at v2.6.34-rc2 1966 lines 49 kB view raw
1/* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7/* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13#include <linux/init.h> 14#include <linux/types.h> 15#include <linux/input.h> 16#include <linux/module.h> 17#include <linux/random.h> 18#include <linux/major.h> 19#include <linux/proc_fs.h> 20#include <linux/sched.h> 21#include <linux/seq_file.h> 22#include <linux/poll.h> 23#include <linux/device.h> 24#include <linux/mutex.h> 25#include <linux/rcupdate.h> 26#include <linux/smp_lock.h> 27#include "input-compat.h" 28 29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30MODULE_DESCRIPTION("Input core"); 31MODULE_LICENSE("GPL"); 32 33#define INPUT_DEVICES 256 34 35/* 36 * EV_ABS events which should not be cached are listed here. 37 */ 38static unsigned int input_abs_bypass_init_data[] __initdata = { 39 ABS_MT_TOUCH_MAJOR, 40 ABS_MT_TOUCH_MINOR, 41 ABS_MT_WIDTH_MAJOR, 42 ABS_MT_WIDTH_MINOR, 43 ABS_MT_ORIENTATION, 44 ABS_MT_POSITION_X, 45 ABS_MT_POSITION_Y, 46 ABS_MT_TOOL_TYPE, 47 ABS_MT_BLOB_ID, 48 ABS_MT_TRACKING_ID, 49 ABS_MT_PRESSURE, 50 0 51}; 52static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 53 54static LIST_HEAD(input_dev_list); 55static LIST_HEAD(input_handler_list); 56 57/* 58 * input_mutex protects access to both input_dev_list and input_handler_list. 59 * This also causes input_[un]register_device and input_[un]register_handler 60 * be mutually exclusive which simplifies locking in drivers implementing 61 * input handlers. 62 */ 63static DEFINE_MUTEX(input_mutex); 64 65static struct input_handler *input_table[8]; 66 67static inline int is_event_supported(unsigned int code, 68 unsigned long *bm, unsigned int max) 69{ 70 return code <= max && test_bit(code, bm); 71} 72 73static int input_defuzz_abs_event(int value, int old_val, int fuzz) 74{ 75 if (fuzz) { 76 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 77 return old_val; 78 79 if (value > old_val - fuzz && value < old_val + fuzz) 80 return (old_val * 3 + value) / 4; 81 82 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 83 return (old_val + value) / 2; 84 } 85 86 return value; 87} 88 89/* 90 * Pass event first through all filters and then, if event has not been 91 * filtered out, through all open handles. This function is called with 92 * dev->event_lock held and interrupts disabled. 93 */ 94static void input_pass_event(struct input_dev *dev, 95 unsigned int type, unsigned int code, int value) 96{ 97 struct input_handler *handler; 98 struct input_handle *handle; 99 100 rcu_read_lock(); 101 102 handle = rcu_dereference(dev->grab); 103 if (handle) 104 handle->handler->event(handle, type, code, value); 105 else { 106 bool filtered = false; 107 108 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 109 if (!handle->open) 110 continue; 111 112 handler = handle->handler; 113 if (!handler->filter) { 114 if (filtered) 115 break; 116 117 handler->event(handle, type, code, value); 118 119 } else if (handler->filter(handle, type, code, value)) 120 filtered = true; 121 } 122 } 123 124 rcu_read_unlock(); 125} 126 127/* 128 * Generate software autorepeat event. Note that we take 129 * dev->event_lock here to avoid racing with input_event 130 * which may cause keys get "stuck". 131 */ 132static void input_repeat_key(unsigned long data) 133{ 134 struct input_dev *dev = (void *) data; 135 unsigned long flags; 136 137 spin_lock_irqsave(&dev->event_lock, flags); 138 139 if (test_bit(dev->repeat_key, dev->key) && 140 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 141 142 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 143 144 if (dev->sync) { 145 /* 146 * Only send SYN_REPORT if we are not in a middle 147 * of driver parsing a new hardware packet. 148 * Otherwise assume that the driver will send 149 * SYN_REPORT once it's done. 150 */ 151 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 152 } 153 154 if (dev->rep[REP_PERIOD]) 155 mod_timer(&dev->timer, jiffies + 156 msecs_to_jiffies(dev->rep[REP_PERIOD])); 157 } 158 159 spin_unlock_irqrestore(&dev->event_lock, flags); 160} 161 162static void input_start_autorepeat(struct input_dev *dev, int code) 163{ 164 if (test_bit(EV_REP, dev->evbit) && 165 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 166 dev->timer.data) { 167 dev->repeat_key = code; 168 mod_timer(&dev->timer, 169 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 170 } 171} 172 173static void input_stop_autorepeat(struct input_dev *dev) 174{ 175 del_timer(&dev->timer); 176} 177 178#define INPUT_IGNORE_EVENT 0 179#define INPUT_PASS_TO_HANDLERS 1 180#define INPUT_PASS_TO_DEVICE 2 181#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 182 183static void input_handle_event(struct input_dev *dev, 184 unsigned int type, unsigned int code, int value) 185{ 186 int disposition = INPUT_IGNORE_EVENT; 187 188 switch (type) { 189 190 case EV_SYN: 191 switch (code) { 192 case SYN_CONFIG: 193 disposition = INPUT_PASS_TO_ALL; 194 break; 195 196 case SYN_REPORT: 197 if (!dev->sync) { 198 dev->sync = 1; 199 disposition = INPUT_PASS_TO_HANDLERS; 200 } 201 break; 202 case SYN_MT_REPORT: 203 dev->sync = 0; 204 disposition = INPUT_PASS_TO_HANDLERS; 205 break; 206 } 207 break; 208 209 case EV_KEY: 210 if (is_event_supported(code, dev->keybit, KEY_MAX) && 211 !!test_bit(code, dev->key) != value) { 212 213 if (value != 2) { 214 __change_bit(code, dev->key); 215 if (value) 216 input_start_autorepeat(dev, code); 217 else 218 input_stop_autorepeat(dev); 219 } 220 221 disposition = INPUT_PASS_TO_HANDLERS; 222 } 223 break; 224 225 case EV_SW: 226 if (is_event_supported(code, dev->swbit, SW_MAX) && 227 !!test_bit(code, dev->sw) != value) { 228 229 __change_bit(code, dev->sw); 230 disposition = INPUT_PASS_TO_HANDLERS; 231 } 232 break; 233 234 case EV_ABS: 235 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 236 237 if (test_bit(code, input_abs_bypass)) { 238 disposition = INPUT_PASS_TO_HANDLERS; 239 break; 240 } 241 242 value = input_defuzz_abs_event(value, 243 dev->abs[code], dev->absfuzz[code]); 244 245 if (dev->abs[code] != value) { 246 dev->abs[code] = value; 247 disposition = INPUT_PASS_TO_HANDLERS; 248 } 249 } 250 break; 251 252 case EV_REL: 253 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 254 disposition = INPUT_PASS_TO_HANDLERS; 255 256 break; 257 258 case EV_MSC: 259 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 260 disposition = INPUT_PASS_TO_ALL; 261 262 break; 263 264 case EV_LED: 265 if (is_event_supported(code, dev->ledbit, LED_MAX) && 266 !!test_bit(code, dev->led) != value) { 267 268 __change_bit(code, dev->led); 269 disposition = INPUT_PASS_TO_ALL; 270 } 271 break; 272 273 case EV_SND: 274 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 275 276 if (!!test_bit(code, dev->snd) != !!value) 277 __change_bit(code, dev->snd); 278 disposition = INPUT_PASS_TO_ALL; 279 } 280 break; 281 282 case EV_REP: 283 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 284 dev->rep[code] = value; 285 disposition = INPUT_PASS_TO_ALL; 286 } 287 break; 288 289 case EV_FF: 290 if (value >= 0) 291 disposition = INPUT_PASS_TO_ALL; 292 break; 293 294 case EV_PWR: 295 disposition = INPUT_PASS_TO_ALL; 296 break; 297 } 298 299 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 300 dev->sync = 0; 301 302 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 303 dev->event(dev, type, code, value); 304 305 if (disposition & INPUT_PASS_TO_HANDLERS) 306 input_pass_event(dev, type, code, value); 307} 308 309/** 310 * input_event() - report new input event 311 * @dev: device that generated the event 312 * @type: type of the event 313 * @code: event code 314 * @value: value of the event 315 * 316 * This function should be used by drivers implementing various input 317 * devices to report input events. See also input_inject_event(). 318 * 319 * NOTE: input_event() may be safely used right after input device was 320 * allocated with input_allocate_device(), even before it is registered 321 * with input_register_device(), but the event will not reach any of the 322 * input handlers. Such early invocation of input_event() may be used 323 * to 'seed' initial state of a switch or initial position of absolute 324 * axis, etc. 325 */ 326void input_event(struct input_dev *dev, 327 unsigned int type, unsigned int code, int value) 328{ 329 unsigned long flags; 330 331 if (is_event_supported(type, dev->evbit, EV_MAX)) { 332 333 spin_lock_irqsave(&dev->event_lock, flags); 334 add_input_randomness(type, code, value); 335 input_handle_event(dev, type, code, value); 336 spin_unlock_irqrestore(&dev->event_lock, flags); 337 } 338} 339EXPORT_SYMBOL(input_event); 340 341/** 342 * input_inject_event() - send input event from input handler 343 * @handle: input handle to send event through 344 * @type: type of the event 345 * @code: event code 346 * @value: value of the event 347 * 348 * Similar to input_event() but will ignore event if device is 349 * "grabbed" and handle injecting event is not the one that owns 350 * the device. 351 */ 352void input_inject_event(struct input_handle *handle, 353 unsigned int type, unsigned int code, int value) 354{ 355 struct input_dev *dev = handle->dev; 356 struct input_handle *grab; 357 unsigned long flags; 358 359 if (is_event_supported(type, dev->evbit, EV_MAX)) { 360 spin_lock_irqsave(&dev->event_lock, flags); 361 362 rcu_read_lock(); 363 grab = rcu_dereference(dev->grab); 364 if (!grab || grab == handle) 365 input_handle_event(dev, type, code, value); 366 rcu_read_unlock(); 367 368 spin_unlock_irqrestore(&dev->event_lock, flags); 369 } 370} 371EXPORT_SYMBOL(input_inject_event); 372 373/** 374 * input_grab_device - grabs device for exclusive use 375 * @handle: input handle that wants to own the device 376 * 377 * When a device is grabbed by an input handle all events generated by 378 * the device are delivered only to this handle. Also events injected 379 * by other input handles are ignored while device is grabbed. 380 */ 381int input_grab_device(struct input_handle *handle) 382{ 383 struct input_dev *dev = handle->dev; 384 int retval; 385 386 retval = mutex_lock_interruptible(&dev->mutex); 387 if (retval) 388 return retval; 389 390 if (dev->grab) { 391 retval = -EBUSY; 392 goto out; 393 } 394 395 rcu_assign_pointer(dev->grab, handle); 396 synchronize_rcu(); 397 398 out: 399 mutex_unlock(&dev->mutex); 400 return retval; 401} 402EXPORT_SYMBOL(input_grab_device); 403 404static void __input_release_device(struct input_handle *handle) 405{ 406 struct input_dev *dev = handle->dev; 407 408 if (dev->grab == handle) { 409 rcu_assign_pointer(dev->grab, NULL); 410 /* Make sure input_pass_event() notices that grab is gone */ 411 synchronize_rcu(); 412 413 list_for_each_entry(handle, &dev->h_list, d_node) 414 if (handle->open && handle->handler->start) 415 handle->handler->start(handle); 416 } 417} 418 419/** 420 * input_release_device - release previously grabbed device 421 * @handle: input handle that owns the device 422 * 423 * Releases previously grabbed device so that other input handles can 424 * start receiving input events. Upon release all handlers attached 425 * to the device have their start() method called so they have a change 426 * to synchronize device state with the rest of the system. 427 */ 428void input_release_device(struct input_handle *handle) 429{ 430 struct input_dev *dev = handle->dev; 431 432 mutex_lock(&dev->mutex); 433 __input_release_device(handle); 434 mutex_unlock(&dev->mutex); 435} 436EXPORT_SYMBOL(input_release_device); 437 438/** 439 * input_open_device - open input device 440 * @handle: handle through which device is being accessed 441 * 442 * This function should be called by input handlers when they 443 * want to start receive events from given input device. 444 */ 445int input_open_device(struct input_handle *handle) 446{ 447 struct input_dev *dev = handle->dev; 448 int retval; 449 450 retval = mutex_lock_interruptible(&dev->mutex); 451 if (retval) 452 return retval; 453 454 if (dev->going_away) { 455 retval = -ENODEV; 456 goto out; 457 } 458 459 handle->open++; 460 461 if (!dev->users++ && dev->open) 462 retval = dev->open(dev); 463 464 if (retval) { 465 dev->users--; 466 if (!--handle->open) { 467 /* 468 * Make sure we are not delivering any more events 469 * through this handle 470 */ 471 synchronize_rcu(); 472 } 473 } 474 475 out: 476 mutex_unlock(&dev->mutex); 477 return retval; 478} 479EXPORT_SYMBOL(input_open_device); 480 481int input_flush_device(struct input_handle *handle, struct file *file) 482{ 483 struct input_dev *dev = handle->dev; 484 int retval; 485 486 retval = mutex_lock_interruptible(&dev->mutex); 487 if (retval) 488 return retval; 489 490 if (dev->flush) 491 retval = dev->flush(dev, file); 492 493 mutex_unlock(&dev->mutex); 494 return retval; 495} 496EXPORT_SYMBOL(input_flush_device); 497 498/** 499 * input_close_device - close input device 500 * @handle: handle through which device is being accessed 501 * 502 * This function should be called by input handlers when they 503 * want to stop receive events from given input device. 504 */ 505void input_close_device(struct input_handle *handle) 506{ 507 struct input_dev *dev = handle->dev; 508 509 mutex_lock(&dev->mutex); 510 511 __input_release_device(handle); 512 513 if (!--dev->users && dev->close) 514 dev->close(dev); 515 516 if (!--handle->open) { 517 /* 518 * synchronize_rcu() makes sure that input_pass_event() 519 * completed and that no more input events are delivered 520 * through this handle 521 */ 522 synchronize_rcu(); 523 } 524 525 mutex_unlock(&dev->mutex); 526} 527EXPORT_SYMBOL(input_close_device); 528 529/* 530 * Prepare device for unregistering 531 */ 532static void input_disconnect_device(struct input_dev *dev) 533{ 534 struct input_handle *handle; 535 int code; 536 537 /* 538 * Mark device as going away. Note that we take dev->mutex here 539 * not to protect access to dev->going_away but rather to ensure 540 * that there are no threads in the middle of input_open_device() 541 */ 542 mutex_lock(&dev->mutex); 543 dev->going_away = true; 544 mutex_unlock(&dev->mutex); 545 546 spin_lock_irq(&dev->event_lock); 547 548 /* 549 * Simulate keyup events for all pressed keys so that handlers 550 * are not left with "stuck" keys. The driver may continue 551 * generate events even after we done here but they will not 552 * reach any handlers. 553 */ 554 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 555 for (code = 0; code <= KEY_MAX; code++) { 556 if (is_event_supported(code, dev->keybit, KEY_MAX) && 557 __test_and_clear_bit(code, dev->key)) { 558 input_pass_event(dev, EV_KEY, code, 0); 559 } 560 } 561 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 562 } 563 564 list_for_each_entry(handle, &dev->h_list, d_node) 565 handle->open = 0; 566 567 spin_unlock_irq(&dev->event_lock); 568} 569 570static int input_fetch_keycode(struct input_dev *dev, int scancode) 571{ 572 switch (dev->keycodesize) { 573 case 1: 574 return ((u8 *)dev->keycode)[scancode]; 575 576 case 2: 577 return ((u16 *)dev->keycode)[scancode]; 578 579 default: 580 return ((u32 *)dev->keycode)[scancode]; 581 } 582} 583 584static int input_default_getkeycode(struct input_dev *dev, 585 unsigned int scancode, 586 unsigned int *keycode) 587{ 588 if (!dev->keycodesize) 589 return -EINVAL; 590 591 if (scancode >= dev->keycodemax) 592 return -EINVAL; 593 594 *keycode = input_fetch_keycode(dev, scancode); 595 596 return 0; 597} 598 599static int input_default_setkeycode(struct input_dev *dev, 600 unsigned int scancode, 601 unsigned int keycode) 602{ 603 int old_keycode; 604 int i; 605 606 if (scancode >= dev->keycodemax) 607 return -EINVAL; 608 609 if (!dev->keycodesize) 610 return -EINVAL; 611 612 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 613 return -EINVAL; 614 615 switch (dev->keycodesize) { 616 case 1: { 617 u8 *k = (u8 *)dev->keycode; 618 old_keycode = k[scancode]; 619 k[scancode] = keycode; 620 break; 621 } 622 case 2: { 623 u16 *k = (u16 *)dev->keycode; 624 old_keycode = k[scancode]; 625 k[scancode] = keycode; 626 break; 627 } 628 default: { 629 u32 *k = (u32 *)dev->keycode; 630 old_keycode = k[scancode]; 631 k[scancode] = keycode; 632 break; 633 } 634 } 635 636 __clear_bit(old_keycode, dev->keybit); 637 __set_bit(keycode, dev->keybit); 638 639 for (i = 0; i < dev->keycodemax; i++) { 640 if (input_fetch_keycode(dev, i) == old_keycode) { 641 __set_bit(old_keycode, dev->keybit); 642 break; /* Setting the bit twice is useless, so break */ 643 } 644 } 645 646 return 0; 647} 648 649/** 650 * input_get_keycode - retrieve keycode currently mapped to a given scancode 651 * @dev: input device which keymap is being queried 652 * @scancode: scancode (or its equivalent for device in question) for which 653 * keycode is needed 654 * @keycode: result 655 * 656 * This function should be called by anyone interested in retrieving current 657 * keymap. Presently keyboard and evdev handlers use it. 658 */ 659int input_get_keycode(struct input_dev *dev, 660 unsigned int scancode, unsigned int *keycode) 661{ 662 return dev->getkeycode(dev, scancode, keycode); 663} 664EXPORT_SYMBOL(input_get_keycode); 665 666/** 667 * input_get_keycode - assign new keycode to a given scancode 668 * @dev: input device which keymap is being updated 669 * @scancode: scancode (or its equivalent for device in question) 670 * @keycode: new keycode to be assigned to the scancode 671 * 672 * This function should be called by anyone needing to update current 673 * keymap. Presently keyboard and evdev handlers use it. 674 */ 675int input_set_keycode(struct input_dev *dev, 676 unsigned int scancode, unsigned int keycode) 677{ 678 unsigned long flags; 679 int old_keycode; 680 int retval; 681 682 if (keycode > KEY_MAX) 683 return -EINVAL; 684 685 spin_lock_irqsave(&dev->event_lock, flags); 686 687 retval = dev->getkeycode(dev, scancode, &old_keycode); 688 if (retval) 689 goto out; 690 691 retval = dev->setkeycode(dev, scancode, keycode); 692 if (retval) 693 goto out; 694 695 /* Make sure KEY_RESERVED did not get enabled. */ 696 __clear_bit(KEY_RESERVED, dev->keybit); 697 698 /* 699 * Simulate keyup event if keycode is not present 700 * in the keymap anymore 701 */ 702 if (test_bit(EV_KEY, dev->evbit) && 703 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 704 __test_and_clear_bit(old_keycode, dev->key)) { 705 706 input_pass_event(dev, EV_KEY, old_keycode, 0); 707 if (dev->sync) 708 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 709 } 710 711 out: 712 spin_unlock_irqrestore(&dev->event_lock, flags); 713 714 return retval; 715} 716EXPORT_SYMBOL(input_set_keycode); 717 718#define MATCH_BIT(bit, max) \ 719 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 720 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 721 break; \ 722 if (i != BITS_TO_LONGS(max)) \ 723 continue; 724 725static const struct input_device_id *input_match_device(struct input_handler *handler, 726 struct input_dev *dev) 727{ 728 const struct input_device_id *id; 729 int i; 730 731 for (id = handler->id_table; id->flags || id->driver_info; id++) { 732 733 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 734 if (id->bustype != dev->id.bustype) 735 continue; 736 737 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 738 if (id->vendor != dev->id.vendor) 739 continue; 740 741 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 742 if (id->product != dev->id.product) 743 continue; 744 745 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 746 if (id->version != dev->id.version) 747 continue; 748 749 MATCH_BIT(evbit, EV_MAX); 750 MATCH_BIT(keybit, KEY_MAX); 751 MATCH_BIT(relbit, REL_MAX); 752 MATCH_BIT(absbit, ABS_MAX); 753 MATCH_BIT(mscbit, MSC_MAX); 754 MATCH_BIT(ledbit, LED_MAX); 755 MATCH_BIT(sndbit, SND_MAX); 756 MATCH_BIT(ffbit, FF_MAX); 757 MATCH_BIT(swbit, SW_MAX); 758 759 if (!handler->match || handler->match(handler, dev)) 760 return id; 761 } 762 763 return NULL; 764} 765 766static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 767{ 768 const struct input_device_id *id; 769 int error; 770 771 id = input_match_device(handler, dev); 772 if (!id) 773 return -ENODEV; 774 775 error = handler->connect(handler, dev, id); 776 if (error && error != -ENODEV) 777 printk(KERN_ERR 778 "input: failed to attach handler %s to device %s, " 779 "error: %d\n", 780 handler->name, kobject_name(&dev->dev.kobj), error); 781 782 return error; 783} 784 785#ifdef CONFIG_COMPAT 786 787static int input_bits_to_string(char *buf, int buf_size, 788 unsigned long bits, bool skip_empty) 789{ 790 int len = 0; 791 792 if (INPUT_COMPAT_TEST) { 793 u32 dword = bits >> 32; 794 if (dword || !skip_empty) 795 len += snprintf(buf, buf_size, "%x ", dword); 796 797 dword = bits & 0xffffffffUL; 798 if (dword || !skip_empty || len) 799 len += snprintf(buf + len, max(buf_size - len, 0), 800 "%x", dword); 801 } else { 802 if (bits || !skip_empty) 803 len += snprintf(buf, buf_size, "%lx", bits); 804 } 805 806 return len; 807} 808 809#else /* !CONFIG_COMPAT */ 810 811static int input_bits_to_string(char *buf, int buf_size, 812 unsigned long bits, bool skip_empty) 813{ 814 return bits || !skip_empty ? 815 snprintf(buf, buf_size, "%lx", bits) : 0; 816} 817 818#endif 819 820#ifdef CONFIG_PROC_FS 821 822static struct proc_dir_entry *proc_bus_input_dir; 823static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 824static int input_devices_state; 825 826static inline void input_wakeup_procfs_readers(void) 827{ 828 input_devices_state++; 829 wake_up(&input_devices_poll_wait); 830} 831 832static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 833{ 834 poll_wait(file, &input_devices_poll_wait, wait); 835 if (file->f_version != input_devices_state) { 836 file->f_version = input_devices_state; 837 return POLLIN | POLLRDNORM; 838 } 839 840 return 0; 841} 842 843union input_seq_state { 844 struct { 845 unsigned short pos; 846 bool mutex_acquired; 847 }; 848 void *p; 849}; 850 851static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 852{ 853 union input_seq_state *state = (union input_seq_state *)&seq->private; 854 int error; 855 856 /* We need to fit into seq->private pointer */ 857 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 858 859 error = mutex_lock_interruptible(&input_mutex); 860 if (error) { 861 state->mutex_acquired = false; 862 return ERR_PTR(error); 863 } 864 865 state->mutex_acquired = true; 866 867 return seq_list_start(&input_dev_list, *pos); 868} 869 870static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 871{ 872 return seq_list_next(v, &input_dev_list, pos); 873} 874 875static void input_seq_stop(struct seq_file *seq, void *v) 876{ 877 union input_seq_state *state = (union input_seq_state *)&seq->private; 878 879 if (state->mutex_acquired) 880 mutex_unlock(&input_mutex); 881} 882 883static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 884 unsigned long *bitmap, int max) 885{ 886 int i; 887 bool skip_empty = true; 888 char buf[18]; 889 890 seq_printf(seq, "B: %s=", name); 891 892 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 893 if (input_bits_to_string(buf, sizeof(buf), 894 bitmap[i], skip_empty)) { 895 skip_empty = false; 896 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 897 } 898 } 899 900 /* 901 * If no output was produced print a single 0. 902 */ 903 if (skip_empty) 904 seq_puts(seq, "0"); 905 906 seq_putc(seq, '\n'); 907} 908 909static int input_devices_seq_show(struct seq_file *seq, void *v) 910{ 911 struct input_dev *dev = container_of(v, struct input_dev, node); 912 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 913 struct input_handle *handle; 914 915 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 916 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 917 918 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 919 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 920 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 921 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 922 seq_printf(seq, "H: Handlers="); 923 924 list_for_each_entry(handle, &dev->h_list, d_node) 925 seq_printf(seq, "%s ", handle->name); 926 seq_putc(seq, '\n'); 927 928 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 929 if (test_bit(EV_KEY, dev->evbit)) 930 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 931 if (test_bit(EV_REL, dev->evbit)) 932 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 933 if (test_bit(EV_ABS, dev->evbit)) 934 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 935 if (test_bit(EV_MSC, dev->evbit)) 936 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 937 if (test_bit(EV_LED, dev->evbit)) 938 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 939 if (test_bit(EV_SND, dev->evbit)) 940 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 941 if (test_bit(EV_FF, dev->evbit)) 942 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 943 if (test_bit(EV_SW, dev->evbit)) 944 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 945 946 seq_putc(seq, '\n'); 947 948 kfree(path); 949 return 0; 950} 951 952static const struct seq_operations input_devices_seq_ops = { 953 .start = input_devices_seq_start, 954 .next = input_devices_seq_next, 955 .stop = input_seq_stop, 956 .show = input_devices_seq_show, 957}; 958 959static int input_proc_devices_open(struct inode *inode, struct file *file) 960{ 961 return seq_open(file, &input_devices_seq_ops); 962} 963 964static const struct file_operations input_devices_fileops = { 965 .owner = THIS_MODULE, 966 .open = input_proc_devices_open, 967 .poll = input_proc_devices_poll, 968 .read = seq_read, 969 .llseek = seq_lseek, 970 .release = seq_release, 971}; 972 973static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 974{ 975 union input_seq_state *state = (union input_seq_state *)&seq->private; 976 int error; 977 978 /* We need to fit into seq->private pointer */ 979 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 980 981 error = mutex_lock_interruptible(&input_mutex); 982 if (error) { 983 state->mutex_acquired = false; 984 return ERR_PTR(error); 985 } 986 987 state->mutex_acquired = true; 988 state->pos = *pos; 989 990 return seq_list_start(&input_handler_list, *pos); 991} 992 993static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 994{ 995 union input_seq_state *state = (union input_seq_state *)&seq->private; 996 997 state->pos = *pos + 1; 998 return seq_list_next(v, &input_handler_list, pos); 999} 1000 1001static int input_handlers_seq_show(struct seq_file *seq, void *v) 1002{ 1003 struct input_handler *handler = container_of(v, struct input_handler, node); 1004 union input_seq_state *state = (union input_seq_state *)&seq->private; 1005 1006 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1007 if (handler->filter) 1008 seq_puts(seq, " (filter)"); 1009 if (handler->fops) 1010 seq_printf(seq, " Minor=%d", handler->minor); 1011 seq_putc(seq, '\n'); 1012 1013 return 0; 1014} 1015 1016static const struct seq_operations input_handlers_seq_ops = { 1017 .start = input_handlers_seq_start, 1018 .next = input_handlers_seq_next, 1019 .stop = input_seq_stop, 1020 .show = input_handlers_seq_show, 1021}; 1022 1023static int input_proc_handlers_open(struct inode *inode, struct file *file) 1024{ 1025 return seq_open(file, &input_handlers_seq_ops); 1026} 1027 1028static const struct file_operations input_handlers_fileops = { 1029 .owner = THIS_MODULE, 1030 .open = input_proc_handlers_open, 1031 .read = seq_read, 1032 .llseek = seq_lseek, 1033 .release = seq_release, 1034}; 1035 1036static int __init input_proc_init(void) 1037{ 1038 struct proc_dir_entry *entry; 1039 1040 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1041 if (!proc_bus_input_dir) 1042 return -ENOMEM; 1043 1044 entry = proc_create("devices", 0, proc_bus_input_dir, 1045 &input_devices_fileops); 1046 if (!entry) 1047 goto fail1; 1048 1049 entry = proc_create("handlers", 0, proc_bus_input_dir, 1050 &input_handlers_fileops); 1051 if (!entry) 1052 goto fail2; 1053 1054 return 0; 1055 1056 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1057 fail1: remove_proc_entry("bus/input", NULL); 1058 return -ENOMEM; 1059} 1060 1061static void input_proc_exit(void) 1062{ 1063 remove_proc_entry("devices", proc_bus_input_dir); 1064 remove_proc_entry("handlers", proc_bus_input_dir); 1065 remove_proc_entry("bus/input", NULL); 1066} 1067 1068#else /* !CONFIG_PROC_FS */ 1069static inline void input_wakeup_procfs_readers(void) { } 1070static inline int input_proc_init(void) { return 0; } 1071static inline void input_proc_exit(void) { } 1072#endif 1073 1074#define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1075static ssize_t input_dev_show_##name(struct device *dev, \ 1076 struct device_attribute *attr, \ 1077 char *buf) \ 1078{ \ 1079 struct input_dev *input_dev = to_input_dev(dev); \ 1080 \ 1081 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1082 input_dev->name ? input_dev->name : ""); \ 1083} \ 1084static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1085 1086INPUT_DEV_STRING_ATTR_SHOW(name); 1087INPUT_DEV_STRING_ATTR_SHOW(phys); 1088INPUT_DEV_STRING_ATTR_SHOW(uniq); 1089 1090static int input_print_modalias_bits(char *buf, int size, 1091 char name, unsigned long *bm, 1092 unsigned int min_bit, unsigned int max_bit) 1093{ 1094 int len = 0, i; 1095 1096 len += snprintf(buf, max(size, 0), "%c", name); 1097 for (i = min_bit; i < max_bit; i++) 1098 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1099 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1100 return len; 1101} 1102 1103static int input_print_modalias(char *buf, int size, struct input_dev *id, 1104 int add_cr) 1105{ 1106 int len; 1107 1108 len = snprintf(buf, max(size, 0), 1109 "input:b%04Xv%04Xp%04Xe%04X-", 1110 id->id.bustype, id->id.vendor, 1111 id->id.product, id->id.version); 1112 1113 len += input_print_modalias_bits(buf + len, size - len, 1114 'e', id->evbit, 0, EV_MAX); 1115 len += input_print_modalias_bits(buf + len, size - len, 1116 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1117 len += input_print_modalias_bits(buf + len, size - len, 1118 'r', id->relbit, 0, REL_MAX); 1119 len += input_print_modalias_bits(buf + len, size - len, 1120 'a', id->absbit, 0, ABS_MAX); 1121 len += input_print_modalias_bits(buf + len, size - len, 1122 'm', id->mscbit, 0, MSC_MAX); 1123 len += input_print_modalias_bits(buf + len, size - len, 1124 'l', id->ledbit, 0, LED_MAX); 1125 len += input_print_modalias_bits(buf + len, size - len, 1126 's', id->sndbit, 0, SND_MAX); 1127 len += input_print_modalias_bits(buf + len, size - len, 1128 'f', id->ffbit, 0, FF_MAX); 1129 len += input_print_modalias_bits(buf + len, size - len, 1130 'w', id->swbit, 0, SW_MAX); 1131 1132 if (add_cr) 1133 len += snprintf(buf + len, max(size - len, 0), "\n"); 1134 1135 return len; 1136} 1137 1138static ssize_t input_dev_show_modalias(struct device *dev, 1139 struct device_attribute *attr, 1140 char *buf) 1141{ 1142 struct input_dev *id = to_input_dev(dev); 1143 ssize_t len; 1144 1145 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1146 1147 return min_t(int, len, PAGE_SIZE); 1148} 1149static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1150 1151static struct attribute *input_dev_attrs[] = { 1152 &dev_attr_name.attr, 1153 &dev_attr_phys.attr, 1154 &dev_attr_uniq.attr, 1155 &dev_attr_modalias.attr, 1156 NULL 1157}; 1158 1159static struct attribute_group input_dev_attr_group = { 1160 .attrs = input_dev_attrs, 1161}; 1162 1163#define INPUT_DEV_ID_ATTR(name) \ 1164static ssize_t input_dev_show_id_##name(struct device *dev, \ 1165 struct device_attribute *attr, \ 1166 char *buf) \ 1167{ \ 1168 struct input_dev *input_dev = to_input_dev(dev); \ 1169 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1170} \ 1171static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1172 1173INPUT_DEV_ID_ATTR(bustype); 1174INPUT_DEV_ID_ATTR(vendor); 1175INPUT_DEV_ID_ATTR(product); 1176INPUT_DEV_ID_ATTR(version); 1177 1178static struct attribute *input_dev_id_attrs[] = { 1179 &dev_attr_bustype.attr, 1180 &dev_attr_vendor.attr, 1181 &dev_attr_product.attr, 1182 &dev_attr_version.attr, 1183 NULL 1184}; 1185 1186static struct attribute_group input_dev_id_attr_group = { 1187 .name = "id", 1188 .attrs = input_dev_id_attrs, 1189}; 1190 1191static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1192 int max, int add_cr) 1193{ 1194 int i; 1195 int len = 0; 1196 bool skip_empty = true; 1197 1198 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1199 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1200 bitmap[i], skip_empty); 1201 if (len) { 1202 skip_empty = false; 1203 if (i > 0) 1204 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1205 } 1206 } 1207 1208 /* 1209 * If no output was produced print a single 0. 1210 */ 1211 if (len == 0) 1212 len = snprintf(buf, buf_size, "%d", 0); 1213 1214 if (add_cr) 1215 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1216 1217 return len; 1218} 1219 1220#define INPUT_DEV_CAP_ATTR(ev, bm) \ 1221static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1222 struct device_attribute *attr, \ 1223 char *buf) \ 1224{ \ 1225 struct input_dev *input_dev = to_input_dev(dev); \ 1226 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1227 input_dev->bm##bit, ev##_MAX, \ 1228 true); \ 1229 return min_t(int, len, PAGE_SIZE); \ 1230} \ 1231static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1232 1233INPUT_DEV_CAP_ATTR(EV, ev); 1234INPUT_DEV_CAP_ATTR(KEY, key); 1235INPUT_DEV_CAP_ATTR(REL, rel); 1236INPUT_DEV_CAP_ATTR(ABS, abs); 1237INPUT_DEV_CAP_ATTR(MSC, msc); 1238INPUT_DEV_CAP_ATTR(LED, led); 1239INPUT_DEV_CAP_ATTR(SND, snd); 1240INPUT_DEV_CAP_ATTR(FF, ff); 1241INPUT_DEV_CAP_ATTR(SW, sw); 1242 1243static struct attribute *input_dev_caps_attrs[] = { 1244 &dev_attr_ev.attr, 1245 &dev_attr_key.attr, 1246 &dev_attr_rel.attr, 1247 &dev_attr_abs.attr, 1248 &dev_attr_msc.attr, 1249 &dev_attr_led.attr, 1250 &dev_attr_snd.attr, 1251 &dev_attr_ff.attr, 1252 &dev_attr_sw.attr, 1253 NULL 1254}; 1255 1256static struct attribute_group input_dev_caps_attr_group = { 1257 .name = "capabilities", 1258 .attrs = input_dev_caps_attrs, 1259}; 1260 1261static const struct attribute_group *input_dev_attr_groups[] = { 1262 &input_dev_attr_group, 1263 &input_dev_id_attr_group, 1264 &input_dev_caps_attr_group, 1265 NULL 1266}; 1267 1268static void input_dev_release(struct device *device) 1269{ 1270 struct input_dev *dev = to_input_dev(device); 1271 1272 input_ff_destroy(dev); 1273 kfree(dev); 1274 1275 module_put(THIS_MODULE); 1276} 1277 1278/* 1279 * Input uevent interface - loading event handlers based on 1280 * device bitfields. 1281 */ 1282static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1283 const char *name, unsigned long *bitmap, int max) 1284{ 1285 int len; 1286 1287 if (add_uevent_var(env, "%s=", name)) 1288 return -ENOMEM; 1289 1290 len = input_print_bitmap(&env->buf[env->buflen - 1], 1291 sizeof(env->buf) - env->buflen, 1292 bitmap, max, false); 1293 if (len >= (sizeof(env->buf) - env->buflen)) 1294 return -ENOMEM; 1295 1296 env->buflen += len; 1297 return 0; 1298} 1299 1300static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1301 struct input_dev *dev) 1302{ 1303 int len; 1304 1305 if (add_uevent_var(env, "MODALIAS=")) 1306 return -ENOMEM; 1307 1308 len = input_print_modalias(&env->buf[env->buflen - 1], 1309 sizeof(env->buf) - env->buflen, 1310 dev, 0); 1311 if (len >= (sizeof(env->buf) - env->buflen)) 1312 return -ENOMEM; 1313 1314 env->buflen += len; 1315 return 0; 1316} 1317 1318#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1319 do { \ 1320 int err = add_uevent_var(env, fmt, val); \ 1321 if (err) \ 1322 return err; \ 1323 } while (0) 1324 1325#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1326 do { \ 1327 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1328 if (err) \ 1329 return err; \ 1330 } while (0) 1331 1332#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1333 do { \ 1334 int err = input_add_uevent_modalias_var(env, dev); \ 1335 if (err) \ 1336 return err; \ 1337 } while (0) 1338 1339static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1340{ 1341 struct input_dev *dev = to_input_dev(device); 1342 1343 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1344 dev->id.bustype, dev->id.vendor, 1345 dev->id.product, dev->id.version); 1346 if (dev->name) 1347 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1348 if (dev->phys) 1349 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1350 if (dev->uniq) 1351 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1352 1353 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1354 if (test_bit(EV_KEY, dev->evbit)) 1355 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1356 if (test_bit(EV_REL, dev->evbit)) 1357 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1358 if (test_bit(EV_ABS, dev->evbit)) 1359 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1360 if (test_bit(EV_MSC, dev->evbit)) 1361 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1362 if (test_bit(EV_LED, dev->evbit)) 1363 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1364 if (test_bit(EV_SND, dev->evbit)) 1365 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1366 if (test_bit(EV_FF, dev->evbit)) 1367 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1368 if (test_bit(EV_SW, dev->evbit)) 1369 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1370 1371 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1372 1373 return 0; 1374} 1375 1376#define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1377 do { \ 1378 int i; \ 1379 bool active; \ 1380 \ 1381 if (!test_bit(EV_##type, dev->evbit)) \ 1382 break; \ 1383 \ 1384 for (i = 0; i < type##_MAX; i++) { \ 1385 if (!test_bit(i, dev->bits##bit)) \ 1386 continue; \ 1387 \ 1388 active = test_bit(i, dev->bits); \ 1389 if (!active && !on) \ 1390 continue; \ 1391 \ 1392 dev->event(dev, EV_##type, i, on ? active : 0); \ 1393 } \ 1394 } while (0) 1395 1396#ifdef CONFIG_PM 1397static void input_dev_reset(struct input_dev *dev, bool activate) 1398{ 1399 if (!dev->event) 1400 return; 1401 1402 INPUT_DO_TOGGLE(dev, LED, led, activate); 1403 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1404 1405 if (activate && test_bit(EV_REP, dev->evbit)) { 1406 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1407 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1408 } 1409} 1410 1411static int input_dev_suspend(struct device *dev) 1412{ 1413 struct input_dev *input_dev = to_input_dev(dev); 1414 1415 mutex_lock(&input_dev->mutex); 1416 input_dev_reset(input_dev, false); 1417 mutex_unlock(&input_dev->mutex); 1418 1419 return 0; 1420} 1421 1422static int input_dev_resume(struct device *dev) 1423{ 1424 struct input_dev *input_dev = to_input_dev(dev); 1425 1426 mutex_lock(&input_dev->mutex); 1427 input_dev_reset(input_dev, true); 1428 mutex_unlock(&input_dev->mutex); 1429 1430 return 0; 1431} 1432 1433static const struct dev_pm_ops input_dev_pm_ops = { 1434 .suspend = input_dev_suspend, 1435 .resume = input_dev_resume, 1436 .poweroff = input_dev_suspend, 1437 .restore = input_dev_resume, 1438}; 1439#endif /* CONFIG_PM */ 1440 1441static struct device_type input_dev_type = { 1442 .groups = input_dev_attr_groups, 1443 .release = input_dev_release, 1444 .uevent = input_dev_uevent, 1445#ifdef CONFIG_PM 1446 .pm = &input_dev_pm_ops, 1447#endif 1448}; 1449 1450static char *input_devnode(struct device *dev, mode_t *mode) 1451{ 1452 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1453} 1454 1455struct class input_class = { 1456 .name = "input", 1457 .devnode = input_devnode, 1458}; 1459EXPORT_SYMBOL_GPL(input_class); 1460 1461/** 1462 * input_allocate_device - allocate memory for new input device 1463 * 1464 * Returns prepared struct input_dev or NULL. 1465 * 1466 * NOTE: Use input_free_device() to free devices that have not been 1467 * registered; input_unregister_device() should be used for already 1468 * registered devices. 1469 */ 1470struct input_dev *input_allocate_device(void) 1471{ 1472 struct input_dev *dev; 1473 1474 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1475 if (dev) { 1476 dev->dev.type = &input_dev_type; 1477 dev->dev.class = &input_class; 1478 device_initialize(&dev->dev); 1479 mutex_init(&dev->mutex); 1480 spin_lock_init(&dev->event_lock); 1481 INIT_LIST_HEAD(&dev->h_list); 1482 INIT_LIST_HEAD(&dev->node); 1483 1484 __module_get(THIS_MODULE); 1485 } 1486 1487 return dev; 1488} 1489EXPORT_SYMBOL(input_allocate_device); 1490 1491/** 1492 * input_free_device - free memory occupied by input_dev structure 1493 * @dev: input device to free 1494 * 1495 * This function should only be used if input_register_device() 1496 * was not called yet or if it failed. Once device was registered 1497 * use input_unregister_device() and memory will be freed once last 1498 * reference to the device is dropped. 1499 * 1500 * Device should be allocated by input_allocate_device(). 1501 * 1502 * NOTE: If there are references to the input device then memory 1503 * will not be freed until last reference is dropped. 1504 */ 1505void input_free_device(struct input_dev *dev) 1506{ 1507 if (dev) 1508 input_put_device(dev); 1509} 1510EXPORT_SYMBOL(input_free_device); 1511 1512/** 1513 * input_set_capability - mark device as capable of a certain event 1514 * @dev: device that is capable of emitting or accepting event 1515 * @type: type of the event (EV_KEY, EV_REL, etc...) 1516 * @code: event code 1517 * 1518 * In addition to setting up corresponding bit in appropriate capability 1519 * bitmap the function also adjusts dev->evbit. 1520 */ 1521void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1522{ 1523 switch (type) { 1524 case EV_KEY: 1525 __set_bit(code, dev->keybit); 1526 break; 1527 1528 case EV_REL: 1529 __set_bit(code, dev->relbit); 1530 break; 1531 1532 case EV_ABS: 1533 __set_bit(code, dev->absbit); 1534 break; 1535 1536 case EV_MSC: 1537 __set_bit(code, dev->mscbit); 1538 break; 1539 1540 case EV_SW: 1541 __set_bit(code, dev->swbit); 1542 break; 1543 1544 case EV_LED: 1545 __set_bit(code, dev->ledbit); 1546 break; 1547 1548 case EV_SND: 1549 __set_bit(code, dev->sndbit); 1550 break; 1551 1552 case EV_FF: 1553 __set_bit(code, dev->ffbit); 1554 break; 1555 1556 case EV_PWR: 1557 /* do nothing */ 1558 break; 1559 1560 default: 1561 printk(KERN_ERR 1562 "input_set_capability: unknown type %u (code %u)\n", 1563 type, code); 1564 dump_stack(); 1565 return; 1566 } 1567 1568 __set_bit(type, dev->evbit); 1569} 1570EXPORT_SYMBOL(input_set_capability); 1571 1572#define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1573 do { \ 1574 if (!test_bit(EV_##type, dev->evbit)) \ 1575 memset(dev->bits##bit, 0, \ 1576 sizeof(dev->bits##bit)); \ 1577 } while (0) 1578 1579static void input_cleanse_bitmasks(struct input_dev *dev) 1580{ 1581 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1582 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1583 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1584 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1585 INPUT_CLEANSE_BITMASK(dev, LED, led); 1586 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1587 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1588 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1589} 1590 1591/** 1592 * input_register_device - register device with input core 1593 * @dev: device to be registered 1594 * 1595 * This function registers device with input core. The device must be 1596 * allocated with input_allocate_device() and all it's capabilities 1597 * set up before registering. 1598 * If function fails the device must be freed with input_free_device(). 1599 * Once device has been successfully registered it can be unregistered 1600 * with input_unregister_device(); input_free_device() should not be 1601 * called in this case. 1602 */ 1603int input_register_device(struct input_dev *dev) 1604{ 1605 static atomic_t input_no = ATOMIC_INIT(0); 1606 struct input_handler *handler; 1607 const char *path; 1608 int error; 1609 1610 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1611 __set_bit(EV_SYN, dev->evbit); 1612 1613 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1614 __clear_bit(KEY_RESERVED, dev->keybit); 1615 1616 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1617 input_cleanse_bitmasks(dev); 1618 1619 /* 1620 * If delay and period are pre-set by the driver, then autorepeating 1621 * is handled by the driver itself and we don't do it in input.c. 1622 */ 1623 init_timer(&dev->timer); 1624 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1625 dev->timer.data = (long) dev; 1626 dev->timer.function = input_repeat_key; 1627 dev->rep[REP_DELAY] = 250; 1628 dev->rep[REP_PERIOD] = 33; 1629 } 1630 1631 if (!dev->getkeycode) 1632 dev->getkeycode = input_default_getkeycode; 1633 1634 if (!dev->setkeycode) 1635 dev->setkeycode = input_default_setkeycode; 1636 1637 dev_set_name(&dev->dev, "input%ld", 1638 (unsigned long) atomic_inc_return(&input_no) - 1); 1639 1640 error = device_add(&dev->dev); 1641 if (error) 1642 return error; 1643 1644 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1645 printk(KERN_INFO "input: %s as %s\n", 1646 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1647 kfree(path); 1648 1649 error = mutex_lock_interruptible(&input_mutex); 1650 if (error) { 1651 device_del(&dev->dev); 1652 return error; 1653 } 1654 1655 list_add_tail(&dev->node, &input_dev_list); 1656 1657 list_for_each_entry(handler, &input_handler_list, node) 1658 input_attach_handler(dev, handler); 1659 1660 input_wakeup_procfs_readers(); 1661 1662 mutex_unlock(&input_mutex); 1663 1664 return 0; 1665} 1666EXPORT_SYMBOL(input_register_device); 1667 1668/** 1669 * input_unregister_device - unregister previously registered device 1670 * @dev: device to be unregistered 1671 * 1672 * This function unregisters an input device. Once device is unregistered 1673 * the caller should not try to access it as it may get freed at any moment. 1674 */ 1675void input_unregister_device(struct input_dev *dev) 1676{ 1677 struct input_handle *handle, *next; 1678 1679 input_disconnect_device(dev); 1680 1681 mutex_lock(&input_mutex); 1682 1683 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1684 handle->handler->disconnect(handle); 1685 WARN_ON(!list_empty(&dev->h_list)); 1686 1687 del_timer_sync(&dev->timer); 1688 list_del_init(&dev->node); 1689 1690 input_wakeup_procfs_readers(); 1691 1692 mutex_unlock(&input_mutex); 1693 1694 device_unregister(&dev->dev); 1695} 1696EXPORT_SYMBOL(input_unregister_device); 1697 1698/** 1699 * input_register_handler - register a new input handler 1700 * @handler: handler to be registered 1701 * 1702 * This function registers a new input handler (interface) for input 1703 * devices in the system and attaches it to all input devices that 1704 * are compatible with the handler. 1705 */ 1706int input_register_handler(struct input_handler *handler) 1707{ 1708 struct input_dev *dev; 1709 int retval; 1710 1711 retval = mutex_lock_interruptible(&input_mutex); 1712 if (retval) 1713 return retval; 1714 1715 INIT_LIST_HEAD(&handler->h_list); 1716 1717 if (handler->fops != NULL) { 1718 if (input_table[handler->minor >> 5]) { 1719 retval = -EBUSY; 1720 goto out; 1721 } 1722 input_table[handler->minor >> 5] = handler; 1723 } 1724 1725 list_add_tail(&handler->node, &input_handler_list); 1726 1727 list_for_each_entry(dev, &input_dev_list, node) 1728 input_attach_handler(dev, handler); 1729 1730 input_wakeup_procfs_readers(); 1731 1732 out: 1733 mutex_unlock(&input_mutex); 1734 return retval; 1735} 1736EXPORT_SYMBOL(input_register_handler); 1737 1738/** 1739 * input_unregister_handler - unregisters an input handler 1740 * @handler: handler to be unregistered 1741 * 1742 * This function disconnects a handler from its input devices and 1743 * removes it from lists of known handlers. 1744 */ 1745void input_unregister_handler(struct input_handler *handler) 1746{ 1747 struct input_handle *handle, *next; 1748 1749 mutex_lock(&input_mutex); 1750 1751 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1752 handler->disconnect(handle); 1753 WARN_ON(!list_empty(&handler->h_list)); 1754 1755 list_del_init(&handler->node); 1756 1757 if (handler->fops != NULL) 1758 input_table[handler->minor >> 5] = NULL; 1759 1760 input_wakeup_procfs_readers(); 1761 1762 mutex_unlock(&input_mutex); 1763} 1764EXPORT_SYMBOL(input_unregister_handler); 1765 1766/** 1767 * input_handler_for_each_handle - handle iterator 1768 * @handler: input handler to iterate 1769 * @data: data for the callback 1770 * @fn: function to be called for each handle 1771 * 1772 * Iterate over @bus's list of devices, and call @fn for each, passing 1773 * it @data and stop when @fn returns a non-zero value. The function is 1774 * using RCU to traverse the list and therefore may be usind in atonic 1775 * contexts. The @fn callback is invoked from RCU critical section and 1776 * thus must not sleep. 1777 */ 1778int input_handler_for_each_handle(struct input_handler *handler, void *data, 1779 int (*fn)(struct input_handle *, void *)) 1780{ 1781 struct input_handle *handle; 1782 int retval = 0; 1783 1784 rcu_read_lock(); 1785 1786 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1787 retval = fn(handle, data); 1788 if (retval) 1789 break; 1790 } 1791 1792 rcu_read_unlock(); 1793 1794 return retval; 1795} 1796EXPORT_SYMBOL(input_handler_for_each_handle); 1797 1798/** 1799 * input_register_handle - register a new input handle 1800 * @handle: handle to register 1801 * 1802 * This function puts a new input handle onto device's 1803 * and handler's lists so that events can flow through 1804 * it once it is opened using input_open_device(). 1805 * 1806 * This function is supposed to be called from handler's 1807 * connect() method. 1808 */ 1809int input_register_handle(struct input_handle *handle) 1810{ 1811 struct input_handler *handler = handle->handler; 1812 struct input_dev *dev = handle->dev; 1813 int error; 1814 1815 /* 1816 * We take dev->mutex here to prevent race with 1817 * input_release_device(). 1818 */ 1819 error = mutex_lock_interruptible(&dev->mutex); 1820 if (error) 1821 return error; 1822 1823 /* 1824 * Filters go to the head of the list, normal handlers 1825 * to the tail. 1826 */ 1827 if (handler->filter) 1828 list_add_rcu(&handle->d_node, &dev->h_list); 1829 else 1830 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1831 1832 mutex_unlock(&dev->mutex); 1833 1834 /* 1835 * Since we are supposed to be called from ->connect() 1836 * which is mutually exclusive with ->disconnect() 1837 * we can't be racing with input_unregister_handle() 1838 * and so separate lock is not needed here. 1839 */ 1840 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1841 1842 if (handler->start) 1843 handler->start(handle); 1844 1845 return 0; 1846} 1847EXPORT_SYMBOL(input_register_handle); 1848 1849/** 1850 * input_unregister_handle - unregister an input handle 1851 * @handle: handle to unregister 1852 * 1853 * This function removes input handle from device's 1854 * and handler's lists. 1855 * 1856 * This function is supposed to be called from handler's 1857 * disconnect() method. 1858 */ 1859void input_unregister_handle(struct input_handle *handle) 1860{ 1861 struct input_dev *dev = handle->dev; 1862 1863 list_del_rcu(&handle->h_node); 1864 1865 /* 1866 * Take dev->mutex to prevent race with input_release_device(). 1867 */ 1868 mutex_lock(&dev->mutex); 1869 list_del_rcu(&handle->d_node); 1870 mutex_unlock(&dev->mutex); 1871 1872 synchronize_rcu(); 1873} 1874EXPORT_SYMBOL(input_unregister_handle); 1875 1876static int input_open_file(struct inode *inode, struct file *file) 1877{ 1878 struct input_handler *handler; 1879 const struct file_operations *old_fops, *new_fops = NULL; 1880 int err; 1881 1882 err = mutex_lock_interruptible(&input_mutex); 1883 if (err) 1884 return err; 1885 1886 /* No load-on-demand here? */ 1887 handler = input_table[iminor(inode) >> 5]; 1888 if (handler) 1889 new_fops = fops_get(handler->fops); 1890 1891 mutex_unlock(&input_mutex); 1892 1893 /* 1894 * That's _really_ odd. Usually NULL ->open means "nothing special", 1895 * not "no device". Oh, well... 1896 */ 1897 if (!new_fops || !new_fops->open) { 1898 fops_put(new_fops); 1899 err = -ENODEV; 1900 goto out; 1901 } 1902 1903 old_fops = file->f_op; 1904 file->f_op = new_fops; 1905 1906 err = new_fops->open(inode, file); 1907 if (err) { 1908 fops_put(file->f_op); 1909 file->f_op = fops_get(old_fops); 1910 } 1911 fops_put(old_fops); 1912out: 1913 return err; 1914} 1915 1916static const struct file_operations input_fops = { 1917 .owner = THIS_MODULE, 1918 .open = input_open_file, 1919}; 1920 1921static void __init input_init_abs_bypass(void) 1922{ 1923 const unsigned int *p; 1924 1925 for (p = input_abs_bypass_init_data; *p; p++) 1926 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1927} 1928 1929static int __init input_init(void) 1930{ 1931 int err; 1932 1933 input_init_abs_bypass(); 1934 1935 err = class_register(&input_class); 1936 if (err) { 1937 printk(KERN_ERR "input: unable to register input_dev class\n"); 1938 return err; 1939 } 1940 1941 err = input_proc_init(); 1942 if (err) 1943 goto fail1; 1944 1945 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1946 if (err) { 1947 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1948 goto fail2; 1949 } 1950 1951 return 0; 1952 1953 fail2: input_proc_exit(); 1954 fail1: class_unregister(&input_class); 1955 return err; 1956} 1957 1958static void __exit input_exit(void) 1959{ 1960 input_proc_exit(); 1961 unregister_chrdev(INPUT_MAJOR, "input"); 1962 class_unregister(&input_class); 1963} 1964 1965subsys_initcall(input_init); 1966module_exit(input_exit);