Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
3
4#include <linux/preempt.h>
5#include <linux/smp.h>
6#include <linux/cpumask.h>
7#include <linux/pfn.h>
8#include <linux/init.h>
9
10#include <asm/percpu.h>
11
12/* enough to cover all DEFINE_PER_CPUs in modules */
13#ifdef CONFIG_MODULES
14#define PERCPU_MODULE_RESERVE (8 << 10)
15#else
16#define PERCPU_MODULE_RESERVE 0
17#endif
18
19#ifndef PERCPU_ENOUGH_ROOM
20#define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
24
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
32
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
37#define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40} while (0)
41
42#ifdef CONFIG_SMP
43
44/* minimum unit size, also is the maximum supported allocation size */
45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
46
47/*
48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
49 * back on the first chunk for dynamic percpu allocation if arch is
50 * manually allocating and mapping it for faster access (as a part of
51 * large page mapping for example).
52 *
53 * The following values give between one and two pages of free space
54 * after typical minimal boot (2-way SMP, single disk and NIC) with
55 * both defconfig and a distro config on x86_64 and 32. More
56 * intelligent way to determine this would be nice.
57 */
58#if BITS_PER_LONG > 32
59#define PERCPU_DYNAMIC_RESERVE (20 << 10)
60#else
61#define PERCPU_DYNAMIC_RESERVE (12 << 10)
62#endif
63
64extern void *pcpu_base_addr;
65extern const unsigned long *pcpu_unit_offsets;
66
67struct pcpu_group_info {
68 int nr_units; /* aligned # of units */
69 unsigned long base_offset; /* base address offset */
70 unsigned int *cpu_map; /* unit->cpu map, empty
71 * entries contain NR_CPUS */
72};
73
74struct pcpu_alloc_info {
75 size_t static_size;
76 size_t reserved_size;
77 size_t dyn_size;
78 size_t unit_size;
79 size_t atom_size;
80 size_t alloc_size;
81 size_t __ai_size; /* internal, don't use */
82 int nr_groups; /* 0 if grouping unnecessary */
83 struct pcpu_group_info groups[];
84};
85
86enum pcpu_fc {
87 PCPU_FC_AUTO,
88 PCPU_FC_EMBED,
89 PCPU_FC_PAGE,
90
91 PCPU_FC_NR,
92};
93extern const char *pcpu_fc_names[PCPU_FC_NR];
94
95extern enum pcpu_fc pcpu_chosen_fc;
96
97typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
98 size_t align);
99typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
100typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
101typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
102
103extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
104 int nr_units);
105extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
106
107extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
108 size_t reserved_size, ssize_t dyn_size,
109 size_t atom_size,
110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
111
112extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
113 void *base_addr);
114
115#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
116extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
117 size_t atom_size,
118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
119 pcpu_fc_alloc_fn_t alloc_fn,
120 pcpu_fc_free_fn_t free_fn);
121#endif
122
123#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
124extern int __init pcpu_page_first_chunk(size_t reserved_size,
125 pcpu_fc_alloc_fn_t alloc_fn,
126 pcpu_fc_free_fn_t free_fn,
127 pcpu_fc_populate_pte_fn_t populate_pte_fn);
128#endif
129
130/*
131 * Use this to get to a cpu's version of the per-cpu object
132 * dynamically allocated. Non-atomic access to the current CPU's
133 * version should probably be combined with get_cpu()/put_cpu().
134 */
135#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
136
137extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
138extern bool is_kernel_percpu_address(unsigned long addr);
139
140#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
141extern void __init setup_per_cpu_areas(void);
142#endif
143
144#else /* CONFIG_SMP */
145
146#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
147
148/* can't distinguish from other static vars, always false */
149static inline bool is_kernel_percpu_address(unsigned long addr)
150{
151 return false;
152}
153
154static inline void __init setup_per_cpu_areas(void) { }
155
156static inline void *pcpu_lpage_remapped(void *kaddr)
157{
158 return NULL;
159}
160
161#endif /* CONFIG_SMP */
162
163extern void __percpu *__alloc_percpu(size_t size, size_t align);
164extern void free_percpu(void __percpu *__pdata);
165extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
166
167#define alloc_percpu(type) \
168 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169
170/*
171 * Optional methods for optimized non-lvalue per-cpu variable access.
172 *
173 * @var can be a percpu variable or a field of it and its size should
174 * equal char, int or long. percpu_read() evaluates to a lvalue and
175 * all others to void.
176 *
177 * These operations are guaranteed to be atomic w.r.t. preemption.
178 * The generic versions use plain get/put_cpu_var(). Archs are
179 * encouraged to implement single-instruction alternatives which don't
180 * require preemption protection.
181 */
182#ifndef percpu_read
183# define percpu_read(var) \
184 ({ \
185 typeof(var) *pr_ptr__ = &(var); \
186 typeof(var) pr_ret__; \
187 pr_ret__ = get_cpu_var(*pr_ptr__); \
188 put_cpu_var(*pr_ptr__); \
189 pr_ret__; \
190 })
191#endif
192
193#define __percpu_generic_to_op(var, val, op) \
194do { \
195 typeof(var) *pgto_ptr__ = &(var); \
196 get_cpu_var(*pgto_ptr__) op val; \
197 put_cpu_var(*pgto_ptr__); \
198} while (0)
199
200#ifndef percpu_write
201# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
202#endif
203
204#ifndef percpu_add
205# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
206#endif
207
208#ifndef percpu_sub
209# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
210#endif
211
212#ifndef percpu_and
213# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
214#endif
215
216#ifndef percpu_or
217# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
218#endif
219
220#ifndef percpu_xor
221# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
222#endif
223
224/*
225 * Branching function to split up a function into a set of functions that
226 * are called for different scalar sizes of the objects handled.
227 */
228
229extern void __bad_size_call_parameter(void);
230
231#define __pcpu_size_call_return(stem, variable) \
232({ typeof(variable) pscr_ret__; \
233 __verify_pcpu_ptr(&(variable)); \
234 switch(sizeof(variable)) { \
235 case 1: pscr_ret__ = stem##1(variable);break; \
236 case 2: pscr_ret__ = stem##2(variable);break; \
237 case 4: pscr_ret__ = stem##4(variable);break; \
238 case 8: pscr_ret__ = stem##8(variable);break; \
239 default: \
240 __bad_size_call_parameter();break; \
241 } \
242 pscr_ret__; \
243})
244
245#define __pcpu_size_call(stem, variable, ...) \
246do { \
247 __verify_pcpu_ptr(&(variable)); \
248 switch(sizeof(variable)) { \
249 case 1: stem##1(variable, __VA_ARGS__);break; \
250 case 2: stem##2(variable, __VA_ARGS__);break; \
251 case 4: stem##4(variable, __VA_ARGS__);break; \
252 case 8: stem##8(variable, __VA_ARGS__);break; \
253 default: \
254 __bad_size_call_parameter();break; \
255 } \
256} while (0)
257
258/*
259 * Optimized manipulation for memory allocated through the per cpu
260 * allocator or for addresses of per cpu variables.
261 *
262 * These operation guarantee exclusivity of access for other operations
263 * on the *same* processor. The assumption is that per cpu data is only
264 * accessed by a single processor instance (the current one).
265 *
266 * The first group is used for accesses that must be done in a
267 * preemption safe way since we know that the context is not preempt
268 * safe. Interrupts may occur. If the interrupt modifies the variable
269 * too then RMW actions will not be reliable.
270 *
271 * The arch code can provide optimized functions in two ways:
272 *
273 * 1. Override the function completely. F.e. define this_cpu_add().
274 * The arch must then ensure that the various scalar format passed
275 * are handled correctly.
276 *
277 * 2. Provide functions for certain scalar sizes. F.e. provide
278 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
279 * sized RMW actions. If arch code does not provide operations for
280 * a scalar size then the fallback in the generic code will be
281 * used.
282 */
283
284#define _this_cpu_generic_read(pcp) \
285({ typeof(pcp) ret__; \
286 preempt_disable(); \
287 ret__ = *this_cpu_ptr(&(pcp)); \
288 preempt_enable(); \
289 ret__; \
290})
291
292#ifndef this_cpu_read
293# ifndef this_cpu_read_1
294# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
295# endif
296# ifndef this_cpu_read_2
297# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
298# endif
299# ifndef this_cpu_read_4
300# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
301# endif
302# ifndef this_cpu_read_8
303# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
304# endif
305# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
306#endif
307
308#define _this_cpu_generic_to_op(pcp, val, op) \
309do { \
310 preempt_disable(); \
311 *__this_cpu_ptr(&(pcp)) op val; \
312 preempt_enable(); \
313} while (0)
314
315#ifndef this_cpu_write
316# ifndef this_cpu_write_1
317# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
318# endif
319# ifndef this_cpu_write_2
320# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
321# endif
322# ifndef this_cpu_write_4
323# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
324# endif
325# ifndef this_cpu_write_8
326# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
327# endif
328# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
329#endif
330
331#ifndef this_cpu_add
332# ifndef this_cpu_add_1
333# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
334# endif
335# ifndef this_cpu_add_2
336# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
337# endif
338# ifndef this_cpu_add_4
339# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
340# endif
341# ifndef this_cpu_add_8
342# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
343# endif
344# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
345#endif
346
347#ifndef this_cpu_sub
348# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
349#endif
350
351#ifndef this_cpu_inc
352# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
353#endif
354
355#ifndef this_cpu_dec
356# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
357#endif
358
359#ifndef this_cpu_and
360# ifndef this_cpu_and_1
361# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
362# endif
363# ifndef this_cpu_and_2
364# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
365# endif
366# ifndef this_cpu_and_4
367# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
368# endif
369# ifndef this_cpu_and_8
370# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
371# endif
372# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
373#endif
374
375#ifndef this_cpu_or
376# ifndef this_cpu_or_1
377# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
378# endif
379# ifndef this_cpu_or_2
380# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
381# endif
382# ifndef this_cpu_or_4
383# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
384# endif
385# ifndef this_cpu_or_8
386# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
387# endif
388# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
389#endif
390
391#ifndef this_cpu_xor
392# ifndef this_cpu_xor_1
393# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
394# endif
395# ifndef this_cpu_xor_2
396# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
397# endif
398# ifndef this_cpu_xor_4
399# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
400# endif
401# ifndef this_cpu_xor_8
402# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
403# endif
404# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
405#endif
406
407/*
408 * Generic percpu operations that do not require preemption handling.
409 * Either we do not care about races or the caller has the
410 * responsibility of handling preemptions issues. Arch code can still
411 * override these instructions since the arch per cpu code may be more
412 * efficient and may actually get race freeness for free (that is the
413 * case for x86 for example).
414 *
415 * If there is no other protection through preempt disable and/or
416 * disabling interupts then one of these RMW operations can show unexpected
417 * behavior because the execution thread was rescheduled on another processor
418 * or an interrupt occurred and the same percpu variable was modified from
419 * the interrupt context.
420 */
421#ifndef __this_cpu_read
422# ifndef __this_cpu_read_1
423# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
424# endif
425# ifndef __this_cpu_read_2
426# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
427# endif
428# ifndef __this_cpu_read_4
429# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
430# endif
431# ifndef __this_cpu_read_8
432# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
433# endif
434# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
435#endif
436
437#define __this_cpu_generic_to_op(pcp, val, op) \
438do { \
439 *__this_cpu_ptr(&(pcp)) op val; \
440} while (0)
441
442#ifndef __this_cpu_write
443# ifndef __this_cpu_write_1
444# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
445# endif
446# ifndef __this_cpu_write_2
447# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
448# endif
449# ifndef __this_cpu_write_4
450# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
451# endif
452# ifndef __this_cpu_write_8
453# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
454# endif
455# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
456#endif
457
458#ifndef __this_cpu_add
459# ifndef __this_cpu_add_1
460# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
461# endif
462# ifndef __this_cpu_add_2
463# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
464# endif
465# ifndef __this_cpu_add_4
466# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
467# endif
468# ifndef __this_cpu_add_8
469# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
470# endif
471# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
472#endif
473
474#ifndef __this_cpu_sub
475# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
476#endif
477
478#ifndef __this_cpu_inc
479# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
480#endif
481
482#ifndef __this_cpu_dec
483# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
484#endif
485
486#ifndef __this_cpu_and
487# ifndef __this_cpu_and_1
488# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
489# endif
490# ifndef __this_cpu_and_2
491# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
492# endif
493# ifndef __this_cpu_and_4
494# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
495# endif
496# ifndef __this_cpu_and_8
497# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
498# endif
499# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
500#endif
501
502#ifndef __this_cpu_or
503# ifndef __this_cpu_or_1
504# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
505# endif
506# ifndef __this_cpu_or_2
507# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
508# endif
509# ifndef __this_cpu_or_4
510# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
511# endif
512# ifndef __this_cpu_or_8
513# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
514# endif
515# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
516#endif
517
518#ifndef __this_cpu_xor
519# ifndef __this_cpu_xor_1
520# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
521# endif
522# ifndef __this_cpu_xor_2
523# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
524# endif
525# ifndef __this_cpu_xor_4
526# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
527# endif
528# ifndef __this_cpu_xor_8
529# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
530# endif
531# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
532#endif
533
534/*
535 * IRQ safe versions of the per cpu RMW operations. Note that these operations
536 * are *not* safe against modification of the same variable from another
537 * processors (which one gets when using regular atomic operations)
538 . They are guaranteed to be atomic vs. local interrupts and
539 * preemption only.
540 */
541#define irqsafe_cpu_generic_to_op(pcp, val, op) \
542do { \
543 unsigned long flags; \
544 local_irq_save(flags); \
545 *__this_cpu_ptr(&(pcp)) op val; \
546 local_irq_restore(flags); \
547} while (0)
548
549#ifndef irqsafe_cpu_add
550# ifndef irqsafe_cpu_add_1
551# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
552# endif
553# ifndef irqsafe_cpu_add_2
554# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
555# endif
556# ifndef irqsafe_cpu_add_4
557# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
558# endif
559# ifndef irqsafe_cpu_add_8
560# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
561# endif
562# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
563#endif
564
565#ifndef irqsafe_cpu_sub
566# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
567#endif
568
569#ifndef irqsafe_cpu_inc
570# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
571#endif
572
573#ifndef irqsafe_cpu_dec
574# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
575#endif
576
577#ifndef irqsafe_cpu_and
578# ifndef irqsafe_cpu_and_1
579# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
580# endif
581# ifndef irqsafe_cpu_and_2
582# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
583# endif
584# ifndef irqsafe_cpu_and_4
585# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
586# endif
587# ifndef irqsafe_cpu_and_8
588# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
589# endif
590# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
591#endif
592
593#ifndef irqsafe_cpu_or
594# ifndef irqsafe_cpu_or_1
595# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
596# endif
597# ifndef irqsafe_cpu_or_2
598# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
599# endif
600# ifndef irqsafe_cpu_or_4
601# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
602# endif
603# ifndef irqsafe_cpu_or_8
604# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
605# endif
606# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
607#endif
608
609#ifndef irqsafe_cpu_xor
610# ifndef irqsafe_cpu_xor_1
611# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
612# endif
613# ifndef irqsafe_cpu_xor_2
614# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
615# endif
616# ifndef irqsafe_cpu_xor_4
617# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
618# endif
619# ifndef irqsafe_cpu_xor_8
620# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
621# endif
622# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
623#endif
624
625#endif /* __LINUX_PERCPU_H */