_mapping = queue_mapping; 2012} 2013 2014static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2015{ 2016 return skb->queue_mapping; 2017} 2018 2019static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2020{ 2021 to->queue_mapping = from->queue_mapping; 2022} 2023 2024static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2025{ 2026 skb->queue_mapping = rx_queue + 1; 2027} 2028 2029static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2030{ 2031 return skb->queue_mapping - 1; 2032} 2033 2034static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2035{ 2036 return (skb->queue_mapping != 0); 2037} 2038 2039extern u16 skb_tx_hash(const struct net_device *dev, 2040 const struct sk_buff *skb); 2041 2042#ifdef CONFIG_XFRM 2043static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2044{ 2045 return skb->sp; 2046} 2047#else 2048static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2049{ 2050 return NULL; 2051} 2052#endif 2053 2054static inline int skb_is_gso(const struct sk_buff *skb) 2055{ 2056 return skb_shinfo(skb)->gso_size; 2057} 2058 2059static inline int skb_is_gso_v6(const struct sk_buff *skb) 2060{ 2061 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2062} 2063 2064extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2065 2066static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2067{ 2068 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2069 * wanted then gso_type will be set. */ 2070 struct skb_shared_info *shinfo = skb_shinfo(skb); 2071 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2072 __skb_warn_lro_forwarding(skb); 2073 return true; 2074 } 2075 return false; 2076} 2077 2078static inline void skb_forward_csum(struct sk_buff *skb) 2079{ 2080 /* Unfortunately we don't support this one. Any brave souls? */ 2081 if (skb->ip_summed == CHECKSUM_COMPLETE) 2082 skb->ip_summed = CHECKSUM_NONE; 2083} 2084 2085bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2086#endif /* __KERNEL__ */ 2087#endif /* _LINUX_SKBUFF_H */