at v2.6.34-rc3 6033 lines 149 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <net/net_namespace.h> 98#include <net/sock.h> 99#include <linux/rtnetlink.h> 100#include <linux/proc_fs.h> 101#include <linux/seq_file.h> 102#include <linux/stat.h> 103#include <linux/if_bridge.h> 104#include <linux/if_macvlan.h> 105#include <net/dst.h> 106#include <net/pkt_sched.h> 107#include <net/checksum.h> 108#include <net/xfrm.h> 109#include <linux/highmem.h> 110#include <linux/init.h> 111#include <linux/kmod.h> 112#include <linux/module.h> 113#include <linux/netpoll.h> 114#include <linux/rcupdate.h> 115#include <linux/delay.h> 116#include <net/wext.h> 117#include <net/iw_handler.h> 118#include <asm/current.h> 119#include <linux/audit.h> 120#include <linux/dmaengine.h> 121#include <linux/err.h> 122#include <linux/ctype.h> 123#include <linux/if_arp.h> 124#include <linux/if_vlan.h> 125#include <linux/ip.h> 126#include <net/ip.h> 127#include <linux/ipv6.h> 128#include <linux/in.h> 129#include <linux/jhash.h> 130#include <linux/random.h> 131#include <trace/events/napi.h> 132 133#include "net-sysfs.h" 134 135/* Instead of increasing this, you should create a hash table. */ 136#define MAX_GRO_SKBS 8 137 138/* This should be increased if a protocol with a bigger head is added. */ 139#define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141/* 142 * The list of packet types we will receive (as opposed to discard) 143 * and the routines to invoke. 144 * 145 * Why 16. Because with 16 the only overlap we get on a hash of the 146 * low nibble of the protocol value is RARP/SNAP/X.25. 147 * 148 * NOTE: That is no longer true with the addition of VLAN tags. Not 149 * sure which should go first, but I bet it won't make much 150 * difference if we are running VLANs. The good news is that 151 * this protocol won't be in the list unless compiled in, so 152 * the average user (w/out VLANs) will not be adversely affected. 153 * --BLG 154 * 155 * 0800 IP 156 * 8100 802.1Q VLAN 157 * 0001 802.3 158 * 0002 AX.25 159 * 0004 802.2 160 * 8035 RARP 161 * 0005 SNAP 162 * 0805 X.25 163 * 0806 ARP 164 * 8137 IPX 165 * 0009 Localtalk 166 * 86DD IPv6 167 */ 168 169#define PTYPE_HASH_SIZE (16) 170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 171 172static DEFINE_SPINLOCK(ptype_lock); 173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 174static struct list_head ptype_all __read_mostly; /* Taps */ 175 176/* 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 178 * semaphore. 179 * 180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 181 * 182 * Writers must hold the rtnl semaphore while they loop through the 183 * dev_base_head list, and hold dev_base_lock for writing when they do the 184 * actual updates. This allows pure readers to access the list even 185 * while a writer is preparing to update it. 186 * 187 * To put it another way, dev_base_lock is held for writing only to 188 * protect against pure readers; the rtnl semaphore provides the 189 * protection against other writers. 190 * 191 * See, for example usages, register_netdevice() and 192 * unregister_netdevice(), which must be called with the rtnl 193 * semaphore held. 194 */ 195DEFINE_RWLOCK(dev_base_lock); 196EXPORT_SYMBOL(dev_base_lock); 197 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199{ 200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 202} 203 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 205{ 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 207} 208 209/* Device list insertion */ 210static int list_netdevice(struct net_device *dev) 211{ 212 struct net *net = dev_net(dev); 213 214 ASSERT_RTNL(); 215 216 write_lock_bh(&dev_base_lock); 217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 219 hlist_add_head_rcu(&dev->index_hlist, 220 dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223} 224 225/* Device list removal 226 * caller must respect a RCU grace period before freeing/reusing dev 227 */ 228static void unlist_netdevice(struct net_device *dev) 229{ 230 ASSERT_RTNL(); 231 232 /* Unlink dev from the device chain */ 233 write_lock_bh(&dev_base_lock); 234 list_del_rcu(&dev->dev_list); 235 hlist_del_rcu(&dev->name_hlist); 236 hlist_del_rcu(&dev->index_hlist); 237 write_unlock_bh(&dev_base_lock); 238} 239 240/* 241 * Our notifier list 242 */ 243 244static RAW_NOTIFIER_HEAD(netdev_chain); 245 246/* 247 * Device drivers call our routines to queue packets here. We empty the 248 * queue in the local softnet handler. 249 */ 250 251DEFINE_PER_CPU(struct softnet_data, softnet_data); 252EXPORT_PER_CPU_SYMBOL(softnet_data); 253 254#ifdef CONFIG_LOCKDEP 255/* 256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 257 * according to dev->type 258 */ 259static const unsigned short netdev_lock_type[] = 260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 275 ARPHRD_VOID, ARPHRD_NONE}; 276 277static const char *const netdev_lock_name[] = 278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 293 "_xmit_VOID", "_xmit_NONE"}; 294 295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 296static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297 298static inline unsigned short netdev_lock_pos(unsigned short dev_type) 299{ 300 int i; 301 302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 303 if (netdev_lock_type[i] == dev_type) 304 return i; 305 /* the last key is used by default */ 306 return ARRAY_SIZE(netdev_lock_type) - 1; 307} 308 309static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 310 unsigned short dev_type) 311{ 312 int i; 313 314 i = netdev_lock_pos(dev_type); 315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 316 netdev_lock_name[i]); 317} 318 319static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 320{ 321 int i; 322 323 i = netdev_lock_pos(dev->type); 324 lockdep_set_class_and_name(&dev->addr_list_lock, 325 &netdev_addr_lock_key[i], 326 netdev_lock_name[i]); 327} 328#else 329static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 330 unsigned short dev_type) 331{ 332} 333static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 334{ 335} 336#endif 337 338/******************************************************************************* 339 340 Protocol management and registration routines 341 342*******************************************************************************/ 343 344/* 345 * Add a protocol ID to the list. Now that the input handler is 346 * smarter we can dispense with all the messy stuff that used to be 347 * here. 348 * 349 * BEWARE!!! Protocol handlers, mangling input packets, 350 * MUST BE last in hash buckets and checking protocol handlers 351 * MUST start from promiscuous ptype_all chain in net_bh. 352 * It is true now, do not change it. 353 * Explanation follows: if protocol handler, mangling packet, will 354 * be the first on list, it is not able to sense, that packet 355 * is cloned and should be copied-on-write, so that it will 356 * change it and subsequent readers will get broken packet. 357 * --ANK (980803) 358 */ 359 360/** 361 * dev_add_pack - add packet handler 362 * @pt: packet type declaration 363 * 364 * Add a protocol handler to the networking stack. The passed &packet_type 365 * is linked into kernel lists and may not be freed until it has been 366 * removed from the kernel lists. 367 * 368 * This call does not sleep therefore it can not 369 * guarantee all CPU's that are in middle of receiving packets 370 * will see the new packet type (until the next received packet). 371 */ 372 373void dev_add_pack(struct packet_type *pt) 374{ 375 int hash; 376 377 spin_lock_bh(&ptype_lock); 378 if (pt->type == htons(ETH_P_ALL)) 379 list_add_rcu(&pt->list, &ptype_all); 380 else { 381 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 382 list_add_rcu(&pt->list, &ptype_base[hash]); 383 } 384 spin_unlock_bh(&ptype_lock); 385} 386EXPORT_SYMBOL(dev_add_pack); 387 388/** 389 * __dev_remove_pack - remove packet handler 390 * @pt: packet type declaration 391 * 392 * Remove a protocol handler that was previously added to the kernel 393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 394 * from the kernel lists and can be freed or reused once this function 395 * returns. 396 * 397 * The packet type might still be in use by receivers 398 * and must not be freed until after all the CPU's have gone 399 * through a quiescent state. 400 */ 401void __dev_remove_pack(struct packet_type *pt) 402{ 403 struct list_head *head; 404 struct packet_type *pt1; 405 406 spin_lock_bh(&ptype_lock); 407 408 if (pt->type == htons(ETH_P_ALL)) 409 head = &ptype_all; 410 else 411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 421out: 422 spin_unlock_bh(&ptype_lock); 423} 424EXPORT_SYMBOL(__dev_remove_pack); 425 426/** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438void dev_remove_pack(struct packet_type *pt) 439{ 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443} 444EXPORT_SYMBOL(dev_remove_pack); 445 446/****************************************************************************** 447 448 Device Boot-time Settings Routines 449 450*******************************************************************************/ 451 452/* Boot time configuration table */ 453static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 454 455/** 456 * netdev_boot_setup_add - add new setup entry 457 * @name: name of the device 458 * @map: configured settings for the device 459 * 460 * Adds new setup entry to the dev_boot_setup list. The function 461 * returns 0 on error and 1 on success. This is a generic routine to 462 * all netdevices. 463 */ 464static int netdev_boot_setup_add(char *name, struct ifmap *map) 465{ 466 struct netdev_boot_setup *s; 467 int i; 468 469 s = dev_boot_setup; 470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 472 memset(s[i].name, 0, sizeof(s[i].name)); 473 strlcpy(s[i].name, name, IFNAMSIZ); 474 memcpy(&s[i].map, map, sizeof(s[i].map)); 475 break; 476 } 477 } 478 479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 480} 481 482/** 483 * netdev_boot_setup_check - check boot time settings 484 * @dev: the netdevice 485 * 486 * Check boot time settings for the device. 487 * The found settings are set for the device to be used 488 * later in the device probing. 489 * Returns 0 if no settings found, 1 if they are. 490 */ 491int netdev_boot_setup_check(struct net_device *dev) 492{ 493 struct netdev_boot_setup *s = dev_boot_setup; 494 int i; 495 496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 498 !strcmp(dev->name, s[i].name)) { 499 dev->irq = s[i].map.irq; 500 dev->base_addr = s[i].map.base_addr; 501 dev->mem_start = s[i].map.mem_start; 502 dev->mem_end = s[i].map.mem_end; 503 return 1; 504 } 505 } 506 return 0; 507} 508EXPORT_SYMBOL(netdev_boot_setup_check); 509 510 511/** 512 * netdev_boot_base - get address from boot time settings 513 * @prefix: prefix for network device 514 * @unit: id for network device 515 * 516 * Check boot time settings for the base address of device. 517 * The found settings are set for the device to be used 518 * later in the device probing. 519 * Returns 0 if no settings found. 520 */ 521unsigned long netdev_boot_base(const char *prefix, int unit) 522{ 523 const struct netdev_boot_setup *s = dev_boot_setup; 524 char name[IFNAMSIZ]; 525 int i; 526 527 sprintf(name, "%s%d", prefix, unit); 528 529 /* 530 * If device already registered then return base of 1 531 * to indicate not to probe for this interface 532 */ 533 if (__dev_get_by_name(&init_net, name)) 534 return 1; 535 536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 537 if (!strcmp(name, s[i].name)) 538 return s[i].map.base_addr; 539 return 0; 540} 541 542/* 543 * Saves at boot time configured settings for any netdevice. 544 */ 545int __init netdev_boot_setup(char *str) 546{ 547 int ints[5]; 548 struct ifmap map; 549 550 str = get_options(str, ARRAY_SIZE(ints), ints); 551 if (!str || !*str) 552 return 0; 553 554 /* Save settings */ 555 memset(&map, 0, sizeof(map)); 556 if (ints[0] > 0) 557 map.irq = ints[1]; 558 if (ints[0] > 1) 559 map.base_addr = ints[2]; 560 if (ints[0] > 2) 561 map.mem_start = ints[3]; 562 if (ints[0] > 3) 563 map.mem_end = ints[4]; 564 565 /* Add new entry to the list */ 566 return netdev_boot_setup_add(str, &map); 567} 568 569__setup("netdev=", netdev_boot_setup); 570 571/******************************************************************************* 572 573 Device Interface Subroutines 574 575*******************************************************************************/ 576 577/** 578 * __dev_get_by_name - find a device by its name 579 * @net: the applicable net namespace 580 * @name: name to find 581 * 582 * Find an interface by name. Must be called under RTNL semaphore 583 * or @dev_base_lock. If the name is found a pointer to the device 584 * is returned. If the name is not found then %NULL is returned. The 585 * reference counters are not incremented so the caller must be 586 * careful with locks. 587 */ 588 589struct net_device *__dev_get_by_name(struct net *net, const char *name) 590{ 591 struct hlist_node *p; 592 struct net_device *dev; 593 struct hlist_head *head = dev_name_hash(net, name); 594 595 hlist_for_each_entry(dev, p, head, name_hlist) 596 if (!strncmp(dev->name, name, IFNAMSIZ)) 597 return dev; 598 599 return NULL; 600} 601EXPORT_SYMBOL(__dev_get_by_name); 602 603/** 604 * dev_get_by_name_rcu - find a device by its name 605 * @net: the applicable net namespace 606 * @name: name to find 607 * 608 * Find an interface by name. 609 * If the name is found a pointer to the device is returned. 610 * If the name is not found then %NULL is returned. 611 * The reference counters are not incremented so the caller must be 612 * careful with locks. The caller must hold RCU lock. 613 */ 614 615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 616{ 617 struct hlist_node *p; 618 struct net_device *dev; 619 struct hlist_head *head = dev_name_hash(net, name); 620 621 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 622 if (!strncmp(dev->name, name, IFNAMSIZ)) 623 return dev; 624 625 return NULL; 626} 627EXPORT_SYMBOL(dev_get_by_name_rcu); 628 629/** 630 * dev_get_by_name - find a device by its name 631 * @net: the applicable net namespace 632 * @name: name to find 633 * 634 * Find an interface by name. This can be called from any 635 * context and does its own locking. The returned handle has 636 * the usage count incremented and the caller must use dev_put() to 637 * release it when it is no longer needed. %NULL is returned if no 638 * matching device is found. 639 */ 640 641struct net_device *dev_get_by_name(struct net *net, const char *name) 642{ 643 struct net_device *dev; 644 645 rcu_read_lock(); 646 dev = dev_get_by_name_rcu(net, name); 647 if (dev) 648 dev_hold(dev); 649 rcu_read_unlock(); 650 return dev; 651} 652EXPORT_SYMBOL(dev_get_by_name); 653 654/** 655 * __dev_get_by_index - find a device by its ifindex 656 * @net: the applicable net namespace 657 * @ifindex: index of device 658 * 659 * Search for an interface by index. Returns %NULL if the device 660 * is not found or a pointer to the device. The device has not 661 * had its reference counter increased so the caller must be careful 662 * about locking. The caller must hold either the RTNL semaphore 663 * or @dev_base_lock. 664 */ 665 666struct net_device *__dev_get_by_index(struct net *net, int ifindex) 667{ 668 struct hlist_node *p; 669 struct net_device *dev; 670 struct hlist_head *head = dev_index_hash(net, ifindex); 671 672 hlist_for_each_entry(dev, p, head, index_hlist) 673 if (dev->ifindex == ifindex) 674 return dev; 675 676 return NULL; 677} 678EXPORT_SYMBOL(__dev_get_by_index); 679 680/** 681 * dev_get_by_index_rcu - find a device by its ifindex 682 * @net: the applicable net namespace 683 * @ifindex: index of device 684 * 685 * Search for an interface by index. Returns %NULL if the device 686 * is not found or a pointer to the device. The device has not 687 * had its reference counter increased so the caller must be careful 688 * about locking. The caller must hold RCU lock. 689 */ 690 691struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 692{ 693 struct hlist_node *p; 694 struct net_device *dev; 695 struct hlist_head *head = dev_index_hash(net, ifindex); 696 697 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 698 if (dev->ifindex == ifindex) 699 return dev; 700 701 return NULL; 702} 703EXPORT_SYMBOL(dev_get_by_index_rcu); 704 705 706/** 707 * dev_get_by_index - find a device by its ifindex 708 * @net: the applicable net namespace 709 * @ifindex: index of device 710 * 711 * Search for an interface by index. Returns NULL if the device 712 * is not found or a pointer to the device. The device returned has 713 * had a reference added and the pointer is safe until the user calls 714 * dev_put to indicate they have finished with it. 715 */ 716 717struct net_device *dev_get_by_index(struct net *net, int ifindex) 718{ 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_index_rcu(net, ifindex); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727} 728EXPORT_SYMBOL(dev_get_by_index); 729 730/** 731 * dev_getbyhwaddr - find a device by its hardware address 732 * @net: the applicable net namespace 733 * @type: media type of device 734 * @ha: hardware address 735 * 736 * Search for an interface by MAC address. Returns NULL if the device 737 * is not found or a pointer to the device. The caller must hold the 738 * rtnl semaphore. The returned device has not had its ref count increased 739 * and the caller must therefore be careful about locking 740 * 741 * BUGS: 742 * If the API was consistent this would be __dev_get_by_hwaddr 743 */ 744 745struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 746{ 747 struct net_device *dev; 748 749 ASSERT_RTNL(); 750 751 for_each_netdev(net, dev) 752 if (dev->type == type && 753 !memcmp(dev->dev_addr, ha, dev->addr_len)) 754 return dev; 755 756 return NULL; 757} 758EXPORT_SYMBOL(dev_getbyhwaddr); 759 760struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 761{ 762 struct net_device *dev; 763 764 ASSERT_RTNL(); 765 for_each_netdev(net, dev) 766 if (dev->type == type) 767 return dev; 768 769 return NULL; 770} 771EXPORT_SYMBOL(__dev_getfirstbyhwtype); 772 773struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 774{ 775 struct net_device *dev; 776 777 rtnl_lock(); 778 dev = __dev_getfirstbyhwtype(net, type); 779 if (dev) 780 dev_hold(dev); 781 rtnl_unlock(); 782 return dev; 783} 784EXPORT_SYMBOL(dev_getfirstbyhwtype); 785 786/** 787 * dev_get_by_flags - find any device with given flags 788 * @net: the applicable net namespace 789 * @if_flags: IFF_* values 790 * @mask: bitmask of bits in if_flags to check 791 * 792 * Search for any interface with the given flags. Returns NULL if a device 793 * is not found or a pointer to the device. The device returned has 794 * had a reference added and the pointer is safe until the user calls 795 * dev_put to indicate they have finished with it. 796 */ 797 798struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 799 unsigned short mask) 800{ 801 struct net_device *dev, *ret; 802 803 ret = NULL; 804 rcu_read_lock(); 805 for_each_netdev_rcu(net, dev) { 806 if (((dev->flags ^ if_flags) & mask) == 0) { 807 dev_hold(dev); 808 ret = dev; 809 break; 810 } 811 } 812 rcu_read_unlock(); 813 return ret; 814} 815EXPORT_SYMBOL(dev_get_by_flags); 816 817/** 818 * dev_valid_name - check if name is okay for network device 819 * @name: name string 820 * 821 * Network device names need to be valid file names to 822 * to allow sysfs to work. We also disallow any kind of 823 * whitespace. 824 */ 825int dev_valid_name(const char *name) 826{ 827 if (*name == '\0') 828 return 0; 829 if (strlen(name) >= IFNAMSIZ) 830 return 0; 831 if (!strcmp(name, ".") || !strcmp(name, "..")) 832 return 0; 833 834 while (*name) { 835 if (*name == '/' || isspace(*name)) 836 return 0; 837 name++; 838 } 839 return 1; 840} 841EXPORT_SYMBOL(dev_valid_name); 842 843/** 844 * __dev_alloc_name - allocate a name for a device 845 * @net: network namespace to allocate the device name in 846 * @name: name format string 847 * @buf: scratch buffer and result name string 848 * 849 * Passed a format string - eg "lt%d" it will try and find a suitable 850 * id. It scans list of devices to build up a free map, then chooses 851 * the first empty slot. The caller must hold the dev_base or rtnl lock 852 * while allocating the name and adding the device in order to avoid 853 * duplicates. 854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 855 * Returns the number of the unit assigned or a negative errno code. 856 */ 857 858static int __dev_alloc_name(struct net *net, const char *name, char *buf) 859{ 860 int i = 0; 861 const char *p; 862 const int max_netdevices = 8*PAGE_SIZE; 863 unsigned long *inuse; 864 struct net_device *d; 865 866 p = strnchr(name, IFNAMSIZ-1, '%'); 867 if (p) { 868 /* 869 * Verify the string as this thing may have come from 870 * the user. There must be either one "%d" and no other "%" 871 * characters. 872 */ 873 if (p[1] != 'd' || strchr(p + 2, '%')) 874 return -EINVAL; 875 876 /* Use one page as a bit array of possible slots */ 877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 878 if (!inuse) 879 return -ENOMEM; 880 881 for_each_netdev(net, d) { 882 if (!sscanf(d->name, name, &i)) 883 continue; 884 if (i < 0 || i >= max_netdevices) 885 continue; 886 887 /* avoid cases where sscanf is not exact inverse of printf */ 888 snprintf(buf, IFNAMSIZ, name, i); 889 if (!strncmp(buf, d->name, IFNAMSIZ)) 890 set_bit(i, inuse); 891 } 892 893 i = find_first_zero_bit(inuse, max_netdevices); 894 free_page((unsigned long) inuse); 895 } 896 897 if (buf != name) 898 snprintf(buf, IFNAMSIZ, name, i); 899 if (!__dev_get_by_name(net, buf)) 900 return i; 901 902 /* It is possible to run out of possible slots 903 * when the name is long and there isn't enough space left 904 * for the digits, or if all bits are used. 905 */ 906 return -ENFILE; 907} 908 909/** 910 * dev_alloc_name - allocate a name for a device 911 * @dev: device 912 * @name: name format string 913 * 914 * Passed a format string - eg "lt%d" it will try and find a suitable 915 * id. It scans list of devices to build up a free map, then chooses 916 * the first empty slot. The caller must hold the dev_base or rtnl lock 917 * while allocating the name and adding the device in order to avoid 918 * duplicates. 919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 920 * Returns the number of the unit assigned or a negative errno code. 921 */ 922 923int dev_alloc_name(struct net_device *dev, const char *name) 924{ 925 char buf[IFNAMSIZ]; 926 struct net *net; 927 int ret; 928 929 BUG_ON(!dev_net(dev)); 930 net = dev_net(dev); 931 ret = __dev_alloc_name(net, name, buf); 932 if (ret >= 0) 933 strlcpy(dev->name, buf, IFNAMSIZ); 934 return ret; 935} 936EXPORT_SYMBOL(dev_alloc_name); 937 938static int dev_get_valid_name(struct net *net, const char *name, char *buf, 939 bool fmt) 940{ 941 if (!dev_valid_name(name)) 942 return -EINVAL; 943 944 if (fmt && strchr(name, '%')) 945 return __dev_alloc_name(net, name, buf); 946 else if (__dev_get_by_name(net, name)) 947 return -EEXIST; 948 else if (buf != name) 949 strlcpy(buf, name, IFNAMSIZ); 950 951 return 0; 952} 953 954/** 955 * dev_change_name - change name of a device 956 * @dev: device 957 * @newname: name (or format string) must be at least IFNAMSIZ 958 * 959 * Change name of a device, can pass format strings "eth%d". 960 * for wildcarding. 961 */ 962int dev_change_name(struct net_device *dev, const char *newname) 963{ 964 char oldname[IFNAMSIZ]; 965 int err = 0; 966 int ret; 967 struct net *net; 968 969 ASSERT_RTNL(); 970 BUG_ON(!dev_net(dev)); 971 972 net = dev_net(dev); 973 if (dev->flags & IFF_UP) 974 return -EBUSY; 975 976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 977 return 0; 978 979 memcpy(oldname, dev->name, IFNAMSIZ); 980 981 err = dev_get_valid_name(net, newname, dev->name, 1); 982 if (err < 0) 983 return err; 984 985rollback: 986 /* For now only devices in the initial network namespace 987 * are in sysfs. 988 */ 989 if (net_eq(net, &init_net)) { 990 ret = device_rename(&dev->dev, dev->name); 991 if (ret) { 992 memcpy(dev->name, oldname, IFNAMSIZ); 993 return ret; 994 } 995 } 996 997 write_lock_bh(&dev_base_lock); 998 hlist_del(&dev->name_hlist); 999 write_unlock_bh(&dev_base_lock); 1000 1001 synchronize_rcu(); 1002 1003 write_lock_bh(&dev_base_lock); 1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1005 write_unlock_bh(&dev_base_lock); 1006 1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1008 ret = notifier_to_errno(ret); 1009 1010 if (ret) { 1011 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1012 if (err >= 0) { 1013 err = ret; 1014 memcpy(dev->name, oldname, IFNAMSIZ); 1015 goto rollback; 1016 } else { 1017 printk(KERN_ERR 1018 "%s: name change rollback failed: %d.\n", 1019 dev->name, ret); 1020 } 1021 } 1022 1023 return err; 1024} 1025 1026/** 1027 * dev_set_alias - change ifalias of a device 1028 * @dev: device 1029 * @alias: name up to IFALIASZ 1030 * @len: limit of bytes to copy from info 1031 * 1032 * Set ifalias for a device, 1033 */ 1034int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1035{ 1036 ASSERT_RTNL(); 1037 1038 if (len >= IFALIASZ) 1039 return -EINVAL; 1040 1041 if (!len) { 1042 if (dev->ifalias) { 1043 kfree(dev->ifalias); 1044 dev->ifalias = NULL; 1045 } 1046 return 0; 1047 } 1048 1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1050 if (!dev->ifalias) 1051 return -ENOMEM; 1052 1053 strlcpy(dev->ifalias, alias, len+1); 1054 return len; 1055} 1056 1057 1058/** 1059 * netdev_features_change - device changes features 1060 * @dev: device to cause notification 1061 * 1062 * Called to indicate a device has changed features. 1063 */ 1064void netdev_features_change(struct net_device *dev) 1065{ 1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1067} 1068EXPORT_SYMBOL(netdev_features_change); 1069 1070/** 1071 * netdev_state_change - device changes state 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed state. This function calls 1075 * the notifier chains for netdev_chain and sends a NEWLINK message 1076 * to the routing socket. 1077 */ 1078void netdev_state_change(struct net_device *dev) 1079{ 1080 if (dev->flags & IFF_UP) { 1081 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1083 } 1084} 1085EXPORT_SYMBOL(netdev_state_change); 1086 1087void netdev_bonding_change(struct net_device *dev, unsigned long event) 1088{ 1089 call_netdevice_notifiers(event, dev); 1090} 1091EXPORT_SYMBOL(netdev_bonding_change); 1092 1093/** 1094 * dev_load - load a network module 1095 * @net: the applicable net namespace 1096 * @name: name of interface 1097 * 1098 * If a network interface is not present and the process has suitable 1099 * privileges this function loads the module. If module loading is not 1100 * available in this kernel then it becomes a nop. 1101 */ 1102 1103void dev_load(struct net *net, const char *name) 1104{ 1105 struct net_device *dev; 1106 1107 rcu_read_lock(); 1108 dev = dev_get_by_name_rcu(net, name); 1109 rcu_read_unlock(); 1110 1111 if (!dev && capable(CAP_NET_ADMIN)) 1112 request_module("%s", name); 1113} 1114EXPORT_SYMBOL(dev_load); 1115 1116static int __dev_open(struct net_device *dev) 1117{ 1118 const struct net_device_ops *ops = dev->netdev_ops; 1119 int ret; 1120 1121 ASSERT_RTNL(); 1122 1123 /* 1124 * Is it even present? 1125 */ 1126 if (!netif_device_present(dev)) 1127 return -ENODEV; 1128 1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1130 ret = notifier_to_errno(ret); 1131 if (ret) 1132 return ret; 1133 1134 /* 1135 * Call device private open method 1136 */ 1137 set_bit(__LINK_STATE_START, &dev->state); 1138 1139 if (ops->ndo_validate_addr) 1140 ret = ops->ndo_validate_addr(dev); 1141 1142 if (!ret && ops->ndo_open) 1143 ret = ops->ndo_open(dev); 1144 1145 /* 1146 * If it went open OK then: 1147 */ 1148 1149 if (ret) 1150 clear_bit(__LINK_STATE_START, &dev->state); 1151 else { 1152 /* 1153 * Set the flags. 1154 */ 1155 dev->flags |= IFF_UP; 1156 1157 /* 1158 * Enable NET_DMA 1159 */ 1160 net_dmaengine_get(); 1161 1162 /* 1163 * Initialize multicasting status 1164 */ 1165 dev_set_rx_mode(dev); 1166 1167 /* 1168 * Wakeup transmit queue engine 1169 */ 1170 dev_activate(dev); 1171 } 1172 1173 return ret; 1174} 1175 1176/** 1177 * dev_open - prepare an interface for use. 1178 * @dev: device to open 1179 * 1180 * Takes a device from down to up state. The device's private open 1181 * function is invoked and then the multicast lists are loaded. Finally 1182 * the device is moved into the up state and a %NETDEV_UP message is 1183 * sent to the netdev notifier chain. 1184 * 1185 * Calling this function on an active interface is a nop. On a failure 1186 * a negative errno code is returned. 1187 */ 1188int dev_open(struct net_device *dev) 1189{ 1190 int ret; 1191 1192 /* 1193 * Is it already up? 1194 */ 1195 if (dev->flags & IFF_UP) 1196 return 0; 1197 1198 /* 1199 * Open device 1200 */ 1201 ret = __dev_open(dev); 1202 if (ret < 0) 1203 return ret; 1204 1205 /* 1206 * ... and announce new interface. 1207 */ 1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1209 call_netdevice_notifiers(NETDEV_UP, dev); 1210 1211 return ret; 1212} 1213EXPORT_SYMBOL(dev_open); 1214 1215static int __dev_close(struct net_device *dev) 1216{ 1217 const struct net_device_ops *ops = dev->netdev_ops; 1218 1219 ASSERT_RTNL(); 1220 might_sleep(); 1221 1222 /* 1223 * Tell people we are going down, so that they can 1224 * prepare to death, when device is still operating. 1225 */ 1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1227 1228 clear_bit(__LINK_STATE_START, &dev->state); 1229 1230 /* Synchronize to scheduled poll. We cannot touch poll list, 1231 * it can be even on different cpu. So just clear netif_running(). 1232 * 1233 * dev->stop() will invoke napi_disable() on all of it's 1234 * napi_struct instances on this device. 1235 */ 1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1237 1238 dev_deactivate(dev); 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 /* 1251 * Device is now down. 1252 */ 1253 1254 dev->flags &= ~IFF_UP; 1255 1256 /* 1257 * Shutdown NET_DMA 1258 */ 1259 net_dmaengine_put(); 1260 1261 return 0; 1262} 1263 1264/** 1265 * dev_close - shutdown an interface. 1266 * @dev: device to shutdown 1267 * 1268 * This function moves an active device into down state. A 1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1271 * chain. 1272 */ 1273int dev_close(struct net_device *dev) 1274{ 1275 if (!(dev->flags & IFF_UP)) 1276 return 0; 1277 1278 __dev_close(dev); 1279 1280 /* 1281 * Tell people we are down 1282 */ 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1284 call_netdevice_notifiers(NETDEV_DOWN, dev); 1285 1286 return 0; 1287} 1288EXPORT_SYMBOL(dev_close); 1289 1290 1291/** 1292 * dev_disable_lro - disable Large Receive Offload on a device 1293 * @dev: device 1294 * 1295 * Disable Large Receive Offload (LRO) on a net device. Must be 1296 * called under RTNL. This is needed if received packets may be 1297 * forwarded to another interface. 1298 */ 1299void dev_disable_lro(struct net_device *dev) 1300{ 1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1302 dev->ethtool_ops->set_flags) { 1303 u32 flags = dev->ethtool_ops->get_flags(dev); 1304 if (flags & ETH_FLAG_LRO) { 1305 flags &= ~ETH_FLAG_LRO; 1306 dev->ethtool_ops->set_flags(dev, flags); 1307 } 1308 } 1309 WARN_ON(dev->features & NETIF_F_LRO); 1310} 1311EXPORT_SYMBOL(dev_disable_lro); 1312 1313 1314static int dev_boot_phase = 1; 1315 1316/* 1317 * Device change register/unregister. These are not inline or static 1318 * as we export them to the world. 1319 */ 1320 1321/** 1322 * register_netdevice_notifier - register a network notifier block 1323 * @nb: notifier 1324 * 1325 * Register a notifier to be called when network device events occur. 1326 * The notifier passed is linked into the kernel structures and must 1327 * not be reused until it has been unregistered. A negative errno code 1328 * is returned on a failure. 1329 * 1330 * When registered all registration and up events are replayed 1331 * to the new notifier to allow device to have a race free 1332 * view of the network device list. 1333 */ 1334 1335int register_netdevice_notifier(struct notifier_block *nb) 1336{ 1337 struct net_device *dev; 1338 struct net_device *last; 1339 struct net *net; 1340 int err; 1341 1342 rtnl_lock(); 1343 err = raw_notifier_chain_register(&netdev_chain, nb); 1344 if (err) 1345 goto unlock; 1346 if (dev_boot_phase) 1347 goto unlock; 1348 for_each_net(net) { 1349 for_each_netdev(net, dev) { 1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1351 err = notifier_to_errno(err); 1352 if (err) 1353 goto rollback; 1354 1355 if (!(dev->flags & IFF_UP)) 1356 continue; 1357 1358 nb->notifier_call(nb, NETDEV_UP, dev); 1359 } 1360 } 1361 1362unlock: 1363 rtnl_unlock(); 1364 return err; 1365 1366rollback: 1367 last = dev; 1368 for_each_net(net) { 1369 for_each_netdev(net, dev) { 1370 if (dev == last) 1371 break; 1372 1373 if (dev->flags & IFF_UP) { 1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1375 nb->notifier_call(nb, NETDEV_DOWN, dev); 1376 } 1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1379 } 1380 } 1381 1382 raw_notifier_chain_unregister(&netdev_chain, nb); 1383 goto unlock; 1384} 1385EXPORT_SYMBOL(register_netdevice_notifier); 1386 1387/** 1388 * unregister_netdevice_notifier - unregister a network notifier block 1389 * @nb: notifier 1390 * 1391 * Unregister a notifier previously registered by 1392 * register_netdevice_notifier(). The notifier is unlinked into the 1393 * kernel structures and may then be reused. A negative errno code 1394 * is returned on a failure. 1395 */ 1396 1397int unregister_netdevice_notifier(struct notifier_block *nb) 1398{ 1399 int err; 1400 1401 rtnl_lock(); 1402 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1403 rtnl_unlock(); 1404 return err; 1405} 1406EXPORT_SYMBOL(unregister_netdevice_notifier); 1407 1408/** 1409 * call_netdevice_notifiers - call all network notifier blocks 1410 * @val: value passed unmodified to notifier function 1411 * @dev: net_device pointer passed unmodified to notifier function 1412 * 1413 * Call all network notifier blocks. Parameters and return value 1414 * are as for raw_notifier_call_chain(). 1415 */ 1416 1417int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1418{ 1419 return raw_notifier_call_chain(&netdev_chain, val, dev); 1420} 1421 1422/* When > 0 there are consumers of rx skb time stamps */ 1423static atomic_t netstamp_needed = ATOMIC_INIT(0); 1424 1425void net_enable_timestamp(void) 1426{ 1427 atomic_inc(&netstamp_needed); 1428} 1429EXPORT_SYMBOL(net_enable_timestamp); 1430 1431void net_disable_timestamp(void) 1432{ 1433 atomic_dec(&netstamp_needed); 1434} 1435EXPORT_SYMBOL(net_disable_timestamp); 1436 1437static inline void net_timestamp(struct sk_buff *skb) 1438{ 1439 if (atomic_read(&netstamp_needed)) 1440 __net_timestamp(skb); 1441 else 1442 skb->tstamp.tv64 = 0; 1443} 1444 1445/** 1446 * dev_forward_skb - loopback an skb to another netif 1447 * 1448 * @dev: destination network device 1449 * @skb: buffer to forward 1450 * 1451 * return values: 1452 * NET_RX_SUCCESS (no congestion) 1453 * NET_RX_DROP (packet was dropped) 1454 * 1455 * dev_forward_skb can be used for injecting an skb from the 1456 * start_xmit function of one device into the receive queue 1457 * of another device. 1458 * 1459 * The receiving device may be in another namespace, so 1460 * we have to clear all information in the skb that could 1461 * impact namespace isolation. 1462 */ 1463int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1464{ 1465 skb_orphan(skb); 1466 1467 if (!(dev->flags & IFF_UP)) 1468 return NET_RX_DROP; 1469 1470 if (skb->len > (dev->mtu + dev->hard_header_len)) 1471 return NET_RX_DROP; 1472 1473 skb_set_dev(skb, dev); 1474 skb->tstamp.tv64 = 0; 1475 skb->pkt_type = PACKET_HOST; 1476 skb->protocol = eth_type_trans(skb, dev); 1477 return netif_rx(skb); 1478} 1479EXPORT_SYMBOL_GPL(dev_forward_skb); 1480 1481/* 1482 * Support routine. Sends outgoing frames to any network 1483 * taps currently in use. 1484 */ 1485 1486static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1487{ 1488 struct packet_type *ptype; 1489 1490#ifdef CONFIG_NET_CLS_ACT 1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1492 net_timestamp(skb); 1493#else 1494 net_timestamp(skb); 1495#endif 1496 1497 rcu_read_lock(); 1498 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1499 /* Never send packets back to the socket 1500 * they originated from - MvS (miquels@drinkel.ow.org) 1501 */ 1502 if ((ptype->dev == dev || !ptype->dev) && 1503 (ptype->af_packet_priv == NULL || 1504 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1506 if (!skb2) 1507 break; 1508 1509 /* skb->nh should be correctly 1510 set by sender, so that the second statement is 1511 just protection against buggy protocols. 1512 */ 1513 skb_reset_mac_header(skb2); 1514 1515 if (skb_network_header(skb2) < skb2->data || 1516 skb2->network_header > skb2->tail) { 1517 if (net_ratelimit()) 1518 printk(KERN_CRIT "protocol %04x is " 1519 "buggy, dev %s\n", 1520 skb2->protocol, dev->name); 1521 skb_reset_network_header(skb2); 1522 } 1523 1524 skb2->transport_header = skb2->network_header; 1525 skb2->pkt_type = PACKET_OUTGOING; 1526 ptype->func(skb2, skb->dev, ptype, skb->dev); 1527 } 1528 } 1529 rcu_read_unlock(); 1530} 1531 1532 1533static inline void __netif_reschedule(struct Qdisc *q) 1534{ 1535 struct softnet_data *sd; 1536 unsigned long flags; 1537 1538 local_irq_save(flags); 1539 sd = &__get_cpu_var(softnet_data); 1540 q->next_sched = sd->output_queue; 1541 sd->output_queue = q; 1542 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1543 local_irq_restore(flags); 1544} 1545 1546void __netif_schedule(struct Qdisc *q) 1547{ 1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1549 __netif_reschedule(q); 1550} 1551EXPORT_SYMBOL(__netif_schedule); 1552 1553void dev_kfree_skb_irq(struct sk_buff *skb) 1554{ 1555 if (atomic_dec_and_test(&skb->users)) { 1556 struct softnet_data *sd; 1557 unsigned long flags; 1558 1559 local_irq_save(flags); 1560 sd = &__get_cpu_var(softnet_data); 1561 skb->next = sd->completion_queue; 1562 sd->completion_queue = skb; 1563 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1564 local_irq_restore(flags); 1565 } 1566} 1567EXPORT_SYMBOL(dev_kfree_skb_irq); 1568 1569void dev_kfree_skb_any(struct sk_buff *skb) 1570{ 1571 if (in_irq() || irqs_disabled()) 1572 dev_kfree_skb_irq(skb); 1573 else 1574 dev_kfree_skb(skb); 1575} 1576EXPORT_SYMBOL(dev_kfree_skb_any); 1577 1578 1579/** 1580 * netif_device_detach - mark device as removed 1581 * @dev: network device 1582 * 1583 * Mark device as removed from system and therefore no longer available. 1584 */ 1585void netif_device_detach(struct net_device *dev) 1586{ 1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1588 netif_running(dev)) { 1589 netif_tx_stop_all_queues(dev); 1590 } 1591} 1592EXPORT_SYMBOL(netif_device_detach); 1593 1594/** 1595 * netif_device_attach - mark device as attached 1596 * @dev: network device 1597 * 1598 * Mark device as attached from system and restart if needed. 1599 */ 1600void netif_device_attach(struct net_device *dev) 1601{ 1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1603 netif_running(dev)) { 1604 netif_tx_wake_all_queues(dev); 1605 __netdev_watchdog_up(dev); 1606 } 1607} 1608EXPORT_SYMBOL(netif_device_attach); 1609 1610static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1611{ 1612 return ((features & NETIF_F_GEN_CSUM) || 1613 ((features & NETIF_F_IP_CSUM) && 1614 protocol == htons(ETH_P_IP)) || 1615 ((features & NETIF_F_IPV6_CSUM) && 1616 protocol == htons(ETH_P_IPV6)) || 1617 ((features & NETIF_F_FCOE_CRC) && 1618 protocol == htons(ETH_P_FCOE))); 1619} 1620 1621static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1622{ 1623 if (can_checksum_protocol(dev->features, skb->protocol)) 1624 return true; 1625 1626 if (skb->protocol == htons(ETH_P_8021Q)) { 1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1628 if (can_checksum_protocol(dev->features & dev->vlan_features, 1629 veh->h_vlan_encapsulated_proto)) 1630 return true; 1631 } 1632 1633 return false; 1634} 1635 1636/** 1637 * skb_dev_set -- assign a new device to a buffer 1638 * @skb: buffer for the new device 1639 * @dev: network device 1640 * 1641 * If an skb is owned by a device already, we have to reset 1642 * all data private to the namespace a device belongs to 1643 * before assigning it a new device. 1644 */ 1645#ifdef CONFIG_NET_NS 1646void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1647{ 1648 skb_dst_drop(skb); 1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1650 secpath_reset(skb); 1651 nf_reset(skb); 1652 skb_init_secmark(skb); 1653 skb->mark = 0; 1654 skb->priority = 0; 1655 skb->nf_trace = 0; 1656 skb->ipvs_property = 0; 1657#ifdef CONFIG_NET_SCHED 1658 skb->tc_index = 0; 1659#endif 1660 } 1661 skb->dev = dev; 1662} 1663EXPORT_SYMBOL(skb_set_dev); 1664#endif /* CONFIG_NET_NS */ 1665 1666/* 1667 * Invalidate hardware checksum when packet is to be mangled, and 1668 * complete checksum manually on outgoing path. 1669 */ 1670int skb_checksum_help(struct sk_buff *skb) 1671{ 1672 __wsum csum; 1673 int ret = 0, offset; 1674 1675 if (skb->ip_summed == CHECKSUM_COMPLETE) 1676 goto out_set_summed; 1677 1678 if (unlikely(skb_shinfo(skb)->gso_size)) { 1679 /* Let GSO fix up the checksum. */ 1680 goto out_set_summed; 1681 } 1682 1683 offset = skb->csum_start - skb_headroom(skb); 1684 BUG_ON(offset >= skb_headlen(skb)); 1685 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1686 1687 offset += skb->csum_offset; 1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1689 1690 if (skb_cloned(skb) && 1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1693 if (ret) 1694 goto out; 1695 } 1696 1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1698out_set_summed: 1699 skb->ip_summed = CHECKSUM_NONE; 1700out: 1701 return ret; 1702} 1703EXPORT_SYMBOL(skb_checksum_help); 1704 1705/** 1706 * skb_gso_segment - Perform segmentation on skb. 1707 * @skb: buffer to segment 1708 * @features: features for the output path (see dev->features) 1709 * 1710 * This function segments the given skb and returns a list of segments. 1711 * 1712 * It may return NULL if the skb requires no segmentation. This is 1713 * only possible when GSO is used for verifying header integrity. 1714 */ 1715struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1716{ 1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1718 struct packet_type *ptype; 1719 __be16 type = skb->protocol; 1720 int err; 1721 1722 skb_reset_mac_header(skb); 1723 skb->mac_len = skb->network_header - skb->mac_header; 1724 __skb_pull(skb, skb->mac_len); 1725 1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1727 struct net_device *dev = skb->dev; 1728 struct ethtool_drvinfo info = {}; 1729 1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1731 dev->ethtool_ops->get_drvinfo(dev, &info); 1732 1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1734 "ip_summed=%d", 1735 info.driver, dev ? dev->features : 0L, 1736 skb->sk ? skb->sk->sk_route_caps : 0L, 1737 skb->len, skb->data_len, skb->ip_summed); 1738 1739 if (skb_header_cloned(skb) && 1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1741 return ERR_PTR(err); 1742 } 1743 1744 rcu_read_lock(); 1745 list_for_each_entry_rcu(ptype, 1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1749 err = ptype->gso_send_check(skb); 1750 segs = ERR_PTR(err); 1751 if (err || skb_gso_ok(skb, features)) 1752 break; 1753 __skb_push(skb, (skb->data - 1754 skb_network_header(skb))); 1755 } 1756 segs = ptype->gso_segment(skb, features); 1757 break; 1758 } 1759 } 1760 rcu_read_unlock(); 1761 1762 __skb_push(skb, skb->data - skb_mac_header(skb)); 1763 1764 return segs; 1765} 1766EXPORT_SYMBOL(skb_gso_segment); 1767 1768/* Take action when hardware reception checksum errors are detected. */ 1769#ifdef CONFIG_BUG 1770void netdev_rx_csum_fault(struct net_device *dev) 1771{ 1772 if (net_ratelimit()) { 1773 printk(KERN_ERR "%s: hw csum failure.\n", 1774 dev ? dev->name : "<unknown>"); 1775 dump_stack(); 1776 } 1777} 1778EXPORT_SYMBOL(netdev_rx_csum_fault); 1779#endif 1780 1781/* Actually, we should eliminate this check as soon as we know, that: 1782 * 1. IOMMU is present and allows to map all the memory. 1783 * 2. No high memory really exists on this machine. 1784 */ 1785 1786static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1787{ 1788#ifdef CONFIG_HIGHMEM 1789 int i; 1790 1791 if (dev->features & NETIF_F_HIGHDMA) 1792 return 0; 1793 1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1796 return 1; 1797 1798#endif 1799 return 0; 1800} 1801 1802struct dev_gso_cb { 1803 void (*destructor)(struct sk_buff *skb); 1804}; 1805 1806#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1807 1808static void dev_gso_skb_destructor(struct sk_buff *skb) 1809{ 1810 struct dev_gso_cb *cb; 1811 1812 do { 1813 struct sk_buff *nskb = skb->next; 1814 1815 skb->next = nskb->next; 1816 nskb->next = NULL; 1817 kfree_skb(nskb); 1818 } while (skb->next); 1819 1820 cb = DEV_GSO_CB(skb); 1821 if (cb->destructor) 1822 cb->destructor(skb); 1823} 1824 1825/** 1826 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1827 * @skb: buffer to segment 1828 * 1829 * This function segments the given skb and stores the list of segments 1830 * in skb->next. 1831 */ 1832static int dev_gso_segment(struct sk_buff *skb) 1833{ 1834 struct net_device *dev = skb->dev; 1835 struct sk_buff *segs; 1836 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1837 NETIF_F_SG : 0); 1838 1839 segs = skb_gso_segment(skb, features); 1840 1841 /* Verifying header integrity only. */ 1842 if (!segs) 1843 return 0; 1844 1845 if (IS_ERR(segs)) 1846 return PTR_ERR(segs); 1847 1848 skb->next = segs; 1849 DEV_GSO_CB(skb)->destructor = skb->destructor; 1850 skb->destructor = dev_gso_skb_destructor; 1851 1852 return 0; 1853} 1854 1855int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1856 struct netdev_queue *txq) 1857{ 1858 const struct net_device_ops *ops = dev->netdev_ops; 1859 int rc = NETDEV_TX_OK; 1860 1861 if (likely(!skb->next)) { 1862 if (!list_empty(&ptype_all)) 1863 dev_queue_xmit_nit(skb, dev); 1864 1865 if (netif_needs_gso(dev, skb)) { 1866 if (unlikely(dev_gso_segment(skb))) 1867 goto out_kfree_skb; 1868 if (skb->next) 1869 goto gso; 1870 } 1871 1872 /* 1873 * If device doesnt need skb->dst, release it right now while 1874 * its hot in this cpu cache 1875 */ 1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1877 skb_dst_drop(skb); 1878 1879 rc = ops->ndo_start_xmit(skb, dev); 1880 if (rc == NETDEV_TX_OK) 1881 txq_trans_update(txq); 1882 /* 1883 * TODO: if skb_orphan() was called by 1884 * dev->hard_start_xmit() (for example, the unmodified 1885 * igb driver does that; bnx2 doesn't), then 1886 * skb_tx_software_timestamp() will be unable to send 1887 * back the time stamp. 1888 * 1889 * How can this be prevented? Always create another 1890 * reference to the socket before calling 1891 * dev->hard_start_xmit()? Prevent that skb_orphan() 1892 * does anything in dev->hard_start_xmit() by clearing 1893 * the skb destructor before the call and restoring it 1894 * afterwards, then doing the skb_orphan() ourselves? 1895 */ 1896 return rc; 1897 } 1898 1899gso: 1900 do { 1901 struct sk_buff *nskb = skb->next; 1902 1903 skb->next = nskb->next; 1904 nskb->next = NULL; 1905 1906 /* 1907 * If device doesnt need nskb->dst, release it right now while 1908 * its hot in this cpu cache 1909 */ 1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1911 skb_dst_drop(nskb); 1912 1913 rc = ops->ndo_start_xmit(nskb, dev); 1914 if (unlikely(rc != NETDEV_TX_OK)) { 1915 if (rc & ~NETDEV_TX_MASK) 1916 goto out_kfree_gso_skb; 1917 nskb->next = skb->next; 1918 skb->next = nskb; 1919 return rc; 1920 } 1921 txq_trans_update(txq); 1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1923 return NETDEV_TX_BUSY; 1924 } while (skb->next); 1925 1926out_kfree_gso_skb: 1927 if (likely(skb->next == NULL)) 1928 skb->destructor = DEV_GSO_CB(skb)->destructor; 1929out_kfree_skb: 1930 kfree_skb(skb); 1931 return rc; 1932} 1933 1934static u32 skb_tx_hashrnd; 1935 1936u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1937{ 1938 u32 hash; 1939 1940 if (skb_rx_queue_recorded(skb)) { 1941 hash = skb_get_rx_queue(skb); 1942 while (unlikely(hash >= dev->real_num_tx_queues)) 1943 hash -= dev->real_num_tx_queues; 1944 return hash; 1945 } 1946 1947 if (skb->sk && skb->sk->sk_hash) 1948 hash = skb->sk->sk_hash; 1949 else 1950 hash = skb->protocol; 1951 1952 hash = jhash_1word(hash, skb_tx_hashrnd); 1953 1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1955} 1956EXPORT_SYMBOL(skb_tx_hash); 1957 1958static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 1959{ 1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 1961 if (net_ratelimit()) { 1962 WARN(1, "%s selects TX queue %d, but " 1963 "real number of TX queues is %d\n", 1964 dev->name, queue_index, 1965 dev->real_num_tx_queues); 1966 } 1967 return 0; 1968 } 1969 return queue_index; 1970} 1971 1972static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1973 struct sk_buff *skb) 1974{ 1975 u16 queue_index; 1976 struct sock *sk = skb->sk; 1977 1978 if (sk_tx_queue_recorded(sk)) { 1979 queue_index = sk_tx_queue_get(sk); 1980 } else { 1981 const struct net_device_ops *ops = dev->netdev_ops; 1982 1983 if (ops->ndo_select_queue) { 1984 queue_index = ops->ndo_select_queue(dev, skb); 1985 queue_index = dev_cap_txqueue(dev, queue_index); 1986 } else { 1987 queue_index = 0; 1988 if (dev->real_num_tx_queues > 1) 1989 queue_index = skb_tx_hash(dev, skb); 1990 1991 if (sk && sk->sk_dst_cache) 1992 sk_tx_queue_set(sk, queue_index); 1993 } 1994 } 1995 1996 skb_set_queue_mapping(skb, queue_index); 1997 return netdev_get_tx_queue(dev, queue_index); 1998} 1999 2000static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2001 struct net_device *dev, 2002 struct netdev_queue *txq) 2003{ 2004 spinlock_t *root_lock = qdisc_lock(q); 2005 int rc; 2006 2007 spin_lock(root_lock); 2008 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2009 kfree_skb(skb); 2010 rc = NET_XMIT_DROP; 2011 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2012 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2013 /* 2014 * This is a work-conserving queue; there are no old skbs 2015 * waiting to be sent out; and the qdisc is not running - 2016 * xmit the skb directly. 2017 */ 2018 __qdisc_update_bstats(q, skb->len); 2019 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2020 __qdisc_run(q); 2021 else 2022 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2023 2024 rc = NET_XMIT_SUCCESS; 2025 } else { 2026 rc = qdisc_enqueue_root(skb, q); 2027 qdisc_run(q); 2028 } 2029 spin_unlock(root_lock); 2030 2031 return rc; 2032} 2033 2034/* 2035 * Returns true if either: 2036 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2037 * 2. skb is fragmented and the device does not support SG, or if 2038 * at least one of fragments is in highmem and device does not 2039 * support DMA from it. 2040 */ 2041static inline int skb_needs_linearize(struct sk_buff *skb, 2042 struct net_device *dev) 2043{ 2044 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2045 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2046 illegal_highdma(dev, skb))); 2047} 2048 2049/** 2050 * dev_queue_xmit - transmit a buffer 2051 * @skb: buffer to transmit 2052 * 2053 * Queue a buffer for transmission to a network device. The caller must 2054 * have set the device and priority and built the buffer before calling 2055 * this function. The function can be called from an interrupt. 2056 * 2057 * A negative errno code is returned on a failure. A success does not 2058 * guarantee the frame will be transmitted as it may be dropped due 2059 * to congestion or traffic shaping. 2060 * 2061 * ----------------------------------------------------------------------------------- 2062 * I notice this method can also return errors from the queue disciplines, 2063 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2064 * be positive. 2065 * 2066 * Regardless of the return value, the skb is consumed, so it is currently 2067 * difficult to retry a send to this method. (You can bump the ref count 2068 * before sending to hold a reference for retry if you are careful.) 2069 * 2070 * When calling this method, interrupts MUST be enabled. This is because 2071 * the BH enable code must have IRQs enabled so that it will not deadlock. 2072 * --BLG 2073 */ 2074int dev_queue_xmit(struct sk_buff *skb) 2075{ 2076 struct net_device *dev = skb->dev; 2077 struct netdev_queue *txq; 2078 struct Qdisc *q; 2079 int rc = -ENOMEM; 2080 2081 /* GSO will handle the following emulations directly. */ 2082 if (netif_needs_gso(dev, skb)) 2083 goto gso; 2084 2085 /* Convert a paged skb to linear, if required */ 2086 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2087 goto out_kfree_skb; 2088 2089 /* If packet is not checksummed and device does not support 2090 * checksumming for this protocol, complete checksumming here. 2091 */ 2092 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2093 skb_set_transport_header(skb, skb->csum_start - 2094 skb_headroom(skb)); 2095 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2096 goto out_kfree_skb; 2097 } 2098 2099gso: 2100 /* Disable soft irqs for various locks below. Also 2101 * stops preemption for RCU. 2102 */ 2103 rcu_read_lock_bh(); 2104 2105 txq = dev_pick_tx(dev, skb); 2106 q = rcu_dereference_bh(txq->qdisc); 2107 2108#ifdef CONFIG_NET_CLS_ACT 2109 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2110#endif 2111 if (q->enqueue) { 2112 rc = __dev_xmit_skb(skb, q, dev, txq); 2113 goto out; 2114 } 2115 2116 /* The device has no queue. Common case for software devices: 2117 loopback, all the sorts of tunnels... 2118 2119 Really, it is unlikely that netif_tx_lock protection is necessary 2120 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2121 counters.) 2122 However, it is possible, that they rely on protection 2123 made by us here. 2124 2125 Check this and shot the lock. It is not prone from deadlocks. 2126 Either shot noqueue qdisc, it is even simpler 8) 2127 */ 2128 if (dev->flags & IFF_UP) { 2129 int cpu = smp_processor_id(); /* ok because BHs are off */ 2130 2131 if (txq->xmit_lock_owner != cpu) { 2132 2133 HARD_TX_LOCK(dev, txq, cpu); 2134 2135 if (!netif_tx_queue_stopped(txq)) { 2136 rc = dev_hard_start_xmit(skb, dev, txq); 2137 if (dev_xmit_complete(rc)) { 2138 HARD_TX_UNLOCK(dev, txq); 2139 goto out; 2140 } 2141 } 2142 HARD_TX_UNLOCK(dev, txq); 2143 if (net_ratelimit()) 2144 printk(KERN_CRIT "Virtual device %s asks to " 2145 "queue packet!\n", dev->name); 2146 } else { 2147 /* Recursion is detected! It is possible, 2148 * unfortunately */ 2149 if (net_ratelimit()) 2150 printk(KERN_CRIT "Dead loop on virtual device " 2151 "%s, fix it urgently!\n", dev->name); 2152 } 2153 } 2154 2155 rc = -ENETDOWN; 2156 rcu_read_unlock_bh(); 2157 2158out_kfree_skb: 2159 kfree_skb(skb); 2160 return rc; 2161out: 2162 rcu_read_unlock_bh(); 2163 return rc; 2164} 2165EXPORT_SYMBOL(dev_queue_xmit); 2166 2167 2168/*======================================================================= 2169 Receiver routines 2170 =======================================================================*/ 2171 2172int netdev_max_backlog __read_mostly = 1000; 2173int netdev_budget __read_mostly = 300; 2174int weight_p __read_mostly = 64; /* old backlog weight */ 2175 2176DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 2177 2178 2179/** 2180 * netif_rx - post buffer to the network code 2181 * @skb: buffer to post 2182 * 2183 * This function receives a packet from a device driver and queues it for 2184 * the upper (protocol) levels to process. It always succeeds. The buffer 2185 * may be dropped during processing for congestion control or by the 2186 * protocol layers. 2187 * 2188 * return values: 2189 * NET_RX_SUCCESS (no congestion) 2190 * NET_RX_DROP (packet was dropped) 2191 * 2192 */ 2193 2194int netif_rx(struct sk_buff *skb) 2195{ 2196 struct softnet_data *queue; 2197 unsigned long flags; 2198 2199 /* if netpoll wants it, pretend we never saw it */ 2200 if (netpoll_rx(skb)) 2201 return NET_RX_DROP; 2202 2203 if (!skb->tstamp.tv64) 2204 net_timestamp(skb); 2205 2206 /* 2207 * The code is rearranged so that the path is the most 2208 * short when CPU is congested, but is still operating. 2209 */ 2210 local_irq_save(flags); 2211 queue = &__get_cpu_var(softnet_data); 2212 2213 __get_cpu_var(netdev_rx_stat).total++; 2214 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2215 if (queue->input_pkt_queue.qlen) { 2216enqueue: 2217 __skb_queue_tail(&queue->input_pkt_queue, skb); 2218 local_irq_restore(flags); 2219 return NET_RX_SUCCESS; 2220 } 2221 2222 napi_schedule(&queue->backlog); 2223 goto enqueue; 2224 } 2225 2226 __get_cpu_var(netdev_rx_stat).dropped++; 2227 local_irq_restore(flags); 2228 2229 kfree_skb(skb); 2230 return NET_RX_DROP; 2231} 2232EXPORT_SYMBOL(netif_rx); 2233 2234int netif_rx_ni(struct sk_buff *skb) 2235{ 2236 int err; 2237 2238 preempt_disable(); 2239 err = netif_rx(skb); 2240 if (local_softirq_pending()) 2241 do_softirq(); 2242 preempt_enable(); 2243 2244 return err; 2245} 2246EXPORT_SYMBOL(netif_rx_ni); 2247 2248static void net_tx_action(struct softirq_action *h) 2249{ 2250 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2251 2252 if (sd->completion_queue) { 2253 struct sk_buff *clist; 2254 2255 local_irq_disable(); 2256 clist = sd->completion_queue; 2257 sd->completion_queue = NULL; 2258 local_irq_enable(); 2259 2260 while (clist) { 2261 struct sk_buff *skb = clist; 2262 clist = clist->next; 2263 2264 WARN_ON(atomic_read(&skb->users)); 2265 __kfree_skb(skb); 2266 } 2267 } 2268 2269 if (sd->output_queue) { 2270 struct Qdisc *head; 2271 2272 local_irq_disable(); 2273 head = sd->output_queue; 2274 sd->output_queue = NULL; 2275 local_irq_enable(); 2276 2277 while (head) { 2278 struct Qdisc *q = head; 2279 spinlock_t *root_lock; 2280 2281 head = head->next_sched; 2282 2283 root_lock = qdisc_lock(q); 2284 if (spin_trylock(root_lock)) { 2285 smp_mb__before_clear_bit(); 2286 clear_bit(__QDISC_STATE_SCHED, 2287 &q->state); 2288 qdisc_run(q); 2289 spin_unlock(root_lock); 2290 } else { 2291 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2292 &q->state)) { 2293 __netif_reschedule(q); 2294 } else { 2295 smp_mb__before_clear_bit(); 2296 clear_bit(__QDISC_STATE_SCHED, 2297 &q->state); 2298 } 2299 } 2300 } 2301 } 2302} 2303 2304static inline int deliver_skb(struct sk_buff *skb, 2305 struct packet_type *pt_prev, 2306 struct net_device *orig_dev) 2307{ 2308 atomic_inc(&skb->users); 2309 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2310} 2311 2312#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2313 2314#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2315/* This hook is defined here for ATM LANE */ 2316int (*br_fdb_test_addr_hook)(struct net_device *dev, 2317 unsigned char *addr) __read_mostly; 2318EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2319#endif 2320 2321/* 2322 * If bridge module is loaded call bridging hook. 2323 * returns NULL if packet was consumed. 2324 */ 2325struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2326 struct sk_buff *skb) __read_mostly; 2327EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2328 2329static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2330 struct packet_type **pt_prev, int *ret, 2331 struct net_device *orig_dev) 2332{ 2333 struct net_bridge_port *port; 2334 2335 if (skb->pkt_type == PACKET_LOOPBACK || 2336 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2337 return skb; 2338 2339 if (*pt_prev) { 2340 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2341 *pt_prev = NULL; 2342 } 2343 2344 return br_handle_frame_hook(port, skb); 2345} 2346#else 2347#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2348#endif 2349 2350#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2351struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2352EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2353 2354static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2355 struct packet_type **pt_prev, 2356 int *ret, 2357 struct net_device *orig_dev) 2358{ 2359 if (skb->dev->macvlan_port == NULL) 2360 return skb; 2361 2362 if (*pt_prev) { 2363 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2364 *pt_prev = NULL; 2365 } 2366 return macvlan_handle_frame_hook(skb); 2367} 2368#else 2369#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2370#endif 2371 2372#ifdef CONFIG_NET_CLS_ACT 2373/* TODO: Maybe we should just force sch_ingress to be compiled in 2374 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2375 * a compare and 2 stores extra right now if we dont have it on 2376 * but have CONFIG_NET_CLS_ACT 2377 * NOTE: This doesnt stop any functionality; if you dont have 2378 * the ingress scheduler, you just cant add policies on ingress. 2379 * 2380 */ 2381static int ing_filter(struct sk_buff *skb) 2382{ 2383 struct net_device *dev = skb->dev; 2384 u32 ttl = G_TC_RTTL(skb->tc_verd); 2385 struct netdev_queue *rxq; 2386 int result = TC_ACT_OK; 2387 struct Qdisc *q; 2388 2389 if (MAX_RED_LOOP < ttl++) { 2390 printk(KERN_WARNING 2391 "Redir loop detected Dropping packet (%d->%d)\n", 2392 skb->skb_iif, dev->ifindex); 2393 return TC_ACT_SHOT; 2394 } 2395 2396 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2397 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2398 2399 rxq = &dev->rx_queue; 2400 2401 q = rxq->qdisc; 2402 if (q != &noop_qdisc) { 2403 spin_lock(qdisc_lock(q)); 2404 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2405 result = qdisc_enqueue_root(skb, q); 2406 spin_unlock(qdisc_lock(q)); 2407 } 2408 2409 return result; 2410} 2411 2412static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2413 struct packet_type **pt_prev, 2414 int *ret, struct net_device *orig_dev) 2415{ 2416 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2417 goto out; 2418 2419 if (*pt_prev) { 2420 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2421 *pt_prev = NULL; 2422 } else { 2423 /* Huh? Why does turning on AF_PACKET affect this? */ 2424 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2425 } 2426 2427 switch (ing_filter(skb)) { 2428 case TC_ACT_SHOT: 2429 case TC_ACT_STOLEN: 2430 kfree_skb(skb); 2431 return NULL; 2432 } 2433 2434out: 2435 skb->tc_verd = 0; 2436 return skb; 2437} 2438#endif 2439 2440/* 2441 * netif_nit_deliver - deliver received packets to network taps 2442 * @skb: buffer 2443 * 2444 * This function is used to deliver incoming packets to network 2445 * taps. It should be used when the normal netif_receive_skb path 2446 * is bypassed, for example because of VLAN acceleration. 2447 */ 2448void netif_nit_deliver(struct sk_buff *skb) 2449{ 2450 struct packet_type *ptype; 2451 2452 if (list_empty(&ptype_all)) 2453 return; 2454 2455 skb_reset_network_header(skb); 2456 skb_reset_transport_header(skb); 2457 skb->mac_len = skb->network_header - skb->mac_header; 2458 2459 rcu_read_lock(); 2460 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2461 if (!ptype->dev || ptype->dev == skb->dev) 2462 deliver_skb(skb, ptype, skb->dev); 2463 } 2464 rcu_read_unlock(); 2465} 2466 2467/** 2468 * netif_receive_skb - process receive buffer from network 2469 * @skb: buffer to process 2470 * 2471 * netif_receive_skb() is the main receive data processing function. 2472 * It always succeeds. The buffer may be dropped during processing 2473 * for congestion control or by the protocol layers. 2474 * 2475 * This function may only be called from softirq context and interrupts 2476 * should be enabled. 2477 * 2478 * Return values (usually ignored): 2479 * NET_RX_SUCCESS: no congestion 2480 * NET_RX_DROP: packet was dropped 2481 */ 2482int netif_receive_skb(struct sk_buff *skb) 2483{ 2484 struct packet_type *ptype, *pt_prev; 2485 struct net_device *orig_dev; 2486 struct net_device *master; 2487 struct net_device *null_or_orig; 2488 struct net_device *null_or_bond; 2489 int ret = NET_RX_DROP; 2490 __be16 type; 2491 2492 if (!skb->tstamp.tv64) 2493 net_timestamp(skb); 2494 2495 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2496 return NET_RX_SUCCESS; 2497 2498 /* if we've gotten here through NAPI, check netpoll */ 2499 if (netpoll_receive_skb(skb)) 2500 return NET_RX_DROP; 2501 2502 if (!skb->skb_iif) 2503 skb->skb_iif = skb->dev->ifindex; 2504 2505 null_or_orig = NULL; 2506 orig_dev = skb->dev; 2507 master = ACCESS_ONCE(orig_dev->master); 2508 if (master) { 2509 if (skb_bond_should_drop(skb, master)) 2510 null_or_orig = orig_dev; /* deliver only exact match */ 2511 else 2512 skb->dev = master; 2513 } 2514 2515 __get_cpu_var(netdev_rx_stat).total++; 2516 2517 skb_reset_network_header(skb); 2518 skb_reset_transport_header(skb); 2519 skb->mac_len = skb->network_header - skb->mac_header; 2520 2521 pt_prev = NULL; 2522 2523 rcu_read_lock(); 2524 2525#ifdef CONFIG_NET_CLS_ACT 2526 if (skb->tc_verd & TC_NCLS) { 2527 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2528 goto ncls; 2529 } 2530#endif 2531 2532 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2533 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2534 ptype->dev == orig_dev) { 2535 if (pt_prev) 2536 ret = deliver_skb(skb, pt_prev, orig_dev); 2537 pt_prev = ptype; 2538 } 2539 } 2540 2541#ifdef CONFIG_NET_CLS_ACT 2542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2543 if (!skb) 2544 goto out; 2545ncls: 2546#endif 2547 2548 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2549 if (!skb) 2550 goto out; 2551 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2552 if (!skb) 2553 goto out; 2554 2555 /* 2556 * Make sure frames received on VLAN interfaces stacked on 2557 * bonding interfaces still make their way to any base bonding 2558 * device that may have registered for a specific ptype. The 2559 * handler may have to adjust skb->dev and orig_dev. 2560 */ 2561 null_or_bond = NULL; 2562 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2563 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2564 null_or_bond = vlan_dev_real_dev(skb->dev); 2565 } 2566 2567 type = skb->protocol; 2568 list_for_each_entry_rcu(ptype, 2569 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2570 if (ptype->type == type && (ptype->dev == null_or_orig || 2571 ptype->dev == skb->dev || ptype->dev == orig_dev || 2572 ptype->dev == null_or_bond)) { 2573 if (pt_prev) 2574 ret = deliver_skb(skb, pt_prev, orig_dev); 2575 pt_prev = ptype; 2576 } 2577 } 2578 2579 if (pt_prev) { 2580 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2581 } else { 2582 kfree_skb(skb); 2583 /* Jamal, now you will not able to escape explaining 2584 * me how you were going to use this. :-) 2585 */ 2586 ret = NET_RX_DROP; 2587 } 2588 2589out: 2590 rcu_read_unlock(); 2591 return ret; 2592} 2593EXPORT_SYMBOL(netif_receive_skb); 2594 2595/* Network device is going away, flush any packets still pending */ 2596static void flush_backlog(void *arg) 2597{ 2598 struct net_device *dev = arg; 2599 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2600 struct sk_buff *skb, *tmp; 2601 2602 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2603 if (skb->dev == dev) { 2604 __skb_unlink(skb, &queue->input_pkt_queue); 2605 kfree_skb(skb); 2606 } 2607} 2608 2609static int napi_gro_complete(struct sk_buff *skb) 2610{ 2611 struct packet_type *ptype; 2612 __be16 type = skb->protocol; 2613 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2614 int err = -ENOENT; 2615 2616 if (NAPI_GRO_CB(skb)->count == 1) { 2617 skb_shinfo(skb)->gso_size = 0; 2618 goto out; 2619 } 2620 2621 rcu_read_lock(); 2622 list_for_each_entry_rcu(ptype, head, list) { 2623 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2624 continue; 2625 2626 err = ptype->gro_complete(skb); 2627 break; 2628 } 2629 rcu_read_unlock(); 2630 2631 if (err) { 2632 WARN_ON(&ptype->list == head); 2633 kfree_skb(skb); 2634 return NET_RX_SUCCESS; 2635 } 2636 2637out: 2638 return netif_receive_skb(skb); 2639} 2640 2641static void napi_gro_flush(struct napi_struct *napi) 2642{ 2643 struct sk_buff *skb, *next; 2644 2645 for (skb = napi->gro_list; skb; skb = next) { 2646 next = skb->next; 2647 skb->next = NULL; 2648 napi_gro_complete(skb); 2649 } 2650 2651 napi->gro_count = 0; 2652 napi->gro_list = NULL; 2653} 2654 2655enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2656{ 2657 struct sk_buff **pp = NULL; 2658 struct packet_type *ptype; 2659 __be16 type = skb->protocol; 2660 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2661 int same_flow; 2662 int mac_len; 2663 enum gro_result ret; 2664 2665 if (!(skb->dev->features & NETIF_F_GRO)) 2666 goto normal; 2667 2668 if (skb_is_gso(skb) || skb_has_frags(skb)) 2669 goto normal; 2670 2671 rcu_read_lock(); 2672 list_for_each_entry_rcu(ptype, head, list) { 2673 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2674 continue; 2675 2676 skb_set_network_header(skb, skb_gro_offset(skb)); 2677 mac_len = skb->network_header - skb->mac_header; 2678 skb->mac_len = mac_len; 2679 NAPI_GRO_CB(skb)->same_flow = 0; 2680 NAPI_GRO_CB(skb)->flush = 0; 2681 NAPI_GRO_CB(skb)->free = 0; 2682 2683 pp = ptype->gro_receive(&napi->gro_list, skb); 2684 break; 2685 } 2686 rcu_read_unlock(); 2687 2688 if (&ptype->list == head) 2689 goto normal; 2690 2691 same_flow = NAPI_GRO_CB(skb)->same_flow; 2692 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2693 2694 if (pp) { 2695 struct sk_buff *nskb = *pp; 2696 2697 *pp = nskb->next; 2698 nskb->next = NULL; 2699 napi_gro_complete(nskb); 2700 napi->gro_count--; 2701 } 2702 2703 if (same_flow) 2704 goto ok; 2705 2706 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2707 goto normal; 2708 2709 napi->gro_count++; 2710 NAPI_GRO_CB(skb)->count = 1; 2711 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2712 skb->next = napi->gro_list; 2713 napi->gro_list = skb; 2714 ret = GRO_HELD; 2715 2716pull: 2717 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2718 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2719 2720 BUG_ON(skb->end - skb->tail < grow); 2721 2722 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2723 2724 skb->tail += grow; 2725 skb->data_len -= grow; 2726 2727 skb_shinfo(skb)->frags[0].page_offset += grow; 2728 skb_shinfo(skb)->frags[0].size -= grow; 2729 2730 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2731 put_page(skb_shinfo(skb)->frags[0].page); 2732 memmove(skb_shinfo(skb)->frags, 2733 skb_shinfo(skb)->frags + 1, 2734 --skb_shinfo(skb)->nr_frags); 2735 } 2736 } 2737 2738ok: 2739 return ret; 2740 2741normal: 2742 ret = GRO_NORMAL; 2743 goto pull; 2744} 2745EXPORT_SYMBOL(dev_gro_receive); 2746 2747static gro_result_t 2748__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2749{ 2750 struct sk_buff *p; 2751 2752 if (netpoll_rx_on(skb)) 2753 return GRO_NORMAL; 2754 2755 for (p = napi->gro_list; p; p = p->next) { 2756 NAPI_GRO_CB(p)->same_flow = 2757 (p->dev == skb->dev) && 2758 !compare_ether_header(skb_mac_header(p), 2759 skb_gro_mac_header(skb)); 2760 NAPI_GRO_CB(p)->flush = 0; 2761 } 2762 2763 return dev_gro_receive(napi, skb); 2764} 2765 2766gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 2767{ 2768 switch (ret) { 2769 case GRO_NORMAL: 2770 if (netif_receive_skb(skb)) 2771 ret = GRO_DROP; 2772 break; 2773 2774 case GRO_DROP: 2775 case GRO_MERGED_FREE: 2776 kfree_skb(skb); 2777 break; 2778 2779 case GRO_HELD: 2780 case GRO_MERGED: 2781 break; 2782 } 2783 2784 return ret; 2785} 2786EXPORT_SYMBOL(napi_skb_finish); 2787 2788void skb_gro_reset_offset(struct sk_buff *skb) 2789{ 2790 NAPI_GRO_CB(skb)->data_offset = 0; 2791 NAPI_GRO_CB(skb)->frag0 = NULL; 2792 NAPI_GRO_CB(skb)->frag0_len = 0; 2793 2794 if (skb->mac_header == skb->tail && 2795 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2796 NAPI_GRO_CB(skb)->frag0 = 2797 page_address(skb_shinfo(skb)->frags[0].page) + 2798 skb_shinfo(skb)->frags[0].page_offset; 2799 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2800 } 2801} 2802EXPORT_SYMBOL(skb_gro_reset_offset); 2803 2804gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2805{ 2806 skb_gro_reset_offset(skb); 2807 2808 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2809} 2810EXPORT_SYMBOL(napi_gro_receive); 2811 2812void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2813{ 2814 __skb_pull(skb, skb_headlen(skb)); 2815 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2816 2817 napi->skb = skb; 2818} 2819EXPORT_SYMBOL(napi_reuse_skb); 2820 2821struct sk_buff *napi_get_frags(struct napi_struct *napi) 2822{ 2823 struct sk_buff *skb = napi->skb; 2824 2825 if (!skb) { 2826 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 2827 if (skb) 2828 napi->skb = skb; 2829 } 2830 return skb; 2831} 2832EXPORT_SYMBOL(napi_get_frags); 2833 2834gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 2835 gro_result_t ret) 2836{ 2837 switch (ret) { 2838 case GRO_NORMAL: 2839 case GRO_HELD: 2840 skb->protocol = eth_type_trans(skb, skb->dev); 2841 2842 if (ret == GRO_HELD) 2843 skb_gro_pull(skb, -ETH_HLEN); 2844 else if (netif_receive_skb(skb)) 2845 ret = GRO_DROP; 2846 break; 2847 2848 case GRO_DROP: 2849 case GRO_MERGED_FREE: 2850 napi_reuse_skb(napi, skb); 2851 break; 2852 2853 case GRO_MERGED: 2854 break; 2855 } 2856 2857 return ret; 2858} 2859EXPORT_SYMBOL(napi_frags_finish); 2860 2861struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2862{ 2863 struct sk_buff *skb = napi->skb; 2864 struct ethhdr *eth; 2865 unsigned int hlen; 2866 unsigned int off; 2867 2868 napi->skb = NULL; 2869 2870 skb_reset_mac_header(skb); 2871 skb_gro_reset_offset(skb); 2872 2873 off = skb_gro_offset(skb); 2874 hlen = off + sizeof(*eth); 2875 eth = skb_gro_header_fast(skb, off); 2876 if (skb_gro_header_hard(skb, hlen)) { 2877 eth = skb_gro_header_slow(skb, hlen, off); 2878 if (unlikely(!eth)) { 2879 napi_reuse_skb(napi, skb); 2880 skb = NULL; 2881 goto out; 2882 } 2883 } 2884 2885 skb_gro_pull(skb, sizeof(*eth)); 2886 2887 /* 2888 * This works because the only protocols we care about don't require 2889 * special handling. We'll fix it up properly at the end. 2890 */ 2891 skb->protocol = eth->h_proto; 2892 2893out: 2894 return skb; 2895} 2896EXPORT_SYMBOL(napi_frags_skb); 2897 2898gro_result_t napi_gro_frags(struct napi_struct *napi) 2899{ 2900 struct sk_buff *skb = napi_frags_skb(napi); 2901 2902 if (!skb) 2903 return GRO_DROP; 2904 2905 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2906} 2907EXPORT_SYMBOL(napi_gro_frags); 2908 2909static int process_backlog(struct napi_struct *napi, int quota) 2910{ 2911 int work = 0; 2912 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2913 unsigned long start_time = jiffies; 2914 2915 napi->weight = weight_p; 2916 do { 2917 struct sk_buff *skb; 2918 2919 local_irq_disable(); 2920 skb = __skb_dequeue(&queue->input_pkt_queue); 2921 if (!skb) { 2922 __napi_complete(napi); 2923 local_irq_enable(); 2924 break; 2925 } 2926 local_irq_enable(); 2927 2928 netif_receive_skb(skb); 2929 } while (++work < quota && jiffies == start_time); 2930 2931 return work; 2932} 2933 2934/** 2935 * __napi_schedule - schedule for receive 2936 * @n: entry to schedule 2937 * 2938 * The entry's receive function will be scheduled to run 2939 */ 2940void __napi_schedule(struct napi_struct *n) 2941{ 2942 unsigned long flags; 2943 2944 local_irq_save(flags); 2945 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2946 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2947 local_irq_restore(flags); 2948} 2949EXPORT_SYMBOL(__napi_schedule); 2950 2951void __napi_complete(struct napi_struct *n) 2952{ 2953 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2954 BUG_ON(n->gro_list); 2955 2956 list_del(&n->poll_list); 2957 smp_mb__before_clear_bit(); 2958 clear_bit(NAPI_STATE_SCHED, &n->state); 2959} 2960EXPORT_SYMBOL(__napi_complete); 2961 2962void napi_complete(struct napi_struct *n) 2963{ 2964 unsigned long flags; 2965 2966 /* 2967 * don't let napi dequeue from the cpu poll list 2968 * just in case its running on a different cpu 2969 */ 2970 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2971 return; 2972 2973 napi_gro_flush(n); 2974 local_irq_save(flags); 2975 __napi_complete(n); 2976 local_irq_restore(flags); 2977} 2978EXPORT_SYMBOL(napi_complete); 2979 2980void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2981 int (*poll)(struct napi_struct *, int), int weight) 2982{ 2983 INIT_LIST_HEAD(&napi->poll_list); 2984 napi->gro_count = 0; 2985 napi->gro_list = NULL; 2986 napi->skb = NULL; 2987 napi->poll = poll; 2988 napi->weight = weight; 2989 list_add(&napi->dev_list, &dev->napi_list); 2990 napi->dev = dev; 2991#ifdef CONFIG_NETPOLL 2992 spin_lock_init(&napi->poll_lock); 2993 napi->poll_owner = -1; 2994#endif 2995 set_bit(NAPI_STATE_SCHED, &napi->state); 2996} 2997EXPORT_SYMBOL(netif_napi_add); 2998 2999void netif_napi_del(struct napi_struct *napi) 3000{ 3001 struct sk_buff *skb, *next; 3002 3003 list_del_init(&napi->dev_list); 3004 napi_free_frags(napi); 3005 3006 for (skb = napi->gro_list; skb; skb = next) { 3007 next = skb->next; 3008 skb->next = NULL; 3009 kfree_skb(skb); 3010 } 3011 3012 napi->gro_list = NULL; 3013 napi->gro_count = 0; 3014} 3015EXPORT_SYMBOL(netif_napi_del); 3016 3017 3018static void net_rx_action(struct softirq_action *h) 3019{ 3020 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 3021 unsigned long time_limit = jiffies + 2; 3022 int budget = netdev_budget; 3023 void *have; 3024 3025 local_irq_disable(); 3026 3027 while (!list_empty(list)) { 3028 struct napi_struct *n; 3029 int work, weight; 3030 3031 /* If softirq window is exhuasted then punt. 3032 * Allow this to run for 2 jiffies since which will allow 3033 * an average latency of 1.5/HZ. 3034 */ 3035 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3036 goto softnet_break; 3037 3038 local_irq_enable(); 3039 3040 /* Even though interrupts have been re-enabled, this 3041 * access is safe because interrupts can only add new 3042 * entries to the tail of this list, and only ->poll() 3043 * calls can remove this head entry from the list. 3044 */ 3045 n = list_first_entry(list, struct napi_struct, poll_list); 3046 3047 have = netpoll_poll_lock(n); 3048 3049 weight = n->weight; 3050 3051 /* This NAPI_STATE_SCHED test is for avoiding a race 3052 * with netpoll's poll_napi(). Only the entity which 3053 * obtains the lock and sees NAPI_STATE_SCHED set will 3054 * actually make the ->poll() call. Therefore we avoid 3055 * accidently calling ->poll() when NAPI is not scheduled. 3056 */ 3057 work = 0; 3058 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3059 work = n->poll(n, weight); 3060 trace_napi_poll(n); 3061 } 3062 3063 WARN_ON_ONCE(work > weight); 3064 3065 budget -= work; 3066 3067 local_irq_disable(); 3068 3069 /* Drivers must not modify the NAPI state if they 3070 * consume the entire weight. In such cases this code 3071 * still "owns" the NAPI instance and therefore can 3072 * move the instance around on the list at-will. 3073 */ 3074 if (unlikely(work == weight)) { 3075 if (unlikely(napi_disable_pending(n))) { 3076 local_irq_enable(); 3077 napi_complete(n); 3078 local_irq_disable(); 3079 } else 3080 list_move_tail(&n->poll_list, list); 3081 } 3082 3083 netpoll_poll_unlock(have); 3084 } 3085out: 3086 local_irq_enable(); 3087 3088#ifdef CONFIG_NET_DMA 3089 /* 3090 * There may not be any more sk_buffs coming right now, so push 3091 * any pending DMA copies to hardware 3092 */ 3093 dma_issue_pending_all(); 3094#endif 3095 3096 return; 3097 3098softnet_break: 3099 __get_cpu_var(netdev_rx_stat).time_squeeze++; 3100 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3101 goto out; 3102} 3103 3104static gifconf_func_t *gifconf_list[NPROTO]; 3105 3106/** 3107 * register_gifconf - register a SIOCGIF handler 3108 * @family: Address family 3109 * @gifconf: Function handler 3110 * 3111 * Register protocol dependent address dumping routines. The handler 3112 * that is passed must not be freed or reused until it has been replaced 3113 * by another handler. 3114 */ 3115int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3116{ 3117 if (family >= NPROTO) 3118 return -EINVAL; 3119 gifconf_list[family] = gifconf; 3120 return 0; 3121} 3122EXPORT_SYMBOL(register_gifconf); 3123 3124 3125/* 3126 * Map an interface index to its name (SIOCGIFNAME) 3127 */ 3128 3129/* 3130 * We need this ioctl for efficient implementation of the 3131 * if_indextoname() function required by the IPv6 API. Without 3132 * it, we would have to search all the interfaces to find a 3133 * match. --pb 3134 */ 3135 3136static int dev_ifname(struct net *net, struct ifreq __user *arg) 3137{ 3138 struct net_device *dev; 3139 struct ifreq ifr; 3140 3141 /* 3142 * Fetch the caller's info block. 3143 */ 3144 3145 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3146 return -EFAULT; 3147 3148 rcu_read_lock(); 3149 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3150 if (!dev) { 3151 rcu_read_unlock(); 3152 return -ENODEV; 3153 } 3154 3155 strcpy(ifr.ifr_name, dev->name); 3156 rcu_read_unlock(); 3157 3158 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3159 return -EFAULT; 3160 return 0; 3161} 3162 3163/* 3164 * Perform a SIOCGIFCONF call. This structure will change 3165 * size eventually, and there is nothing I can do about it. 3166 * Thus we will need a 'compatibility mode'. 3167 */ 3168 3169static int dev_ifconf(struct net *net, char __user *arg) 3170{ 3171 struct ifconf ifc; 3172 struct net_device *dev; 3173 char __user *pos; 3174 int len; 3175 int total; 3176 int i; 3177 3178 /* 3179 * Fetch the caller's info block. 3180 */ 3181 3182 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3183 return -EFAULT; 3184 3185 pos = ifc.ifc_buf; 3186 len = ifc.ifc_len; 3187 3188 /* 3189 * Loop over the interfaces, and write an info block for each. 3190 */ 3191 3192 total = 0; 3193 for_each_netdev(net, dev) { 3194 for (i = 0; i < NPROTO; i++) { 3195 if (gifconf_list[i]) { 3196 int done; 3197 if (!pos) 3198 done = gifconf_list[i](dev, NULL, 0); 3199 else 3200 done = gifconf_list[i](dev, pos + total, 3201 len - total); 3202 if (done < 0) 3203 return -EFAULT; 3204 total += done; 3205 } 3206 } 3207 } 3208 3209 /* 3210 * All done. Write the updated control block back to the caller. 3211 */ 3212 ifc.ifc_len = total; 3213 3214 /* 3215 * Both BSD and Solaris return 0 here, so we do too. 3216 */ 3217 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3218} 3219 3220#ifdef CONFIG_PROC_FS 3221/* 3222 * This is invoked by the /proc filesystem handler to display a device 3223 * in detail. 3224 */ 3225void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3226 __acquires(RCU) 3227{ 3228 struct net *net = seq_file_net(seq); 3229 loff_t off; 3230 struct net_device *dev; 3231 3232 rcu_read_lock(); 3233 if (!*pos) 3234 return SEQ_START_TOKEN; 3235 3236 off = 1; 3237 for_each_netdev_rcu(net, dev) 3238 if (off++ == *pos) 3239 return dev; 3240 3241 return NULL; 3242} 3243 3244void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3245{ 3246 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3247 first_net_device(seq_file_net(seq)) : 3248 next_net_device((struct net_device *)v); 3249 3250 ++*pos; 3251 return rcu_dereference(dev); 3252} 3253 3254void dev_seq_stop(struct seq_file *seq, void *v) 3255 __releases(RCU) 3256{ 3257 rcu_read_unlock(); 3258} 3259 3260static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3261{ 3262 const struct net_device_stats *stats = dev_get_stats(dev); 3263 3264 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3265 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3266 dev->name, stats->rx_bytes, stats->rx_packets, 3267 stats->rx_errors, 3268 stats->rx_dropped + stats->rx_missed_errors, 3269 stats->rx_fifo_errors, 3270 stats->rx_length_errors + stats->rx_over_errors + 3271 stats->rx_crc_errors + stats->rx_frame_errors, 3272 stats->rx_compressed, stats->multicast, 3273 stats->tx_bytes, stats->tx_packets, 3274 stats->tx_errors, stats->tx_dropped, 3275 stats->tx_fifo_errors, stats->collisions, 3276 stats->tx_carrier_errors + 3277 stats->tx_aborted_errors + 3278 stats->tx_window_errors + 3279 stats->tx_heartbeat_errors, 3280 stats->tx_compressed); 3281} 3282 3283/* 3284 * Called from the PROCfs module. This now uses the new arbitrary sized 3285 * /proc/net interface to create /proc/net/dev 3286 */ 3287static int dev_seq_show(struct seq_file *seq, void *v) 3288{ 3289 if (v == SEQ_START_TOKEN) 3290 seq_puts(seq, "Inter-| Receive " 3291 " | Transmit\n" 3292 " face |bytes packets errs drop fifo frame " 3293 "compressed multicast|bytes packets errs " 3294 "drop fifo colls carrier compressed\n"); 3295 else 3296 dev_seq_printf_stats(seq, v); 3297 return 0; 3298} 3299 3300static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3301{ 3302 struct netif_rx_stats *rc = NULL; 3303 3304 while (*pos < nr_cpu_ids) 3305 if (cpu_online(*pos)) { 3306 rc = &per_cpu(netdev_rx_stat, *pos); 3307 break; 3308 } else 3309 ++*pos; 3310 return rc; 3311} 3312 3313static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3314{ 3315 return softnet_get_online(pos); 3316} 3317 3318static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3319{ 3320 ++*pos; 3321 return softnet_get_online(pos); 3322} 3323 3324static void softnet_seq_stop(struct seq_file *seq, void *v) 3325{ 3326} 3327 3328static int softnet_seq_show(struct seq_file *seq, void *v) 3329{ 3330 struct netif_rx_stats *s = v; 3331 3332 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3333 s->total, s->dropped, s->time_squeeze, 0, 3334 0, 0, 0, 0, /* was fastroute */ 3335 s->cpu_collision); 3336 return 0; 3337} 3338 3339static const struct seq_operations dev_seq_ops = { 3340 .start = dev_seq_start, 3341 .next = dev_seq_next, 3342 .stop = dev_seq_stop, 3343 .show = dev_seq_show, 3344}; 3345 3346static int dev_seq_open(struct inode *inode, struct file *file) 3347{ 3348 return seq_open_net(inode, file, &dev_seq_ops, 3349 sizeof(struct seq_net_private)); 3350} 3351 3352static const struct file_operations dev_seq_fops = { 3353 .owner = THIS_MODULE, 3354 .open = dev_seq_open, 3355 .read = seq_read, 3356 .llseek = seq_lseek, 3357 .release = seq_release_net, 3358}; 3359 3360static const struct seq_operations softnet_seq_ops = { 3361 .start = softnet_seq_start, 3362 .next = softnet_seq_next, 3363 .stop = softnet_seq_stop, 3364 .show = softnet_seq_show, 3365}; 3366 3367static int softnet_seq_open(struct inode *inode, struct file *file) 3368{ 3369 return seq_open(file, &softnet_seq_ops); 3370} 3371 3372static const struct file_operations softnet_seq_fops = { 3373 .owner = THIS_MODULE, 3374 .open = softnet_seq_open, 3375 .read = seq_read, 3376 .llseek = seq_lseek, 3377 .release = seq_release, 3378}; 3379 3380static void *ptype_get_idx(loff_t pos) 3381{ 3382 struct packet_type *pt = NULL; 3383 loff_t i = 0; 3384 int t; 3385 3386 list_for_each_entry_rcu(pt, &ptype_all, list) { 3387 if (i == pos) 3388 return pt; 3389 ++i; 3390 } 3391 3392 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3393 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3394 if (i == pos) 3395 return pt; 3396 ++i; 3397 } 3398 } 3399 return NULL; 3400} 3401 3402static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3403 __acquires(RCU) 3404{ 3405 rcu_read_lock(); 3406 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3407} 3408 3409static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3410{ 3411 struct packet_type *pt; 3412 struct list_head *nxt; 3413 int hash; 3414 3415 ++*pos; 3416 if (v == SEQ_START_TOKEN) 3417 return ptype_get_idx(0); 3418 3419 pt = v; 3420 nxt = pt->list.next; 3421 if (pt->type == htons(ETH_P_ALL)) { 3422 if (nxt != &ptype_all) 3423 goto found; 3424 hash = 0; 3425 nxt = ptype_base[0].next; 3426 } else 3427 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3428 3429 while (nxt == &ptype_base[hash]) { 3430 if (++hash >= PTYPE_HASH_SIZE) 3431 return NULL; 3432 nxt = ptype_base[hash].next; 3433 } 3434found: 3435 return list_entry(nxt, struct packet_type, list); 3436} 3437 3438static void ptype_seq_stop(struct seq_file *seq, void *v) 3439 __releases(RCU) 3440{ 3441 rcu_read_unlock(); 3442} 3443 3444static int ptype_seq_show(struct seq_file *seq, void *v) 3445{ 3446 struct packet_type *pt = v; 3447 3448 if (v == SEQ_START_TOKEN) 3449 seq_puts(seq, "Type Device Function\n"); 3450 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3451 if (pt->type == htons(ETH_P_ALL)) 3452 seq_puts(seq, "ALL "); 3453 else 3454 seq_printf(seq, "%04x", ntohs(pt->type)); 3455 3456 seq_printf(seq, " %-8s %pF\n", 3457 pt->dev ? pt->dev->name : "", pt->func); 3458 } 3459 3460 return 0; 3461} 3462 3463static const struct seq_operations ptype_seq_ops = { 3464 .start = ptype_seq_start, 3465 .next = ptype_seq_next, 3466 .stop = ptype_seq_stop, 3467 .show = ptype_seq_show, 3468}; 3469 3470static int ptype_seq_open(struct inode *inode, struct file *file) 3471{ 3472 return seq_open_net(inode, file, &ptype_seq_ops, 3473 sizeof(struct seq_net_private)); 3474} 3475 3476static const struct file_operations ptype_seq_fops = { 3477 .owner = THIS_MODULE, 3478 .open = ptype_seq_open, 3479 .read = seq_read, 3480 .llseek = seq_lseek, 3481 .release = seq_release_net, 3482}; 3483 3484 3485static int __net_init dev_proc_net_init(struct net *net) 3486{ 3487 int rc = -ENOMEM; 3488 3489 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3490 goto out; 3491 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3492 goto out_dev; 3493 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3494 goto out_softnet; 3495 3496 if (wext_proc_init(net)) 3497 goto out_ptype; 3498 rc = 0; 3499out: 3500 return rc; 3501out_ptype: 3502 proc_net_remove(net, "ptype"); 3503out_softnet: 3504 proc_net_remove(net, "softnet_stat"); 3505out_dev: 3506 proc_net_remove(net, "dev"); 3507 goto out; 3508} 3509 3510static void __net_exit dev_proc_net_exit(struct net *net) 3511{ 3512 wext_proc_exit(net); 3513 3514 proc_net_remove(net, "ptype"); 3515 proc_net_remove(net, "softnet_stat"); 3516 proc_net_remove(net, "dev"); 3517} 3518 3519static struct pernet_operations __net_initdata dev_proc_ops = { 3520 .init = dev_proc_net_init, 3521 .exit = dev_proc_net_exit, 3522}; 3523 3524static int __init dev_proc_init(void) 3525{ 3526 return register_pernet_subsys(&dev_proc_ops); 3527} 3528#else 3529#define dev_proc_init() 0 3530#endif /* CONFIG_PROC_FS */ 3531 3532 3533/** 3534 * netdev_set_master - set up master/slave pair 3535 * @slave: slave device 3536 * @master: new master device 3537 * 3538 * Changes the master device of the slave. Pass %NULL to break the 3539 * bonding. The caller must hold the RTNL semaphore. On a failure 3540 * a negative errno code is returned. On success the reference counts 3541 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3542 * function returns zero. 3543 */ 3544int netdev_set_master(struct net_device *slave, struct net_device *master) 3545{ 3546 struct net_device *old = slave->master; 3547 3548 ASSERT_RTNL(); 3549 3550 if (master) { 3551 if (old) 3552 return -EBUSY; 3553 dev_hold(master); 3554 } 3555 3556 slave->master = master; 3557 3558 synchronize_net(); 3559 3560 if (old) 3561 dev_put(old); 3562 3563 if (master) 3564 slave->flags |= IFF_SLAVE; 3565 else 3566 slave->flags &= ~IFF_SLAVE; 3567 3568 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3569 return 0; 3570} 3571EXPORT_SYMBOL(netdev_set_master); 3572 3573static void dev_change_rx_flags(struct net_device *dev, int flags) 3574{ 3575 const struct net_device_ops *ops = dev->netdev_ops; 3576 3577 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3578 ops->ndo_change_rx_flags(dev, flags); 3579} 3580 3581static int __dev_set_promiscuity(struct net_device *dev, int inc) 3582{ 3583 unsigned short old_flags = dev->flags; 3584 uid_t uid; 3585 gid_t gid; 3586 3587 ASSERT_RTNL(); 3588 3589 dev->flags |= IFF_PROMISC; 3590 dev->promiscuity += inc; 3591 if (dev->promiscuity == 0) { 3592 /* 3593 * Avoid overflow. 3594 * If inc causes overflow, untouch promisc and return error. 3595 */ 3596 if (inc < 0) 3597 dev->flags &= ~IFF_PROMISC; 3598 else { 3599 dev->promiscuity -= inc; 3600 printk(KERN_WARNING "%s: promiscuity touches roof, " 3601 "set promiscuity failed, promiscuity feature " 3602 "of device might be broken.\n", dev->name); 3603 return -EOVERFLOW; 3604 } 3605 } 3606 if (dev->flags != old_flags) { 3607 printk(KERN_INFO "device %s %s promiscuous mode\n", 3608 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3609 "left"); 3610 if (audit_enabled) { 3611 current_uid_gid(&uid, &gid); 3612 audit_log(current->audit_context, GFP_ATOMIC, 3613 AUDIT_ANOM_PROMISCUOUS, 3614 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3615 dev->name, (dev->flags & IFF_PROMISC), 3616 (old_flags & IFF_PROMISC), 3617 audit_get_loginuid(current), 3618 uid, gid, 3619 audit_get_sessionid(current)); 3620 } 3621 3622 dev_change_rx_flags(dev, IFF_PROMISC); 3623 } 3624 return 0; 3625} 3626 3627/** 3628 * dev_set_promiscuity - update promiscuity count on a device 3629 * @dev: device 3630 * @inc: modifier 3631 * 3632 * Add or remove promiscuity from a device. While the count in the device 3633 * remains above zero the interface remains promiscuous. Once it hits zero 3634 * the device reverts back to normal filtering operation. A negative inc 3635 * value is used to drop promiscuity on the device. 3636 * Return 0 if successful or a negative errno code on error. 3637 */ 3638int dev_set_promiscuity(struct net_device *dev, int inc) 3639{ 3640 unsigned short old_flags = dev->flags; 3641 int err; 3642 3643 err = __dev_set_promiscuity(dev, inc); 3644 if (err < 0) 3645 return err; 3646 if (dev->flags != old_flags) 3647 dev_set_rx_mode(dev); 3648 return err; 3649} 3650EXPORT_SYMBOL(dev_set_promiscuity); 3651 3652/** 3653 * dev_set_allmulti - update allmulti count on a device 3654 * @dev: device 3655 * @inc: modifier 3656 * 3657 * Add or remove reception of all multicast frames to a device. While the 3658 * count in the device remains above zero the interface remains listening 3659 * to all interfaces. Once it hits zero the device reverts back to normal 3660 * filtering operation. A negative @inc value is used to drop the counter 3661 * when releasing a resource needing all multicasts. 3662 * Return 0 if successful or a negative errno code on error. 3663 */ 3664 3665int dev_set_allmulti(struct net_device *dev, int inc) 3666{ 3667 unsigned short old_flags = dev->flags; 3668 3669 ASSERT_RTNL(); 3670 3671 dev->flags |= IFF_ALLMULTI; 3672 dev->allmulti += inc; 3673 if (dev->allmulti == 0) { 3674 /* 3675 * Avoid overflow. 3676 * If inc causes overflow, untouch allmulti and return error. 3677 */ 3678 if (inc < 0) 3679 dev->flags &= ~IFF_ALLMULTI; 3680 else { 3681 dev->allmulti -= inc; 3682 printk(KERN_WARNING "%s: allmulti touches roof, " 3683 "set allmulti failed, allmulti feature of " 3684 "device might be broken.\n", dev->name); 3685 return -EOVERFLOW; 3686 } 3687 } 3688 if (dev->flags ^ old_flags) { 3689 dev_change_rx_flags(dev, IFF_ALLMULTI); 3690 dev_set_rx_mode(dev); 3691 } 3692 return 0; 3693} 3694EXPORT_SYMBOL(dev_set_allmulti); 3695 3696/* 3697 * Upload unicast and multicast address lists to device and 3698 * configure RX filtering. When the device doesn't support unicast 3699 * filtering it is put in promiscuous mode while unicast addresses 3700 * are present. 3701 */ 3702void __dev_set_rx_mode(struct net_device *dev) 3703{ 3704 const struct net_device_ops *ops = dev->netdev_ops; 3705 3706 /* dev_open will call this function so the list will stay sane. */ 3707 if (!(dev->flags&IFF_UP)) 3708 return; 3709 3710 if (!netif_device_present(dev)) 3711 return; 3712 3713 if (ops->ndo_set_rx_mode) 3714 ops->ndo_set_rx_mode(dev); 3715 else { 3716 /* Unicast addresses changes may only happen under the rtnl, 3717 * therefore calling __dev_set_promiscuity here is safe. 3718 */ 3719 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 3720 __dev_set_promiscuity(dev, 1); 3721 dev->uc_promisc = 1; 3722 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 3723 __dev_set_promiscuity(dev, -1); 3724 dev->uc_promisc = 0; 3725 } 3726 3727 if (ops->ndo_set_multicast_list) 3728 ops->ndo_set_multicast_list(dev); 3729 } 3730} 3731 3732void dev_set_rx_mode(struct net_device *dev) 3733{ 3734 netif_addr_lock_bh(dev); 3735 __dev_set_rx_mode(dev); 3736 netif_addr_unlock_bh(dev); 3737} 3738 3739/* hw addresses list handling functions */ 3740 3741static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3742 int addr_len, unsigned char addr_type) 3743{ 3744 struct netdev_hw_addr *ha; 3745 int alloc_size; 3746 3747 if (addr_len > MAX_ADDR_LEN) 3748 return -EINVAL; 3749 3750 list_for_each_entry(ha, &list->list, list) { 3751 if (!memcmp(ha->addr, addr, addr_len) && 3752 ha->type == addr_type) { 3753 ha->refcount++; 3754 return 0; 3755 } 3756 } 3757 3758 3759 alloc_size = sizeof(*ha); 3760 if (alloc_size < L1_CACHE_BYTES) 3761 alloc_size = L1_CACHE_BYTES; 3762 ha = kmalloc(alloc_size, GFP_ATOMIC); 3763 if (!ha) 3764 return -ENOMEM; 3765 memcpy(ha->addr, addr, addr_len); 3766 ha->type = addr_type; 3767 ha->refcount = 1; 3768 ha->synced = false; 3769 list_add_tail_rcu(&ha->list, &list->list); 3770 list->count++; 3771 return 0; 3772} 3773 3774static void ha_rcu_free(struct rcu_head *head) 3775{ 3776 struct netdev_hw_addr *ha; 3777 3778 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3779 kfree(ha); 3780} 3781 3782static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3783 int addr_len, unsigned char addr_type) 3784{ 3785 struct netdev_hw_addr *ha; 3786 3787 list_for_each_entry(ha, &list->list, list) { 3788 if (!memcmp(ha->addr, addr, addr_len) && 3789 (ha->type == addr_type || !addr_type)) { 3790 if (--ha->refcount) 3791 return 0; 3792 list_del_rcu(&ha->list); 3793 call_rcu(&ha->rcu_head, ha_rcu_free); 3794 list->count--; 3795 return 0; 3796 } 3797 } 3798 return -ENOENT; 3799} 3800 3801static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3802 struct netdev_hw_addr_list *from_list, 3803 int addr_len, 3804 unsigned char addr_type) 3805{ 3806 int err; 3807 struct netdev_hw_addr *ha, *ha2; 3808 unsigned char type; 3809 3810 list_for_each_entry(ha, &from_list->list, list) { 3811 type = addr_type ? addr_type : ha->type; 3812 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3813 if (err) 3814 goto unroll; 3815 } 3816 return 0; 3817 3818unroll: 3819 list_for_each_entry(ha2, &from_list->list, list) { 3820 if (ha2 == ha) 3821 break; 3822 type = addr_type ? addr_type : ha2->type; 3823 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3824 } 3825 return err; 3826} 3827 3828static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3829 struct netdev_hw_addr_list *from_list, 3830 int addr_len, 3831 unsigned char addr_type) 3832{ 3833 struct netdev_hw_addr *ha; 3834 unsigned char type; 3835 3836 list_for_each_entry(ha, &from_list->list, list) { 3837 type = addr_type ? addr_type : ha->type; 3838 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3839 } 3840} 3841 3842static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3843 struct netdev_hw_addr_list *from_list, 3844 int addr_len) 3845{ 3846 int err = 0; 3847 struct netdev_hw_addr *ha, *tmp; 3848 3849 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3850 if (!ha->synced) { 3851 err = __hw_addr_add(to_list, ha->addr, 3852 addr_len, ha->type); 3853 if (err) 3854 break; 3855 ha->synced = true; 3856 ha->refcount++; 3857 } else if (ha->refcount == 1) { 3858 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3859 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3860 } 3861 } 3862 return err; 3863} 3864 3865static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3866 struct netdev_hw_addr_list *from_list, 3867 int addr_len) 3868{ 3869 struct netdev_hw_addr *ha, *tmp; 3870 3871 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3872 if (ha->synced) { 3873 __hw_addr_del(to_list, ha->addr, 3874 addr_len, ha->type); 3875 ha->synced = false; 3876 __hw_addr_del(from_list, ha->addr, 3877 addr_len, ha->type); 3878 } 3879 } 3880} 3881 3882static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3883{ 3884 struct netdev_hw_addr *ha, *tmp; 3885 3886 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3887 list_del_rcu(&ha->list); 3888 call_rcu(&ha->rcu_head, ha_rcu_free); 3889 } 3890 list->count = 0; 3891} 3892 3893static void __hw_addr_init(struct netdev_hw_addr_list *list) 3894{ 3895 INIT_LIST_HEAD(&list->list); 3896 list->count = 0; 3897} 3898 3899/* Device addresses handling functions */ 3900 3901static void dev_addr_flush(struct net_device *dev) 3902{ 3903 /* rtnl_mutex must be held here */ 3904 3905 __hw_addr_flush(&dev->dev_addrs); 3906 dev->dev_addr = NULL; 3907} 3908 3909static int dev_addr_init(struct net_device *dev) 3910{ 3911 unsigned char addr[MAX_ADDR_LEN]; 3912 struct netdev_hw_addr *ha; 3913 int err; 3914 3915 /* rtnl_mutex must be held here */ 3916 3917 __hw_addr_init(&dev->dev_addrs); 3918 memset(addr, 0, sizeof(addr)); 3919 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3920 NETDEV_HW_ADDR_T_LAN); 3921 if (!err) { 3922 /* 3923 * Get the first (previously created) address from the list 3924 * and set dev_addr pointer to this location. 3925 */ 3926 ha = list_first_entry(&dev->dev_addrs.list, 3927 struct netdev_hw_addr, list); 3928 dev->dev_addr = ha->addr; 3929 } 3930 return err; 3931} 3932 3933/** 3934 * dev_addr_add - Add a device address 3935 * @dev: device 3936 * @addr: address to add 3937 * @addr_type: address type 3938 * 3939 * Add a device address to the device or increase the reference count if 3940 * it already exists. 3941 * 3942 * The caller must hold the rtnl_mutex. 3943 */ 3944int dev_addr_add(struct net_device *dev, unsigned char *addr, 3945 unsigned char addr_type) 3946{ 3947 int err; 3948 3949 ASSERT_RTNL(); 3950 3951 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3952 if (!err) 3953 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3954 return err; 3955} 3956EXPORT_SYMBOL(dev_addr_add); 3957 3958/** 3959 * dev_addr_del - Release a device address. 3960 * @dev: device 3961 * @addr: address to delete 3962 * @addr_type: address type 3963 * 3964 * Release reference to a device address and remove it from the device 3965 * if the reference count drops to zero. 3966 * 3967 * The caller must hold the rtnl_mutex. 3968 */ 3969int dev_addr_del(struct net_device *dev, unsigned char *addr, 3970 unsigned char addr_type) 3971{ 3972 int err; 3973 struct netdev_hw_addr *ha; 3974 3975 ASSERT_RTNL(); 3976 3977 /* 3978 * We can not remove the first address from the list because 3979 * dev->dev_addr points to that. 3980 */ 3981 ha = list_first_entry(&dev->dev_addrs.list, 3982 struct netdev_hw_addr, list); 3983 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3984 return -ENOENT; 3985 3986 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3987 addr_type); 3988 if (!err) 3989 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3990 return err; 3991} 3992EXPORT_SYMBOL(dev_addr_del); 3993 3994/** 3995 * dev_addr_add_multiple - Add device addresses from another device 3996 * @to_dev: device to which addresses will be added 3997 * @from_dev: device from which addresses will be added 3998 * @addr_type: address type - 0 means type will be used from from_dev 3999 * 4000 * Add device addresses of the one device to another. 4001 ** 4002 * The caller must hold the rtnl_mutex. 4003 */ 4004int dev_addr_add_multiple(struct net_device *to_dev, 4005 struct net_device *from_dev, 4006 unsigned char addr_type) 4007{ 4008 int err; 4009 4010 ASSERT_RTNL(); 4011 4012 if (from_dev->addr_len != to_dev->addr_len) 4013 return -EINVAL; 4014 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4015 to_dev->addr_len, addr_type); 4016 if (!err) 4017 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4018 return err; 4019} 4020EXPORT_SYMBOL(dev_addr_add_multiple); 4021 4022/** 4023 * dev_addr_del_multiple - Delete device addresses by another device 4024 * @to_dev: device where the addresses will be deleted 4025 * @from_dev: device by which addresses the addresses will be deleted 4026 * @addr_type: address type - 0 means type will used from from_dev 4027 * 4028 * Deletes addresses in to device by the list of addresses in from device. 4029 * 4030 * The caller must hold the rtnl_mutex. 4031 */ 4032int dev_addr_del_multiple(struct net_device *to_dev, 4033 struct net_device *from_dev, 4034 unsigned char addr_type) 4035{ 4036 ASSERT_RTNL(); 4037 4038 if (from_dev->addr_len != to_dev->addr_len) 4039 return -EINVAL; 4040 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4041 to_dev->addr_len, addr_type); 4042 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4043 return 0; 4044} 4045EXPORT_SYMBOL(dev_addr_del_multiple); 4046 4047/* multicast addresses handling functions */ 4048 4049int __dev_addr_delete(struct dev_addr_list **list, int *count, 4050 void *addr, int alen, int glbl) 4051{ 4052 struct dev_addr_list *da; 4053 4054 for (; (da = *list) != NULL; list = &da->next) { 4055 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4056 alen == da->da_addrlen) { 4057 if (glbl) { 4058 int old_glbl = da->da_gusers; 4059 da->da_gusers = 0; 4060 if (old_glbl == 0) 4061 break; 4062 } 4063 if (--da->da_users) 4064 return 0; 4065 4066 *list = da->next; 4067 kfree(da); 4068 (*count)--; 4069 return 0; 4070 } 4071 } 4072 return -ENOENT; 4073} 4074 4075int __dev_addr_add(struct dev_addr_list **list, int *count, 4076 void *addr, int alen, int glbl) 4077{ 4078 struct dev_addr_list *da; 4079 4080 for (da = *list; da != NULL; da = da->next) { 4081 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4082 da->da_addrlen == alen) { 4083 if (glbl) { 4084 int old_glbl = da->da_gusers; 4085 da->da_gusers = 1; 4086 if (old_glbl) 4087 return 0; 4088 } 4089 da->da_users++; 4090 return 0; 4091 } 4092 } 4093 4094 da = kzalloc(sizeof(*da), GFP_ATOMIC); 4095 if (da == NULL) 4096 return -ENOMEM; 4097 memcpy(da->da_addr, addr, alen); 4098 da->da_addrlen = alen; 4099 da->da_users = 1; 4100 da->da_gusers = glbl ? 1 : 0; 4101 da->next = *list; 4102 *list = da; 4103 (*count)++; 4104 return 0; 4105} 4106 4107/** 4108 * dev_unicast_delete - Release secondary unicast address. 4109 * @dev: device 4110 * @addr: address to delete 4111 * 4112 * Release reference to a secondary unicast address and remove it 4113 * from the device if the reference count drops to zero. 4114 * 4115 * The caller must hold the rtnl_mutex. 4116 */ 4117int dev_unicast_delete(struct net_device *dev, void *addr) 4118{ 4119 int err; 4120 4121 ASSERT_RTNL(); 4122 4123 netif_addr_lock_bh(dev); 4124 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 4125 NETDEV_HW_ADDR_T_UNICAST); 4126 if (!err) 4127 __dev_set_rx_mode(dev); 4128 netif_addr_unlock_bh(dev); 4129 return err; 4130} 4131EXPORT_SYMBOL(dev_unicast_delete); 4132 4133/** 4134 * dev_unicast_add - add a secondary unicast address 4135 * @dev: device 4136 * @addr: address to add 4137 * 4138 * Add a secondary unicast address to the device or increase 4139 * the reference count if it already exists. 4140 * 4141 * The caller must hold the rtnl_mutex. 4142 */ 4143int dev_unicast_add(struct net_device *dev, void *addr) 4144{ 4145 int err; 4146 4147 ASSERT_RTNL(); 4148 4149 netif_addr_lock_bh(dev); 4150 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 4151 NETDEV_HW_ADDR_T_UNICAST); 4152 if (!err) 4153 __dev_set_rx_mode(dev); 4154 netif_addr_unlock_bh(dev); 4155 return err; 4156} 4157EXPORT_SYMBOL(dev_unicast_add); 4158 4159int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 4160 struct dev_addr_list **from, int *from_count) 4161{ 4162 struct dev_addr_list *da, *next; 4163 int err = 0; 4164 4165 da = *from; 4166 while (da != NULL) { 4167 next = da->next; 4168 if (!da->da_synced) { 4169 err = __dev_addr_add(to, to_count, 4170 da->da_addr, da->da_addrlen, 0); 4171 if (err < 0) 4172 break; 4173 da->da_synced = 1; 4174 da->da_users++; 4175 } else if (da->da_users == 1) { 4176 __dev_addr_delete(to, to_count, 4177 da->da_addr, da->da_addrlen, 0); 4178 __dev_addr_delete(from, from_count, 4179 da->da_addr, da->da_addrlen, 0); 4180 } 4181 da = next; 4182 } 4183 return err; 4184} 4185EXPORT_SYMBOL_GPL(__dev_addr_sync); 4186 4187void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 4188 struct dev_addr_list **from, int *from_count) 4189{ 4190 struct dev_addr_list *da, *next; 4191 4192 da = *from; 4193 while (da != NULL) { 4194 next = da->next; 4195 if (da->da_synced) { 4196 __dev_addr_delete(to, to_count, 4197 da->da_addr, da->da_addrlen, 0); 4198 da->da_synced = 0; 4199 __dev_addr_delete(from, from_count, 4200 da->da_addr, da->da_addrlen, 0); 4201 } 4202 da = next; 4203 } 4204} 4205EXPORT_SYMBOL_GPL(__dev_addr_unsync); 4206 4207/** 4208 * dev_unicast_sync - Synchronize device's unicast list to another device 4209 * @to: destination device 4210 * @from: source device 4211 * 4212 * Add newly added addresses to the destination device and release 4213 * addresses that have no users left. The source device must be 4214 * locked by netif_tx_lock_bh. 4215 * 4216 * This function is intended to be called from the dev->set_rx_mode 4217 * function of layered software devices. 4218 */ 4219int dev_unicast_sync(struct net_device *to, struct net_device *from) 4220{ 4221 int err = 0; 4222 4223 if (to->addr_len != from->addr_len) 4224 return -EINVAL; 4225 4226 netif_addr_lock_bh(to); 4227 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4228 if (!err) 4229 __dev_set_rx_mode(to); 4230 netif_addr_unlock_bh(to); 4231 return err; 4232} 4233EXPORT_SYMBOL(dev_unicast_sync); 4234 4235/** 4236 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4237 * @to: destination device 4238 * @from: source device 4239 * 4240 * Remove all addresses that were added to the destination device by 4241 * dev_unicast_sync(). This function is intended to be called from the 4242 * dev->stop function of layered software devices. 4243 */ 4244void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4245{ 4246 if (to->addr_len != from->addr_len) 4247 return; 4248 4249 netif_addr_lock_bh(from); 4250 netif_addr_lock(to); 4251 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4252 __dev_set_rx_mode(to); 4253 netif_addr_unlock(to); 4254 netif_addr_unlock_bh(from); 4255} 4256EXPORT_SYMBOL(dev_unicast_unsync); 4257 4258static void dev_unicast_flush(struct net_device *dev) 4259{ 4260 netif_addr_lock_bh(dev); 4261 __hw_addr_flush(&dev->uc); 4262 netif_addr_unlock_bh(dev); 4263} 4264 4265static void dev_unicast_init(struct net_device *dev) 4266{ 4267 __hw_addr_init(&dev->uc); 4268} 4269 4270 4271static void __dev_addr_discard(struct dev_addr_list **list) 4272{ 4273 struct dev_addr_list *tmp; 4274 4275 while (*list != NULL) { 4276 tmp = *list; 4277 *list = tmp->next; 4278 if (tmp->da_users > tmp->da_gusers) 4279 printk("__dev_addr_discard: address leakage! " 4280 "da_users=%d\n", tmp->da_users); 4281 kfree(tmp); 4282 } 4283} 4284 4285static void dev_addr_discard(struct net_device *dev) 4286{ 4287 netif_addr_lock_bh(dev); 4288 4289 __dev_addr_discard(&dev->mc_list); 4290 netdev_mc_count(dev) = 0; 4291 4292 netif_addr_unlock_bh(dev); 4293} 4294 4295/** 4296 * dev_get_flags - get flags reported to userspace 4297 * @dev: device 4298 * 4299 * Get the combination of flag bits exported through APIs to userspace. 4300 */ 4301unsigned dev_get_flags(const struct net_device *dev) 4302{ 4303 unsigned flags; 4304 4305 flags = (dev->flags & ~(IFF_PROMISC | 4306 IFF_ALLMULTI | 4307 IFF_RUNNING | 4308 IFF_LOWER_UP | 4309 IFF_DORMANT)) | 4310 (dev->gflags & (IFF_PROMISC | 4311 IFF_ALLMULTI)); 4312 4313 if (netif_running(dev)) { 4314 if (netif_oper_up(dev)) 4315 flags |= IFF_RUNNING; 4316 if (netif_carrier_ok(dev)) 4317 flags |= IFF_LOWER_UP; 4318 if (netif_dormant(dev)) 4319 flags |= IFF_DORMANT; 4320 } 4321 4322 return flags; 4323} 4324EXPORT_SYMBOL(dev_get_flags); 4325 4326int __dev_change_flags(struct net_device *dev, unsigned int flags) 4327{ 4328 int old_flags = dev->flags; 4329 int ret; 4330 4331 ASSERT_RTNL(); 4332 4333 /* 4334 * Set the flags on our device. 4335 */ 4336 4337 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4338 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4339 IFF_AUTOMEDIA)) | 4340 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4341 IFF_ALLMULTI)); 4342 4343 /* 4344 * Load in the correct multicast list now the flags have changed. 4345 */ 4346 4347 if ((old_flags ^ flags) & IFF_MULTICAST) 4348 dev_change_rx_flags(dev, IFF_MULTICAST); 4349 4350 dev_set_rx_mode(dev); 4351 4352 /* 4353 * Have we downed the interface. We handle IFF_UP ourselves 4354 * according to user attempts to set it, rather than blindly 4355 * setting it. 4356 */ 4357 4358 ret = 0; 4359 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4360 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4361 4362 if (!ret) 4363 dev_set_rx_mode(dev); 4364 } 4365 4366 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4367 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4368 4369 dev->gflags ^= IFF_PROMISC; 4370 dev_set_promiscuity(dev, inc); 4371 } 4372 4373 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4374 is important. Some (broken) drivers set IFF_PROMISC, when 4375 IFF_ALLMULTI is requested not asking us and not reporting. 4376 */ 4377 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4378 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4379 4380 dev->gflags ^= IFF_ALLMULTI; 4381 dev_set_allmulti(dev, inc); 4382 } 4383 4384 return ret; 4385} 4386 4387void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4388{ 4389 unsigned int changes = dev->flags ^ old_flags; 4390 4391 if (changes & IFF_UP) { 4392 if (dev->flags & IFF_UP) 4393 call_netdevice_notifiers(NETDEV_UP, dev); 4394 else 4395 call_netdevice_notifiers(NETDEV_DOWN, dev); 4396 } 4397 4398 if (dev->flags & IFF_UP && 4399 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4400 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4401} 4402 4403/** 4404 * dev_change_flags - change device settings 4405 * @dev: device 4406 * @flags: device state flags 4407 * 4408 * Change settings on device based state flags. The flags are 4409 * in the userspace exported format. 4410 */ 4411int dev_change_flags(struct net_device *dev, unsigned flags) 4412{ 4413 int ret, changes; 4414 int old_flags = dev->flags; 4415 4416 ret = __dev_change_flags(dev, flags); 4417 if (ret < 0) 4418 return ret; 4419 4420 changes = old_flags ^ dev->flags; 4421 if (changes) 4422 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4423 4424 __dev_notify_flags(dev, old_flags); 4425 return ret; 4426} 4427EXPORT_SYMBOL(dev_change_flags); 4428 4429/** 4430 * dev_set_mtu - Change maximum transfer unit 4431 * @dev: device 4432 * @new_mtu: new transfer unit 4433 * 4434 * Change the maximum transfer size of the network device. 4435 */ 4436int dev_set_mtu(struct net_device *dev, int new_mtu) 4437{ 4438 const struct net_device_ops *ops = dev->netdev_ops; 4439 int err; 4440 4441 if (new_mtu == dev->mtu) 4442 return 0; 4443 4444 /* MTU must be positive. */ 4445 if (new_mtu < 0) 4446 return -EINVAL; 4447 4448 if (!netif_device_present(dev)) 4449 return -ENODEV; 4450 4451 err = 0; 4452 if (ops->ndo_change_mtu) 4453 err = ops->ndo_change_mtu(dev, new_mtu); 4454 else 4455 dev->mtu = new_mtu; 4456 4457 if (!err && dev->flags & IFF_UP) 4458 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4459 return err; 4460} 4461EXPORT_SYMBOL(dev_set_mtu); 4462 4463/** 4464 * dev_set_mac_address - Change Media Access Control Address 4465 * @dev: device 4466 * @sa: new address 4467 * 4468 * Change the hardware (MAC) address of the device 4469 */ 4470int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4471{ 4472 const struct net_device_ops *ops = dev->netdev_ops; 4473 int err; 4474 4475 if (!ops->ndo_set_mac_address) 4476 return -EOPNOTSUPP; 4477 if (sa->sa_family != dev->type) 4478 return -EINVAL; 4479 if (!netif_device_present(dev)) 4480 return -ENODEV; 4481 err = ops->ndo_set_mac_address(dev, sa); 4482 if (!err) 4483 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4484 return err; 4485} 4486EXPORT_SYMBOL(dev_set_mac_address); 4487 4488/* 4489 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4490 */ 4491static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4492{ 4493 int err; 4494 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4495 4496 if (!dev) 4497 return -ENODEV; 4498 4499 switch (cmd) { 4500 case SIOCGIFFLAGS: /* Get interface flags */ 4501 ifr->ifr_flags = (short) dev_get_flags(dev); 4502 return 0; 4503 4504 case SIOCGIFMETRIC: /* Get the metric on the interface 4505 (currently unused) */ 4506 ifr->ifr_metric = 0; 4507 return 0; 4508 4509 case SIOCGIFMTU: /* Get the MTU of a device */ 4510 ifr->ifr_mtu = dev->mtu; 4511 return 0; 4512 4513 case SIOCGIFHWADDR: 4514 if (!dev->addr_len) 4515 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4516 else 4517 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4518 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4519 ifr->ifr_hwaddr.sa_family = dev->type; 4520 return 0; 4521 4522 case SIOCGIFSLAVE: 4523 err = -EINVAL; 4524 break; 4525 4526 case SIOCGIFMAP: 4527 ifr->ifr_map.mem_start = dev->mem_start; 4528 ifr->ifr_map.mem_end = dev->mem_end; 4529 ifr->ifr_map.base_addr = dev->base_addr; 4530 ifr->ifr_map.irq = dev->irq; 4531 ifr->ifr_map.dma = dev->dma; 4532 ifr->ifr_map.port = dev->if_port; 4533 return 0; 4534 4535 case SIOCGIFINDEX: 4536 ifr->ifr_ifindex = dev->ifindex; 4537 return 0; 4538 4539 case SIOCGIFTXQLEN: 4540 ifr->ifr_qlen = dev->tx_queue_len; 4541 return 0; 4542 4543 default: 4544 /* dev_ioctl() should ensure this case 4545 * is never reached 4546 */ 4547 WARN_ON(1); 4548 err = -EINVAL; 4549 break; 4550 4551 } 4552 return err; 4553} 4554 4555/* 4556 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4557 */ 4558static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4559{ 4560 int err; 4561 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4562 const struct net_device_ops *ops; 4563 4564 if (!dev) 4565 return -ENODEV; 4566 4567 ops = dev->netdev_ops; 4568 4569 switch (cmd) { 4570 case SIOCSIFFLAGS: /* Set interface flags */ 4571 return dev_change_flags(dev, ifr->ifr_flags); 4572 4573 case SIOCSIFMETRIC: /* Set the metric on the interface 4574 (currently unused) */ 4575 return -EOPNOTSUPP; 4576 4577 case SIOCSIFMTU: /* Set the MTU of a device */ 4578 return dev_set_mtu(dev, ifr->ifr_mtu); 4579 4580 case SIOCSIFHWADDR: 4581 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4582 4583 case SIOCSIFHWBROADCAST: 4584 if (ifr->ifr_hwaddr.sa_family != dev->type) 4585 return -EINVAL; 4586 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4587 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4588 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4589 return 0; 4590 4591 case SIOCSIFMAP: 4592 if (ops->ndo_set_config) { 4593 if (!netif_device_present(dev)) 4594 return -ENODEV; 4595 return ops->ndo_set_config(dev, &ifr->ifr_map); 4596 } 4597 return -EOPNOTSUPP; 4598 4599 case SIOCADDMULTI: 4600 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4601 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4602 return -EINVAL; 4603 if (!netif_device_present(dev)) 4604 return -ENODEV; 4605 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4606 dev->addr_len, 1); 4607 4608 case SIOCDELMULTI: 4609 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4610 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4611 return -EINVAL; 4612 if (!netif_device_present(dev)) 4613 return -ENODEV; 4614 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4615 dev->addr_len, 1); 4616 4617 case SIOCSIFTXQLEN: 4618 if (ifr->ifr_qlen < 0) 4619 return -EINVAL; 4620 dev->tx_queue_len = ifr->ifr_qlen; 4621 return 0; 4622 4623 case SIOCSIFNAME: 4624 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4625 return dev_change_name(dev, ifr->ifr_newname); 4626 4627 /* 4628 * Unknown or private ioctl 4629 */ 4630 default: 4631 if ((cmd >= SIOCDEVPRIVATE && 4632 cmd <= SIOCDEVPRIVATE + 15) || 4633 cmd == SIOCBONDENSLAVE || 4634 cmd == SIOCBONDRELEASE || 4635 cmd == SIOCBONDSETHWADDR || 4636 cmd == SIOCBONDSLAVEINFOQUERY || 4637 cmd == SIOCBONDINFOQUERY || 4638 cmd == SIOCBONDCHANGEACTIVE || 4639 cmd == SIOCGMIIPHY || 4640 cmd == SIOCGMIIREG || 4641 cmd == SIOCSMIIREG || 4642 cmd == SIOCBRADDIF || 4643 cmd == SIOCBRDELIF || 4644 cmd == SIOCSHWTSTAMP || 4645 cmd == SIOCWANDEV) { 4646 err = -EOPNOTSUPP; 4647 if (ops->ndo_do_ioctl) { 4648 if (netif_device_present(dev)) 4649 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4650 else 4651 err = -ENODEV; 4652 } 4653 } else 4654 err = -EINVAL; 4655 4656 } 4657 return err; 4658} 4659 4660/* 4661 * This function handles all "interface"-type I/O control requests. The actual 4662 * 'doing' part of this is dev_ifsioc above. 4663 */ 4664 4665/** 4666 * dev_ioctl - network device ioctl 4667 * @net: the applicable net namespace 4668 * @cmd: command to issue 4669 * @arg: pointer to a struct ifreq in user space 4670 * 4671 * Issue ioctl functions to devices. This is normally called by the 4672 * user space syscall interfaces but can sometimes be useful for 4673 * other purposes. The return value is the return from the syscall if 4674 * positive or a negative errno code on error. 4675 */ 4676 4677int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4678{ 4679 struct ifreq ifr; 4680 int ret; 4681 char *colon; 4682 4683 /* One special case: SIOCGIFCONF takes ifconf argument 4684 and requires shared lock, because it sleeps writing 4685 to user space. 4686 */ 4687 4688 if (cmd == SIOCGIFCONF) { 4689 rtnl_lock(); 4690 ret = dev_ifconf(net, (char __user *) arg); 4691 rtnl_unlock(); 4692 return ret; 4693 } 4694 if (cmd == SIOCGIFNAME) 4695 return dev_ifname(net, (struct ifreq __user *)arg); 4696 4697 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4698 return -EFAULT; 4699 4700 ifr.ifr_name[IFNAMSIZ-1] = 0; 4701 4702 colon = strchr(ifr.ifr_name, ':'); 4703 if (colon) 4704 *colon = 0; 4705 4706 /* 4707 * See which interface the caller is talking about. 4708 */ 4709 4710 switch (cmd) { 4711 /* 4712 * These ioctl calls: 4713 * - can be done by all. 4714 * - atomic and do not require locking. 4715 * - return a value 4716 */ 4717 case SIOCGIFFLAGS: 4718 case SIOCGIFMETRIC: 4719 case SIOCGIFMTU: 4720 case SIOCGIFHWADDR: 4721 case SIOCGIFSLAVE: 4722 case SIOCGIFMAP: 4723 case SIOCGIFINDEX: 4724 case SIOCGIFTXQLEN: 4725 dev_load(net, ifr.ifr_name); 4726 rcu_read_lock(); 4727 ret = dev_ifsioc_locked(net, &ifr, cmd); 4728 rcu_read_unlock(); 4729 if (!ret) { 4730 if (colon) 4731 *colon = ':'; 4732 if (copy_to_user(arg, &ifr, 4733 sizeof(struct ifreq))) 4734 ret = -EFAULT; 4735 } 4736 return ret; 4737 4738 case SIOCETHTOOL: 4739 dev_load(net, ifr.ifr_name); 4740 rtnl_lock(); 4741 ret = dev_ethtool(net, &ifr); 4742 rtnl_unlock(); 4743 if (!ret) { 4744 if (colon) 4745 *colon = ':'; 4746 if (copy_to_user(arg, &ifr, 4747 sizeof(struct ifreq))) 4748 ret = -EFAULT; 4749 } 4750 return ret; 4751 4752 /* 4753 * These ioctl calls: 4754 * - require superuser power. 4755 * - require strict serialization. 4756 * - return a value 4757 */ 4758 case SIOCGMIIPHY: 4759 case SIOCGMIIREG: 4760 case SIOCSIFNAME: 4761 if (!capable(CAP_NET_ADMIN)) 4762 return -EPERM; 4763 dev_load(net, ifr.ifr_name); 4764 rtnl_lock(); 4765 ret = dev_ifsioc(net, &ifr, cmd); 4766 rtnl_unlock(); 4767 if (!ret) { 4768 if (colon) 4769 *colon = ':'; 4770 if (copy_to_user(arg, &ifr, 4771 sizeof(struct ifreq))) 4772 ret = -EFAULT; 4773 } 4774 return ret; 4775 4776 /* 4777 * These ioctl calls: 4778 * - require superuser power. 4779 * - require strict serialization. 4780 * - do not return a value 4781 */ 4782 case SIOCSIFFLAGS: 4783 case SIOCSIFMETRIC: 4784 case SIOCSIFMTU: 4785 case SIOCSIFMAP: 4786 case SIOCSIFHWADDR: 4787 case SIOCSIFSLAVE: 4788 case SIOCADDMULTI: 4789 case SIOCDELMULTI: 4790 case SIOCSIFHWBROADCAST: 4791 case SIOCSIFTXQLEN: 4792 case SIOCSMIIREG: 4793 case SIOCBONDENSLAVE: 4794 case SIOCBONDRELEASE: 4795 case SIOCBONDSETHWADDR: 4796 case SIOCBONDCHANGEACTIVE: 4797 case SIOCBRADDIF: 4798 case SIOCBRDELIF: 4799 case SIOCSHWTSTAMP: 4800 if (!capable(CAP_NET_ADMIN)) 4801 return -EPERM; 4802 /* fall through */ 4803 case SIOCBONDSLAVEINFOQUERY: 4804 case SIOCBONDINFOQUERY: 4805 dev_load(net, ifr.ifr_name); 4806 rtnl_lock(); 4807 ret = dev_ifsioc(net, &ifr, cmd); 4808 rtnl_unlock(); 4809 return ret; 4810 4811 case SIOCGIFMEM: 4812 /* Get the per device memory space. We can add this but 4813 * currently do not support it */ 4814 case SIOCSIFMEM: 4815 /* Set the per device memory buffer space. 4816 * Not applicable in our case */ 4817 case SIOCSIFLINK: 4818 return -EINVAL; 4819 4820 /* 4821 * Unknown or private ioctl. 4822 */ 4823 default: 4824 if (cmd == SIOCWANDEV || 4825 (cmd >= SIOCDEVPRIVATE && 4826 cmd <= SIOCDEVPRIVATE + 15)) { 4827 dev_load(net, ifr.ifr_name); 4828 rtnl_lock(); 4829 ret = dev_ifsioc(net, &ifr, cmd); 4830 rtnl_unlock(); 4831 if (!ret && copy_to_user(arg, &ifr, 4832 sizeof(struct ifreq))) 4833 ret = -EFAULT; 4834 return ret; 4835 } 4836 /* Take care of Wireless Extensions */ 4837 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4838 return wext_handle_ioctl(net, &ifr, cmd, arg); 4839 return -EINVAL; 4840 } 4841} 4842 4843 4844/** 4845 * dev_new_index - allocate an ifindex 4846 * @net: the applicable net namespace 4847 * 4848 * Returns a suitable unique value for a new device interface 4849 * number. The caller must hold the rtnl semaphore or the 4850 * dev_base_lock to be sure it remains unique. 4851 */ 4852static int dev_new_index(struct net *net) 4853{ 4854 static int ifindex; 4855 for (;;) { 4856 if (++ifindex <= 0) 4857 ifindex = 1; 4858 if (!__dev_get_by_index(net, ifindex)) 4859 return ifindex; 4860 } 4861} 4862 4863/* Delayed registration/unregisteration */ 4864static LIST_HEAD(net_todo_list); 4865 4866static void net_set_todo(struct net_device *dev) 4867{ 4868 list_add_tail(&dev->todo_list, &net_todo_list); 4869} 4870 4871static void rollback_registered_many(struct list_head *head) 4872{ 4873 struct net_device *dev, *tmp; 4874 4875 BUG_ON(dev_boot_phase); 4876 ASSERT_RTNL(); 4877 4878 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4879 /* Some devices call without registering 4880 * for initialization unwind. Remove those 4881 * devices and proceed with the remaining. 4882 */ 4883 if (dev->reg_state == NETREG_UNINITIALIZED) { 4884 pr_debug("unregister_netdevice: device %s/%p never " 4885 "was registered\n", dev->name, dev); 4886 4887 WARN_ON(1); 4888 list_del(&dev->unreg_list); 4889 continue; 4890 } 4891 4892 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4893 4894 /* If device is running, close it first. */ 4895 dev_close(dev); 4896 4897 /* And unlink it from device chain. */ 4898 unlist_netdevice(dev); 4899 4900 dev->reg_state = NETREG_UNREGISTERING; 4901 } 4902 4903 synchronize_net(); 4904 4905 list_for_each_entry(dev, head, unreg_list) { 4906 /* Shutdown queueing discipline. */ 4907 dev_shutdown(dev); 4908 4909 4910 /* Notify protocols, that we are about to destroy 4911 this device. They should clean all the things. 4912 */ 4913 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4914 4915 if (!dev->rtnl_link_ops || 4916 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4917 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4918 4919 /* 4920 * Flush the unicast and multicast chains 4921 */ 4922 dev_unicast_flush(dev); 4923 dev_addr_discard(dev); 4924 4925 if (dev->netdev_ops->ndo_uninit) 4926 dev->netdev_ops->ndo_uninit(dev); 4927 4928 /* Notifier chain MUST detach us from master device. */ 4929 WARN_ON(dev->master); 4930 4931 /* Remove entries from kobject tree */ 4932 netdev_unregister_kobject(dev); 4933 } 4934 4935 /* Process any work delayed until the end of the batch */ 4936 dev = list_first_entry(head, struct net_device, unreg_list); 4937 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4938 4939 synchronize_net(); 4940 4941 list_for_each_entry(dev, head, unreg_list) 4942 dev_put(dev); 4943} 4944 4945static void rollback_registered(struct net_device *dev) 4946{ 4947 LIST_HEAD(single); 4948 4949 list_add(&dev->unreg_list, &single); 4950 rollback_registered_many(&single); 4951} 4952 4953static void __netdev_init_queue_locks_one(struct net_device *dev, 4954 struct netdev_queue *dev_queue, 4955 void *_unused) 4956{ 4957 spin_lock_init(&dev_queue->_xmit_lock); 4958 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4959 dev_queue->xmit_lock_owner = -1; 4960} 4961 4962static void netdev_init_queue_locks(struct net_device *dev) 4963{ 4964 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4965 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4966} 4967 4968unsigned long netdev_fix_features(unsigned long features, const char *name) 4969{ 4970 /* Fix illegal SG+CSUM combinations. */ 4971 if ((features & NETIF_F_SG) && 4972 !(features & NETIF_F_ALL_CSUM)) { 4973 if (name) 4974 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4975 "checksum feature.\n", name); 4976 features &= ~NETIF_F_SG; 4977 } 4978 4979 /* TSO requires that SG is present as well. */ 4980 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4981 if (name) 4982 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4983 "SG feature.\n", name); 4984 features &= ~NETIF_F_TSO; 4985 } 4986 4987 if (features & NETIF_F_UFO) { 4988 if (!(features & NETIF_F_GEN_CSUM)) { 4989 if (name) 4990 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4991 "since no NETIF_F_HW_CSUM feature.\n", 4992 name); 4993 features &= ~NETIF_F_UFO; 4994 } 4995 4996 if (!(features & NETIF_F_SG)) { 4997 if (name) 4998 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4999 "since no NETIF_F_SG feature.\n", name); 5000 features &= ~NETIF_F_UFO; 5001 } 5002 } 5003 5004 return features; 5005} 5006EXPORT_SYMBOL(netdev_fix_features); 5007 5008/** 5009 * netif_stacked_transfer_operstate - transfer operstate 5010 * @rootdev: the root or lower level device to transfer state from 5011 * @dev: the device to transfer operstate to 5012 * 5013 * Transfer operational state from root to device. This is normally 5014 * called when a stacking relationship exists between the root 5015 * device and the device(a leaf device). 5016 */ 5017void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5018 struct net_device *dev) 5019{ 5020 if (rootdev->operstate == IF_OPER_DORMANT) 5021 netif_dormant_on(dev); 5022 else 5023 netif_dormant_off(dev); 5024 5025 if (netif_carrier_ok(rootdev)) { 5026 if (!netif_carrier_ok(dev)) 5027 netif_carrier_on(dev); 5028 } else { 5029 if (netif_carrier_ok(dev)) 5030 netif_carrier_off(dev); 5031 } 5032} 5033EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5034 5035/** 5036 * register_netdevice - register a network device 5037 * @dev: device to register 5038 * 5039 * Take a completed network device structure and add it to the kernel 5040 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5041 * chain. 0 is returned on success. A negative errno code is returned 5042 * on a failure to set up the device, or if the name is a duplicate. 5043 * 5044 * Callers must hold the rtnl semaphore. You may want 5045 * register_netdev() instead of this. 5046 * 5047 * BUGS: 5048 * The locking appears insufficient to guarantee two parallel registers 5049 * will not get the same name. 5050 */ 5051 5052int register_netdevice(struct net_device *dev) 5053{ 5054 int ret; 5055 struct net *net = dev_net(dev); 5056 5057 BUG_ON(dev_boot_phase); 5058 ASSERT_RTNL(); 5059 5060 might_sleep(); 5061 5062 /* When net_device's are persistent, this will be fatal. */ 5063 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5064 BUG_ON(!net); 5065 5066 spin_lock_init(&dev->addr_list_lock); 5067 netdev_set_addr_lockdep_class(dev); 5068 netdev_init_queue_locks(dev); 5069 5070 dev->iflink = -1; 5071 5072 /* Init, if this function is available */ 5073 if (dev->netdev_ops->ndo_init) { 5074 ret = dev->netdev_ops->ndo_init(dev); 5075 if (ret) { 5076 if (ret > 0) 5077 ret = -EIO; 5078 goto out; 5079 } 5080 } 5081 5082 ret = dev_get_valid_name(net, dev->name, dev->name, 0); 5083 if (ret) 5084 goto err_uninit; 5085 5086 dev->ifindex = dev_new_index(net); 5087 if (dev->iflink == -1) 5088 dev->iflink = dev->ifindex; 5089 5090 /* Fix illegal checksum combinations */ 5091 if ((dev->features & NETIF_F_HW_CSUM) && 5092 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5093 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5094 dev->name); 5095 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5096 } 5097 5098 if ((dev->features & NETIF_F_NO_CSUM) && 5099 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5100 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5101 dev->name); 5102 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5103 } 5104 5105 dev->features = netdev_fix_features(dev->features, dev->name); 5106 5107 /* Enable software GSO if SG is supported. */ 5108 if (dev->features & NETIF_F_SG) 5109 dev->features |= NETIF_F_GSO; 5110 5111 netdev_initialize_kobject(dev); 5112 5113 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5114 ret = notifier_to_errno(ret); 5115 if (ret) 5116 goto err_uninit; 5117 5118 ret = netdev_register_kobject(dev); 5119 if (ret) 5120 goto err_uninit; 5121 dev->reg_state = NETREG_REGISTERED; 5122 5123 /* 5124 * Default initial state at registry is that the 5125 * device is present. 5126 */ 5127 5128 set_bit(__LINK_STATE_PRESENT, &dev->state); 5129 5130 dev_init_scheduler(dev); 5131 dev_hold(dev); 5132 list_netdevice(dev); 5133 5134 /* Notify protocols, that a new device appeared. */ 5135 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5136 ret = notifier_to_errno(ret); 5137 if (ret) { 5138 rollback_registered(dev); 5139 dev->reg_state = NETREG_UNREGISTERED; 5140 } 5141 /* 5142 * Prevent userspace races by waiting until the network 5143 * device is fully setup before sending notifications. 5144 */ 5145 if (!dev->rtnl_link_ops || 5146 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5147 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5148 5149out: 5150 return ret; 5151 5152err_uninit: 5153 if (dev->netdev_ops->ndo_uninit) 5154 dev->netdev_ops->ndo_uninit(dev); 5155 goto out; 5156} 5157EXPORT_SYMBOL(register_netdevice); 5158 5159/** 5160 * init_dummy_netdev - init a dummy network device for NAPI 5161 * @dev: device to init 5162 * 5163 * This takes a network device structure and initialize the minimum 5164 * amount of fields so it can be used to schedule NAPI polls without 5165 * registering a full blown interface. This is to be used by drivers 5166 * that need to tie several hardware interfaces to a single NAPI 5167 * poll scheduler due to HW limitations. 5168 */ 5169int init_dummy_netdev(struct net_device *dev) 5170{ 5171 /* Clear everything. Note we don't initialize spinlocks 5172 * are they aren't supposed to be taken by any of the 5173 * NAPI code and this dummy netdev is supposed to be 5174 * only ever used for NAPI polls 5175 */ 5176 memset(dev, 0, sizeof(struct net_device)); 5177 5178 /* make sure we BUG if trying to hit standard 5179 * register/unregister code path 5180 */ 5181 dev->reg_state = NETREG_DUMMY; 5182 5183 /* initialize the ref count */ 5184 atomic_set(&dev->refcnt, 1); 5185 5186 /* NAPI wants this */ 5187 INIT_LIST_HEAD(&dev->napi_list); 5188 5189 /* a dummy interface is started by default */ 5190 set_bit(__LINK_STATE_PRESENT, &dev->state); 5191 set_bit(__LINK_STATE_START, &dev->state); 5192 5193 return 0; 5194} 5195EXPORT_SYMBOL_GPL(init_dummy_netdev); 5196 5197 5198/** 5199 * register_netdev - register a network device 5200 * @dev: device to register 5201 * 5202 * Take a completed network device structure and add it to the kernel 5203 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5204 * chain. 0 is returned on success. A negative errno code is returned 5205 * on a failure to set up the device, or if the name is a duplicate. 5206 * 5207 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5208 * and expands the device name if you passed a format string to 5209 * alloc_netdev. 5210 */ 5211int register_netdev(struct net_device *dev) 5212{ 5213 int err; 5214 5215 rtnl_lock(); 5216 5217 /* 5218 * If the name is a format string the caller wants us to do a 5219 * name allocation. 5220 */ 5221 if (strchr(dev->name, '%')) { 5222 err = dev_alloc_name(dev, dev->name); 5223 if (err < 0) 5224 goto out; 5225 } 5226 5227 err = register_netdevice(dev); 5228out: 5229 rtnl_unlock(); 5230 return err; 5231} 5232EXPORT_SYMBOL(register_netdev); 5233 5234/* 5235 * netdev_wait_allrefs - wait until all references are gone. 5236 * 5237 * This is called when unregistering network devices. 5238 * 5239 * Any protocol or device that holds a reference should register 5240 * for netdevice notification, and cleanup and put back the 5241 * reference if they receive an UNREGISTER event. 5242 * We can get stuck here if buggy protocols don't correctly 5243 * call dev_put. 5244 */ 5245static void netdev_wait_allrefs(struct net_device *dev) 5246{ 5247 unsigned long rebroadcast_time, warning_time; 5248 5249 linkwatch_forget_dev(dev); 5250 5251 rebroadcast_time = warning_time = jiffies; 5252 while (atomic_read(&dev->refcnt) != 0) { 5253 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5254 rtnl_lock(); 5255 5256 /* Rebroadcast unregister notification */ 5257 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5258 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5259 * should have already handle it the first time */ 5260 5261 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5262 &dev->state)) { 5263 /* We must not have linkwatch events 5264 * pending on unregister. If this 5265 * happens, we simply run the queue 5266 * unscheduled, resulting in a noop 5267 * for this device. 5268 */ 5269 linkwatch_run_queue(); 5270 } 5271 5272 __rtnl_unlock(); 5273 5274 rebroadcast_time = jiffies; 5275 } 5276 5277 msleep(250); 5278 5279 if (time_after(jiffies, warning_time + 10 * HZ)) { 5280 printk(KERN_EMERG "unregister_netdevice: " 5281 "waiting for %s to become free. Usage " 5282 "count = %d\n", 5283 dev->name, atomic_read(&dev->refcnt)); 5284 warning_time = jiffies; 5285 } 5286 } 5287} 5288 5289/* The sequence is: 5290 * 5291 * rtnl_lock(); 5292 * ... 5293 * register_netdevice(x1); 5294 * register_netdevice(x2); 5295 * ... 5296 * unregister_netdevice(y1); 5297 * unregister_netdevice(y2); 5298 * ... 5299 * rtnl_unlock(); 5300 * free_netdev(y1); 5301 * free_netdev(y2); 5302 * 5303 * We are invoked by rtnl_unlock(). 5304 * This allows us to deal with problems: 5305 * 1) We can delete sysfs objects which invoke hotplug 5306 * without deadlocking with linkwatch via keventd. 5307 * 2) Since we run with the RTNL semaphore not held, we can sleep 5308 * safely in order to wait for the netdev refcnt to drop to zero. 5309 * 5310 * We must not return until all unregister events added during 5311 * the interval the lock was held have been completed. 5312 */ 5313void netdev_run_todo(void) 5314{ 5315 struct list_head list; 5316 5317 /* Snapshot list, allow later requests */ 5318 list_replace_init(&net_todo_list, &list); 5319 5320 __rtnl_unlock(); 5321 5322 while (!list_empty(&list)) { 5323 struct net_device *dev 5324 = list_first_entry(&list, struct net_device, todo_list); 5325 list_del(&dev->todo_list); 5326 5327 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5328 printk(KERN_ERR "network todo '%s' but state %d\n", 5329 dev->name, dev->reg_state); 5330 dump_stack(); 5331 continue; 5332 } 5333 5334 dev->reg_state = NETREG_UNREGISTERED; 5335 5336 on_each_cpu(flush_backlog, dev, 1); 5337 5338 netdev_wait_allrefs(dev); 5339 5340 /* paranoia */ 5341 BUG_ON(atomic_read(&dev->refcnt)); 5342 WARN_ON(dev->ip_ptr); 5343 WARN_ON(dev->ip6_ptr); 5344 WARN_ON(dev->dn_ptr); 5345 5346 if (dev->destructor) 5347 dev->destructor(dev); 5348 5349 /* Free network device */ 5350 kobject_put(&dev->dev.kobj); 5351 } 5352} 5353 5354/** 5355 * dev_txq_stats_fold - fold tx_queues stats 5356 * @dev: device to get statistics from 5357 * @stats: struct net_device_stats to hold results 5358 */ 5359void dev_txq_stats_fold(const struct net_device *dev, 5360 struct net_device_stats *stats) 5361{ 5362 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5363 unsigned int i; 5364 struct netdev_queue *txq; 5365 5366 for (i = 0; i < dev->num_tx_queues; i++) { 5367 txq = netdev_get_tx_queue(dev, i); 5368 tx_bytes += txq->tx_bytes; 5369 tx_packets += txq->tx_packets; 5370 tx_dropped += txq->tx_dropped; 5371 } 5372 if (tx_bytes || tx_packets || tx_dropped) { 5373 stats->tx_bytes = tx_bytes; 5374 stats->tx_packets = tx_packets; 5375 stats->tx_dropped = tx_dropped; 5376 } 5377} 5378EXPORT_SYMBOL(dev_txq_stats_fold); 5379 5380/** 5381 * dev_get_stats - get network device statistics 5382 * @dev: device to get statistics from 5383 * 5384 * Get network statistics from device. The device driver may provide 5385 * its own method by setting dev->netdev_ops->get_stats; otherwise 5386 * the internal statistics structure is used. 5387 */ 5388const struct net_device_stats *dev_get_stats(struct net_device *dev) 5389{ 5390 const struct net_device_ops *ops = dev->netdev_ops; 5391 5392 if (ops->ndo_get_stats) 5393 return ops->ndo_get_stats(dev); 5394 5395 dev_txq_stats_fold(dev, &dev->stats); 5396 return &dev->stats; 5397} 5398EXPORT_SYMBOL(dev_get_stats); 5399 5400static void netdev_init_one_queue(struct net_device *dev, 5401 struct netdev_queue *queue, 5402 void *_unused) 5403{ 5404 queue->dev = dev; 5405} 5406 5407static void netdev_init_queues(struct net_device *dev) 5408{ 5409 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5410 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5411 spin_lock_init(&dev->tx_global_lock); 5412} 5413 5414/** 5415 * alloc_netdev_mq - allocate network device 5416 * @sizeof_priv: size of private data to allocate space for 5417 * @name: device name format string 5418 * @setup: callback to initialize device 5419 * @queue_count: the number of subqueues to allocate 5420 * 5421 * Allocates a struct net_device with private data area for driver use 5422 * and performs basic initialization. Also allocates subquue structs 5423 * for each queue on the device at the end of the netdevice. 5424 */ 5425struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5426 void (*setup)(struct net_device *), unsigned int queue_count) 5427{ 5428 struct netdev_queue *tx; 5429 struct net_device *dev; 5430 size_t alloc_size; 5431 struct net_device *p; 5432 5433 BUG_ON(strlen(name) >= sizeof(dev->name)); 5434 5435 alloc_size = sizeof(struct net_device); 5436 if (sizeof_priv) { 5437 /* ensure 32-byte alignment of private area */ 5438 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5439 alloc_size += sizeof_priv; 5440 } 5441 /* ensure 32-byte alignment of whole construct */ 5442 alloc_size += NETDEV_ALIGN - 1; 5443 5444 p = kzalloc(alloc_size, GFP_KERNEL); 5445 if (!p) { 5446 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5447 return NULL; 5448 } 5449 5450 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5451 if (!tx) { 5452 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5453 "tx qdiscs.\n"); 5454 goto free_p; 5455 } 5456 5457 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5458 dev->padded = (char *)dev - (char *)p; 5459 5460 if (dev_addr_init(dev)) 5461 goto free_tx; 5462 5463 dev_unicast_init(dev); 5464 5465 dev_net_set(dev, &init_net); 5466 5467 dev->_tx = tx; 5468 dev->num_tx_queues = queue_count; 5469 dev->real_num_tx_queues = queue_count; 5470 5471 dev->gso_max_size = GSO_MAX_SIZE; 5472 5473 netdev_init_queues(dev); 5474 5475 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5476 dev->ethtool_ntuple_list.count = 0; 5477 INIT_LIST_HEAD(&dev->napi_list); 5478 INIT_LIST_HEAD(&dev->unreg_list); 5479 INIT_LIST_HEAD(&dev->link_watch_list); 5480 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5481 setup(dev); 5482 strcpy(dev->name, name); 5483 return dev; 5484 5485free_tx: 5486 kfree(tx); 5487 5488free_p: 5489 kfree(p); 5490 return NULL; 5491} 5492EXPORT_SYMBOL(alloc_netdev_mq); 5493 5494/** 5495 * free_netdev - free network device 5496 * @dev: device 5497 * 5498 * This function does the last stage of destroying an allocated device 5499 * interface. The reference to the device object is released. 5500 * If this is the last reference then it will be freed. 5501 */ 5502void free_netdev(struct net_device *dev) 5503{ 5504 struct napi_struct *p, *n; 5505 5506 release_net(dev_net(dev)); 5507 5508 kfree(dev->_tx); 5509 5510 /* Flush device addresses */ 5511 dev_addr_flush(dev); 5512 5513 /* Clear ethtool n-tuple list */ 5514 ethtool_ntuple_flush(dev); 5515 5516 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5517 netif_napi_del(p); 5518 5519 /* Compatibility with error handling in drivers */ 5520 if (dev->reg_state == NETREG_UNINITIALIZED) { 5521 kfree((char *)dev - dev->padded); 5522 return; 5523 } 5524 5525 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5526 dev->reg_state = NETREG_RELEASED; 5527 5528 /* will free via device release */ 5529 put_device(&dev->dev); 5530} 5531EXPORT_SYMBOL(free_netdev); 5532 5533/** 5534 * synchronize_net - Synchronize with packet receive processing 5535 * 5536 * Wait for packets currently being received to be done. 5537 * Does not block later packets from starting. 5538 */ 5539void synchronize_net(void) 5540{ 5541 might_sleep(); 5542 synchronize_rcu(); 5543} 5544EXPORT_SYMBOL(synchronize_net); 5545 5546/** 5547 * unregister_netdevice_queue - remove device from the kernel 5548 * @dev: device 5549 * @head: list 5550 * 5551 * This function shuts down a device interface and removes it 5552 * from the kernel tables. 5553 * If head not NULL, device is queued to be unregistered later. 5554 * 5555 * Callers must hold the rtnl semaphore. You may want 5556 * unregister_netdev() instead of this. 5557 */ 5558 5559void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5560{ 5561 ASSERT_RTNL(); 5562 5563 if (head) { 5564 list_move_tail(&dev->unreg_list, head); 5565 } else { 5566 rollback_registered(dev); 5567 /* Finish processing unregister after unlock */ 5568 net_set_todo(dev); 5569 } 5570} 5571EXPORT_SYMBOL(unregister_netdevice_queue); 5572 5573/** 5574 * unregister_netdevice_many - unregister many devices 5575 * @head: list of devices 5576 */ 5577void unregister_netdevice_many(struct list_head *head) 5578{ 5579 struct net_device *dev; 5580 5581 if (!list_empty(head)) { 5582 rollback_registered_many(head); 5583 list_for_each_entry(dev, head, unreg_list) 5584 net_set_todo(dev); 5585 } 5586} 5587EXPORT_SYMBOL(unregister_netdevice_many); 5588 5589/** 5590 * unregister_netdev - remove device from the kernel 5591 * @dev: device 5592 * 5593 * This function shuts down a device interface and removes it 5594 * from the kernel tables. 5595 * 5596 * This is just a wrapper for unregister_netdevice that takes 5597 * the rtnl semaphore. In general you want to use this and not 5598 * unregister_netdevice. 5599 */ 5600void unregister_netdev(struct net_device *dev) 5601{ 5602 rtnl_lock(); 5603 unregister_netdevice(dev); 5604 rtnl_unlock(); 5605} 5606EXPORT_SYMBOL(unregister_netdev); 5607 5608/** 5609 * dev_change_net_namespace - move device to different nethost namespace 5610 * @dev: device 5611 * @net: network namespace 5612 * @pat: If not NULL name pattern to try if the current device name 5613 * is already taken in the destination network namespace. 5614 * 5615 * This function shuts down a device interface and moves it 5616 * to a new network namespace. On success 0 is returned, on 5617 * a failure a netagive errno code is returned. 5618 * 5619 * Callers must hold the rtnl semaphore. 5620 */ 5621 5622int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5623{ 5624 int err; 5625 5626 ASSERT_RTNL(); 5627 5628 /* Don't allow namespace local devices to be moved. */ 5629 err = -EINVAL; 5630 if (dev->features & NETIF_F_NETNS_LOCAL) 5631 goto out; 5632 5633#ifdef CONFIG_SYSFS 5634 /* Don't allow real devices to be moved when sysfs 5635 * is enabled. 5636 */ 5637 err = -EINVAL; 5638 if (dev->dev.parent) 5639 goto out; 5640#endif 5641 5642 /* Ensure the device has been registrered */ 5643 err = -EINVAL; 5644 if (dev->reg_state != NETREG_REGISTERED) 5645 goto out; 5646 5647 /* Get out if there is nothing todo */ 5648 err = 0; 5649 if (net_eq(dev_net(dev), net)) 5650 goto out; 5651 5652 /* Pick the destination device name, and ensure 5653 * we can use it in the destination network namespace. 5654 */ 5655 err = -EEXIST; 5656 if (__dev_get_by_name(net, dev->name)) { 5657 /* We get here if we can't use the current device name */ 5658 if (!pat) 5659 goto out; 5660 if (dev_get_valid_name(net, pat, dev->name, 1)) 5661 goto out; 5662 } 5663 5664 /* 5665 * And now a mini version of register_netdevice unregister_netdevice. 5666 */ 5667 5668 /* If device is running close it first. */ 5669 dev_close(dev); 5670 5671 /* And unlink it from device chain */ 5672 err = -ENODEV; 5673 unlist_netdevice(dev); 5674 5675 synchronize_net(); 5676 5677 /* Shutdown queueing discipline. */ 5678 dev_shutdown(dev); 5679 5680 /* Notify protocols, that we are about to destroy 5681 this device. They should clean all the things. 5682 */ 5683 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5684 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5685 5686 /* 5687 * Flush the unicast and multicast chains 5688 */ 5689 dev_unicast_flush(dev); 5690 dev_addr_discard(dev); 5691 5692 netdev_unregister_kobject(dev); 5693 5694 /* Actually switch the network namespace */ 5695 dev_net_set(dev, net); 5696 5697 /* If there is an ifindex conflict assign a new one */ 5698 if (__dev_get_by_index(net, dev->ifindex)) { 5699 int iflink = (dev->iflink == dev->ifindex); 5700 dev->ifindex = dev_new_index(net); 5701 if (iflink) 5702 dev->iflink = dev->ifindex; 5703 } 5704 5705 /* Fixup kobjects */ 5706 err = netdev_register_kobject(dev); 5707 WARN_ON(err); 5708 5709 /* Add the device back in the hashes */ 5710 list_netdevice(dev); 5711 5712 /* Notify protocols, that a new device appeared. */ 5713 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5714 5715 /* 5716 * Prevent userspace races by waiting until the network 5717 * device is fully setup before sending notifications. 5718 */ 5719 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5720 5721 synchronize_net(); 5722 err = 0; 5723out: 5724 return err; 5725} 5726EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5727 5728static int dev_cpu_callback(struct notifier_block *nfb, 5729 unsigned long action, 5730 void *ocpu) 5731{ 5732 struct sk_buff **list_skb; 5733 struct Qdisc **list_net; 5734 struct sk_buff *skb; 5735 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5736 struct softnet_data *sd, *oldsd; 5737 5738 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5739 return NOTIFY_OK; 5740 5741 local_irq_disable(); 5742 cpu = smp_processor_id(); 5743 sd = &per_cpu(softnet_data, cpu); 5744 oldsd = &per_cpu(softnet_data, oldcpu); 5745 5746 /* Find end of our completion_queue. */ 5747 list_skb = &sd->completion_queue; 5748 while (*list_skb) 5749 list_skb = &(*list_skb)->next; 5750 /* Append completion queue from offline CPU. */ 5751 *list_skb = oldsd->completion_queue; 5752 oldsd->completion_queue = NULL; 5753 5754 /* Find end of our output_queue. */ 5755 list_net = &sd->output_queue; 5756 while (*list_net) 5757 list_net = &(*list_net)->next_sched; 5758 /* Append output queue from offline CPU. */ 5759 *list_net = oldsd->output_queue; 5760 oldsd->output_queue = NULL; 5761 5762 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5763 local_irq_enable(); 5764 5765 /* Process offline CPU's input_pkt_queue */ 5766 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5767 netif_rx(skb); 5768 5769 return NOTIFY_OK; 5770} 5771 5772 5773/** 5774 * netdev_increment_features - increment feature set by one 5775 * @all: current feature set 5776 * @one: new feature set 5777 * @mask: mask feature set 5778 * 5779 * Computes a new feature set after adding a device with feature set 5780 * @one to the master device with current feature set @all. Will not 5781 * enable anything that is off in @mask. Returns the new feature set. 5782 */ 5783unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5784 unsigned long mask) 5785{ 5786 /* If device needs checksumming, downgrade to it. */ 5787 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5788 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5789 else if (mask & NETIF_F_ALL_CSUM) { 5790 /* If one device supports v4/v6 checksumming, set for all. */ 5791 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5792 !(all & NETIF_F_GEN_CSUM)) { 5793 all &= ~NETIF_F_ALL_CSUM; 5794 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5795 } 5796 5797 /* If one device supports hw checksumming, set for all. */ 5798 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5799 all &= ~NETIF_F_ALL_CSUM; 5800 all |= NETIF_F_HW_CSUM; 5801 } 5802 } 5803 5804 one |= NETIF_F_ALL_CSUM; 5805 5806 one |= all & NETIF_F_ONE_FOR_ALL; 5807 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5808 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5809 5810 return all; 5811} 5812EXPORT_SYMBOL(netdev_increment_features); 5813 5814static struct hlist_head *netdev_create_hash(void) 5815{ 5816 int i; 5817 struct hlist_head *hash; 5818 5819 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5820 if (hash != NULL) 5821 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5822 INIT_HLIST_HEAD(&hash[i]); 5823 5824 return hash; 5825} 5826 5827/* Initialize per network namespace state */ 5828static int __net_init netdev_init(struct net *net) 5829{ 5830 INIT_LIST_HEAD(&net->dev_base_head); 5831 5832 net->dev_name_head = netdev_create_hash(); 5833 if (net->dev_name_head == NULL) 5834 goto err_name; 5835 5836 net->dev_index_head = netdev_create_hash(); 5837 if (net->dev_index_head == NULL) 5838 goto err_idx; 5839 5840 return 0; 5841 5842err_idx: 5843 kfree(net->dev_name_head); 5844err_name: 5845 return -ENOMEM; 5846} 5847 5848/** 5849 * netdev_drivername - network driver for the device 5850 * @dev: network device 5851 * @buffer: buffer for resulting name 5852 * @len: size of buffer 5853 * 5854 * Determine network driver for device. 5855 */ 5856char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5857{ 5858 const struct device_driver *driver; 5859 const struct device *parent; 5860 5861 if (len <= 0 || !buffer) 5862 return buffer; 5863 buffer[0] = 0; 5864 5865 parent = dev->dev.parent; 5866 5867 if (!parent) 5868 return buffer; 5869 5870 driver = parent->driver; 5871 if (driver && driver->name) 5872 strlcpy(buffer, driver->name, len); 5873 return buffer; 5874} 5875 5876static void __net_exit netdev_exit(struct net *net) 5877{ 5878 kfree(net->dev_name_head); 5879 kfree(net->dev_index_head); 5880} 5881 5882static struct pernet_operations __net_initdata netdev_net_ops = { 5883 .init = netdev_init, 5884 .exit = netdev_exit, 5885}; 5886 5887static void __net_exit default_device_exit(struct net *net) 5888{ 5889 struct net_device *dev, *aux; 5890 /* 5891 * Push all migratable network devices back to the 5892 * initial network namespace 5893 */ 5894 rtnl_lock(); 5895 for_each_netdev_safe(net, dev, aux) { 5896 int err; 5897 char fb_name[IFNAMSIZ]; 5898 5899 /* Ignore unmoveable devices (i.e. loopback) */ 5900 if (dev->features & NETIF_F_NETNS_LOCAL) 5901 continue; 5902 5903 /* Leave virtual devices for the generic cleanup */ 5904 if (dev->rtnl_link_ops) 5905 continue; 5906 5907 /* Push remaing network devices to init_net */ 5908 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5909 err = dev_change_net_namespace(dev, &init_net, fb_name); 5910 if (err) { 5911 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5912 __func__, dev->name, err); 5913 BUG(); 5914 } 5915 } 5916 rtnl_unlock(); 5917} 5918 5919static void __net_exit default_device_exit_batch(struct list_head *net_list) 5920{ 5921 /* At exit all network devices most be removed from a network 5922 * namespace. Do this in the reverse order of registeration. 5923 * Do this across as many network namespaces as possible to 5924 * improve batching efficiency. 5925 */ 5926 struct net_device *dev; 5927 struct net *net; 5928 LIST_HEAD(dev_kill_list); 5929 5930 rtnl_lock(); 5931 list_for_each_entry(net, net_list, exit_list) { 5932 for_each_netdev_reverse(net, dev) { 5933 if (dev->rtnl_link_ops) 5934 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5935 else 5936 unregister_netdevice_queue(dev, &dev_kill_list); 5937 } 5938 } 5939 unregister_netdevice_many(&dev_kill_list); 5940 rtnl_unlock(); 5941} 5942 5943static struct pernet_operations __net_initdata default_device_ops = { 5944 .exit = default_device_exit, 5945 .exit_batch = default_device_exit_batch, 5946}; 5947 5948/* 5949 * Initialize the DEV module. At boot time this walks the device list and 5950 * unhooks any devices that fail to initialise (normally hardware not 5951 * present) and leaves us with a valid list of present and active devices. 5952 * 5953 */ 5954 5955/* 5956 * This is called single threaded during boot, so no need 5957 * to take the rtnl semaphore. 5958 */ 5959static int __init net_dev_init(void) 5960{ 5961 int i, rc = -ENOMEM; 5962 5963 BUG_ON(!dev_boot_phase); 5964 5965 if (dev_proc_init()) 5966 goto out; 5967 5968 if (netdev_kobject_init()) 5969 goto out; 5970 5971 INIT_LIST_HEAD(&ptype_all); 5972 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5973 INIT_LIST_HEAD(&ptype_base[i]); 5974 5975 if (register_pernet_subsys(&netdev_net_ops)) 5976 goto out; 5977 5978 /* 5979 * Initialise the packet receive queues. 5980 */ 5981 5982 for_each_possible_cpu(i) { 5983 struct softnet_data *queue; 5984 5985 queue = &per_cpu(softnet_data, i); 5986 skb_queue_head_init(&queue->input_pkt_queue); 5987 queue->completion_queue = NULL; 5988 INIT_LIST_HEAD(&queue->poll_list); 5989 5990 queue->backlog.poll = process_backlog; 5991 queue->backlog.weight = weight_p; 5992 queue->backlog.gro_list = NULL; 5993 queue->backlog.gro_count = 0; 5994 } 5995 5996 dev_boot_phase = 0; 5997 5998 /* The loopback device is special if any other network devices 5999 * is present in a network namespace the loopback device must 6000 * be present. Since we now dynamically allocate and free the 6001 * loopback device ensure this invariant is maintained by 6002 * keeping the loopback device as the first device on the 6003 * list of network devices. Ensuring the loopback devices 6004 * is the first device that appears and the last network device 6005 * that disappears. 6006 */ 6007 if (register_pernet_device(&loopback_net_ops)) 6008 goto out; 6009 6010 if (register_pernet_device(&default_device_ops)) 6011 goto out; 6012 6013 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6014 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6015 6016 hotcpu_notifier(dev_cpu_callback, 0); 6017 dst_init(); 6018 dev_mcast_init(); 6019 rc = 0; 6020out: 6021 return rc; 6022} 6023 6024subsys_initcall(net_dev_init); 6025 6026static int __init initialize_hashrnd(void) 6027{ 6028 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 6029 return 0; 6030} 6031 6032late_initcall_sync(initialize_hashrnd); 6033