at v2.6.34 35 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107#ifdef CONFIG_NUMA 108 NUMA_HIT, /* allocated in intended node */ 109 NUMA_MISS, /* allocated in non intended node */ 110 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 112 NUMA_LOCAL, /* allocation from local node */ 113 NUMA_OTHER, /* allocation from other node */ 114#endif 115 NR_VM_ZONE_STAT_ITEMS }; 116 117/* 118 * We do arithmetic on the LRU lists in various places in the code, 119 * so it is important to keep the active lists LRU_ACTIVE higher in 120 * the array than the corresponding inactive lists, and to keep 121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 122 * 123 * This has to be kept in sync with the statistics in zone_stat_item 124 * above and the descriptions in vmstat_text in mm/vmstat.c 125 */ 126#define LRU_BASE 0 127#define LRU_ACTIVE 1 128#define LRU_FILE 2 129 130enum lru_list { 131 LRU_INACTIVE_ANON = LRU_BASE, 132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 135 LRU_UNEVICTABLE, 136 NR_LRU_LISTS 137}; 138 139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 140 141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 142 143static inline int is_file_lru(enum lru_list l) 144{ 145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 146} 147 148static inline int is_active_lru(enum lru_list l) 149{ 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 151} 152 153static inline int is_unevictable_lru(enum lru_list l) 154{ 155 return (l == LRU_UNEVICTABLE); 156} 157 158enum zone_watermarks { 159 WMARK_MIN, 160 WMARK_LOW, 161 WMARK_HIGH, 162 NR_WMARK 163}; 164 165#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 166#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 168 169struct per_cpu_pages { 170 int count; /* number of pages in the list */ 171 int high; /* high watermark, emptying needed */ 172 int batch; /* chunk size for buddy add/remove */ 173 174 /* Lists of pages, one per migrate type stored on the pcp-lists */ 175 struct list_head lists[MIGRATE_PCPTYPES]; 176}; 177 178struct per_cpu_pageset { 179 struct per_cpu_pages pcp; 180#ifdef CONFIG_NUMA 181 s8 expire; 182#endif 183#ifdef CONFIG_SMP 184 s8 stat_threshold; 185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 186#endif 187}; 188 189#endif /* !__GENERATING_BOUNDS.H */ 190 191enum zone_type { 192#ifdef CONFIG_ZONE_DMA 193 /* 194 * ZONE_DMA is used when there are devices that are not able 195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 196 * carve out the portion of memory that is needed for these devices. 197 * The range is arch specific. 198 * 199 * Some examples 200 * 201 * Architecture Limit 202 * --------------------------- 203 * parisc, ia64, sparc <4G 204 * s390 <2G 205 * arm Various 206 * alpha Unlimited or 0-16MB. 207 * 208 * i386, x86_64 and multiple other arches 209 * <16M. 210 */ 211 ZONE_DMA, 212#endif 213#ifdef CONFIG_ZONE_DMA32 214 /* 215 * x86_64 needs two ZONE_DMAs because it supports devices that are 216 * only able to do DMA to the lower 16M but also 32 bit devices that 217 * can only do DMA areas below 4G. 218 */ 219 ZONE_DMA32, 220#endif 221 /* 222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 223 * performed on pages in ZONE_NORMAL if the DMA devices support 224 * transfers to all addressable memory. 225 */ 226 ZONE_NORMAL, 227#ifdef CONFIG_HIGHMEM 228 /* 229 * A memory area that is only addressable by the kernel through 230 * mapping portions into its own address space. This is for example 231 * used by i386 to allow the kernel to address the memory beyond 232 * 900MB. The kernel will set up special mappings (page 233 * table entries on i386) for each page that the kernel needs to 234 * access. 235 */ 236 ZONE_HIGHMEM, 237#endif 238 ZONE_MOVABLE, 239 __MAX_NR_ZONES 240}; 241 242#ifndef __GENERATING_BOUNDS_H 243 244/* 245 * When a memory allocation must conform to specific limitations (such 246 * as being suitable for DMA) the caller will pass in hints to the 247 * allocator in the gfp_mask, in the zone modifier bits. These bits 248 * are used to select a priority ordered list of memory zones which 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h 250 */ 251 252#if MAX_NR_ZONES < 2 253#define ZONES_SHIFT 0 254#elif MAX_NR_ZONES <= 2 255#define ZONES_SHIFT 1 256#elif MAX_NR_ZONES <= 4 257#define ZONES_SHIFT 2 258#else 259#error ZONES_SHIFT -- too many zones configured adjust calculation 260#endif 261 262struct zone_reclaim_stat { 263 /* 264 * The pageout code in vmscan.c keeps track of how many of the 265 * mem/swap backed and file backed pages are refeferenced. 266 * The higher the rotated/scanned ratio, the more valuable 267 * that cache is. 268 * 269 * The anon LRU stats live in [0], file LRU stats in [1] 270 */ 271 unsigned long recent_rotated[2]; 272 unsigned long recent_scanned[2]; 273 274 /* 275 * accumulated for batching 276 */ 277 unsigned long nr_saved_scan[NR_LRU_LISTS]; 278}; 279 280struct zone { 281 /* Fields commonly accessed by the page allocator */ 282 283 /* zone watermarks, access with *_wmark_pages(zone) macros */ 284 unsigned long watermark[NR_WMARK]; 285 286 /* 287 * We don't know if the memory that we're going to allocate will be freeable 288 * or/and it will be released eventually, so to avoid totally wasting several 289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 290 * to run OOM on the lower zones despite there's tons of freeable ram 291 * on the higher zones). This array is recalculated at runtime if the 292 * sysctl_lowmem_reserve_ratio sysctl changes. 293 */ 294 unsigned long lowmem_reserve[MAX_NR_ZONES]; 295 296#ifdef CONFIG_NUMA 297 int node; 298 /* 299 * zone reclaim becomes active if more unmapped pages exist. 300 */ 301 unsigned long min_unmapped_pages; 302 unsigned long min_slab_pages; 303#endif 304 struct per_cpu_pageset __percpu *pageset; 305 /* 306 * free areas of different sizes 307 */ 308 spinlock_t lock; 309 int all_unreclaimable; /* All pages pinned */ 310#ifdef CONFIG_MEMORY_HOTPLUG 311 /* see spanned/present_pages for more description */ 312 seqlock_t span_seqlock; 313#endif 314 struct free_area free_area[MAX_ORDER]; 315 316#ifndef CONFIG_SPARSEMEM 317 /* 318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 319 * In SPARSEMEM, this map is stored in struct mem_section 320 */ 321 unsigned long *pageblock_flags; 322#endif /* CONFIG_SPARSEMEM */ 323 324 325 ZONE_PADDING(_pad1_) 326 327 /* Fields commonly accessed by the page reclaim scanner */ 328 spinlock_t lru_lock; 329 struct zone_lru { 330 struct list_head list; 331 } lru[NR_LRU_LISTS]; 332 333 struct zone_reclaim_stat reclaim_stat; 334 335 unsigned long pages_scanned; /* since last reclaim */ 336 unsigned long flags; /* zone flags, see below */ 337 338 /* Zone statistics */ 339 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 340 341 /* 342 * prev_priority holds the scanning priority for this zone. It is 343 * defined as the scanning priority at which we achieved our reclaim 344 * target at the previous try_to_free_pages() or balance_pgdat() 345 * invocation. 346 * 347 * We use prev_priority as a measure of how much stress page reclaim is 348 * under - it drives the swappiness decision: whether to unmap mapped 349 * pages. 350 * 351 * Access to both this field is quite racy even on uniprocessor. But 352 * it is expected to average out OK. 353 */ 354 int prev_priority; 355 356 /* 357 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 358 * this zone's LRU. Maintained by the pageout code. 359 */ 360 unsigned int inactive_ratio; 361 362 363 ZONE_PADDING(_pad2_) 364 /* Rarely used or read-mostly fields */ 365 366 /* 367 * wait_table -- the array holding the hash table 368 * wait_table_hash_nr_entries -- the size of the hash table array 369 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 370 * 371 * The purpose of all these is to keep track of the people 372 * waiting for a page to become available and make them 373 * runnable again when possible. The trouble is that this 374 * consumes a lot of space, especially when so few things 375 * wait on pages at a given time. So instead of using 376 * per-page waitqueues, we use a waitqueue hash table. 377 * 378 * The bucket discipline is to sleep on the same queue when 379 * colliding and wake all in that wait queue when removing. 380 * When something wakes, it must check to be sure its page is 381 * truly available, a la thundering herd. The cost of a 382 * collision is great, but given the expected load of the 383 * table, they should be so rare as to be outweighed by the 384 * benefits from the saved space. 385 * 386 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 387 * primary users of these fields, and in mm/page_alloc.c 388 * free_area_init_core() performs the initialization of them. 389 */ 390 wait_queue_head_t * wait_table; 391 unsigned long wait_table_hash_nr_entries; 392 unsigned long wait_table_bits; 393 394 /* 395 * Discontig memory support fields. 396 */ 397 struct pglist_data *zone_pgdat; 398 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 399 unsigned long zone_start_pfn; 400 401 /* 402 * zone_start_pfn, spanned_pages and present_pages are all 403 * protected by span_seqlock. It is a seqlock because it has 404 * to be read outside of zone->lock, and it is done in the main 405 * allocator path. But, it is written quite infrequently. 406 * 407 * The lock is declared along with zone->lock because it is 408 * frequently read in proximity to zone->lock. It's good to 409 * give them a chance of being in the same cacheline. 410 */ 411 unsigned long spanned_pages; /* total size, including holes */ 412 unsigned long present_pages; /* amount of memory (excluding holes) */ 413 414 /* 415 * rarely used fields: 416 */ 417 const char *name; 418} ____cacheline_internodealigned_in_smp; 419 420typedef enum { 421 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 422 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 423} zone_flags_t; 424 425static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 426{ 427 set_bit(flag, &zone->flags); 428} 429 430static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 431{ 432 return test_and_set_bit(flag, &zone->flags); 433} 434 435static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 436{ 437 clear_bit(flag, &zone->flags); 438} 439 440static inline int zone_is_reclaim_locked(const struct zone *zone) 441{ 442 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 443} 444 445static inline int zone_is_oom_locked(const struct zone *zone) 446{ 447 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 448} 449 450/* 451 * The "priority" of VM scanning is how much of the queues we will scan in one 452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 453 * queues ("queue_length >> 12") during an aging round. 454 */ 455#define DEF_PRIORITY 12 456 457/* Maximum number of zones on a zonelist */ 458#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 459 460#ifdef CONFIG_NUMA 461 462/* 463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 464 * allocations to a single node for GFP_THISNODE. 465 * 466 * [0] : Zonelist with fallback 467 * [1] : No fallback (GFP_THISNODE) 468 */ 469#define MAX_ZONELISTS 2 470 471 472/* 473 * We cache key information from each zonelist for smaller cache 474 * footprint when scanning for free pages in get_page_from_freelist(). 475 * 476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 477 * up short of free memory since the last time (last_fullzone_zap) 478 * we zero'd fullzones. 479 * 2) The array z_to_n[] maps each zone in the zonelist to its node 480 * id, so that we can efficiently evaluate whether that node is 481 * set in the current tasks mems_allowed. 482 * 483 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 484 * indexed by a zones offset in the zonelist zones[] array. 485 * 486 * The get_page_from_freelist() routine does two scans. During the 487 * first scan, we skip zones whose corresponding bit in 'fullzones' 488 * is set or whose corresponding node in current->mems_allowed (which 489 * comes from cpusets) is not set. During the second scan, we bypass 490 * this zonelist_cache, to ensure we look methodically at each zone. 491 * 492 * Once per second, we zero out (zap) fullzones, forcing us to 493 * reconsider nodes that might have regained more free memory. 494 * The field last_full_zap is the time we last zapped fullzones. 495 * 496 * This mechanism reduces the amount of time we waste repeatedly 497 * reexaming zones for free memory when they just came up low on 498 * memory momentarilly ago. 499 * 500 * The zonelist_cache struct members logically belong in struct 501 * zonelist. However, the mempolicy zonelists constructed for 502 * MPOL_BIND are intentionally variable length (and usually much 503 * shorter). A general purpose mechanism for handling structs with 504 * multiple variable length members is more mechanism than we want 505 * here. We resort to some special case hackery instead. 506 * 507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 508 * part because they are shorter), so we put the fixed length stuff 509 * at the front of the zonelist struct, ending in a variable length 510 * zones[], as is needed by MPOL_BIND. 511 * 512 * Then we put the optional zonelist cache on the end of the zonelist 513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 514 * the fixed length portion at the front of the struct. This pointer 515 * both enables us to find the zonelist cache, and in the case of 516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 517 * to know that the zonelist cache is not there. 518 * 519 * The end result is that struct zonelists come in two flavors: 520 * 1) The full, fixed length version, shown below, and 521 * 2) The custom zonelists for MPOL_BIND. 522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 523 * 524 * Even though there may be multiple CPU cores on a node modifying 525 * fullzones or last_full_zap in the same zonelist_cache at the same 526 * time, we don't lock it. This is just hint data - if it is wrong now 527 * and then, the allocator will still function, perhaps a bit slower. 528 */ 529 530 531struct zonelist_cache { 532 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 533 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 534 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 535}; 536#else 537#define MAX_ZONELISTS 1 538struct zonelist_cache; 539#endif 540 541/* 542 * This struct contains information about a zone in a zonelist. It is stored 543 * here to avoid dereferences into large structures and lookups of tables 544 */ 545struct zoneref { 546 struct zone *zone; /* Pointer to actual zone */ 547 int zone_idx; /* zone_idx(zoneref->zone) */ 548}; 549 550/* 551 * One allocation request operates on a zonelist. A zonelist 552 * is a list of zones, the first one is the 'goal' of the 553 * allocation, the other zones are fallback zones, in decreasing 554 * priority. 555 * 556 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 557 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 558 * * 559 * To speed the reading of the zonelist, the zonerefs contain the zone index 560 * of the entry being read. Helper functions to access information given 561 * a struct zoneref are 562 * 563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 564 * zonelist_zone_idx() - Return the index of the zone for an entry 565 * zonelist_node_idx() - Return the index of the node for an entry 566 */ 567struct zonelist { 568 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 569 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 570#ifdef CONFIG_NUMA 571 struct zonelist_cache zlcache; // optional ... 572#endif 573}; 574 575#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 576struct node_active_region { 577 unsigned long start_pfn; 578 unsigned long end_pfn; 579 int nid; 580}; 581#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 582 583#ifndef CONFIG_DISCONTIGMEM 584/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 585extern struct page *mem_map; 586#endif 587 588/* 589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 590 * (mostly NUMA machines?) to denote a higher-level memory zone than the 591 * zone denotes. 592 * 593 * On NUMA machines, each NUMA node would have a pg_data_t to describe 594 * it's memory layout. 595 * 596 * Memory statistics and page replacement data structures are maintained on a 597 * per-zone basis. 598 */ 599struct bootmem_data; 600typedef struct pglist_data { 601 struct zone node_zones[MAX_NR_ZONES]; 602 struct zonelist node_zonelists[MAX_ZONELISTS]; 603 int nr_zones; 604#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 605 struct page *node_mem_map; 606#ifdef CONFIG_CGROUP_MEM_RES_CTLR 607 struct page_cgroup *node_page_cgroup; 608#endif 609#endif 610#ifndef CONFIG_NO_BOOTMEM 611 struct bootmem_data *bdata; 612#endif 613#ifdef CONFIG_MEMORY_HOTPLUG 614 /* 615 * Must be held any time you expect node_start_pfn, node_present_pages 616 * or node_spanned_pages stay constant. Holding this will also 617 * guarantee that any pfn_valid() stays that way. 618 * 619 * Nests above zone->lock and zone->size_seqlock. 620 */ 621 spinlock_t node_size_lock; 622#endif 623 unsigned long node_start_pfn; 624 unsigned long node_present_pages; /* total number of physical pages */ 625 unsigned long node_spanned_pages; /* total size of physical page 626 range, including holes */ 627 int node_id; 628 wait_queue_head_t kswapd_wait; 629 struct task_struct *kswapd; 630 int kswapd_max_order; 631} pg_data_t; 632 633#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 634#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 635#ifdef CONFIG_FLAT_NODE_MEM_MAP 636#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 637#else 638#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 639#endif 640#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 641 642#include <linux/memory_hotplug.h> 643 644void get_zone_counts(unsigned long *active, unsigned long *inactive, 645 unsigned long *free); 646void build_all_zonelists(void); 647void wakeup_kswapd(struct zone *zone, int order); 648int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 649 int classzone_idx, int alloc_flags); 650enum memmap_context { 651 MEMMAP_EARLY, 652 MEMMAP_HOTPLUG, 653}; 654extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 655 unsigned long size, 656 enum memmap_context context); 657 658#ifdef CONFIG_HAVE_MEMORY_PRESENT 659void memory_present(int nid, unsigned long start, unsigned long end); 660#else 661static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 662#endif 663 664#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 665unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 666#endif 667 668/* 669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 670 */ 671#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 672 673static inline int populated_zone(struct zone *zone) 674{ 675 return (!!zone->present_pages); 676} 677 678extern int movable_zone; 679 680static inline int zone_movable_is_highmem(void) 681{ 682#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 683 return movable_zone == ZONE_HIGHMEM; 684#else 685 return 0; 686#endif 687} 688 689static inline int is_highmem_idx(enum zone_type idx) 690{ 691#ifdef CONFIG_HIGHMEM 692 return (idx == ZONE_HIGHMEM || 693 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 694#else 695 return 0; 696#endif 697} 698 699static inline int is_normal_idx(enum zone_type idx) 700{ 701 return (idx == ZONE_NORMAL); 702} 703 704/** 705 * is_highmem - helper function to quickly check if a struct zone is a 706 * highmem zone or not. This is an attempt to keep references 707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 708 * @zone - pointer to struct zone variable 709 */ 710static inline int is_highmem(struct zone *zone) 711{ 712#ifdef CONFIG_HIGHMEM 713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 715 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 716 zone_movable_is_highmem()); 717#else 718 return 0; 719#endif 720} 721 722static inline int is_normal(struct zone *zone) 723{ 724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 725} 726 727static inline int is_dma32(struct zone *zone) 728{ 729#ifdef CONFIG_ZONE_DMA32 730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 731#else 732 return 0; 733#endif 734} 735 736static inline int is_dma(struct zone *zone) 737{ 738#ifdef CONFIG_ZONE_DMA 739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 740#else 741 return 0; 742#endif 743} 744 745/* These two functions are used to setup the per zone pages min values */ 746struct ctl_table; 747int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 748 void __user *, size_t *, loff_t *); 749extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 750int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 751 void __user *, size_t *, loff_t *); 752int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 753 void __user *, size_t *, loff_t *); 754int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 755 void __user *, size_t *, loff_t *); 756int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 757 void __user *, size_t *, loff_t *); 758 759extern int numa_zonelist_order_handler(struct ctl_table *, int, 760 void __user *, size_t *, loff_t *); 761extern char numa_zonelist_order[]; 762#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 763 764#ifndef CONFIG_NEED_MULTIPLE_NODES 765 766extern struct pglist_data contig_page_data; 767#define NODE_DATA(nid) (&contig_page_data) 768#define NODE_MEM_MAP(nid) mem_map 769 770#else /* CONFIG_NEED_MULTIPLE_NODES */ 771 772#include <asm/mmzone.h> 773 774#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 775 776extern struct pglist_data *first_online_pgdat(void); 777extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 778extern struct zone *next_zone(struct zone *zone); 779 780/** 781 * for_each_online_pgdat - helper macro to iterate over all online nodes 782 * @pgdat - pointer to a pg_data_t variable 783 */ 784#define for_each_online_pgdat(pgdat) \ 785 for (pgdat = first_online_pgdat(); \ 786 pgdat; \ 787 pgdat = next_online_pgdat(pgdat)) 788/** 789 * for_each_zone - helper macro to iterate over all memory zones 790 * @zone - pointer to struct zone variable 791 * 792 * The user only needs to declare the zone variable, for_each_zone 793 * fills it in. 794 */ 795#define for_each_zone(zone) \ 796 for (zone = (first_online_pgdat())->node_zones; \ 797 zone; \ 798 zone = next_zone(zone)) 799 800#define for_each_populated_zone(zone) \ 801 for (zone = (first_online_pgdat())->node_zones; \ 802 zone; \ 803 zone = next_zone(zone)) \ 804 if (!populated_zone(zone)) \ 805 ; /* do nothing */ \ 806 else 807 808static inline struct zone *zonelist_zone(struct zoneref *zoneref) 809{ 810 return zoneref->zone; 811} 812 813static inline int zonelist_zone_idx(struct zoneref *zoneref) 814{ 815 return zoneref->zone_idx; 816} 817 818static inline int zonelist_node_idx(struct zoneref *zoneref) 819{ 820#ifdef CONFIG_NUMA 821 /* zone_to_nid not available in this context */ 822 return zoneref->zone->node; 823#else 824 return 0; 825#endif /* CONFIG_NUMA */ 826} 827 828/** 829 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 830 * @z - The cursor used as a starting point for the search 831 * @highest_zoneidx - The zone index of the highest zone to return 832 * @nodes - An optional nodemask to filter the zonelist with 833 * @zone - The first suitable zone found is returned via this parameter 834 * 835 * This function returns the next zone at or below a given zone index that is 836 * within the allowed nodemask using a cursor as the starting point for the 837 * search. The zoneref returned is a cursor that represents the current zone 838 * being examined. It should be advanced by one before calling 839 * next_zones_zonelist again. 840 */ 841struct zoneref *next_zones_zonelist(struct zoneref *z, 842 enum zone_type highest_zoneidx, 843 nodemask_t *nodes, 844 struct zone **zone); 845 846/** 847 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 848 * @zonelist - The zonelist to search for a suitable zone 849 * @highest_zoneidx - The zone index of the highest zone to return 850 * @nodes - An optional nodemask to filter the zonelist with 851 * @zone - The first suitable zone found is returned via this parameter 852 * 853 * This function returns the first zone at or below a given zone index that is 854 * within the allowed nodemask. The zoneref returned is a cursor that can be 855 * used to iterate the zonelist with next_zones_zonelist by advancing it by 856 * one before calling. 857 */ 858static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 859 enum zone_type highest_zoneidx, 860 nodemask_t *nodes, 861 struct zone **zone) 862{ 863 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 864 zone); 865} 866 867/** 868 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 869 * @zone - The current zone in the iterator 870 * @z - The current pointer within zonelist->zones being iterated 871 * @zlist - The zonelist being iterated 872 * @highidx - The zone index of the highest zone to return 873 * @nodemask - Nodemask allowed by the allocator 874 * 875 * This iterator iterates though all zones at or below a given zone index and 876 * within a given nodemask 877 */ 878#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 879 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 880 zone; \ 881 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 882 883/** 884 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 885 * @zone - The current zone in the iterator 886 * @z - The current pointer within zonelist->zones being iterated 887 * @zlist - The zonelist being iterated 888 * @highidx - The zone index of the highest zone to return 889 * 890 * This iterator iterates though all zones at or below a given zone index. 891 */ 892#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 893 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 894 895#ifdef CONFIG_SPARSEMEM 896#include <asm/sparsemem.h> 897#endif 898 899#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 900 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 901static inline unsigned long early_pfn_to_nid(unsigned long pfn) 902{ 903 return 0; 904} 905#endif 906 907#ifdef CONFIG_FLATMEM 908#define pfn_to_nid(pfn) (0) 909#endif 910 911#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 912#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 913 914#ifdef CONFIG_SPARSEMEM 915 916/* 917 * SECTION_SHIFT #bits space required to store a section # 918 * 919 * PA_SECTION_SHIFT physical address to/from section number 920 * PFN_SECTION_SHIFT pfn to/from section number 921 */ 922#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 923 924#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 925#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 926 927#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 928 929#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 930#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 931 932#define SECTION_BLOCKFLAGS_BITS \ 933 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 934 935#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 936#error Allocator MAX_ORDER exceeds SECTION_SIZE 937#endif 938 939struct page; 940struct page_cgroup; 941struct mem_section { 942 /* 943 * This is, logically, a pointer to an array of struct 944 * pages. However, it is stored with some other magic. 945 * (see sparse.c::sparse_init_one_section()) 946 * 947 * Additionally during early boot we encode node id of 948 * the location of the section here to guide allocation. 949 * (see sparse.c::memory_present()) 950 * 951 * Making it a UL at least makes someone do a cast 952 * before using it wrong. 953 */ 954 unsigned long section_mem_map; 955 956 /* See declaration of similar field in struct zone */ 957 unsigned long *pageblock_flags; 958#ifdef CONFIG_CGROUP_MEM_RES_CTLR 959 /* 960 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 961 * section. (see memcontrol.h/page_cgroup.h about this.) 962 */ 963 struct page_cgroup *page_cgroup; 964 unsigned long pad; 965#endif 966}; 967 968#ifdef CONFIG_SPARSEMEM_EXTREME 969#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 970#else 971#define SECTIONS_PER_ROOT 1 972#endif 973 974#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 975#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 976#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 977 978#ifdef CONFIG_SPARSEMEM_EXTREME 979extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 980#else 981extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 982#endif 983 984static inline struct mem_section *__nr_to_section(unsigned long nr) 985{ 986 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 987 return NULL; 988 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 989} 990extern int __section_nr(struct mem_section* ms); 991extern unsigned long usemap_size(void); 992 993/* 994 * We use the lower bits of the mem_map pointer to store 995 * a little bit of information. There should be at least 996 * 3 bits here due to 32-bit alignment. 997 */ 998#define SECTION_MARKED_PRESENT (1UL<<0) 999#define SECTION_HAS_MEM_MAP (1UL<<1) 1000#define SECTION_MAP_LAST_BIT (1UL<<2) 1001#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1002#define SECTION_NID_SHIFT 2 1003 1004static inline struct page *__section_mem_map_addr(struct mem_section *section) 1005{ 1006 unsigned long map = section->section_mem_map; 1007 map &= SECTION_MAP_MASK; 1008 return (struct page *)map; 1009} 1010 1011static inline int present_section(struct mem_section *section) 1012{ 1013 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1014} 1015 1016static inline int present_section_nr(unsigned long nr) 1017{ 1018 return present_section(__nr_to_section(nr)); 1019} 1020 1021static inline int valid_section(struct mem_section *section) 1022{ 1023 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1024} 1025 1026static inline int valid_section_nr(unsigned long nr) 1027{ 1028 return valid_section(__nr_to_section(nr)); 1029} 1030 1031static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1032{ 1033 return __nr_to_section(pfn_to_section_nr(pfn)); 1034} 1035 1036static inline int pfn_valid(unsigned long pfn) 1037{ 1038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1039 return 0; 1040 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1041} 1042 1043static inline int pfn_present(unsigned long pfn) 1044{ 1045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1046 return 0; 1047 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1048} 1049 1050/* 1051 * These are _only_ used during initialisation, therefore they 1052 * can use __initdata ... They could have names to indicate 1053 * this restriction. 1054 */ 1055#ifdef CONFIG_NUMA 1056#define pfn_to_nid(pfn) \ 1057({ \ 1058 unsigned long __pfn_to_nid_pfn = (pfn); \ 1059 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1060}) 1061#else 1062#define pfn_to_nid(pfn) (0) 1063#endif 1064 1065#define early_pfn_valid(pfn) pfn_valid(pfn) 1066void sparse_init(void); 1067#else 1068#define sparse_init() do {} while (0) 1069#define sparse_index_init(_sec, _nid) do {} while (0) 1070#endif /* CONFIG_SPARSEMEM */ 1071 1072#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1073bool early_pfn_in_nid(unsigned long pfn, int nid); 1074#else 1075#define early_pfn_in_nid(pfn, nid) (1) 1076#endif 1077 1078#ifndef early_pfn_valid 1079#define early_pfn_valid(pfn) (1) 1080#endif 1081 1082void memory_present(int nid, unsigned long start, unsigned long end); 1083unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1084 1085/* 1086 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1087 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1088 * pfn_valid_within() should be used in this case; we optimise this away 1089 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1090 */ 1091#ifdef CONFIG_HOLES_IN_ZONE 1092#define pfn_valid_within(pfn) pfn_valid(pfn) 1093#else 1094#define pfn_valid_within(pfn) (1) 1095#endif 1096 1097#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1098/* 1099 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1100 * associated with it or not. In FLATMEM, it is expected that holes always 1101 * have valid memmap as long as there is valid PFNs either side of the hole. 1102 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1103 * entire section. 1104 * 1105 * However, an ARM, and maybe other embedded architectures in the future 1106 * free memmap backing holes to save memory on the assumption the memmap is 1107 * never used. The page_zone linkages are then broken even though pfn_valid() 1108 * returns true. A walker of the full memmap must then do this additional 1109 * check to ensure the memmap they are looking at is sane by making sure 1110 * the zone and PFN linkages are still valid. This is expensive, but walkers 1111 * of the full memmap are extremely rare. 1112 */ 1113int memmap_valid_within(unsigned long pfn, 1114 struct page *page, struct zone *zone); 1115#else 1116static inline int memmap_valid_within(unsigned long pfn, 1117 struct page *page, struct zone *zone) 1118{ 1119 return 1; 1120} 1121#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1122 1123#endif /* !__GENERATING_BOUNDS.H */ 1124#endif /* !__ASSEMBLY__ */ 1125#endif /* _LINUX_MMZONE_H */