at v2.6.34 2568 lines 76 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42#define SCHED_RESET_ON_FORK 0x40000000 43 44#ifdef __KERNEL__ 45 46struct sched_param { 47 int sched_priority; 48}; 49 50#include <asm/param.h> /* for HZ */ 51 52#include <linux/capability.h> 53#include <linux/threads.h> 54#include <linux/kernel.h> 55#include <linux/types.h> 56#include <linux/timex.h> 57#include <linux/jiffies.h> 58#include <linux/rbtree.h> 59#include <linux/thread_info.h> 60#include <linux/cpumask.h> 61#include <linux/errno.h> 62#include <linux/nodemask.h> 63#include <linux/mm_types.h> 64 65#include <asm/system.h> 66#include <asm/page.h> 67#include <asm/ptrace.h> 68#include <asm/cputime.h> 69 70#include <linux/smp.h> 71#include <linux/sem.h> 72#include <linux/signal.h> 73#include <linux/path.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/kobject.h> 92#include <linux/latencytop.h> 93#include <linux/cred.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio_list; 101struct fs_struct; 102struct bts_context; 103struct perf_event_context; 104 105/* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111/* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121extern unsigned long avenrun[]; /* Load averages */ 122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124#define FSHIFT 11 /* nr of bits of precision */ 125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128#define EXP_5 2014 /* 1/exp(5sec/5min) */ 129#define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131#define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136extern unsigned long total_forks; 137extern int nr_threads; 138DECLARE_PER_CPU(unsigned long, process_counts); 139extern int nr_processes(void); 140extern unsigned long nr_running(void); 141extern unsigned long nr_uninterruptible(void); 142extern unsigned long nr_iowait(void); 143extern unsigned long nr_iowait_cpu(void); 144extern unsigned long this_cpu_load(void); 145 146 147extern void calc_global_load(void); 148 149extern unsigned long get_parent_ip(unsigned long addr); 150 151struct seq_file; 152struct cfs_rq; 153struct task_group; 154#ifdef CONFIG_SCHED_DEBUG 155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 156extern void proc_sched_set_task(struct task_struct *p); 157extern void 158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 159#else 160static inline void 161proc_sched_show_task(struct task_struct *p, struct seq_file *m) 162{ 163} 164static inline void proc_sched_set_task(struct task_struct *p) 165{ 166} 167static inline void 168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 169{ 170} 171#endif 172 173/* 174 * Task state bitmask. NOTE! These bits are also 175 * encoded in fs/proc/array.c: get_task_state(). 176 * 177 * We have two separate sets of flags: task->state 178 * is about runnability, while task->exit_state are 179 * about the task exiting. Confusing, but this way 180 * modifying one set can't modify the other one by 181 * mistake. 182 */ 183#define TASK_RUNNING 0 184#define TASK_INTERRUPTIBLE 1 185#define TASK_UNINTERRUPTIBLE 2 186#define __TASK_STOPPED 4 187#define __TASK_TRACED 8 188/* in tsk->exit_state */ 189#define EXIT_ZOMBIE 16 190#define EXIT_DEAD 32 191/* in tsk->state again */ 192#define TASK_DEAD 64 193#define TASK_WAKEKILL 128 194#define TASK_WAKING 256 195#define TASK_STATE_MAX 512 196 197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 198 199extern char ___assert_task_state[1 - 2*!!( 200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 201 202/* Convenience macros for the sake of set_task_state */ 203#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 204#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 205#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 206 207/* Convenience macros for the sake of wake_up */ 208#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 209#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 210 211/* get_task_state() */ 212#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 214 __TASK_TRACED) 215 216#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 217#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 218#define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220#define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224#define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226#define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229/* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240#define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242#define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245/* Task command name length */ 246#define TASK_COMM_LEN 16 247 248#include <linux/spinlock.h> 249 250/* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256extern rwlock_t tasklist_lock; 257extern spinlock_t mmlist_lock; 258 259struct task_struct; 260 261#ifdef CONFIG_PROVE_RCU 262extern int lockdep_tasklist_lock_is_held(void); 263#endif /* #ifdef CONFIG_PROVE_RCU */ 264 265extern void sched_init(void); 266extern void sched_init_smp(void); 267extern asmlinkage void schedule_tail(struct task_struct *prev); 268extern void init_idle(struct task_struct *idle, int cpu); 269extern void init_idle_bootup_task(struct task_struct *idle); 270 271extern int runqueue_is_locked(int cpu); 272extern void task_rq_unlock_wait(struct task_struct *p); 273 274extern cpumask_var_t nohz_cpu_mask; 275#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276extern int select_nohz_load_balancer(int cpu); 277extern int get_nohz_load_balancer(void); 278#else 279static inline int select_nohz_load_balancer(int cpu) 280{ 281 return 0; 282} 283#endif 284 285/* 286 * Only dump TASK_* tasks. (0 for all tasks) 287 */ 288extern void show_state_filter(unsigned long state_filter); 289 290static inline void show_state(void) 291{ 292 show_state_filter(0); 293} 294 295extern void show_regs(struct pt_regs *); 296 297/* 298 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 299 * task), SP is the stack pointer of the first frame that should be shown in the back 300 * trace (or NULL if the entire call-chain of the task should be shown). 301 */ 302extern void show_stack(struct task_struct *task, unsigned long *sp); 303 304void io_schedule(void); 305long io_schedule_timeout(long timeout); 306 307extern void cpu_init (void); 308extern void trap_init(void); 309extern void update_process_times(int user); 310extern void scheduler_tick(void); 311 312extern void sched_show_task(struct task_struct *p); 313 314#ifdef CONFIG_DETECT_SOFTLOCKUP 315extern void softlockup_tick(void); 316extern void touch_softlockup_watchdog(void); 317extern void touch_softlockup_watchdog_sync(void); 318extern void touch_all_softlockup_watchdogs(void); 319extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 320 void __user *buffer, 321 size_t *lenp, loff_t *ppos); 322extern unsigned int softlockup_panic; 323extern int softlockup_thresh; 324#else 325static inline void softlockup_tick(void) 326{ 327} 328static inline void touch_softlockup_watchdog(void) 329{ 330} 331static inline void touch_softlockup_watchdog_sync(void) 332{ 333} 334static inline void touch_all_softlockup_watchdogs(void) 335{ 336} 337#endif 338 339#ifdef CONFIG_DETECT_HUNG_TASK 340extern unsigned int sysctl_hung_task_panic; 341extern unsigned long sysctl_hung_task_check_count; 342extern unsigned long sysctl_hung_task_timeout_secs; 343extern unsigned long sysctl_hung_task_warnings; 344extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 345 void __user *buffer, 346 size_t *lenp, loff_t *ppos); 347#endif 348 349/* Attach to any functions which should be ignored in wchan output. */ 350#define __sched __attribute__((__section__(".sched.text"))) 351 352/* Linker adds these: start and end of __sched functions */ 353extern char __sched_text_start[], __sched_text_end[]; 354 355/* Is this address in the __sched functions? */ 356extern int in_sched_functions(unsigned long addr); 357 358#define MAX_SCHEDULE_TIMEOUT LONG_MAX 359extern signed long schedule_timeout(signed long timeout); 360extern signed long schedule_timeout_interruptible(signed long timeout); 361extern signed long schedule_timeout_killable(signed long timeout); 362extern signed long schedule_timeout_uninterruptible(signed long timeout); 363asmlinkage void schedule(void); 364extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 365 366struct nsproxy; 367struct user_namespace; 368 369/* 370 * Default maximum number of active map areas, this limits the number of vmas 371 * per mm struct. Users can overwrite this number by sysctl but there is a 372 * problem. 373 * 374 * When a program's coredump is generated as ELF format, a section is created 375 * per a vma. In ELF, the number of sections is represented in unsigned short. 376 * This means the number of sections should be smaller than 65535 at coredump. 377 * Because the kernel adds some informative sections to a image of program at 378 * generating coredump, we need some margin. The number of extra sections is 379 * 1-3 now and depends on arch. We use "5" as safe margin, here. 380 */ 381#define MAPCOUNT_ELF_CORE_MARGIN (5) 382#define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 383 384extern int sysctl_max_map_count; 385 386#include <linux/aio.h> 387 388#ifdef CONFIG_MMU 389extern void arch_pick_mmap_layout(struct mm_struct *mm); 390extern unsigned long 391arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 392 unsigned long, unsigned long); 393extern unsigned long 394arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 395 unsigned long len, unsigned long pgoff, 396 unsigned long flags); 397extern void arch_unmap_area(struct mm_struct *, unsigned long); 398extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 399#else 400static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 401#endif 402 403 404extern void set_dumpable(struct mm_struct *mm, int value); 405extern int get_dumpable(struct mm_struct *mm); 406 407/* mm flags */ 408/* dumpable bits */ 409#define MMF_DUMPABLE 0 /* core dump is permitted */ 410#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 411 412#define MMF_DUMPABLE_BITS 2 413#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 414 415/* coredump filter bits */ 416#define MMF_DUMP_ANON_PRIVATE 2 417#define MMF_DUMP_ANON_SHARED 3 418#define MMF_DUMP_MAPPED_PRIVATE 4 419#define MMF_DUMP_MAPPED_SHARED 5 420#define MMF_DUMP_ELF_HEADERS 6 421#define MMF_DUMP_HUGETLB_PRIVATE 7 422#define MMF_DUMP_HUGETLB_SHARED 8 423 424#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 425#define MMF_DUMP_FILTER_BITS 7 426#define MMF_DUMP_FILTER_MASK \ 427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 428#define MMF_DUMP_FILTER_DEFAULT \ 429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 431 432#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 433# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 434#else 435# define MMF_DUMP_MASK_DEFAULT_ELF 0 436#endif 437 /* leave room for more dump flags */ 438#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 439 440#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 441 442struct sighand_struct { 443 atomic_t count; 444 struct k_sigaction action[_NSIG]; 445 spinlock_t siglock; 446 wait_queue_head_t signalfd_wqh; 447}; 448 449struct pacct_struct { 450 int ac_flag; 451 long ac_exitcode; 452 unsigned long ac_mem; 453 cputime_t ac_utime, ac_stime; 454 unsigned long ac_minflt, ac_majflt; 455}; 456 457struct cpu_itimer { 458 cputime_t expires; 459 cputime_t incr; 460 u32 error; 461 u32 incr_error; 462}; 463 464/** 465 * struct task_cputime - collected CPU time counts 466 * @utime: time spent in user mode, in &cputime_t units 467 * @stime: time spent in kernel mode, in &cputime_t units 468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 469 * 470 * This structure groups together three kinds of CPU time that are 471 * tracked for threads and thread groups. Most things considering 472 * CPU time want to group these counts together and treat all three 473 * of them in parallel. 474 */ 475struct task_cputime { 476 cputime_t utime; 477 cputime_t stime; 478 unsigned long long sum_exec_runtime; 479}; 480/* Alternate field names when used to cache expirations. */ 481#define prof_exp stime 482#define virt_exp utime 483#define sched_exp sum_exec_runtime 484 485#define INIT_CPUTIME \ 486 (struct task_cputime) { \ 487 .utime = cputime_zero, \ 488 .stime = cputime_zero, \ 489 .sum_exec_runtime = 0, \ 490 } 491 492/* 493 * Disable preemption until the scheduler is running. 494 * Reset by start_kernel()->sched_init()->init_idle(). 495 * 496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 497 * before the scheduler is active -- see should_resched(). 498 */ 499#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 500 501/** 502 * struct thread_group_cputimer - thread group interval timer counts 503 * @cputime: thread group interval timers. 504 * @running: non-zero when there are timers running and 505 * @cputime receives updates. 506 * @lock: lock for fields in this struct. 507 * 508 * This structure contains the version of task_cputime, above, that is 509 * used for thread group CPU timer calculations. 510 */ 511struct thread_group_cputimer { 512 struct task_cputime cputime; 513 int running; 514 spinlock_t lock; 515}; 516 517/* 518 * NOTE! "signal_struct" does not have it's own 519 * locking, because a shared signal_struct always 520 * implies a shared sighand_struct, so locking 521 * sighand_struct is always a proper superset of 522 * the locking of signal_struct. 523 */ 524struct signal_struct { 525 atomic_t count; 526 atomic_t live; 527 528 wait_queue_head_t wait_chldexit; /* for wait4() */ 529 530 /* current thread group signal load-balancing target: */ 531 struct task_struct *curr_target; 532 533 /* shared signal handling: */ 534 struct sigpending shared_pending; 535 536 /* thread group exit support */ 537 int group_exit_code; 538 /* overloaded: 539 * - notify group_exit_task when ->count is equal to notify_count 540 * - everyone except group_exit_task is stopped during signal delivery 541 * of fatal signals, group_exit_task processes the signal. 542 */ 543 int notify_count; 544 struct task_struct *group_exit_task; 545 546 /* thread group stop support, overloads group_exit_code too */ 547 int group_stop_count; 548 unsigned int flags; /* see SIGNAL_* flags below */ 549 550 /* POSIX.1b Interval Timers */ 551 struct list_head posix_timers; 552 553 /* ITIMER_REAL timer for the process */ 554 struct hrtimer real_timer; 555 struct pid *leader_pid; 556 ktime_t it_real_incr; 557 558 /* 559 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 560 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 561 * values are defined to 0 and 1 respectively 562 */ 563 struct cpu_itimer it[2]; 564 565 /* 566 * Thread group totals for process CPU timers. 567 * See thread_group_cputimer(), et al, for details. 568 */ 569 struct thread_group_cputimer cputimer; 570 571 /* Earliest-expiration cache. */ 572 struct task_cputime cputime_expires; 573 574 struct list_head cpu_timers[3]; 575 576 struct pid *tty_old_pgrp; 577 578 /* boolean value for session group leader */ 579 int leader; 580 581 struct tty_struct *tty; /* NULL if no tty */ 582 583 /* 584 * Cumulative resource counters for dead threads in the group, 585 * and for reaped dead child processes forked by this group. 586 * Live threads maintain their own counters and add to these 587 * in __exit_signal, except for the group leader. 588 */ 589 cputime_t utime, stime, cutime, cstime; 590 cputime_t gtime; 591 cputime_t cgtime; 592#ifndef CONFIG_VIRT_CPU_ACCOUNTING 593 cputime_t prev_utime, prev_stime; 594#endif 595 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 596 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 597 unsigned long inblock, oublock, cinblock, coublock; 598 unsigned long maxrss, cmaxrss; 599 struct task_io_accounting ioac; 600 601 /* 602 * Cumulative ns of schedule CPU time fo dead threads in the 603 * group, not including a zombie group leader, (This only differs 604 * from jiffies_to_ns(utime + stime) if sched_clock uses something 605 * other than jiffies.) 606 */ 607 unsigned long long sum_sched_runtime; 608 609 /* 610 * We don't bother to synchronize most readers of this at all, 611 * because there is no reader checking a limit that actually needs 612 * to get both rlim_cur and rlim_max atomically, and either one 613 * alone is a single word that can safely be read normally. 614 * getrlimit/setrlimit use task_lock(current->group_leader) to 615 * protect this instead of the siglock, because they really 616 * have no need to disable irqs. 617 */ 618 struct rlimit rlim[RLIM_NLIMITS]; 619 620#ifdef CONFIG_BSD_PROCESS_ACCT 621 struct pacct_struct pacct; /* per-process accounting information */ 622#endif 623#ifdef CONFIG_TASKSTATS 624 struct taskstats *stats; 625#endif 626#ifdef CONFIG_AUDIT 627 unsigned audit_tty; 628 struct tty_audit_buf *tty_audit_buf; 629#endif 630 631 int oom_adj; /* OOM kill score adjustment (bit shift) */ 632}; 633 634/* Context switch must be unlocked if interrupts are to be enabled */ 635#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 636# define __ARCH_WANT_UNLOCKED_CTXSW 637#endif 638 639/* 640 * Bits in flags field of signal_struct. 641 */ 642#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 643#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 644#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 645#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 646/* 647 * Pending notifications to parent. 648 */ 649#define SIGNAL_CLD_STOPPED 0x00000010 650#define SIGNAL_CLD_CONTINUED 0x00000020 651#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 652 653#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 654 655/* If true, all threads except ->group_exit_task have pending SIGKILL */ 656static inline int signal_group_exit(const struct signal_struct *sig) 657{ 658 return (sig->flags & SIGNAL_GROUP_EXIT) || 659 (sig->group_exit_task != NULL); 660} 661 662/* 663 * Some day this will be a full-fledged user tracking system.. 664 */ 665struct user_struct { 666 atomic_t __count; /* reference count */ 667 atomic_t processes; /* How many processes does this user have? */ 668 atomic_t files; /* How many open files does this user have? */ 669 atomic_t sigpending; /* How many pending signals does this user have? */ 670#ifdef CONFIG_INOTIFY_USER 671 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 673#endif 674#ifdef CONFIG_EPOLL 675 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 676#endif 677#ifdef CONFIG_POSIX_MQUEUE 678 /* protected by mq_lock */ 679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 680#endif 681 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 682 683#ifdef CONFIG_KEYS 684 struct key *uid_keyring; /* UID specific keyring */ 685 struct key *session_keyring; /* UID's default session keyring */ 686#endif 687 688 /* Hash table maintenance information */ 689 struct hlist_node uidhash_node; 690 uid_t uid; 691 struct user_namespace *user_ns; 692 693#ifdef CONFIG_PERF_EVENTS 694 atomic_long_t locked_vm; 695#endif 696}; 697 698extern int uids_sysfs_init(void); 699 700extern struct user_struct *find_user(uid_t); 701 702extern struct user_struct root_user; 703#define INIT_USER (&root_user) 704 705 706struct backing_dev_info; 707struct reclaim_state; 708 709#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 710struct sched_info { 711 /* cumulative counters */ 712 unsigned long pcount; /* # of times run on this cpu */ 713 unsigned long long run_delay; /* time spent waiting on a runqueue */ 714 715 /* timestamps */ 716 unsigned long long last_arrival,/* when we last ran on a cpu */ 717 last_queued; /* when we were last queued to run */ 718#ifdef CONFIG_SCHEDSTATS 719 /* BKL stats */ 720 unsigned int bkl_count; 721#endif 722}; 723#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 724 725#ifdef CONFIG_TASK_DELAY_ACCT 726struct task_delay_info { 727 spinlock_t lock; 728 unsigned int flags; /* Private per-task flags */ 729 730 /* For each stat XXX, add following, aligned appropriately 731 * 732 * struct timespec XXX_start, XXX_end; 733 * u64 XXX_delay; 734 * u32 XXX_count; 735 * 736 * Atomicity of updates to XXX_delay, XXX_count protected by 737 * single lock above (split into XXX_lock if contention is an issue). 738 */ 739 740 /* 741 * XXX_count is incremented on every XXX operation, the delay 742 * associated with the operation is added to XXX_delay. 743 * XXX_delay contains the accumulated delay time in nanoseconds. 744 */ 745 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 746 u64 blkio_delay; /* wait for sync block io completion */ 747 u64 swapin_delay; /* wait for swapin block io completion */ 748 u32 blkio_count; /* total count of the number of sync block */ 749 /* io operations performed */ 750 u32 swapin_count; /* total count of the number of swapin block */ 751 /* io operations performed */ 752 753 struct timespec freepages_start, freepages_end; 754 u64 freepages_delay; /* wait for memory reclaim */ 755 u32 freepages_count; /* total count of memory reclaim */ 756}; 757#endif /* CONFIG_TASK_DELAY_ACCT */ 758 759static inline int sched_info_on(void) 760{ 761#ifdef CONFIG_SCHEDSTATS 762 return 1; 763#elif defined(CONFIG_TASK_DELAY_ACCT) 764 extern int delayacct_on; 765 return delayacct_on; 766#else 767 return 0; 768#endif 769} 770 771enum cpu_idle_type { 772 CPU_IDLE, 773 CPU_NOT_IDLE, 774 CPU_NEWLY_IDLE, 775 CPU_MAX_IDLE_TYPES 776}; 777 778/* 779 * sched-domains (multiprocessor balancing) declarations: 780 */ 781 782/* 783 * Increase resolution of nice-level calculations: 784 */ 785#define SCHED_LOAD_SHIFT 10 786#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 787 788#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 789 790#ifdef CONFIG_SMP 791#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 792#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 793#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 794#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 795#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 796#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 797#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 798#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 799#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 800#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 801#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 802 803#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 804 805enum powersavings_balance_level { 806 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 807 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 808 * first for long running threads 809 */ 810 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 811 * cpu package for power savings 812 */ 813 MAX_POWERSAVINGS_BALANCE_LEVELS 814}; 815 816extern int sched_mc_power_savings, sched_smt_power_savings; 817 818static inline int sd_balance_for_mc_power(void) 819{ 820 if (sched_smt_power_savings) 821 return SD_POWERSAVINGS_BALANCE; 822 823 if (!sched_mc_power_savings) 824 return SD_PREFER_SIBLING; 825 826 return 0; 827} 828 829static inline int sd_balance_for_package_power(void) 830{ 831 if (sched_mc_power_savings | sched_smt_power_savings) 832 return SD_POWERSAVINGS_BALANCE; 833 834 return SD_PREFER_SIBLING; 835} 836 837/* 838 * Optimise SD flags for power savings: 839 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 840 * Keep default SD flags if sched_{smt,mc}_power_saving=0 841 */ 842 843static inline int sd_power_saving_flags(void) 844{ 845 if (sched_mc_power_savings | sched_smt_power_savings) 846 return SD_BALANCE_NEWIDLE; 847 848 return 0; 849} 850 851struct sched_group { 852 struct sched_group *next; /* Must be a circular list */ 853 854 /* 855 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 856 * single CPU. 857 */ 858 unsigned int cpu_power; 859 860 /* 861 * The CPUs this group covers. 862 * 863 * NOTE: this field is variable length. (Allocated dynamically 864 * by attaching extra space to the end of the structure, 865 * depending on how many CPUs the kernel has booted up with) 866 * 867 * It is also be embedded into static data structures at build 868 * time. (See 'struct static_sched_group' in kernel/sched.c) 869 */ 870 unsigned long cpumask[0]; 871}; 872 873static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 874{ 875 return to_cpumask(sg->cpumask); 876} 877 878enum sched_domain_level { 879 SD_LV_NONE = 0, 880 SD_LV_SIBLING, 881 SD_LV_MC, 882 SD_LV_CPU, 883 SD_LV_NODE, 884 SD_LV_ALLNODES, 885 SD_LV_MAX 886}; 887 888struct sched_domain_attr { 889 int relax_domain_level; 890}; 891 892#define SD_ATTR_INIT (struct sched_domain_attr) { \ 893 .relax_domain_level = -1, \ 894} 895 896struct sched_domain { 897 /* These fields must be setup */ 898 struct sched_domain *parent; /* top domain must be null terminated */ 899 struct sched_domain *child; /* bottom domain must be null terminated */ 900 struct sched_group *groups; /* the balancing groups of the domain */ 901 unsigned long min_interval; /* Minimum balance interval ms */ 902 unsigned long max_interval; /* Maximum balance interval ms */ 903 unsigned int busy_factor; /* less balancing by factor if busy */ 904 unsigned int imbalance_pct; /* No balance until over watermark */ 905 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 906 unsigned int busy_idx; 907 unsigned int idle_idx; 908 unsigned int newidle_idx; 909 unsigned int wake_idx; 910 unsigned int forkexec_idx; 911 unsigned int smt_gain; 912 int flags; /* See SD_* */ 913 enum sched_domain_level level; 914 915 /* Runtime fields. */ 916 unsigned long last_balance; /* init to jiffies. units in jiffies */ 917 unsigned int balance_interval; /* initialise to 1. units in ms. */ 918 unsigned int nr_balance_failed; /* initialise to 0 */ 919 920 u64 last_update; 921 922#ifdef CONFIG_SCHEDSTATS 923 /* load_balance() stats */ 924 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 932 933 /* Active load balancing */ 934 unsigned int alb_count; 935 unsigned int alb_failed; 936 unsigned int alb_pushed; 937 938 /* SD_BALANCE_EXEC stats */ 939 unsigned int sbe_count; 940 unsigned int sbe_balanced; 941 unsigned int sbe_pushed; 942 943 /* SD_BALANCE_FORK stats */ 944 unsigned int sbf_count; 945 unsigned int sbf_balanced; 946 unsigned int sbf_pushed; 947 948 /* try_to_wake_up() stats */ 949 unsigned int ttwu_wake_remote; 950 unsigned int ttwu_move_affine; 951 unsigned int ttwu_move_balance; 952#endif 953#ifdef CONFIG_SCHED_DEBUG 954 char *name; 955#endif 956 957 /* 958 * Span of all CPUs in this domain. 959 * 960 * NOTE: this field is variable length. (Allocated dynamically 961 * by attaching extra space to the end of the structure, 962 * depending on how many CPUs the kernel has booted up with) 963 * 964 * It is also be embedded into static data structures at build 965 * time. (See 'struct static_sched_domain' in kernel/sched.c) 966 */ 967 unsigned long span[0]; 968}; 969 970static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 971{ 972 return to_cpumask(sd->span); 973} 974 975extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 976 struct sched_domain_attr *dattr_new); 977 978/* Allocate an array of sched domains, for partition_sched_domains(). */ 979cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 980void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 981 982/* Test a flag in parent sched domain */ 983static inline int test_sd_parent(struct sched_domain *sd, int flag) 984{ 985 if (sd->parent && (sd->parent->flags & flag)) 986 return 1; 987 988 return 0; 989} 990 991unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 992unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 993 994#else /* CONFIG_SMP */ 995 996struct sched_domain_attr; 997 998static inline void 999partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1000 struct sched_domain_attr *dattr_new) 1001{ 1002} 1003#endif /* !CONFIG_SMP */ 1004 1005 1006struct io_context; /* See blkdev.h */ 1007 1008 1009#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1010extern void prefetch_stack(struct task_struct *t); 1011#else 1012static inline void prefetch_stack(struct task_struct *t) { } 1013#endif 1014 1015struct audit_context; /* See audit.c */ 1016struct mempolicy; 1017struct pipe_inode_info; 1018struct uts_namespace; 1019 1020struct rq; 1021struct sched_domain; 1022 1023/* 1024 * wake flags 1025 */ 1026#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1027#define WF_FORK 0x02 /* child wakeup after fork */ 1028 1029struct sched_class { 1030 const struct sched_class *next; 1031 1032 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup, 1033 bool head); 1034 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 1035 void (*yield_task) (struct rq *rq); 1036 1037 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1038 1039 struct task_struct * (*pick_next_task) (struct rq *rq); 1040 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1041 1042#ifdef CONFIG_SMP 1043 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1044 1045 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1046 void (*post_schedule) (struct rq *this_rq); 1047 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1048 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1049 1050 void (*set_cpus_allowed)(struct task_struct *p, 1051 const struct cpumask *newmask); 1052 1053 void (*rq_online)(struct rq *rq); 1054 void (*rq_offline)(struct rq *rq); 1055#endif 1056 1057 void (*set_curr_task) (struct rq *rq); 1058 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1059 void (*task_fork) (struct task_struct *p); 1060 1061 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1062 int running); 1063 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1064 int running); 1065 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1066 int oldprio, int running); 1067 1068 unsigned int (*get_rr_interval) (struct rq *rq, 1069 struct task_struct *task); 1070 1071#ifdef CONFIG_FAIR_GROUP_SCHED 1072 void (*moved_group) (struct task_struct *p, int on_rq); 1073#endif 1074}; 1075 1076struct load_weight { 1077 unsigned long weight, inv_weight; 1078}; 1079 1080/* 1081 * CFS stats for a schedulable entity (task, task-group etc) 1082 * 1083 * Current field usage histogram: 1084 * 1085 * 4 se->block_start 1086 * 4 se->run_node 1087 * 4 se->sleep_start 1088 * 6 se->load.weight 1089 */ 1090struct sched_entity { 1091 struct load_weight load; /* for load-balancing */ 1092 struct rb_node run_node; 1093 struct list_head group_node; 1094 unsigned int on_rq; 1095 1096 u64 exec_start; 1097 u64 sum_exec_runtime; 1098 u64 vruntime; 1099 u64 prev_sum_exec_runtime; 1100 1101 u64 last_wakeup; 1102 u64 avg_overlap; 1103 1104 u64 nr_migrations; 1105 1106 u64 start_runtime; 1107 u64 avg_wakeup; 1108 1109#ifdef CONFIG_SCHEDSTATS 1110 u64 wait_start; 1111 u64 wait_max; 1112 u64 wait_count; 1113 u64 wait_sum; 1114 u64 iowait_count; 1115 u64 iowait_sum; 1116 1117 u64 sleep_start; 1118 u64 sleep_max; 1119 s64 sum_sleep_runtime; 1120 1121 u64 block_start; 1122 u64 block_max; 1123 u64 exec_max; 1124 u64 slice_max; 1125 1126 u64 nr_migrations_cold; 1127 u64 nr_failed_migrations_affine; 1128 u64 nr_failed_migrations_running; 1129 u64 nr_failed_migrations_hot; 1130 u64 nr_forced_migrations; 1131 1132 u64 nr_wakeups; 1133 u64 nr_wakeups_sync; 1134 u64 nr_wakeups_migrate; 1135 u64 nr_wakeups_local; 1136 u64 nr_wakeups_remote; 1137 u64 nr_wakeups_affine; 1138 u64 nr_wakeups_affine_attempts; 1139 u64 nr_wakeups_passive; 1140 u64 nr_wakeups_idle; 1141#endif 1142 1143#ifdef CONFIG_FAIR_GROUP_SCHED 1144 struct sched_entity *parent; 1145 /* rq on which this entity is (to be) queued: */ 1146 struct cfs_rq *cfs_rq; 1147 /* rq "owned" by this entity/group: */ 1148 struct cfs_rq *my_q; 1149#endif 1150}; 1151 1152struct sched_rt_entity { 1153 struct list_head run_list; 1154 unsigned long timeout; 1155 unsigned int time_slice; 1156 int nr_cpus_allowed; 1157 1158 struct sched_rt_entity *back; 1159#ifdef CONFIG_RT_GROUP_SCHED 1160 struct sched_rt_entity *parent; 1161 /* rq on which this entity is (to be) queued: */ 1162 struct rt_rq *rt_rq; 1163 /* rq "owned" by this entity/group: */ 1164 struct rt_rq *my_q; 1165#endif 1166}; 1167 1168struct rcu_node; 1169 1170struct task_struct { 1171 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1172 void *stack; 1173 atomic_t usage; 1174 unsigned int flags; /* per process flags, defined below */ 1175 unsigned int ptrace; 1176 1177 int lock_depth; /* BKL lock depth */ 1178 1179#ifdef CONFIG_SMP 1180#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1181 int oncpu; 1182#endif 1183#endif 1184 1185 int prio, static_prio, normal_prio; 1186 unsigned int rt_priority; 1187 const struct sched_class *sched_class; 1188 struct sched_entity se; 1189 struct sched_rt_entity rt; 1190 1191#ifdef CONFIG_PREEMPT_NOTIFIERS 1192 /* list of struct preempt_notifier: */ 1193 struct hlist_head preempt_notifiers; 1194#endif 1195 1196 /* 1197 * fpu_counter contains the number of consecutive context switches 1198 * that the FPU is used. If this is over a threshold, the lazy fpu 1199 * saving becomes unlazy to save the trap. This is an unsigned char 1200 * so that after 256 times the counter wraps and the behavior turns 1201 * lazy again; this to deal with bursty apps that only use FPU for 1202 * a short time 1203 */ 1204 unsigned char fpu_counter; 1205#ifdef CONFIG_BLK_DEV_IO_TRACE 1206 unsigned int btrace_seq; 1207#endif 1208 1209 unsigned int policy; 1210 cpumask_t cpus_allowed; 1211 1212#ifdef CONFIG_TREE_PREEMPT_RCU 1213 int rcu_read_lock_nesting; 1214 char rcu_read_unlock_special; 1215 struct rcu_node *rcu_blocked_node; 1216 struct list_head rcu_node_entry; 1217#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1218 1219#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1220 struct sched_info sched_info; 1221#endif 1222 1223 struct list_head tasks; 1224 struct plist_node pushable_tasks; 1225 1226 struct mm_struct *mm, *active_mm; 1227#if defined(SPLIT_RSS_COUNTING) 1228 struct task_rss_stat rss_stat; 1229#endif 1230/* task state */ 1231 int exit_state; 1232 int exit_code, exit_signal; 1233 int pdeath_signal; /* The signal sent when the parent dies */ 1234 /* ??? */ 1235 unsigned int personality; 1236 unsigned did_exec:1; 1237 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1238 * execve */ 1239 unsigned in_iowait:1; 1240 1241 1242 /* Revert to default priority/policy when forking */ 1243 unsigned sched_reset_on_fork:1; 1244 1245 pid_t pid; 1246 pid_t tgid; 1247 1248#ifdef CONFIG_CC_STACKPROTECTOR 1249 /* Canary value for the -fstack-protector gcc feature */ 1250 unsigned long stack_canary; 1251#endif 1252 1253 /* 1254 * pointers to (original) parent process, youngest child, younger sibling, 1255 * older sibling, respectively. (p->father can be replaced with 1256 * p->real_parent->pid) 1257 */ 1258 struct task_struct *real_parent; /* real parent process */ 1259 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1260 /* 1261 * children/sibling forms the list of my natural children 1262 */ 1263 struct list_head children; /* list of my children */ 1264 struct list_head sibling; /* linkage in my parent's children list */ 1265 struct task_struct *group_leader; /* threadgroup leader */ 1266 1267 /* 1268 * ptraced is the list of tasks this task is using ptrace on. 1269 * This includes both natural children and PTRACE_ATTACH targets. 1270 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1271 */ 1272 struct list_head ptraced; 1273 struct list_head ptrace_entry; 1274 1275 /* 1276 * This is the tracer handle for the ptrace BTS extension. 1277 * This field actually belongs to the ptracer task. 1278 */ 1279 struct bts_context *bts; 1280 1281 /* PID/PID hash table linkage. */ 1282 struct pid_link pids[PIDTYPE_MAX]; 1283 struct list_head thread_group; 1284 1285 struct completion *vfork_done; /* for vfork() */ 1286 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1287 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1288 1289 cputime_t utime, stime, utimescaled, stimescaled; 1290 cputime_t gtime; 1291#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1292 cputime_t prev_utime, prev_stime; 1293#endif 1294 unsigned long nvcsw, nivcsw; /* context switch counts */ 1295 struct timespec start_time; /* monotonic time */ 1296 struct timespec real_start_time; /* boot based time */ 1297/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1298 unsigned long min_flt, maj_flt; 1299 1300 struct task_cputime cputime_expires; 1301 struct list_head cpu_timers[3]; 1302 1303/* process credentials */ 1304 const struct cred *real_cred; /* objective and real subjective task 1305 * credentials (COW) */ 1306 const struct cred *cred; /* effective (overridable) subjective task 1307 * credentials (COW) */ 1308 struct mutex cred_guard_mutex; /* guard against foreign influences on 1309 * credential calculations 1310 * (notably. ptrace) */ 1311 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1312 1313 char comm[TASK_COMM_LEN]; /* executable name excluding path 1314 - access with [gs]et_task_comm (which lock 1315 it with task_lock()) 1316 - initialized normally by setup_new_exec */ 1317/* file system info */ 1318 int link_count, total_link_count; 1319#ifdef CONFIG_SYSVIPC 1320/* ipc stuff */ 1321 struct sysv_sem sysvsem; 1322#endif 1323#ifdef CONFIG_DETECT_HUNG_TASK 1324/* hung task detection */ 1325 unsigned long last_switch_count; 1326#endif 1327/* CPU-specific state of this task */ 1328 struct thread_struct thread; 1329/* filesystem information */ 1330 struct fs_struct *fs; 1331/* open file information */ 1332 struct files_struct *files; 1333/* namespaces */ 1334 struct nsproxy *nsproxy; 1335/* signal handlers */ 1336 struct signal_struct *signal; 1337 struct sighand_struct *sighand; 1338 1339 sigset_t blocked, real_blocked; 1340 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1341 struct sigpending pending; 1342 1343 unsigned long sas_ss_sp; 1344 size_t sas_ss_size; 1345 int (*notifier)(void *priv); 1346 void *notifier_data; 1347 sigset_t *notifier_mask; 1348 struct audit_context *audit_context; 1349#ifdef CONFIG_AUDITSYSCALL 1350 uid_t loginuid; 1351 unsigned int sessionid; 1352#endif 1353 seccomp_t seccomp; 1354 1355/* Thread group tracking */ 1356 u32 parent_exec_id; 1357 u32 self_exec_id; 1358/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1359 * mempolicy */ 1360 spinlock_t alloc_lock; 1361 1362#ifdef CONFIG_GENERIC_HARDIRQS 1363 /* IRQ handler threads */ 1364 struct irqaction *irqaction; 1365#endif 1366 1367 /* Protection of the PI data structures: */ 1368 raw_spinlock_t pi_lock; 1369 1370#ifdef CONFIG_RT_MUTEXES 1371 /* PI waiters blocked on a rt_mutex held by this task */ 1372 struct plist_head pi_waiters; 1373 /* Deadlock detection and priority inheritance handling */ 1374 struct rt_mutex_waiter *pi_blocked_on; 1375#endif 1376 1377#ifdef CONFIG_DEBUG_MUTEXES 1378 /* mutex deadlock detection */ 1379 struct mutex_waiter *blocked_on; 1380#endif 1381#ifdef CONFIG_TRACE_IRQFLAGS 1382 unsigned int irq_events; 1383 unsigned long hardirq_enable_ip; 1384 unsigned long hardirq_disable_ip; 1385 unsigned int hardirq_enable_event; 1386 unsigned int hardirq_disable_event; 1387 int hardirqs_enabled; 1388 int hardirq_context; 1389 unsigned long softirq_disable_ip; 1390 unsigned long softirq_enable_ip; 1391 unsigned int softirq_disable_event; 1392 unsigned int softirq_enable_event; 1393 int softirqs_enabled; 1394 int softirq_context; 1395#endif 1396#ifdef CONFIG_LOCKDEP 1397# define MAX_LOCK_DEPTH 48UL 1398 u64 curr_chain_key; 1399 int lockdep_depth; 1400 unsigned int lockdep_recursion; 1401 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1402 gfp_t lockdep_reclaim_gfp; 1403#endif 1404 1405/* journalling filesystem info */ 1406 void *journal_info; 1407 1408/* stacked block device info */ 1409 struct bio_list *bio_list; 1410 1411/* VM state */ 1412 struct reclaim_state *reclaim_state; 1413 1414 struct backing_dev_info *backing_dev_info; 1415 1416 struct io_context *io_context; 1417 1418 unsigned long ptrace_message; 1419 siginfo_t *last_siginfo; /* For ptrace use. */ 1420 struct task_io_accounting ioac; 1421#if defined(CONFIG_TASK_XACCT) 1422 u64 acct_rss_mem1; /* accumulated rss usage */ 1423 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1424 cputime_t acct_timexpd; /* stime + utime since last update */ 1425#endif 1426#ifdef CONFIG_CPUSETS 1427 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1428 int cpuset_mem_spread_rotor; 1429#endif 1430#ifdef CONFIG_CGROUPS 1431 /* Control Group info protected by css_set_lock */ 1432 struct css_set *cgroups; 1433 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1434 struct list_head cg_list; 1435#endif 1436#ifdef CONFIG_FUTEX 1437 struct robust_list_head __user *robust_list; 1438#ifdef CONFIG_COMPAT 1439 struct compat_robust_list_head __user *compat_robust_list; 1440#endif 1441 struct list_head pi_state_list; 1442 struct futex_pi_state *pi_state_cache; 1443#endif 1444#ifdef CONFIG_PERF_EVENTS 1445 struct perf_event_context *perf_event_ctxp; 1446 struct mutex perf_event_mutex; 1447 struct list_head perf_event_list; 1448#endif 1449#ifdef CONFIG_NUMA 1450 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1451 short il_next; 1452#endif 1453 atomic_t fs_excl; /* holding fs exclusive resources */ 1454 struct rcu_head rcu; 1455 1456 /* 1457 * cache last used pipe for splice 1458 */ 1459 struct pipe_inode_info *splice_pipe; 1460#ifdef CONFIG_TASK_DELAY_ACCT 1461 struct task_delay_info *delays; 1462#endif 1463#ifdef CONFIG_FAULT_INJECTION 1464 int make_it_fail; 1465#endif 1466 struct prop_local_single dirties; 1467#ifdef CONFIG_LATENCYTOP 1468 int latency_record_count; 1469 struct latency_record latency_record[LT_SAVECOUNT]; 1470#endif 1471 /* 1472 * time slack values; these are used to round up poll() and 1473 * select() etc timeout values. These are in nanoseconds. 1474 */ 1475 unsigned long timer_slack_ns; 1476 unsigned long default_timer_slack_ns; 1477 1478 struct list_head *scm_work_list; 1479#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1480 /* Index of current stored address in ret_stack */ 1481 int curr_ret_stack; 1482 /* Stack of return addresses for return function tracing */ 1483 struct ftrace_ret_stack *ret_stack; 1484 /* time stamp for last schedule */ 1485 unsigned long long ftrace_timestamp; 1486 /* 1487 * Number of functions that haven't been traced 1488 * because of depth overrun. 1489 */ 1490 atomic_t trace_overrun; 1491 /* Pause for the tracing */ 1492 atomic_t tracing_graph_pause; 1493#endif 1494#ifdef CONFIG_TRACING 1495 /* state flags for use by tracers */ 1496 unsigned long trace; 1497 /* bitmask of trace recursion */ 1498 unsigned long trace_recursion; 1499#endif /* CONFIG_TRACING */ 1500#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1501 struct memcg_batch_info { 1502 int do_batch; /* incremented when batch uncharge started */ 1503 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1504 unsigned long bytes; /* uncharged usage */ 1505 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1506 } memcg_batch; 1507#endif 1508}; 1509 1510/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1511#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1512 1513/* 1514 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1515 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1516 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1517 * values are inverted: lower p->prio value means higher priority. 1518 * 1519 * The MAX_USER_RT_PRIO value allows the actual maximum 1520 * RT priority to be separate from the value exported to 1521 * user-space. This allows kernel threads to set their 1522 * priority to a value higher than any user task. Note: 1523 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1524 */ 1525 1526#define MAX_USER_RT_PRIO 100 1527#define MAX_RT_PRIO MAX_USER_RT_PRIO 1528 1529#define MAX_PRIO (MAX_RT_PRIO + 40) 1530#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1531 1532static inline int rt_prio(int prio) 1533{ 1534 if (unlikely(prio < MAX_RT_PRIO)) 1535 return 1; 1536 return 0; 1537} 1538 1539static inline int rt_task(struct task_struct *p) 1540{ 1541 return rt_prio(p->prio); 1542} 1543 1544static inline struct pid *task_pid(struct task_struct *task) 1545{ 1546 return task->pids[PIDTYPE_PID].pid; 1547} 1548 1549static inline struct pid *task_tgid(struct task_struct *task) 1550{ 1551 return task->group_leader->pids[PIDTYPE_PID].pid; 1552} 1553 1554/* 1555 * Without tasklist or rcu lock it is not safe to dereference 1556 * the result of task_pgrp/task_session even if task == current, 1557 * we can race with another thread doing sys_setsid/sys_setpgid. 1558 */ 1559static inline struct pid *task_pgrp(struct task_struct *task) 1560{ 1561 return task->group_leader->pids[PIDTYPE_PGID].pid; 1562} 1563 1564static inline struct pid *task_session(struct task_struct *task) 1565{ 1566 return task->group_leader->pids[PIDTYPE_SID].pid; 1567} 1568 1569struct pid_namespace; 1570 1571/* 1572 * the helpers to get the task's different pids as they are seen 1573 * from various namespaces 1574 * 1575 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1576 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1577 * current. 1578 * task_xid_nr_ns() : id seen from the ns specified; 1579 * 1580 * set_task_vxid() : assigns a virtual id to a task; 1581 * 1582 * see also pid_nr() etc in include/linux/pid.h 1583 */ 1584pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1585 struct pid_namespace *ns); 1586 1587static inline pid_t task_pid_nr(struct task_struct *tsk) 1588{ 1589 return tsk->pid; 1590} 1591 1592static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1593 struct pid_namespace *ns) 1594{ 1595 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1596} 1597 1598static inline pid_t task_pid_vnr(struct task_struct *tsk) 1599{ 1600 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1601} 1602 1603 1604static inline pid_t task_tgid_nr(struct task_struct *tsk) 1605{ 1606 return tsk->tgid; 1607} 1608 1609pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1610 1611static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1612{ 1613 return pid_vnr(task_tgid(tsk)); 1614} 1615 1616 1617static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1618 struct pid_namespace *ns) 1619{ 1620 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1621} 1622 1623static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1624{ 1625 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1626} 1627 1628 1629static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1630 struct pid_namespace *ns) 1631{ 1632 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1633} 1634 1635static inline pid_t task_session_vnr(struct task_struct *tsk) 1636{ 1637 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1638} 1639 1640/* obsolete, do not use */ 1641static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1642{ 1643 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1644} 1645 1646/** 1647 * pid_alive - check that a task structure is not stale 1648 * @p: Task structure to be checked. 1649 * 1650 * Test if a process is not yet dead (at most zombie state) 1651 * If pid_alive fails, then pointers within the task structure 1652 * can be stale and must not be dereferenced. 1653 */ 1654static inline int pid_alive(struct task_struct *p) 1655{ 1656 return p->pids[PIDTYPE_PID].pid != NULL; 1657} 1658 1659/** 1660 * is_global_init - check if a task structure is init 1661 * @tsk: Task structure to be checked. 1662 * 1663 * Check if a task structure is the first user space task the kernel created. 1664 */ 1665static inline int is_global_init(struct task_struct *tsk) 1666{ 1667 return tsk->pid == 1; 1668} 1669 1670/* 1671 * is_container_init: 1672 * check whether in the task is init in its own pid namespace. 1673 */ 1674extern int is_container_init(struct task_struct *tsk); 1675 1676extern struct pid *cad_pid; 1677 1678extern void free_task(struct task_struct *tsk); 1679#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1680 1681extern void __put_task_struct(struct task_struct *t); 1682 1683static inline void put_task_struct(struct task_struct *t) 1684{ 1685 if (atomic_dec_and_test(&t->usage)) 1686 __put_task_struct(t); 1687} 1688 1689extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1690extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1691 1692/* 1693 * Per process flags 1694 */ 1695#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1696 /* Not implemented yet, only for 486*/ 1697#define PF_STARTING 0x00000002 /* being created */ 1698#define PF_EXITING 0x00000004 /* getting shut down */ 1699#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1700#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1701#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1702#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1703#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1704#define PF_DUMPCORE 0x00000200 /* dumped core */ 1705#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1706#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1707#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1708#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1709#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1710#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1711#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1712#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1713#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1714#define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1715#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1716#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1717#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1718#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1719#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1720#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1721#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1722#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1723#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1724#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1725#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1726#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1727 1728/* 1729 * Only the _current_ task can read/write to tsk->flags, but other 1730 * tasks can access tsk->flags in readonly mode for example 1731 * with tsk_used_math (like during threaded core dumping). 1732 * There is however an exception to this rule during ptrace 1733 * or during fork: the ptracer task is allowed to write to the 1734 * child->flags of its traced child (same goes for fork, the parent 1735 * can write to the child->flags), because we're guaranteed the 1736 * child is not running and in turn not changing child->flags 1737 * at the same time the parent does it. 1738 */ 1739#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1740#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1741#define clear_used_math() clear_stopped_child_used_math(current) 1742#define set_used_math() set_stopped_child_used_math(current) 1743#define conditional_stopped_child_used_math(condition, child) \ 1744 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1745#define conditional_used_math(condition) \ 1746 conditional_stopped_child_used_math(condition, current) 1747#define copy_to_stopped_child_used_math(child) \ 1748 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1749/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1750#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1751#define used_math() tsk_used_math(current) 1752 1753#ifdef CONFIG_TREE_PREEMPT_RCU 1754 1755#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1756#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1757 1758static inline void rcu_copy_process(struct task_struct *p) 1759{ 1760 p->rcu_read_lock_nesting = 0; 1761 p->rcu_read_unlock_special = 0; 1762 p->rcu_blocked_node = NULL; 1763 INIT_LIST_HEAD(&p->rcu_node_entry); 1764} 1765 1766#else 1767 1768static inline void rcu_copy_process(struct task_struct *p) 1769{ 1770} 1771 1772#endif 1773 1774#ifdef CONFIG_SMP 1775extern int set_cpus_allowed_ptr(struct task_struct *p, 1776 const struct cpumask *new_mask); 1777#else 1778static inline int set_cpus_allowed_ptr(struct task_struct *p, 1779 const struct cpumask *new_mask) 1780{ 1781 if (!cpumask_test_cpu(0, new_mask)) 1782 return -EINVAL; 1783 return 0; 1784} 1785#endif 1786 1787#ifndef CONFIG_CPUMASK_OFFSTACK 1788static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1789{ 1790 return set_cpus_allowed_ptr(p, &new_mask); 1791} 1792#endif 1793 1794/* 1795 * Architectures can set this to 1 if they have specified 1796 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1797 * but then during bootup it turns out that sched_clock() 1798 * is reliable after all: 1799 */ 1800#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1801extern int sched_clock_stable; 1802#endif 1803 1804/* ftrace calls sched_clock() directly */ 1805extern unsigned long long notrace sched_clock(void); 1806 1807extern void sched_clock_init(void); 1808extern u64 sched_clock_cpu(int cpu); 1809 1810#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1811static inline void sched_clock_tick(void) 1812{ 1813} 1814 1815static inline void sched_clock_idle_sleep_event(void) 1816{ 1817} 1818 1819static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1820{ 1821} 1822#else 1823extern void sched_clock_tick(void); 1824extern void sched_clock_idle_sleep_event(void); 1825extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1826#endif 1827 1828/* 1829 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1830 * clock constructed from sched_clock(): 1831 */ 1832extern unsigned long long cpu_clock(int cpu); 1833 1834extern unsigned long long 1835task_sched_runtime(struct task_struct *task); 1836extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1837 1838/* sched_exec is called by processes performing an exec */ 1839#ifdef CONFIG_SMP 1840extern void sched_exec(void); 1841#else 1842#define sched_exec() {} 1843#endif 1844 1845extern void sched_clock_idle_sleep_event(void); 1846extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1847 1848#ifdef CONFIG_HOTPLUG_CPU 1849extern void idle_task_exit(void); 1850#else 1851static inline void idle_task_exit(void) {} 1852#endif 1853 1854extern void sched_idle_next(void); 1855 1856#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1857extern void wake_up_idle_cpu(int cpu); 1858#else 1859static inline void wake_up_idle_cpu(int cpu) { } 1860#endif 1861 1862extern unsigned int sysctl_sched_latency; 1863extern unsigned int sysctl_sched_min_granularity; 1864extern unsigned int sysctl_sched_wakeup_granularity; 1865extern unsigned int sysctl_sched_shares_ratelimit; 1866extern unsigned int sysctl_sched_shares_thresh; 1867extern unsigned int sysctl_sched_child_runs_first; 1868 1869enum sched_tunable_scaling { 1870 SCHED_TUNABLESCALING_NONE, 1871 SCHED_TUNABLESCALING_LOG, 1872 SCHED_TUNABLESCALING_LINEAR, 1873 SCHED_TUNABLESCALING_END, 1874}; 1875extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1876 1877#ifdef CONFIG_SCHED_DEBUG 1878extern unsigned int sysctl_sched_migration_cost; 1879extern unsigned int sysctl_sched_nr_migrate; 1880extern unsigned int sysctl_sched_time_avg; 1881extern unsigned int sysctl_timer_migration; 1882 1883int sched_proc_update_handler(struct ctl_table *table, int write, 1884 void __user *buffer, size_t *length, 1885 loff_t *ppos); 1886#endif 1887#ifdef CONFIG_SCHED_DEBUG 1888static inline unsigned int get_sysctl_timer_migration(void) 1889{ 1890 return sysctl_timer_migration; 1891} 1892#else 1893static inline unsigned int get_sysctl_timer_migration(void) 1894{ 1895 return 1; 1896} 1897#endif 1898extern unsigned int sysctl_sched_rt_period; 1899extern int sysctl_sched_rt_runtime; 1900 1901int sched_rt_handler(struct ctl_table *table, int write, 1902 void __user *buffer, size_t *lenp, 1903 loff_t *ppos); 1904 1905extern unsigned int sysctl_sched_compat_yield; 1906 1907#ifdef CONFIG_RT_MUTEXES 1908extern int rt_mutex_getprio(struct task_struct *p); 1909extern void rt_mutex_setprio(struct task_struct *p, int prio); 1910extern void rt_mutex_adjust_pi(struct task_struct *p); 1911#else 1912static inline int rt_mutex_getprio(struct task_struct *p) 1913{ 1914 return p->normal_prio; 1915} 1916# define rt_mutex_adjust_pi(p) do { } while (0) 1917#endif 1918 1919extern void set_user_nice(struct task_struct *p, long nice); 1920extern int task_prio(const struct task_struct *p); 1921extern int task_nice(const struct task_struct *p); 1922extern int can_nice(const struct task_struct *p, const int nice); 1923extern int task_curr(const struct task_struct *p); 1924extern int idle_cpu(int cpu); 1925extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1926extern int sched_setscheduler_nocheck(struct task_struct *, int, 1927 struct sched_param *); 1928extern struct task_struct *idle_task(int cpu); 1929extern struct task_struct *curr_task(int cpu); 1930extern void set_curr_task(int cpu, struct task_struct *p); 1931 1932void yield(void); 1933 1934/* 1935 * The default (Linux) execution domain. 1936 */ 1937extern struct exec_domain default_exec_domain; 1938 1939union thread_union { 1940 struct thread_info thread_info; 1941 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1942}; 1943 1944#ifndef __HAVE_ARCH_KSTACK_END 1945static inline int kstack_end(void *addr) 1946{ 1947 /* Reliable end of stack detection: 1948 * Some APM bios versions misalign the stack 1949 */ 1950 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1951} 1952#endif 1953 1954extern union thread_union init_thread_union; 1955extern struct task_struct init_task; 1956 1957extern struct mm_struct init_mm; 1958 1959extern struct pid_namespace init_pid_ns; 1960 1961/* 1962 * find a task by one of its numerical ids 1963 * 1964 * find_task_by_pid_ns(): 1965 * finds a task by its pid in the specified namespace 1966 * find_task_by_vpid(): 1967 * finds a task by its virtual pid 1968 * 1969 * see also find_vpid() etc in include/linux/pid.h 1970 */ 1971 1972extern struct task_struct *find_task_by_vpid(pid_t nr); 1973extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1974 struct pid_namespace *ns); 1975 1976extern void __set_special_pids(struct pid *pid); 1977 1978/* per-UID process charging. */ 1979extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1980static inline struct user_struct *get_uid(struct user_struct *u) 1981{ 1982 atomic_inc(&u->__count); 1983 return u; 1984} 1985extern void free_uid(struct user_struct *); 1986extern void release_uids(struct user_namespace *ns); 1987 1988#include <asm/current.h> 1989 1990extern void do_timer(unsigned long ticks); 1991 1992extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1993extern int wake_up_process(struct task_struct *tsk); 1994extern void wake_up_new_task(struct task_struct *tsk, 1995 unsigned long clone_flags); 1996#ifdef CONFIG_SMP 1997 extern void kick_process(struct task_struct *tsk); 1998#else 1999 static inline void kick_process(struct task_struct *tsk) { } 2000#endif 2001extern void sched_fork(struct task_struct *p, int clone_flags); 2002extern void sched_dead(struct task_struct *p); 2003 2004extern void proc_caches_init(void); 2005extern void flush_signals(struct task_struct *); 2006extern void __flush_signals(struct task_struct *); 2007extern void ignore_signals(struct task_struct *); 2008extern void flush_signal_handlers(struct task_struct *, int force_default); 2009extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2010 2011static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2012{ 2013 unsigned long flags; 2014 int ret; 2015 2016 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2017 ret = dequeue_signal(tsk, mask, info); 2018 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2019 2020 return ret; 2021} 2022 2023extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2024 sigset_t *mask); 2025extern void unblock_all_signals(void); 2026extern void release_task(struct task_struct * p); 2027extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2028extern int force_sigsegv(int, struct task_struct *); 2029extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2030extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2031extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2032extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2033extern int kill_pgrp(struct pid *pid, int sig, int priv); 2034extern int kill_pid(struct pid *pid, int sig, int priv); 2035extern int kill_proc_info(int, struct siginfo *, pid_t); 2036extern int do_notify_parent(struct task_struct *, int); 2037extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2038extern void force_sig(int, struct task_struct *); 2039extern int send_sig(int, struct task_struct *, int); 2040extern void zap_other_threads(struct task_struct *p); 2041extern struct sigqueue *sigqueue_alloc(void); 2042extern void sigqueue_free(struct sigqueue *); 2043extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2044extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2045extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2046 2047static inline int kill_cad_pid(int sig, int priv) 2048{ 2049 return kill_pid(cad_pid, sig, priv); 2050} 2051 2052/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2053#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2054#define SEND_SIG_PRIV ((struct siginfo *) 1) 2055#define SEND_SIG_FORCED ((struct siginfo *) 2) 2056 2057/* 2058 * True if we are on the alternate signal stack. 2059 */ 2060static inline int on_sig_stack(unsigned long sp) 2061{ 2062#ifdef CONFIG_STACK_GROWSUP 2063 return sp >= current->sas_ss_sp && 2064 sp - current->sas_ss_sp < current->sas_ss_size; 2065#else 2066 return sp > current->sas_ss_sp && 2067 sp - current->sas_ss_sp <= current->sas_ss_size; 2068#endif 2069} 2070 2071static inline int sas_ss_flags(unsigned long sp) 2072{ 2073 return (current->sas_ss_size == 0 ? SS_DISABLE 2074 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2075} 2076 2077/* 2078 * Routines for handling mm_structs 2079 */ 2080extern struct mm_struct * mm_alloc(void); 2081 2082/* mmdrop drops the mm and the page tables */ 2083extern void __mmdrop(struct mm_struct *); 2084static inline void mmdrop(struct mm_struct * mm) 2085{ 2086 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2087 __mmdrop(mm); 2088} 2089 2090/* mmput gets rid of the mappings and all user-space */ 2091extern void mmput(struct mm_struct *); 2092/* Grab a reference to a task's mm, if it is not already going away */ 2093extern struct mm_struct *get_task_mm(struct task_struct *task); 2094/* Remove the current tasks stale references to the old mm_struct */ 2095extern void mm_release(struct task_struct *, struct mm_struct *); 2096/* Allocate a new mm structure and copy contents from tsk->mm */ 2097extern struct mm_struct *dup_mm(struct task_struct *tsk); 2098 2099extern int copy_thread(unsigned long, unsigned long, unsigned long, 2100 struct task_struct *, struct pt_regs *); 2101extern void flush_thread(void); 2102extern void exit_thread(void); 2103 2104extern void exit_files(struct task_struct *); 2105extern void __cleanup_signal(struct signal_struct *); 2106extern void __cleanup_sighand(struct sighand_struct *); 2107 2108extern void exit_itimers(struct signal_struct *); 2109extern void flush_itimer_signals(void); 2110 2111extern NORET_TYPE void do_group_exit(int); 2112 2113extern void daemonize(const char *, ...); 2114extern int allow_signal(int); 2115extern int disallow_signal(int); 2116 2117extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2118extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2119struct task_struct *fork_idle(int); 2120 2121extern void set_task_comm(struct task_struct *tsk, char *from); 2122extern char *get_task_comm(char *to, struct task_struct *tsk); 2123 2124#ifdef CONFIG_SMP 2125extern void wait_task_context_switch(struct task_struct *p); 2126extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2127#else 2128static inline void wait_task_context_switch(struct task_struct *p) {} 2129static inline unsigned long wait_task_inactive(struct task_struct *p, 2130 long match_state) 2131{ 2132 return 1; 2133} 2134#endif 2135 2136#define next_task(p) \ 2137 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2138 2139#define for_each_process(p) \ 2140 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2141 2142extern bool current_is_single_threaded(void); 2143 2144/* 2145 * Careful: do_each_thread/while_each_thread is a double loop so 2146 * 'break' will not work as expected - use goto instead. 2147 */ 2148#define do_each_thread(g, t) \ 2149 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2150 2151#define while_each_thread(g, t) \ 2152 while ((t = next_thread(t)) != g) 2153 2154/* de_thread depends on thread_group_leader not being a pid based check */ 2155#define thread_group_leader(p) (p == p->group_leader) 2156 2157/* Do to the insanities of de_thread it is possible for a process 2158 * to have the pid of the thread group leader without actually being 2159 * the thread group leader. For iteration through the pids in proc 2160 * all we care about is that we have a task with the appropriate 2161 * pid, we don't actually care if we have the right task. 2162 */ 2163static inline int has_group_leader_pid(struct task_struct *p) 2164{ 2165 return p->pid == p->tgid; 2166} 2167 2168static inline 2169int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2170{ 2171 return p1->tgid == p2->tgid; 2172} 2173 2174static inline struct task_struct *next_thread(const struct task_struct *p) 2175{ 2176 return list_entry_rcu(p->thread_group.next, 2177 struct task_struct, thread_group); 2178} 2179 2180static inline int thread_group_empty(struct task_struct *p) 2181{ 2182 return list_empty(&p->thread_group); 2183} 2184 2185#define delay_group_leader(p) \ 2186 (thread_group_leader(p) && !thread_group_empty(p)) 2187 2188static inline int task_detached(struct task_struct *p) 2189{ 2190 return p->exit_signal == -1; 2191} 2192 2193/* 2194 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2195 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2196 * pins the final release of task.io_context. Also protects ->cpuset and 2197 * ->cgroup.subsys[]. 2198 * 2199 * Nests both inside and outside of read_lock(&tasklist_lock). 2200 * It must not be nested with write_lock_irq(&tasklist_lock), 2201 * neither inside nor outside. 2202 */ 2203static inline void task_lock(struct task_struct *p) 2204{ 2205 spin_lock(&p->alloc_lock); 2206} 2207 2208static inline void task_unlock(struct task_struct *p) 2209{ 2210 spin_unlock(&p->alloc_lock); 2211} 2212 2213extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2214 unsigned long *flags); 2215 2216static inline void unlock_task_sighand(struct task_struct *tsk, 2217 unsigned long *flags) 2218{ 2219 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2220} 2221 2222#ifndef __HAVE_THREAD_FUNCTIONS 2223 2224#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2225#define task_stack_page(task) ((task)->stack) 2226 2227static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2228{ 2229 *task_thread_info(p) = *task_thread_info(org); 2230 task_thread_info(p)->task = p; 2231} 2232 2233static inline unsigned long *end_of_stack(struct task_struct *p) 2234{ 2235 return (unsigned long *)(task_thread_info(p) + 1); 2236} 2237 2238#endif 2239 2240static inline int object_is_on_stack(void *obj) 2241{ 2242 void *stack = task_stack_page(current); 2243 2244 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2245} 2246 2247extern void thread_info_cache_init(void); 2248 2249#ifdef CONFIG_DEBUG_STACK_USAGE 2250static inline unsigned long stack_not_used(struct task_struct *p) 2251{ 2252 unsigned long *n = end_of_stack(p); 2253 2254 do { /* Skip over canary */ 2255 n++; 2256 } while (!*n); 2257 2258 return (unsigned long)n - (unsigned long)end_of_stack(p); 2259} 2260#endif 2261 2262/* set thread flags in other task's structures 2263 * - see asm/thread_info.h for TIF_xxxx flags available 2264 */ 2265static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2266{ 2267 set_ti_thread_flag(task_thread_info(tsk), flag); 2268} 2269 2270static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2271{ 2272 clear_ti_thread_flag(task_thread_info(tsk), flag); 2273} 2274 2275static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2276{ 2277 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2278} 2279 2280static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2281{ 2282 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2283} 2284 2285static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2286{ 2287 return test_ti_thread_flag(task_thread_info(tsk), flag); 2288} 2289 2290static inline void set_tsk_need_resched(struct task_struct *tsk) 2291{ 2292 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2293} 2294 2295static inline void clear_tsk_need_resched(struct task_struct *tsk) 2296{ 2297 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2298} 2299 2300static inline int test_tsk_need_resched(struct task_struct *tsk) 2301{ 2302 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2303} 2304 2305static inline int restart_syscall(void) 2306{ 2307 set_tsk_thread_flag(current, TIF_SIGPENDING); 2308 return -ERESTARTNOINTR; 2309} 2310 2311static inline int signal_pending(struct task_struct *p) 2312{ 2313 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2314} 2315 2316static inline int __fatal_signal_pending(struct task_struct *p) 2317{ 2318 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2319} 2320 2321static inline int fatal_signal_pending(struct task_struct *p) 2322{ 2323 return signal_pending(p) && __fatal_signal_pending(p); 2324} 2325 2326static inline int signal_pending_state(long state, struct task_struct *p) 2327{ 2328 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2329 return 0; 2330 if (!signal_pending(p)) 2331 return 0; 2332 2333 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2334} 2335 2336static inline int need_resched(void) 2337{ 2338 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2339} 2340 2341/* 2342 * cond_resched() and cond_resched_lock(): latency reduction via 2343 * explicit rescheduling in places that are safe. The return 2344 * value indicates whether a reschedule was done in fact. 2345 * cond_resched_lock() will drop the spinlock before scheduling, 2346 * cond_resched_softirq() will enable bhs before scheduling. 2347 */ 2348extern int _cond_resched(void); 2349 2350#define cond_resched() ({ \ 2351 __might_sleep(__FILE__, __LINE__, 0); \ 2352 _cond_resched(); \ 2353}) 2354 2355extern int __cond_resched_lock(spinlock_t *lock); 2356 2357#ifdef CONFIG_PREEMPT 2358#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2359#else 2360#define PREEMPT_LOCK_OFFSET 0 2361#endif 2362 2363#define cond_resched_lock(lock) ({ \ 2364 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2365 __cond_resched_lock(lock); \ 2366}) 2367 2368extern int __cond_resched_softirq(void); 2369 2370#define cond_resched_softirq() ({ \ 2371 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2372 __cond_resched_softirq(); \ 2373}) 2374 2375/* 2376 * Does a critical section need to be broken due to another 2377 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2378 * but a general need for low latency) 2379 */ 2380static inline int spin_needbreak(spinlock_t *lock) 2381{ 2382#ifdef CONFIG_PREEMPT 2383 return spin_is_contended(lock); 2384#else 2385 return 0; 2386#endif 2387} 2388 2389/* 2390 * Thread group CPU time accounting. 2391 */ 2392void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2393void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2394 2395static inline void thread_group_cputime_init(struct signal_struct *sig) 2396{ 2397 spin_lock_init(&sig->cputimer.lock); 2398} 2399 2400static inline void thread_group_cputime_free(struct signal_struct *sig) 2401{ 2402} 2403 2404/* 2405 * Reevaluate whether the task has signals pending delivery. 2406 * Wake the task if so. 2407 * This is required every time the blocked sigset_t changes. 2408 * callers must hold sighand->siglock. 2409 */ 2410extern void recalc_sigpending_and_wake(struct task_struct *t); 2411extern void recalc_sigpending(void); 2412 2413extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2414 2415/* 2416 * Wrappers for p->thread_info->cpu access. No-op on UP. 2417 */ 2418#ifdef CONFIG_SMP 2419 2420static inline unsigned int task_cpu(const struct task_struct *p) 2421{ 2422 return task_thread_info(p)->cpu; 2423} 2424 2425extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2426 2427#else 2428 2429static inline unsigned int task_cpu(const struct task_struct *p) 2430{ 2431 return 0; 2432} 2433 2434static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2435{ 2436} 2437 2438#endif /* CONFIG_SMP */ 2439 2440#ifdef CONFIG_TRACING 2441extern void 2442__trace_special(void *__tr, void *__data, 2443 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2444#else 2445static inline void 2446__trace_special(void *__tr, void *__data, 2447 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2448{ 2449} 2450#endif 2451 2452extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2453extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2454 2455extern void normalize_rt_tasks(void); 2456 2457#ifdef CONFIG_CGROUP_SCHED 2458 2459extern struct task_group init_task_group; 2460 2461extern struct task_group *sched_create_group(struct task_group *parent); 2462extern void sched_destroy_group(struct task_group *tg); 2463extern void sched_move_task(struct task_struct *tsk); 2464#ifdef CONFIG_FAIR_GROUP_SCHED 2465extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2466extern unsigned long sched_group_shares(struct task_group *tg); 2467#endif 2468#ifdef CONFIG_RT_GROUP_SCHED 2469extern int sched_group_set_rt_runtime(struct task_group *tg, 2470 long rt_runtime_us); 2471extern long sched_group_rt_runtime(struct task_group *tg); 2472extern int sched_group_set_rt_period(struct task_group *tg, 2473 long rt_period_us); 2474extern long sched_group_rt_period(struct task_group *tg); 2475extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2476#endif 2477#endif 2478 2479extern int task_can_switch_user(struct user_struct *up, 2480 struct task_struct *tsk); 2481 2482#ifdef CONFIG_TASK_XACCT 2483static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2484{ 2485 tsk->ioac.rchar += amt; 2486} 2487 2488static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2489{ 2490 tsk->ioac.wchar += amt; 2491} 2492 2493static inline void inc_syscr(struct task_struct *tsk) 2494{ 2495 tsk->ioac.syscr++; 2496} 2497 2498static inline void inc_syscw(struct task_struct *tsk) 2499{ 2500 tsk->ioac.syscw++; 2501} 2502#else 2503static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2504{ 2505} 2506 2507static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2508{ 2509} 2510 2511static inline void inc_syscr(struct task_struct *tsk) 2512{ 2513} 2514 2515static inline void inc_syscw(struct task_struct *tsk) 2516{ 2517} 2518#endif 2519 2520#ifndef TASK_SIZE_OF 2521#define TASK_SIZE_OF(tsk) TASK_SIZE 2522#endif 2523 2524/* 2525 * Call the function if the target task is executing on a CPU right now: 2526 */ 2527extern void task_oncpu_function_call(struct task_struct *p, 2528 void (*func) (void *info), void *info); 2529 2530 2531#ifdef CONFIG_MM_OWNER 2532extern void mm_update_next_owner(struct mm_struct *mm); 2533extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2534#else 2535static inline void mm_update_next_owner(struct mm_struct *mm) 2536{ 2537} 2538 2539static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2540{ 2541} 2542#endif /* CONFIG_MM_OWNER */ 2543 2544static inline unsigned long task_rlimit(const struct task_struct *tsk, 2545 unsigned int limit) 2546{ 2547 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2548} 2549 2550static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2551 unsigned int limit) 2552{ 2553 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2554} 2555 2556static inline unsigned long rlimit(unsigned int limit) 2557{ 2558 return task_rlimit(current, limit); 2559} 2560 2561static inline unsigned long rlimit_max(unsigned int limit) 2562{ 2563 return task_rlimit_max(current, limit); 2564} 2565 2566#endif /* __KERNEL__ */ 2567 2568#endif