at v2.6.34-rc2 1278 lines 34 kB view raw
1/* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16#include <linux/kernel.h> 17#include <linux/module.h> 18#include <linux/spinlock.h> 19#include <linux/sched.h> 20#include <linux/fs.h> 21#include <linux/mm.h> 22#include <linux/kthread.h> 23#include <linux/freezer.h> 24#include <linux/writeback.h> 25#include <linux/blkdev.h> 26#include <linux/backing-dev.h> 27#include <linux/buffer_head.h> 28#include "internal.h" 29 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 31 32/* 33 * We don't actually have pdflush, but this one is exported though /proc... 34 */ 35int nr_pdflush_threads; 36 37/* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40struct wb_writeback_args { 41 long nr_pages; 42 struct super_block *sb; 43 enum writeback_sync_modes sync_mode; 44 int for_kupdate:1; 45 int range_cyclic:1; 46 int for_background:1; 47}; 48 49/* 50 * Work items for the bdi_writeback threads 51 */ 52struct bdi_work { 53 struct list_head list; /* pending work list */ 54 struct rcu_head rcu_head; /* for RCU free/clear of work */ 55 56 unsigned long seen; /* threads that have seen this work */ 57 atomic_t pending; /* number of threads still to do work */ 58 59 struct wb_writeback_args args; /* writeback arguments */ 60 61 unsigned long state; /* flag bits, see WS_* */ 62}; 63 64enum { 65 WS_USED_B = 0, 66 WS_ONSTACK_B, 67}; 68 69#define WS_USED (1 << WS_USED_B) 70#define WS_ONSTACK (1 << WS_ONSTACK_B) 71 72static inline bool bdi_work_on_stack(struct bdi_work *work) 73{ 74 return test_bit(WS_ONSTACK_B, &work->state); 75} 76 77static inline void bdi_work_init(struct bdi_work *work, 78 struct wb_writeback_args *args) 79{ 80 INIT_RCU_HEAD(&work->rcu_head); 81 work->args = *args; 82 work->state = WS_USED; 83} 84 85/** 86 * writeback_in_progress - determine whether there is writeback in progress 87 * @bdi: the device's backing_dev_info structure. 88 * 89 * Determine whether there is writeback waiting to be handled against a 90 * backing device. 91 */ 92int writeback_in_progress(struct backing_dev_info *bdi) 93{ 94 return !list_empty(&bdi->work_list); 95} 96 97static void bdi_work_clear(struct bdi_work *work) 98{ 99 clear_bit(WS_USED_B, &work->state); 100 smp_mb__after_clear_bit(); 101 /* 102 * work can have disappeared at this point. bit waitq functions 103 * should be able to tolerate this, provided bdi_sched_wait does 104 * not dereference it's pointer argument. 105 */ 106 wake_up_bit(&work->state, WS_USED_B); 107} 108 109static void bdi_work_free(struct rcu_head *head) 110{ 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 112 113 if (!bdi_work_on_stack(work)) 114 kfree(work); 115 else 116 bdi_work_clear(work); 117} 118 119static void wb_work_complete(struct bdi_work *work) 120{ 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode; 122 int onstack = bdi_work_on_stack(work); 123 124 /* 125 * For allocated work, we can clear the done/seen bit right here. 126 * For on-stack work, we need to postpone both the clear and free 127 * to after the RCU grace period, since the stack could be invalidated 128 * as soon as bdi_work_clear() has done the wakeup. 129 */ 130 if (!onstack) 131 bdi_work_clear(work); 132 if (sync_mode == WB_SYNC_NONE || onstack) 133 call_rcu(&work->rcu_head, bdi_work_free); 134} 135 136static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 137{ 138 /* 139 * The caller has retrieved the work arguments from this work, 140 * drop our reference. If this is the last ref, delete and free it 141 */ 142 if (atomic_dec_and_test(&work->pending)) { 143 struct backing_dev_info *bdi = wb->bdi; 144 145 spin_lock(&bdi->wb_lock); 146 list_del_rcu(&work->list); 147 spin_unlock(&bdi->wb_lock); 148 149 wb_work_complete(work); 150 } 151} 152 153static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 154{ 155 work->seen = bdi->wb_mask; 156 BUG_ON(!work->seen); 157 atomic_set(&work->pending, bdi->wb_cnt); 158 BUG_ON(!bdi->wb_cnt); 159 160 /* 161 * list_add_tail_rcu() contains the necessary barriers to 162 * make sure the above stores are seen before the item is 163 * noticed on the list 164 */ 165 spin_lock(&bdi->wb_lock); 166 list_add_tail_rcu(&work->list, &bdi->work_list); 167 spin_unlock(&bdi->wb_lock); 168 169 /* 170 * If the default thread isn't there, make sure we add it. When 171 * it gets created and wakes up, we'll run this work. 172 */ 173 if (unlikely(list_empty_careful(&bdi->wb_list))) 174 wake_up_process(default_backing_dev_info.wb.task); 175 else { 176 struct bdi_writeback *wb = &bdi->wb; 177 178 if (wb->task) 179 wake_up_process(wb->task); 180 } 181} 182 183/* 184 * Used for on-stack allocated work items. The caller needs to wait until 185 * the wb threads have acked the work before it's safe to continue. 186 */ 187static void bdi_wait_on_work_clear(struct bdi_work *work) 188{ 189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, 190 TASK_UNINTERRUPTIBLE); 191} 192 193static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 194 struct wb_writeback_args *args) 195{ 196 struct bdi_work *work; 197 198 /* 199 * This is WB_SYNC_NONE writeback, so if allocation fails just 200 * wakeup the thread for old dirty data writeback 201 */ 202 work = kmalloc(sizeof(*work), GFP_ATOMIC); 203 if (work) { 204 bdi_work_init(work, args); 205 bdi_queue_work(bdi, work); 206 } else { 207 struct bdi_writeback *wb = &bdi->wb; 208 209 if (wb->task) 210 wake_up_process(wb->task); 211 } 212} 213 214/** 215 * bdi_sync_writeback - start and wait for writeback 216 * @bdi: the backing device to write from 217 * @sb: write inodes from this super_block 218 * 219 * Description: 220 * This does WB_SYNC_ALL data integrity writeback and waits for the 221 * IO to complete. Callers must hold the sb s_umount semaphore for 222 * reading, to avoid having the super disappear before we are done. 223 */ 224static void bdi_sync_writeback(struct backing_dev_info *bdi, 225 struct super_block *sb) 226{ 227 struct wb_writeback_args args = { 228 .sb = sb, 229 .sync_mode = WB_SYNC_ALL, 230 .nr_pages = LONG_MAX, 231 .range_cyclic = 0, 232 }; 233 struct bdi_work work; 234 235 bdi_work_init(&work, &args); 236 work.state |= WS_ONSTACK; 237 238 bdi_queue_work(bdi, &work); 239 bdi_wait_on_work_clear(&work); 240} 241 242/** 243 * bdi_start_writeback - start writeback 244 * @bdi: the backing device to write from 245 * @sb: write inodes from this super_block 246 * @nr_pages: the number of pages to write 247 * 248 * Description: 249 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 250 * started when this function returns, we make no guarentees on 251 * completion. Caller need not hold sb s_umount semaphore. 252 * 253 */ 254void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, 255 long nr_pages) 256{ 257 struct wb_writeback_args args = { 258 .sb = sb, 259 .sync_mode = WB_SYNC_NONE, 260 .nr_pages = nr_pages, 261 .range_cyclic = 1, 262 }; 263 264 /* 265 * We treat @nr_pages=0 as the special case to do background writeback, 266 * ie. to sync pages until the background dirty threshold is reached. 267 */ 268 if (!nr_pages) { 269 args.nr_pages = LONG_MAX; 270 args.for_background = 1; 271 } 272 273 bdi_alloc_queue_work(bdi, &args); 274} 275 276/* 277 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 278 * furthest end of its superblock's dirty-inode list. 279 * 280 * Before stamping the inode's ->dirtied_when, we check to see whether it is 281 * already the most-recently-dirtied inode on the b_dirty list. If that is 282 * the case then the inode must have been redirtied while it was being written 283 * out and we don't reset its dirtied_when. 284 */ 285static void redirty_tail(struct inode *inode) 286{ 287 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 288 289 if (!list_empty(&wb->b_dirty)) { 290 struct inode *tail; 291 292 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 293 if (time_before(inode->dirtied_when, tail->dirtied_when)) 294 inode->dirtied_when = jiffies; 295 } 296 list_move(&inode->i_list, &wb->b_dirty); 297} 298 299/* 300 * requeue inode for re-scanning after bdi->b_io list is exhausted. 301 */ 302static void requeue_io(struct inode *inode) 303{ 304 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 305 306 list_move(&inode->i_list, &wb->b_more_io); 307} 308 309static void inode_sync_complete(struct inode *inode) 310{ 311 /* 312 * Prevent speculative execution through spin_unlock(&inode_lock); 313 */ 314 smp_mb(); 315 wake_up_bit(&inode->i_state, __I_SYNC); 316} 317 318static bool inode_dirtied_after(struct inode *inode, unsigned long t) 319{ 320 bool ret = time_after(inode->dirtied_when, t); 321#ifndef CONFIG_64BIT 322 /* 323 * For inodes being constantly redirtied, dirtied_when can get stuck. 324 * It _appears_ to be in the future, but is actually in distant past. 325 * This test is necessary to prevent such wrapped-around relative times 326 * from permanently stopping the whole bdi writeback. 327 */ 328 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 329#endif 330 return ret; 331} 332 333/* 334 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 335 */ 336static void move_expired_inodes(struct list_head *delaying_queue, 337 struct list_head *dispatch_queue, 338 unsigned long *older_than_this) 339{ 340 LIST_HEAD(tmp); 341 struct list_head *pos, *node; 342 struct super_block *sb = NULL; 343 struct inode *inode; 344 int do_sb_sort = 0; 345 346 while (!list_empty(delaying_queue)) { 347 inode = list_entry(delaying_queue->prev, struct inode, i_list); 348 if (older_than_this && 349 inode_dirtied_after(inode, *older_than_this)) 350 break; 351 if (sb && sb != inode->i_sb) 352 do_sb_sort = 1; 353 sb = inode->i_sb; 354 list_move(&inode->i_list, &tmp); 355 } 356 357 /* just one sb in list, splice to dispatch_queue and we're done */ 358 if (!do_sb_sort) { 359 list_splice(&tmp, dispatch_queue); 360 return; 361 } 362 363 /* Move inodes from one superblock together */ 364 while (!list_empty(&tmp)) { 365 inode = list_entry(tmp.prev, struct inode, i_list); 366 sb = inode->i_sb; 367 list_for_each_prev_safe(pos, node, &tmp) { 368 inode = list_entry(pos, struct inode, i_list); 369 if (inode->i_sb == sb) 370 list_move(&inode->i_list, dispatch_queue); 371 } 372 } 373} 374 375/* 376 * Queue all expired dirty inodes for io, eldest first. 377 */ 378static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 379{ 380 list_splice_init(&wb->b_more_io, wb->b_io.prev); 381 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 382} 383 384static int write_inode(struct inode *inode, struct writeback_control *wbc) 385{ 386 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 387 return inode->i_sb->s_op->write_inode(inode, wbc); 388 return 0; 389} 390 391/* 392 * Wait for writeback on an inode to complete. 393 */ 394static void inode_wait_for_writeback(struct inode *inode) 395{ 396 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 397 wait_queue_head_t *wqh; 398 399 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 400 do { 401 spin_unlock(&inode_lock); 402 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 403 spin_lock(&inode_lock); 404 } while (inode->i_state & I_SYNC); 405} 406 407/* 408 * Write out an inode's dirty pages. Called under inode_lock. Either the 409 * caller has ref on the inode (either via __iget or via syscall against an fd) 410 * or the inode has I_WILL_FREE set (via generic_forget_inode) 411 * 412 * If `wait' is set, wait on the writeout. 413 * 414 * The whole writeout design is quite complex and fragile. We want to avoid 415 * starvation of particular inodes when others are being redirtied, prevent 416 * livelocks, etc. 417 * 418 * Called under inode_lock. 419 */ 420static int 421writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 422{ 423 struct address_space *mapping = inode->i_mapping; 424 unsigned dirty; 425 int ret; 426 427 if (!atomic_read(&inode->i_count)) 428 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 429 else 430 WARN_ON(inode->i_state & I_WILL_FREE); 431 432 if (inode->i_state & I_SYNC) { 433 /* 434 * If this inode is locked for writeback and we are not doing 435 * writeback-for-data-integrity, move it to b_more_io so that 436 * writeback can proceed with the other inodes on s_io. 437 * 438 * We'll have another go at writing back this inode when we 439 * completed a full scan of b_io. 440 */ 441 if (wbc->sync_mode != WB_SYNC_ALL) { 442 requeue_io(inode); 443 return 0; 444 } 445 446 /* 447 * It's a data-integrity sync. We must wait. 448 */ 449 inode_wait_for_writeback(inode); 450 } 451 452 BUG_ON(inode->i_state & I_SYNC); 453 454 /* Set I_SYNC, reset I_DIRTY */ 455 dirty = inode->i_state & I_DIRTY; 456 inode->i_state |= I_SYNC; 457 inode->i_state &= ~I_DIRTY; 458 459 spin_unlock(&inode_lock); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* 464 * Make sure to wait on the data before writing out the metadata. 465 * This is important for filesystems that modify metadata on data 466 * I/O completion. 467 */ 468 if (wbc->sync_mode == WB_SYNC_ALL) { 469 int err = filemap_fdatawait(mapping); 470 if (ret == 0) 471 ret = err; 472 } 473 474 /* Don't write the inode if only I_DIRTY_PAGES was set */ 475 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 476 int err = write_inode(inode, wbc); 477 if (ret == 0) 478 ret = err; 479 } 480 481 spin_lock(&inode_lock); 482 inode->i_state &= ~I_SYNC; 483 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 484 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 485 /* 486 * More pages get dirtied by a fast dirtier. 487 */ 488 goto select_queue; 489 } else if (inode->i_state & I_DIRTY) { 490 /* 491 * At least XFS will redirty the inode during the 492 * writeback (delalloc) and on io completion (isize). 493 */ 494 redirty_tail(inode); 495 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 496 /* 497 * We didn't write back all the pages. nfs_writepages() 498 * sometimes bales out without doing anything. Redirty 499 * the inode; Move it from b_io onto b_more_io/b_dirty. 500 */ 501 /* 502 * akpm: if the caller was the kupdate function we put 503 * this inode at the head of b_dirty so it gets first 504 * consideration. Otherwise, move it to the tail, for 505 * the reasons described there. I'm not really sure 506 * how much sense this makes. Presumably I had a good 507 * reasons for doing it this way, and I'd rather not 508 * muck with it at present. 509 */ 510 if (wbc->for_kupdate) { 511 /* 512 * For the kupdate function we move the inode 513 * to b_more_io so it will get more writeout as 514 * soon as the queue becomes uncongested. 515 */ 516 inode->i_state |= I_DIRTY_PAGES; 517select_queue: 518 if (wbc->nr_to_write <= 0) { 519 /* 520 * slice used up: queue for next turn 521 */ 522 requeue_io(inode); 523 } else { 524 /* 525 * somehow blocked: retry later 526 */ 527 redirty_tail(inode); 528 } 529 } else { 530 /* 531 * Otherwise fully redirty the inode so that 532 * other inodes on this superblock will get some 533 * writeout. Otherwise heavy writing to one 534 * file would indefinitely suspend writeout of 535 * all the other files. 536 */ 537 inode->i_state |= I_DIRTY_PAGES; 538 redirty_tail(inode); 539 } 540 } else if (atomic_read(&inode->i_count)) { 541 /* 542 * The inode is clean, inuse 543 */ 544 list_move(&inode->i_list, &inode_in_use); 545 } else { 546 /* 547 * The inode is clean, unused 548 */ 549 list_move(&inode->i_list, &inode_unused); 550 } 551 } 552 inode_sync_complete(inode); 553 return ret; 554} 555 556static void unpin_sb_for_writeback(struct super_block **psb) 557{ 558 struct super_block *sb = *psb; 559 560 if (sb) { 561 up_read(&sb->s_umount); 562 put_super(sb); 563 *psb = NULL; 564 } 565} 566 567/* 568 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned 569 * before calling writeback. So make sure that we do pin it, so it doesn't 570 * go away while we are writing inodes from it. 571 * 572 * Returns 0 if the super was successfully pinned (or pinning wasn't needed), 573 * 1 if we failed. 574 */ 575static int pin_sb_for_writeback(struct writeback_control *wbc, 576 struct inode *inode, struct super_block **psb) 577{ 578 struct super_block *sb = inode->i_sb; 579 580 /* 581 * If this sb is already pinned, nothing more to do. If not and 582 * *psb is non-NULL, unpin the old one first 583 */ 584 if (sb == *psb) 585 return 0; 586 else if (*psb) 587 unpin_sb_for_writeback(psb); 588 589 /* 590 * Caller must already hold the ref for this 591 */ 592 if (wbc->sync_mode == WB_SYNC_ALL) { 593 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 594 return 0; 595 } 596 597 spin_lock(&sb_lock); 598 sb->s_count++; 599 if (down_read_trylock(&sb->s_umount)) { 600 if (sb->s_root) { 601 spin_unlock(&sb_lock); 602 goto pinned; 603 } 604 /* 605 * umounted, drop rwsem again and fall through to failure 606 */ 607 up_read(&sb->s_umount); 608 } 609 610 sb->s_count--; 611 spin_unlock(&sb_lock); 612 return 1; 613pinned: 614 *psb = sb; 615 return 0; 616} 617 618static void writeback_inodes_wb(struct bdi_writeback *wb, 619 struct writeback_control *wbc) 620{ 621 struct super_block *sb = wbc->sb, *pin_sb = NULL; 622 const unsigned long start = jiffies; /* livelock avoidance */ 623 624 spin_lock(&inode_lock); 625 626 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 627 queue_io(wb, wbc->older_than_this); 628 629 while (!list_empty(&wb->b_io)) { 630 struct inode *inode = list_entry(wb->b_io.prev, 631 struct inode, i_list); 632 long pages_skipped; 633 634 /* 635 * super block given and doesn't match, skip this inode 636 */ 637 if (sb && sb != inode->i_sb) { 638 redirty_tail(inode); 639 continue; 640 } 641 642 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 643 requeue_io(inode); 644 continue; 645 } 646 647 /* 648 * Was this inode dirtied after sync_sb_inodes was called? 649 * This keeps sync from extra jobs and livelock. 650 */ 651 if (inode_dirtied_after(inode, start)) 652 break; 653 654 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) { 655 requeue_io(inode); 656 continue; 657 } 658 659 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 660 __iget(inode); 661 pages_skipped = wbc->pages_skipped; 662 writeback_single_inode(inode, wbc); 663 if (wbc->pages_skipped != pages_skipped) { 664 /* 665 * writeback is not making progress due to locked 666 * buffers. Skip this inode for now. 667 */ 668 redirty_tail(inode); 669 } 670 spin_unlock(&inode_lock); 671 iput(inode); 672 cond_resched(); 673 spin_lock(&inode_lock); 674 if (wbc->nr_to_write <= 0) { 675 wbc->more_io = 1; 676 break; 677 } 678 if (!list_empty(&wb->b_more_io)) 679 wbc->more_io = 1; 680 } 681 682 unpin_sb_for_writeback(&pin_sb); 683 684 spin_unlock(&inode_lock); 685 /* Leave any unwritten inodes on b_io */ 686} 687 688void writeback_inodes_wbc(struct writeback_control *wbc) 689{ 690 struct backing_dev_info *bdi = wbc->bdi; 691 692 writeback_inodes_wb(&bdi->wb, wbc); 693} 694 695/* 696 * The maximum number of pages to writeout in a single bdi flush/kupdate 697 * operation. We do this so we don't hold I_SYNC against an inode for 698 * enormous amounts of time, which would block a userspace task which has 699 * been forced to throttle against that inode. Also, the code reevaluates 700 * the dirty each time it has written this many pages. 701 */ 702#define MAX_WRITEBACK_PAGES 1024 703 704static inline bool over_bground_thresh(void) 705{ 706 unsigned long background_thresh, dirty_thresh; 707 708 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 709 710 return (global_page_state(NR_FILE_DIRTY) + 711 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 712} 713 714/* 715 * Explicit flushing or periodic writeback of "old" data. 716 * 717 * Define "old": the first time one of an inode's pages is dirtied, we mark the 718 * dirtying-time in the inode's address_space. So this periodic writeback code 719 * just walks the superblock inode list, writing back any inodes which are 720 * older than a specific point in time. 721 * 722 * Try to run once per dirty_writeback_interval. But if a writeback event 723 * takes longer than a dirty_writeback_interval interval, then leave a 724 * one-second gap. 725 * 726 * older_than_this takes precedence over nr_to_write. So we'll only write back 727 * all dirty pages if they are all attached to "old" mappings. 728 */ 729static long wb_writeback(struct bdi_writeback *wb, 730 struct wb_writeback_args *args) 731{ 732 struct writeback_control wbc = { 733 .bdi = wb->bdi, 734 .sb = args->sb, 735 .sync_mode = args->sync_mode, 736 .older_than_this = NULL, 737 .for_kupdate = args->for_kupdate, 738 .for_background = args->for_background, 739 .range_cyclic = args->range_cyclic, 740 }; 741 unsigned long oldest_jif; 742 long wrote = 0; 743 struct inode *inode; 744 745 if (wbc.for_kupdate) { 746 wbc.older_than_this = &oldest_jif; 747 oldest_jif = jiffies - 748 msecs_to_jiffies(dirty_expire_interval * 10); 749 } 750 if (!wbc.range_cyclic) { 751 wbc.range_start = 0; 752 wbc.range_end = LLONG_MAX; 753 } 754 755 for (;;) { 756 /* 757 * Stop writeback when nr_pages has been consumed 758 */ 759 if (args->nr_pages <= 0) 760 break; 761 762 /* 763 * For background writeout, stop when we are below the 764 * background dirty threshold 765 */ 766 if (args->for_background && !over_bground_thresh()) 767 break; 768 769 wbc.more_io = 0; 770 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 771 wbc.pages_skipped = 0; 772 writeback_inodes_wb(wb, &wbc); 773 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 774 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 775 776 /* 777 * If we consumed everything, see if we have more 778 */ 779 if (wbc.nr_to_write <= 0) 780 continue; 781 /* 782 * Didn't write everything and we don't have more IO, bail 783 */ 784 if (!wbc.more_io) 785 break; 786 /* 787 * Did we write something? Try for more 788 */ 789 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 790 continue; 791 /* 792 * Nothing written. Wait for some inode to 793 * become available for writeback. Otherwise 794 * we'll just busyloop. 795 */ 796 spin_lock(&inode_lock); 797 if (!list_empty(&wb->b_more_io)) { 798 inode = list_entry(wb->b_more_io.prev, 799 struct inode, i_list); 800 inode_wait_for_writeback(inode); 801 } 802 spin_unlock(&inode_lock); 803 } 804 805 return wrote; 806} 807 808/* 809 * Return the next bdi_work struct that hasn't been processed by this 810 * wb thread yet. ->seen is initially set for each thread that exists 811 * for this device, when a thread first notices a piece of work it 812 * clears its bit. Depending on writeback type, the thread will notify 813 * completion on either receiving the work (WB_SYNC_NONE) or after 814 * it is done (WB_SYNC_ALL). 815 */ 816static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 817 struct bdi_writeback *wb) 818{ 819 struct bdi_work *work, *ret = NULL; 820 821 rcu_read_lock(); 822 823 list_for_each_entry_rcu(work, &bdi->work_list, list) { 824 if (!test_bit(wb->nr, &work->seen)) 825 continue; 826 clear_bit(wb->nr, &work->seen); 827 828 ret = work; 829 break; 830 } 831 832 rcu_read_unlock(); 833 return ret; 834} 835 836static long wb_check_old_data_flush(struct bdi_writeback *wb) 837{ 838 unsigned long expired; 839 long nr_pages; 840 841 expired = wb->last_old_flush + 842 msecs_to_jiffies(dirty_writeback_interval * 10); 843 if (time_before(jiffies, expired)) 844 return 0; 845 846 wb->last_old_flush = jiffies; 847 nr_pages = global_page_state(NR_FILE_DIRTY) + 848 global_page_state(NR_UNSTABLE_NFS) + 849 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 850 851 if (nr_pages) { 852 struct wb_writeback_args args = { 853 .nr_pages = nr_pages, 854 .sync_mode = WB_SYNC_NONE, 855 .for_kupdate = 1, 856 .range_cyclic = 1, 857 }; 858 859 return wb_writeback(wb, &args); 860 } 861 862 return 0; 863} 864 865/* 866 * Retrieve work items and do the writeback they describe 867 */ 868long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 869{ 870 struct backing_dev_info *bdi = wb->bdi; 871 struct bdi_work *work; 872 long wrote = 0; 873 874 while ((work = get_next_work_item(bdi, wb)) != NULL) { 875 struct wb_writeback_args args = work->args; 876 877 /* 878 * Override sync mode, in case we must wait for completion 879 */ 880 if (force_wait) 881 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 882 883 /* 884 * If this isn't a data integrity operation, just notify 885 * that we have seen this work and we are now starting it. 886 */ 887 if (args.sync_mode == WB_SYNC_NONE) 888 wb_clear_pending(wb, work); 889 890 wrote += wb_writeback(wb, &args); 891 892 /* 893 * This is a data integrity writeback, so only do the 894 * notification when we have completed the work. 895 */ 896 if (args.sync_mode == WB_SYNC_ALL) 897 wb_clear_pending(wb, work); 898 } 899 900 /* 901 * Check for periodic writeback, kupdated() style 902 */ 903 wrote += wb_check_old_data_flush(wb); 904 905 return wrote; 906} 907 908/* 909 * Handle writeback of dirty data for the device backed by this bdi. Also 910 * wakes up periodically and does kupdated style flushing. 911 */ 912int bdi_writeback_task(struct bdi_writeback *wb) 913{ 914 unsigned long last_active = jiffies; 915 unsigned long wait_jiffies = -1UL; 916 long pages_written; 917 918 while (!kthread_should_stop()) { 919 pages_written = wb_do_writeback(wb, 0); 920 921 if (pages_written) 922 last_active = jiffies; 923 else if (wait_jiffies != -1UL) { 924 unsigned long max_idle; 925 926 /* 927 * Longest period of inactivity that we tolerate. If we 928 * see dirty data again later, the task will get 929 * recreated automatically. 930 */ 931 max_idle = max(5UL * 60 * HZ, wait_jiffies); 932 if (time_after(jiffies, max_idle + last_active)) 933 break; 934 } 935 936 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 937 schedule_timeout_interruptible(wait_jiffies); 938 try_to_freeze(); 939 } 940 941 return 0; 942} 943 944/* 945 * Schedule writeback for all backing devices. This does WB_SYNC_NONE 946 * writeback, for integrity writeback see bdi_sync_writeback(). 947 */ 948static void bdi_writeback_all(struct super_block *sb, long nr_pages) 949{ 950 struct wb_writeback_args args = { 951 .sb = sb, 952 .nr_pages = nr_pages, 953 .sync_mode = WB_SYNC_NONE, 954 }; 955 struct backing_dev_info *bdi; 956 957 rcu_read_lock(); 958 959 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 960 if (!bdi_has_dirty_io(bdi)) 961 continue; 962 963 bdi_alloc_queue_work(bdi, &args); 964 } 965 966 rcu_read_unlock(); 967} 968 969/* 970 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 971 * the whole world. 972 */ 973void wakeup_flusher_threads(long nr_pages) 974{ 975 if (nr_pages == 0) 976 nr_pages = global_page_state(NR_FILE_DIRTY) + 977 global_page_state(NR_UNSTABLE_NFS); 978 bdi_writeback_all(NULL, nr_pages); 979} 980 981static noinline void block_dump___mark_inode_dirty(struct inode *inode) 982{ 983 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 984 struct dentry *dentry; 985 const char *name = "?"; 986 987 dentry = d_find_alias(inode); 988 if (dentry) { 989 spin_lock(&dentry->d_lock); 990 name = (const char *) dentry->d_name.name; 991 } 992 printk(KERN_DEBUG 993 "%s(%d): dirtied inode %lu (%s) on %s\n", 994 current->comm, task_pid_nr(current), inode->i_ino, 995 name, inode->i_sb->s_id); 996 if (dentry) { 997 spin_unlock(&dentry->d_lock); 998 dput(dentry); 999 } 1000 } 1001} 1002 1003/** 1004 * __mark_inode_dirty - internal function 1005 * @inode: inode to mark 1006 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1007 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1008 * mark_inode_dirty_sync. 1009 * 1010 * Put the inode on the super block's dirty list. 1011 * 1012 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1013 * dirty list only if it is hashed or if it refers to a blockdev. 1014 * If it was not hashed, it will never be added to the dirty list 1015 * even if it is later hashed, as it will have been marked dirty already. 1016 * 1017 * In short, make sure you hash any inodes _before_ you start marking 1018 * them dirty. 1019 * 1020 * This function *must* be atomic for the I_DIRTY_PAGES case - 1021 * set_page_dirty() is called under spinlock in several places. 1022 * 1023 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1024 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1025 * the kernel-internal blockdev inode represents the dirtying time of the 1026 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1027 * page->mapping->host, so the page-dirtying time is recorded in the internal 1028 * blockdev inode. 1029 */ 1030void __mark_inode_dirty(struct inode *inode, int flags) 1031{ 1032 struct super_block *sb = inode->i_sb; 1033 1034 /* 1035 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1036 * dirty the inode itself 1037 */ 1038 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1039 if (sb->s_op->dirty_inode) 1040 sb->s_op->dirty_inode(inode); 1041 } 1042 1043 /* 1044 * make sure that changes are seen by all cpus before we test i_state 1045 * -- mikulas 1046 */ 1047 smp_mb(); 1048 1049 /* avoid the locking if we can */ 1050 if ((inode->i_state & flags) == flags) 1051 return; 1052 1053 if (unlikely(block_dump)) 1054 block_dump___mark_inode_dirty(inode); 1055 1056 spin_lock(&inode_lock); 1057 if ((inode->i_state & flags) != flags) { 1058 const int was_dirty = inode->i_state & I_DIRTY; 1059 1060 inode->i_state |= flags; 1061 1062 /* 1063 * If the inode is being synced, just update its dirty state. 1064 * The unlocker will place the inode on the appropriate 1065 * superblock list, based upon its state. 1066 */ 1067 if (inode->i_state & I_SYNC) 1068 goto out; 1069 1070 /* 1071 * Only add valid (hashed) inodes to the superblock's 1072 * dirty list. Add blockdev inodes as well. 1073 */ 1074 if (!S_ISBLK(inode->i_mode)) { 1075 if (hlist_unhashed(&inode->i_hash)) 1076 goto out; 1077 } 1078 if (inode->i_state & (I_FREEING|I_CLEAR)) 1079 goto out; 1080 1081 /* 1082 * If the inode was already on b_dirty/b_io/b_more_io, don't 1083 * reposition it (that would break b_dirty time-ordering). 1084 */ 1085 if (!was_dirty) { 1086 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1087 struct backing_dev_info *bdi = wb->bdi; 1088 1089 if (bdi_cap_writeback_dirty(bdi) && 1090 !test_bit(BDI_registered, &bdi->state)) { 1091 WARN_ON(1); 1092 printk(KERN_ERR "bdi-%s not registered\n", 1093 bdi->name); 1094 } 1095 1096 inode->dirtied_when = jiffies; 1097 list_move(&inode->i_list, &wb->b_dirty); 1098 } 1099 } 1100out: 1101 spin_unlock(&inode_lock); 1102} 1103EXPORT_SYMBOL(__mark_inode_dirty); 1104 1105/* 1106 * Write out a superblock's list of dirty inodes. A wait will be performed 1107 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1108 * 1109 * If older_than_this is non-NULL, then only write out inodes which 1110 * had their first dirtying at a time earlier than *older_than_this. 1111 * 1112 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1113 * This function assumes that the blockdev superblock's inodes are backed by 1114 * a variety of queues, so all inodes are searched. For other superblocks, 1115 * assume that all inodes are backed by the same queue. 1116 * 1117 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1118 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1119 * on the writer throttling path, and we get decent balancing between many 1120 * throttled threads: we don't want them all piling up on inode_sync_wait. 1121 */ 1122static void wait_sb_inodes(struct super_block *sb) 1123{ 1124 struct inode *inode, *old_inode = NULL; 1125 1126 /* 1127 * We need to be protected against the filesystem going from 1128 * r/o to r/w or vice versa. 1129 */ 1130 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1131 1132 spin_lock(&inode_lock); 1133 1134 /* 1135 * Data integrity sync. Must wait for all pages under writeback, 1136 * because there may have been pages dirtied before our sync 1137 * call, but which had writeout started before we write it out. 1138 * In which case, the inode may not be on the dirty list, but 1139 * we still have to wait for that writeout. 1140 */ 1141 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1142 struct address_space *mapping; 1143 1144 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1145 continue; 1146 mapping = inode->i_mapping; 1147 if (mapping->nrpages == 0) 1148 continue; 1149 __iget(inode); 1150 spin_unlock(&inode_lock); 1151 /* 1152 * We hold a reference to 'inode' so it couldn't have 1153 * been removed from s_inodes list while we dropped the 1154 * inode_lock. We cannot iput the inode now as we can 1155 * be holding the last reference and we cannot iput it 1156 * under inode_lock. So we keep the reference and iput 1157 * it later. 1158 */ 1159 iput(old_inode); 1160 old_inode = inode; 1161 1162 filemap_fdatawait(mapping); 1163 1164 cond_resched(); 1165 1166 spin_lock(&inode_lock); 1167 } 1168 spin_unlock(&inode_lock); 1169 iput(old_inode); 1170} 1171 1172/** 1173 * writeback_inodes_sb - writeback dirty inodes from given super_block 1174 * @sb: the superblock 1175 * 1176 * Start writeback on some inodes on this super_block. No guarantees are made 1177 * on how many (if any) will be written, and this function does not wait 1178 * for IO completion of submitted IO. The number of pages submitted is 1179 * returned. 1180 */ 1181void writeback_inodes_sb(struct super_block *sb) 1182{ 1183 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1184 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1185 long nr_to_write; 1186 1187 nr_to_write = nr_dirty + nr_unstable + 1188 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1189 1190 bdi_start_writeback(sb->s_bdi, sb, nr_to_write); 1191} 1192EXPORT_SYMBOL(writeback_inodes_sb); 1193 1194/** 1195 * writeback_inodes_sb_if_idle - start writeback if none underway 1196 * @sb: the superblock 1197 * 1198 * Invoke writeback_inodes_sb if no writeback is currently underway. 1199 * Returns 1 if writeback was started, 0 if not. 1200 */ 1201int writeback_inodes_sb_if_idle(struct super_block *sb) 1202{ 1203 if (!writeback_in_progress(sb->s_bdi)) { 1204 writeback_inodes_sb(sb); 1205 return 1; 1206 } else 1207 return 0; 1208} 1209EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1210 1211/** 1212 * sync_inodes_sb - sync sb inode pages 1213 * @sb: the superblock 1214 * 1215 * This function writes and waits on any dirty inode belonging to this 1216 * super_block. The number of pages synced is returned. 1217 */ 1218void sync_inodes_sb(struct super_block *sb) 1219{ 1220 bdi_sync_writeback(sb->s_bdi, sb); 1221 wait_sb_inodes(sb); 1222} 1223EXPORT_SYMBOL(sync_inodes_sb); 1224 1225/** 1226 * write_inode_now - write an inode to disk 1227 * @inode: inode to write to disk 1228 * @sync: whether the write should be synchronous or not 1229 * 1230 * This function commits an inode to disk immediately if it is dirty. This is 1231 * primarily needed by knfsd. 1232 * 1233 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1234 */ 1235int write_inode_now(struct inode *inode, int sync) 1236{ 1237 int ret; 1238 struct writeback_control wbc = { 1239 .nr_to_write = LONG_MAX, 1240 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1241 .range_start = 0, 1242 .range_end = LLONG_MAX, 1243 }; 1244 1245 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1246 wbc.nr_to_write = 0; 1247 1248 might_sleep(); 1249 spin_lock(&inode_lock); 1250 ret = writeback_single_inode(inode, &wbc); 1251 spin_unlock(&inode_lock); 1252 if (sync) 1253 inode_sync_wait(inode); 1254 return ret; 1255} 1256EXPORT_SYMBOL(write_inode_now); 1257 1258/** 1259 * sync_inode - write an inode and its pages to disk. 1260 * @inode: the inode to sync 1261 * @wbc: controls the writeback mode 1262 * 1263 * sync_inode() will write an inode and its pages to disk. It will also 1264 * correctly update the inode on its superblock's dirty inode lists and will 1265 * update inode->i_state. 1266 * 1267 * The caller must have a ref on the inode. 1268 */ 1269int sync_inode(struct inode *inode, struct writeback_control *wbc) 1270{ 1271 int ret; 1272 1273 spin_lock(&inode_lock); 1274 ret = writeback_single_inode(inode, wbc); 1275 spin_unlock(&inode_lock); 1276 return ret; 1277} 1278EXPORT_SYMBOL(sync_inode);