at v2.6.34 21 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/dma-mapping.h> 27 28/** 29 * typedef dma_cookie_t - an opaque DMA cookie 30 * 31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 32 */ 33typedef s32 dma_cookie_t; 34#define DMA_MIN_COOKIE 1 35#define DMA_MAX_COOKIE INT_MAX 36 37#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 38 39/** 40 * enum dma_status - DMA transaction status 41 * @DMA_SUCCESS: transaction completed successfully 42 * @DMA_IN_PROGRESS: transaction not yet processed 43 * @DMA_ERROR: transaction failed 44 */ 45enum dma_status { 46 DMA_SUCCESS, 47 DMA_IN_PROGRESS, 48 DMA_ERROR, 49}; 50 51/** 52 * enum dma_transaction_type - DMA transaction types/indexes 53 * 54 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 55 * automatically set as dma devices are registered. 56 */ 57enum dma_transaction_type { 58 DMA_MEMCPY, 59 DMA_XOR, 60 DMA_PQ, 61 DMA_XOR_VAL, 62 DMA_PQ_VAL, 63 DMA_MEMSET, 64 DMA_INTERRUPT, 65 DMA_PRIVATE, 66 DMA_ASYNC_TX, 67 DMA_SLAVE, 68}; 69 70/* last transaction type for creation of the capabilities mask */ 71#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 72 73 74/** 75 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 76 * control completion, and communicate status. 77 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 78 * this transaction 79 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 80 * acknowledges receipt, i.e. has has a chance to establish any dependency 81 * chains 82 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 83 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 84 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 85 * (if not set, do the source dma-unmapping as page) 86 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 87 * (if not set, do the destination dma-unmapping as page) 88 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 89 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 90 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 91 * sources that were the result of a previous operation, in the case of a PQ 92 * operation it continues the calculation with new sources 93 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 94 * on the result of this operation 95 */ 96enum dma_ctrl_flags { 97 DMA_PREP_INTERRUPT = (1 << 0), 98 DMA_CTRL_ACK = (1 << 1), 99 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 100 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 101 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 102 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 103 DMA_PREP_PQ_DISABLE_P = (1 << 6), 104 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 105 DMA_PREP_CONTINUE = (1 << 8), 106 DMA_PREP_FENCE = (1 << 9), 107}; 108 109/** 110 * enum sum_check_bits - bit position of pq_check_flags 111 */ 112enum sum_check_bits { 113 SUM_CHECK_P = 0, 114 SUM_CHECK_Q = 1, 115}; 116 117/** 118 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 119 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 120 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 121 */ 122enum sum_check_flags { 123 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 124 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 125}; 126 127 128/** 129 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 130 * See linux/cpumask.h 131 */ 132typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 133 134/** 135 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 136 * @memcpy_count: transaction counter 137 * @bytes_transferred: byte counter 138 */ 139 140struct dma_chan_percpu { 141 /* stats */ 142 unsigned long memcpy_count; 143 unsigned long bytes_transferred; 144}; 145 146/** 147 * struct dma_chan - devices supply DMA channels, clients use them 148 * @device: ptr to the dma device who supplies this channel, always !%NULL 149 * @cookie: last cookie value returned to client 150 * @chan_id: channel ID for sysfs 151 * @dev: class device for sysfs 152 * @device_node: used to add this to the device chan list 153 * @local: per-cpu pointer to a struct dma_chan_percpu 154 * @client-count: how many clients are using this channel 155 * @table_count: number of appearances in the mem-to-mem allocation table 156 * @private: private data for certain client-channel associations 157 */ 158struct dma_chan { 159 struct dma_device *device; 160 dma_cookie_t cookie; 161 162 /* sysfs */ 163 int chan_id; 164 struct dma_chan_dev *dev; 165 166 struct list_head device_node; 167 struct dma_chan_percpu __percpu *local; 168 int client_count; 169 int table_count; 170 void *private; 171}; 172 173/** 174 * struct dma_chan_dev - relate sysfs device node to backing channel device 175 * @chan - driver channel device 176 * @device - sysfs device 177 * @dev_id - parent dma_device dev_id 178 * @idr_ref - reference count to gate release of dma_device dev_id 179 */ 180struct dma_chan_dev { 181 struct dma_chan *chan; 182 struct device device; 183 int dev_id; 184 atomic_t *idr_ref; 185}; 186 187static inline const char *dma_chan_name(struct dma_chan *chan) 188{ 189 return dev_name(&chan->dev->device); 190} 191 192void dma_chan_cleanup(struct kref *kref); 193 194/** 195 * typedef dma_filter_fn - callback filter for dma_request_channel 196 * @chan: channel to be reviewed 197 * @filter_param: opaque parameter passed through dma_request_channel 198 * 199 * When this optional parameter is specified in a call to dma_request_channel a 200 * suitable channel is passed to this routine for further dispositioning before 201 * being returned. Where 'suitable' indicates a non-busy channel that 202 * satisfies the given capability mask. It returns 'true' to indicate that the 203 * channel is suitable. 204 */ 205typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 206 207typedef void (*dma_async_tx_callback)(void *dma_async_param); 208/** 209 * struct dma_async_tx_descriptor - async transaction descriptor 210 * ---dma generic offload fields--- 211 * @cookie: tracking cookie for this transaction, set to -EBUSY if 212 * this tx is sitting on a dependency list 213 * @flags: flags to augment operation preparation, control completion, and 214 * communicate status 215 * @phys: physical address of the descriptor 216 * @chan: target channel for this operation 217 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 218 * @callback: routine to call after this operation is complete 219 * @callback_param: general parameter to pass to the callback routine 220 * ---async_tx api specific fields--- 221 * @next: at completion submit this descriptor 222 * @parent: pointer to the next level up in the dependency chain 223 * @lock: protect the parent and next pointers 224 */ 225struct dma_async_tx_descriptor { 226 dma_cookie_t cookie; 227 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 228 dma_addr_t phys; 229 struct dma_chan *chan; 230 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 231 dma_async_tx_callback callback; 232 void *callback_param; 233 struct dma_async_tx_descriptor *next; 234 struct dma_async_tx_descriptor *parent; 235 spinlock_t lock; 236}; 237 238/** 239 * struct dma_device - info on the entity supplying DMA services 240 * @chancnt: how many DMA channels are supported 241 * @privatecnt: how many DMA channels are requested by dma_request_channel 242 * @channels: the list of struct dma_chan 243 * @global_node: list_head for global dma_device_list 244 * @cap_mask: one or more dma_capability flags 245 * @max_xor: maximum number of xor sources, 0 if no capability 246 * @max_pq: maximum number of PQ sources and PQ-continue capability 247 * @copy_align: alignment shift for memcpy operations 248 * @xor_align: alignment shift for xor operations 249 * @pq_align: alignment shift for pq operations 250 * @fill_align: alignment shift for memset operations 251 * @dev_id: unique device ID 252 * @dev: struct device reference for dma mapping api 253 * @device_alloc_chan_resources: allocate resources and return the 254 * number of allocated descriptors 255 * @device_free_chan_resources: release DMA channel's resources 256 * @device_prep_dma_memcpy: prepares a memcpy operation 257 * @device_prep_dma_xor: prepares a xor operation 258 * @device_prep_dma_xor_val: prepares a xor validation operation 259 * @device_prep_dma_pq: prepares a pq operation 260 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 261 * @device_prep_dma_memset: prepares a memset operation 262 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 263 * @device_prep_slave_sg: prepares a slave dma operation 264 * @device_terminate_all: terminate all pending operations 265 * @device_is_tx_complete: poll for transaction completion 266 * @device_issue_pending: push pending transactions to hardware 267 */ 268struct dma_device { 269 270 unsigned int chancnt; 271 unsigned int privatecnt; 272 struct list_head channels; 273 struct list_head global_node; 274 dma_cap_mask_t cap_mask; 275 unsigned short max_xor; 276 unsigned short max_pq; 277 u8 copy_align; 278 u8 xor_align; 279 u8 pq_align; 280 u8 fill_align; 281 #define DMA_HAS_PQ_CONTINUE (1 << 15) 282 283 int dev_id; 284 struct device *dev; 285 286 int (*device_alloc_chan_resources)(struct dma_chan *chan); 287 void (*device_free_chan_resources)(struct dma_chan *chan); 288 289 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 290 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 291 size_t len, unsigned long flags); 292 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 293 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 294 unsigned int src_cnt, size_t len, unsigned long flags); 295 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 296 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 297 size_t len, enum sum_check_flags *result, unsigned long flags); 298 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 299 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 300 unsigned int src_cnt, const unsigned char *scf, 301 size_t len, unsigned long flags); 302 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 303 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 304 unsigned int src_cnt, const unsigned char *scf, size_t len, 305 enum sum_check_flags *pqres, unsigned long flags); 306 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 307 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 308 unsigned long flags); 309 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 310 struct dma_chan *chan, unsigned long flags); 311 312 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 313 struct dma_chan *chan, struct scatterlist *sgl, 314 unsigned int sg_len, enum dma_data_direction direction, 315 unsigned long flags); 316 void (*device_terminate_all)(struct dma_chan *chan); 317 318 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, 319 dma_cookie_t cookie, dma_cookie_t *last, 320 dma_cookie_t *used); 321 void (*device_issue_pending)(struct dma_chan *chan); 322}; 323 324static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 325{ 326 size_t mask; 327 328 if (!align) 329 return true; 330 mask = (1 << align) - 1; 331 if (mask & (off1 | off2 | len)) 332 return false; 333 return true; 334} 335 336static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 337 size_t off2, size_t len) 338{ 339 return dmaengine_check_align(dev->copy_align, off1, off2, len); 340} 341 342static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 343 size_t off2, size_t len) 344{ 345 return dmaengine_check_align(dev->xor_align, off1, off2, len); 346} 347 348static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 349 size_t off2, size_t len) 350{ 351 return dmaengine_check_align(dev->pq_align, off1, off2, len); 352} 353 354static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 355 size_t off2, size_t len) 356{ 357 return dmaengine_check_align(dev->fill_align, off1, off2, len); 358} 359 360static inline void 361dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 362{ 363 dma->max_pq = maxpq; 364 if (has_pq_continue) 365 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 366} 367 368static inline bool dmaf_continue(enum dma_ctrl_flags flags) 369{ 370 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 371} 372 373static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 374{ 375 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 376 377 return (flags & mask) == mask; 378} 379 380static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 381{ 382 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 383} 384 385static unsigned short dma_dev_to_maxpq(struct dma_device *dma) 386{ 387 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 388} 389 390/* dma_maxpq - reduce maxpq in the face of continued operations 391 * @dma - dma device with PQ capability 392 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 393 * 394 * When an engine does not support native continuation we need 3 extra 395 * source slots to reuse P and Q with the following coefficients: 396 * 1/ {00} * P : remove P from Q', but use it as a source for P' 397 * 2/ {01} * Q : use Q to continue Q' calculation 398 * 3/ {00} * Q : subtract Q from P' to cancel (2) 399 * 400 * In the case where P is disabled we only need 1 extra source: 401 * 1/ {01} * Q : use Q to continue Q' calculation 402 */ 403static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 404{ 405 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 406 return dma_dev_to_maxpq(dma); 407 else if (dmaf_p_disabled_continue(flags)) 408 return dma_dev_to_maxpq(dma) - 1; 409 else if (dmaf_continue(flags)) 410 return dma_dev_to_maxpq(dma) - 3; 411 BUG(); 412} 413 414/* --- public DMA engine API --- */ 415 416#ifdef CONFIG_DMA_ENGINE 417void dmaengine_get(void); 418void dmaengine_put(void); 419#else 420static inline void dmaengine_get(void) 421{ 422} 423static inline void dmaengine_put(void) 424{ 425} 426#endif 427 428#ifdef CONFIG_NET_DMA 429#define net_dmaengine_get() dmaengine_get() 430#define net_dmaengine_put() dmaengine_put() 431#else 432static inline void net_dmaengine_get(void) 433{ 434} 435static inline void net_dmaengine_put(void) 436{ 437} 438#endif 439 440#ifdef CONFIG_ASYNC_TX_DMA 441#define async_dmaengine_get() dmaengine_get() 442#define async_dmaengine_put() dmaengine_put() 443#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH 444#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 445#else 446#define async_dma_find_channel(type) dma_find_channel(type) 447#endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */ 448#else 449static inline void async_dmaengine_get(void) 450{ 451} 452static inline void async_dmaengine_put(void) 453{ 454} 455static inline struct dma_chan * 456async_dma_find_channel(enum dma_transaction_type type) 457{ 458 return NULL; 459} 460#endif /* CONFIG_ASYNC_TX_DMA */ 461 462dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 463 void *dest, void *src, size_t len); 464dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 465 struct page *page, unsigned int offset, void *kdata, size_t len); 466dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 467 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 468 unsigned int src_off, size_t len); 469void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 470 struct dma_chan *chan); 471 472static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 473{ 474 tx->flags |= DMA_CTRL_ACK; 475} 476 477static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 478{ 479 tx->flags &= ~DMA_CTRL_ACK; 480} 481 482static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 483{ 484 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 485} 486 487#define first_dma_cap(mask) __first_dma_cap(&(mask)) 488static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 489{ 490 return min_t(int, DMA_TX_TYPE_END, 491 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 492} 493 494#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 495static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 496{ 497 return min_t(int, DMA_TX_TYPE_END, 498 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 499} 500 501#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 502static inline void 503__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 504{ 505 set_bit(tx_type, dstp->bits); 506} 507 508#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 509static inline void 510__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 511{ 512 clear_bit(tx_type, dstp->bits); 513} 514 515#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 516static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 517{ 518 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 519} 520 521#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 522static inline int 523__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 524{ 525 return test_bit(tx_type, srcp->bits); 526} 527 528#define for_each_dma_cap_mask(cap, mask) \ 529 for ((cap) = first_dma_cap(mask); \ 530 (cap) < DMA_TX_TYPE_END; \ 531 (cap) = next_dma_cap((cap), (mask))) 532 533/** 534 * dma_async_issue_pending - flush pending transactions to HW 535 * @chan: target DMA channel 536 * 537 * This allows drivers to push copies to HW in batches, 538 * reducing MMIO writes where possible. 539 */ 540static inline void dma_async_issue_pending(struct dma_chan *chan) 541{ 542 chan->device->device_issue_pending(chan); 543} 544 545#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 546 547/** 548 * dma_async_is_tx_complete - poll for transaction completion 549 * @chan: DMA channel 550 * @cookie: transaction identifier to check status of 551 * @last: returns last completed cookie, can be NULL 552 * @used: returns last issued cookie, can be NULL 553 * 554 * If @last and @used are passed in, upon return they reflect the driver 555 * internal state and can be used with dma_async_is_complete() to check 556 * the status of multiple cookies without re-checking hardware state. 557 */ 558static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 559 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 560{ 561 return chan->device->device_is_tx_complete(chan, cookie, last, used); 562} 563 564#define dma_async_memcpy_complete(chan, cookie, last, used)\ 565 dma_async_is_tx_complete(chan, cookie, last, used) 566 567/** 568 * dma_async_is_complete - test a cookie against chan state 569 * @cookie: transaction identifier to test status of 570 * @last_complete: last know completed transaction 571 * @last_used: last cookie value handed out 572 * 573 * dma_async_is_complete() is used in dma_async_memcpy_complete() 574 * the test logic is separated for lightweight testing of multiple cookies 575 */ 576static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 577 dma_cookie_t last_complete, dma_cookie_t last_used) 578{ 579 if (last_complete <= last_used) { 580 if ((cookie <= last_complete) || (cookie > last_used)) 581 return DMA_SUCCESS; 582 } else { 583 if ((cookie <= last_complete) && (cookie > last_used)) 584 return DMA_SUCCESS; 585 } 586 return DMA_IN_PROGRESS; 587} 588 589enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 590#ifdef CONFIG_DMA_ENGINE 591enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 592void dma_issue_pending_all(void); 593#else 594static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 595{ 596 return DMA_SUCCESS; 597} 598static inline void dma_issue_pending_all(void) 599{ 600 do { } while (0); 601} 602#endif 603 604/* --- DMA device --- */ 605 606int dma_async_device_register(struct dma_device *device); 607void dma_async_device_unregister(struct dma_device *device); 608void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 609struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 610#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 611struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 612void dma_release_channel(struct dma_chan *chan); 613 614/* --- Helper iov-locking functions --- */ 615 616struct dma_page_list { 617 char __user *base_address; 618 int nr_pages; 619 struct page **pages; 620}; 621 622struct dma_pinned_list { 623 int nr_iovecs; 624 struct dma_page_list page_list[0]; 625}; 626 627struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 628void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 629 630dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 631 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 632dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 633 struct dma_pinned_list *pinned_list, struct page *page, 634 unsigned int offset, size_t len); 635 636#endif /* DMAENGINE_H */