at v2.6.34-rc1 853 lines 22 kB view raw
1/* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6#include <linux/bitops.h> 7#include <linux/etherdevice.h> 8#include <net/cfg80211.h> 9#include <net/ip.h> 10#include "core.h" 11 12struct ieee80211_rate * 13ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 14 u32 basic_rates, int bitrate) 15{ 16 struct ieee80211_rate *result = &sband->bitrates[0]; 17 int i; 18 19 for (i = 0; i < sband->n_bitrates; i++) { 20 if (!(basic_rates & BIT(i))) 21 continue; 22 if (sband->bitrates[i].bitrate > bitrate) 23 continue; 24 result = &sband->bitrates[i]; 25 } 26 27 return result; 28} 29EXPORT_SYMBOL(ieee80211_get_response_rate); 30 31int ieee80211_channel_to_frequency(int chan) 32{ 33 if (chan < 14) 34 return 2407 + chan * 5; 35 36 if (chan == 14) 37 return 2484; 38 39 /* FIXME: 802.11j 17.3.8.3.2 */ 40 return (chan + 1000) * 5; 41} 42EXPORT_SYMBOL(ieee80211_channel_to_frequency); 43 44int ieee80211_frequency_to_channel(int freq) 45{ 46 if (freq == 2484) 47 return 14; 48 49 if (freq < 2484) 50 return (freq - 2407) / 5; 51 52 /* FIXME: 802.11j 17.3.8.3.2 */ 53 return freq/5 - 1000; 54} 55EXPORT_SYMBOL(ieee80211_frequency_to_channel); 56 57struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 58 int freq) 59{ 60 enum ieee80211_band band; 61 struct ieee80211_supported_band *sband; 62 int i; 63 64 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 65 sband = wiphy->bands[band]; 66 67 if (!sband) 68 continue; 69 70 for (i = 0; i < sband->n_channels; i++) { 71 if (sband->channels[i].center_freq == freq) 72 return &sband->channels[i]; 73 } 74 } 75 76 return NULL; 77} 78EXPORT_SYMBOL(__ieee80211_get_channel); 79 80static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 81 enum ieee80211_band band) 82{ 83 int i, want; 84 85 switch (band) { 86 case IEEE80211_BAND_5GHZ: 87 want = 3; 88 for (i = 0; i < sband->n_bitrates; i++) { 89 if (sband->bitrates[i].bitrate == 60 || 90 sband->bitrates[i].bitrate == 120 || 91 sband->bitrates[i].bitrate == 240) { 92 sband->bitrates[i].flags |= 93 IEEE80211_RATE_MANDATORY_A; 94 want--; 95 } 96 } 97 WARN_ON(want); 98 break; 99 case IEEE80211_BAND_2GHZ: 100 want = 7; 101 for (i = 0; i < sband->n_bitrates; i++) { 102 if (sband->bitrates[i].bitrate == 10) { 103 sband->bitrates[i].flags |= 104 IEEE80211_RATE_MANDATORY_B | 105 IEEE80211_RATE_MANDATORY_G; 106 want--; 107 } 108 109 if (sband->bitrates[i].bitrate == 20 || 110 sband->bitrates[i].bitrate == 55 || 111 sband->bitrates[i].bitrate == 110 || 112 sband->bitrates[i].bitrate == 60 || 113 sband->bitrates[i].bitrate == 120 || 114 sband->bitrates[i].bitrate == 240) { 115 sband->bitrates[i].flags |= 116 IEEE80211_RATE_MANDATORY_G; 117 want--; 118 } 119 120 if (sband->bitrates[i].bitrate != 10 && 121 sband->bitrates[i].bitrate != 20 && 122 sband->bitrates[i].bitrate != 55 && 123 sband->bitrates[i].bitrate != 110) 124 sband->bitrates[i].flags |= 125 IEEE80211_RATE_ERP_G; 126 } 127 WARN_ON(want != 0 && want != 3 && want != 6); 128 break; 129 case IEEE80211_NUM_BANDS: 130 WARN_ON(1); 131 break; 132 } 133} 134 135void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 136{ 137 enum ieee80211_band band; 138 139 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 140 if (wiphy->bands[band]) 141 set_mandatory_flags_band(wiphy->bands[band], band); 142} 143 144int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 145 struct key_params *params, int key_idx, 146 const u8 *mac_addr) 147{ 148 int i; 149 150 if (key_idx > 5) 151 return -EINVAL; 152 153 /* 154 * Disallow pairwise keys with non-zero index unless it's WEP 155 * (because current deployments use pairwise WEP keys with 156 * non-zero indizes but 802.11i clearly specifies to use zero) 157 */ 158 if (mac_addr && key_idx && 159 params->cipher != WLAN_CIPHER_SUITE_WEP40 && 160 params->cipher != WLAN_CIPHER_SUITE_WEP104) 161 return -EINVAL; 162 163 switch (params->cipher) { 164 case WLAN_CIPHER_SUITE_WEP40: 165 if (params->key_len != WLAN_KEY_LEN_WEP40) 166 return -EINVAL; 167 break; 168 case WLAN_CIPHER_SUITE_TKIP: 169 if (params->key_len != WLAN_KEY_LEN_TKIP) 170 return -EINVAL; 171 break; 172 case WLAN_CIPHER_SUITE_CCMP: 173 if (params->key_len != WLAN_KEY_LEN_CCMP) 174 return -EINVAL; 175 break; 176 case WLAN_CIPHER_SUITE_WEP104: 177 if (params->key_len != WLAN_KEY_LEN_WEP104) 178 return -EINVAL; 179 break; 180 case WLAN_CIPHER_SUITE_AES_CMAC: 181 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 182 return -EINVAL; 183 break; 184 default: 185 return -EINVAL; 186 } 187 188 if (params->seq) { 189 switch (params->cipher) { 190 case WLAN_CIPHER_SUITE_WEP40: 191 case WLAN_CIPHER_SUITE_WEP104: 192 /* These ciphers do not use key sequence */ 193 return -EINVAL; 194 case WLAN_CIPHER_SUITE_TKIP: 195 case WLAN_CIPHER_SUITE_CCMP: 196 case WLAN_CIPHER_SUITE_AES_CMAC: 197 if (params->seq_len != 6) 198 return -EINVAL; 199 break; 200 } 201 } 202 203 for (i = 0; i < rdev->wiphy.n_cipher_suites; i++) 204 if (params->cipher == rdev->wiphy.cipher_suites[i]) 205 break; 206 if (i == rdev->wiphy.n_cipher_suites) 207 return -EINVAL; 208 209 return 0; 210} 211 212/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 213/* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 214const unsigned char rfc1042_header[] __aligned(2) = 215 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 216EXPORT_SYMBOL(rfc1042_header); 217 218/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 219const unsigned char bridge_tunnel_header[] __aligned(2) = 220 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 221EXPORT_SYMBOL(bridge_tunnel_header); 222 223unsigned int ieee80211_hdrlen(__le16 fc) 224{ 225 unsigned int hdrlen = 24; 226 227 if (ieee80211_is_data(fc)) { 228 if (ieee80211_has_a4(fc)) 229 hdrlen = 30; 230 if (ieee80211_is_data_qos(fc)) { 231 hdrlen += IEEE80211_QOS_CTL_LEN; 232 if (ieee80211_has_order(fc)) 233 hdrlen += IEEE80211_HT_CTL_LEN; 234 } 235 goto out; 236 } 237 238 if (ieee80211_is_ctl(fc)) { 239 /* 240 * ACK and CTS are 10 bytes, all others 16. To see how 241 * to get this condition consider 242 * subtype mask: 0b0000000011110000 (0x00F0) 243 * ACK subtype: 0b0000000011010000 (0x00D0) 244 * CTS subtype: 0b0000000011000000 (0x00C0) 245 * bits that matter: ^^^ (0x00E0) 246 * value of those: 0b0000000011000000 (0x00C0) 247 */ 248 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 249 hdrlen = 10; 250 else 251 hdrlen = 16; 252 } 253out: 254 return hdrlen; 255} 256EXPORT_SYMBOL(ieee80211_hdrlen); 257 258unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 259{ 260 const struct ieee80211_hdr *hdr = 261 (const struct ieee80211_hdr *)skb->data; 262 unsigned int hdrlen; 263 264 if (unlikely(skb->len < 10)) 265 return 0; 266 hdrlen = ieee80211_hdrlen(hdr->frame_control); 267 if (unlikely(hdrlen > skb->len)) 268 return 0; 269 return hdrlen; 270} 271EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 272 273static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 274{ 275 int ae = meshhdr->flags & MESH_FLAGS_AE; 276 /* 7.1.3.5a.2 */ 277 switch (ae) { 278 case 0: 279 return 6; 280 case MESH_FLAGS_AE_A4: 281 return 12; 282 case MESH_FLAGS_AE_A5_A6: 283 return 18; 284 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): 285 return 24; 286 default: 287 return 6; 288 } 289} 290 291int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 292 enum nl80211_iftype iftype) 293{ 294 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 295 u16 hdrlen, ethertype; 296 u8 *payload; 297 u8 dst[ETH_ALEN]; 298 u8 src[ETH_ALEN] __aligned(2); 299 300 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 301 return -1; 302 303 hdrlen = ieee80211_hdrlen(hdr->frame_control); 304 305 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 306 * header 307 * IEEE 802.11 address fields: 308 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 309 * 0 0 DA SA BSSID n/a 310 * 0 1 DA BSSID SA n/a 311 * 1 0 BSSID SA DA n/a 312 * 1 1 RA TA DA SA 313 */ 314 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 315 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 316 317 switch (hdr->frame_control & 318 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 319 case cpu_to_le16(IEEE80211_FCTL_TODS): 320 if (unlikely(iftype != NL80211_IFTYPE_AP && 321 iftype != NL80211_IFTYPE_AP_VLAN)) 322 return -1; 323 break; 324 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 325 if (unlikely(iftype != NL80211_IFTYPE_WDS && 326 iftype != NL80211_IFTYPE_MESH_POINT && 327 iftype != NL80211_IFTYPE_AP_VLAN && 328 iftype != NL80211_IFTYPE_STATION)) 329 return -1; 330 if (iftype == NL80211_IFTYPE_MESH_POINT) { 331 struct ieee80211s_hdr *meshdr = 332 (struct ieee80211s_hdr *) (skb->data + hdrlen); 333 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 334 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 335 memcpy(dst, meshdr->eaddr1, ETH_ALEN); 336 memcpy(src, meshdr->eaddr2, ETH_ALEN); 337 } 338 } 339 break; 340 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 341 if ((iftype != NL80211_IFTYPE_STATION && 342 iftype != NL80211_IFTYPE_MESH_POINT) || 343 (is_multicast_ether_addr(dst) && 344 !compare_ether_addr(src, addr))) 345 return -1; 346 if (iftype == NL80211_IFTYPE_MESH_POINT) { 347 struct ieee80211s_hdr *meshdr = 348 (struct ieee80211s_hdr *) (skb->data + hdrlen); 349 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 350 if (meshdr->flags & MESH_FLAGS_AE_A4) 351 memcpy(src, meshdr->eaddr1, ETH_ALEN); 352 } 353 break; 354 case cpu_to_le16(0): 355 if (iftype != NL80211_IFTYPE_ADHOC) 356 return -1; 357 break; 358 } 359 360 if (unlikely(skb->len - hdrlen < 8)) 361 return -1; 362 363 payload = skb->data + hdrlen; 364 ethertype = (payload[6] << 8) | payload[7]; 365 366 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 367 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 368 compare_ether_addr(payload, bridge_tunnel_header) == 0)) { 369 /* remove RFC1042 or Bridge-Tunnel encapsulation and 370 * replace EtherType */ 371 skb_pull(skb, hdrlen + 6); 372 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 373 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 374 } else { 375 struct ethhdr *ehdr; 376 __be16 len; 377 378 skb_pull(skb, hdrlen); 379 len = htons(skb->len); 380 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 381 memcpy(ehdr->h_dest, dst, ETH_ALEN); 382 memcpy(ehdr->h_source, src, ETH_ALEN); 383 ehdr->h_proto = len; 384 } 385 return 0; 386} 387EXPORT_SYMBOL(ieee80211_data_to_8023); 388 389int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 390 enum nl80211_iftype iftype, u8 *bssid, bool qos) 391{ 392 struct ieee80211_hdr hdr; 393 u16 hdrlen, ethertype; 394 __le16 fc; 395 const u8 *encaps_data; 396 int encaps_len, skip_header_bytes; 397 int nh_pos, h_pos; 398 int head_need; 399 400 if (unlikely(skb->len < ETH_HLEN)) 401 return -EINVAL; 402 403 nh_pos = skb_network_header(skb) - skb->data; 404 h_pos = skb_transport_header(skb) - skb->data; 405 406 /* convert Ethernet header to proper 802.11 header (based on 407 * operation mode) */ 408 ethertype = (skb->data[12] << 8) | skb->data[13]; 409 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 410 411 switch (iftype) { 412 case NL80211_IFTYPE_AP: 413 case NL80211_IFTYPE_AP_VLAN: 414 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 415 /* DA BSSID SA */ 416 memcpy(hdr.addr1, skb->data, ETH_ALEN); 417 memcpy(hdr.addr2, addr, ETH_ALEN); 418 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 419 hdrlen = 24; 420 break; 421 case NL80211_IFTYPE_STATION: 422 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 423 /* BSSID SA DA */ 424 memcpy(hdr.addr1, bssid, ETH_ALEN); 425 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 426 memcpy(hdr.addr3, skb->data, ETH_ALEN); 427 hdrlen = 24; 428 break; 429 case NL80211_IFTYPE_ADHOC: 430 /* DA SA BSSID */ 431 memcpy(hdr.addr1, skb->data, ETH_ALEN); 432 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 433 memcpy(hdr.addr3, bssid, ETH_ALEN); 434 hdrlen = 24; 435 break; 436 default: 437 return -EOPNOTSUPP; 438 } 439 440 if (qos) { 441 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 442 hdrlen += 2; 443 } 444 445 hdr.frame_control = fc; 446 hdr.duration_id = 0; 447 hdr.seq_ctrl = 0; 448 449 skip_header_bytes = ETH_HLEN; 450 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 451 encaps_data = bridge_tunnel_header; 452 encaps_len = sizeof(bridge_tunnel_header); 453 skip_header_bytes -= 2; 454 } else if (ethertype > 0x600) { 455 encaps_data = rfc1042_header; 456 encaps_len = sizeof(rfc1042_header); 457 skip_header_bytes -= 2; 458 } else { 459 encaps_data = NULL; 460 encaps_len = 0; 461 } 462 463 skb_pull(skb, skip_header_bytes); 464 nh_pos -= skip_header_bytes; 465 h_pos -= skip_header_bytes; 466 467 head_need = hdrlen + encaps_len - skb_headroom(skb); 468 469 if (head_need > 0 || skb_cloned(skb)) { 470 head_need = max(head_need, 0); 471 if (head_need) 472 skb_orphan(skb); 473 474 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) { 475 printk(KERN_ERR "failed to reallocate Tx buffer\n"); 476 return -ENOMEM; 477 } 478 skb->truesize += head_need; 479 } 480 481 if (encaps_data) { 482 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 483 nh_pos += encaps_len; 484 h_pos += encaps_len; 485 } 486 487 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 488 489 nh_pos += hdrlen; 490 h_pos += hdrlen; 491 492 /* Update skb pointers to various headers since this modified frame 493 * is going to go through Linux networking code that may potentially 494 * need things like pointer to IP header. */ 495 skb_set_mac_header(skb, 0); 496 skb_set_network_header(skb, nh_pos); 497 skb_set_transport_header(skb, h_pos); 498 499 return 0; 500} 501EXPORT_SYMBOL(ieee80211_data_from_8023); 502 503 504void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 505 const u8 *addr, enum nl80211_iftype iftype, 506 const unsigned int extra_headroom) 507{ 508 struct sk_buff *frame = NULL; 509 u16 ethertype; 510 u8 *payload; 511 const struct ethhdr *eth; 512 int remaining, err; 513 u8 dst[ETH_ALEN], src[ETH_ALEN]; 514 515 err = ieee80211_data_to_8023(skb, addr, iftype); 516 if (err) 517 goto out; 518 519 /* skip the wrapping header */ 520 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 521 if (!eth) 522 goto out; 523 524 while (skb != frame) { 525 u8 padding; 526 __be16 len = eth->h_proto; 527 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 528 529 remaining = skb->len; 530 memcpy(dst, eth->h_dest, ETH_ALEN); 531 memcpy(src, eth->h_source, ETH_ALEN); 532 533 padding = (4 - subframe_len) & 0x3; 534 /* the last MSDU has no padding */ 535 if (subframe_len > remaining) 536 goto purge; 537 538 skb_pull(skb, sizeof(struct ethhdr)); 539 /* reuse skb for the last subframe */ 540 if (remaining <= subframe_len + padding) 541 frame = skb; 542 else { 543 unsigned int hlen = ALIGN(extra_headroom, 4); 544 /* 545 * Allocate and reserve two bytes more for payload 546 * alignment since sizeof(struct ethhdr) is 14. 547 */ 548 frame = dev_alloc_skb(hlen + subframe_len + 2); 549 if (!frame) 550 goto purge; 551 552 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 553 memcpy(skb_put(frame, ntohs(len)), skb->data, 554 ntohs(len)); 555 556 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 557 padding); 558 if (!eth) { 559 dev_kfree_skb(frame); 560 goto purge; 561 } 562 } 563 564 skb_reset_network_header(frame); 565 frame->dev = skb->dev; 566 frame->priority = skb->priority; 567 568 payload = frame->data; 569 ethertype = (payload[6] << 8) | payload[7]; 570 571 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 572 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 573 compare_ether_addr(payload, 574 bridge_tunnel_header) == 0)) { 575 /* remove RFC1042 or Bridge-Tunnel 576 * encapsulation and replace EtherType */ 577 skb_pull(frame, 6); 578 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 579 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 580 } else { 581 memcpy(skb_push(frame, sizeof(__be16)), &len, 582 sizeof(__be16)); 583 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 584 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 585 } 586 __skb_queue_tail(list, frame); 587 } 588 589 return; 590 591 purge: 592 __skb_queue_purge(list); 593 out: 594 dev_kfree_skb(skb); 595} 596EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 597 598/* Given a data frame determine the 802.1p/1d tag to use. */ 599unsigned int cfg80211_classify8021d(struct sk_buff *skb) 600{ 601 unsigned int dscp; 602 603 /* skb->priority values from 256->263 are magic values to 604 * directly indicate a specific 802.1d priority. This is used 605 * to allow 802.1d priority to be passed directly in from VLAN 606 * tags, etc. 607 */ 608 if (skb->priority >= 256 && skb->priority <= 263) 609 return skb->priority - 256; 610 611 switch (skb->protocol) { 612 case htons(ETH_P_IP): 613 dscp = ip_hdr(skb)->tos & 0xfc; 614 break; 615 default: 616 return 0; 617 } 618 619 return dscp >> 5; 620} 621EXPORT_SYMBOL(cfg80211_classify8021d); 622 623const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 624{ 625 u8 *end, *pos; 626 627 pos = bss->information_elements; 628 if (pos == NULL) 629 return NULL; 630 end = pos + bss->len_information_elements; 631 632 while (pos + 1 < end) { 633 if (pos + 2 + pos[1] > end) 634 break; 635 if (pos[0] == ie) 636 return pos; 637 pos += 2 + pos[1]; 638 } 639 640 return NULL; 641} 642EXPORT_SYMBOL(ieee80211_bss_get_ie); 643 644void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 645{ 646 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 647 struct net_device *dev = wdev->netdev; 648 int i; 649 650 if (!wdev->connect_keys) 651 return; 652 653 for (i = 0; i < 6; i++) { 654 if (!wdev->connect_keys->params[i].cipher) 655 continue; 656 if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL, 657 &wdev->connect_keys->params[i])) { 658 printk(KERN_ERR "%s: failed to set key %d\n", 659 dev->name, i); 660 continue; 661 } 662 if (wdev->connect_keys->def == i) 663 if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) { 664 printk(KERN_ERR "%s: failed to set defkey %d\n", 665 dev->name, i); 666 continue; 667 } 668 if (wdev->connect_keys->defmgmt == i) 669 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 670 printk(KERN_ERR "%s: failed to set mgtdef %d\n", 671 dev->name, i); 672 } 673 674 kfree(wdev->connect_keys); 675 wdev->connect_keys = NULL; 676} 677 678static void cfg80211_process_wdev_events(struct wireless_dev *wdev) 679{ 680 struct cfg80211_event *ev; 681 unsigned long flags; 682 const u8 *bssid = NULL; 683 684 spin_lock_irqsave(&wdev->event_lock, flags); 685 while (!list_empty(&wdev->event_list)) { 686 ev = list_first_entry(&wdev->event_list, 687 struct cfg80211_event, list); 688 list_del(&ev->list); 689 spin_unlock_irqrestore(&wdev->event_lock, flags); 690 691 wdev_lock(wdev); 692 switch (ev->type) { 693 case EVENT_CONNECT_RESULT: 694 if (!is_zero_ether_addr(ev->cr.bssid)) 695 bssid = ev->cr.bssid; 696 __cfg80211_connect_result( 697 wdev->netdev, bssid, 698 ev->cr.req_ie, ev->cr.req_ie_len, 699 ev->cr.resp_ie, ev->cr.resp_ie_len, 700 ev->cr.status, 701 ev->cr.status == WLAN_STATUS_SUCCESS, 702 NULL); 703 break; 704 case EVENT_ROAMED: 705 __cfg80211_roamed(wdev, ev->rm.bssid, 706 ev->rm.req_ie, ev->rm.req_ie_len, 707 ev->rm.resp_ie, ev->rm.resp_ie_len); 708 break; 709 case EVENT_DISCONNECTED: 710 __cfg80211_disconnected(wdev->netdev, 711 ev->dc.ie, ev->dc.ie_len, 712 ev->dc.reason, true); 713 break; 714 case EVENT_IBSS_JOINED: 715 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 716 break; 717 } 718 wdev_unlock(wdev); 719 720 kfree(ev); 721 722 spin_lock_irqsave(&wdev->event_lock, flags); 723 } 724 spin_unlock_irqrestore(&wdev->event_lock, flags); 725} 726 727void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 728{ 729 struct wireless_dev *wdev; 730 731 ASSERT_RTNL(); 732 ASSERT_RDEV_LOCK(rdev); 733 734 mutex_lock(&rdev->devlist_mtx); 735 736 list_for_each_entry(wdev, &rdev->netdev_list, list) 737 cfg80211_process_wdev_events(wdev); 738 739 mutex_unlock(&rdev->devlist_mtx); 740} 741 742int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 743 struct net_device *dev, enum nl80211_iftype ntype, 744 u32 *flags, struct vif_params *params) 745{ 746 int err; 747 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 748 749 ASSERT_RDEV_LOCK(rdev); 750 751 /* don't support changing VLANs, you just re-create them */ 752 if (otype == NL80211_IFTYPE_AP_VLAN) 753 return -EOPNOTSUPP; 754 755 if (!rdev->ops->change_virtual_intf || 756 !(rdev->wiphy.interface_modes & (1 << ntype))) 757 return -EOPNOTSUPP; 758 759 /* if it's part of a bridge, reject changing type to station/ibss */ 760 if (dev->br_port && (ntype == NL80211_IFTYPE_ADHOC || 761 ntype == NL80211_IFTYPE_STATION)) 762 return -EBUSY; 763 764 if (ntype != otype) { 765 dev->ieee80211_ptr->use_4addr = false; 766 767 switch (otype) { 768 case NL80211_IFTYPE_ADHOC: 769 cfg80211_leave_ibss(rdev, dev, false); 770 break; 771 case NL80211_IFTYPE_STATION: 772 cfg80211_disconnect(rdev, dev, 773 WLAN_REASON_DEAUTH_LEAVING, true); 774 break; 775 case NL80211_IFTYPE_MESH_POINT: 776 /* mesh should be handled? */ 777 break; 778 default: 779 break; 780 } 781 782 cfg80211_process_rdev_events(rdev); 783 } 784 785 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 786 ntype, flags, params); 787 788 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 789 790 if (!err && params && params->use_4addr != -1) 791 dev->ieee80211_ptr->use_4addr = params->use_4addr; 792 793 if (!err) { 794 dev->priv_flags &= ~IFF_DONT_BRIDGE; 795 switch (ntype) { 796 case NL80211_IFTYPE_STATION: 797 if (dev->ieee80211_ptr->use_4addr) 798 break; 799 /* fall through */ 800 case NL80211_IFTYPE_ADHOC: 801 dev->priv_flags |= IFF_DONT_BRIDGE; 802 break; 803 case NL80211_IFTYPE_AP: 804 case NL80211_IFTYPE_AP_VLAN: 805 case NL80211_IFTYPE_WDS: 806 case NL80211_IFTYPE_MESH_POINT: 807 /* bridging OK */ 808 break; 809 case NL80211_IFTYPE_MONITOR: 810 /* monitor can't bridge anyway */ 811 break; 812 case NL80211_IFTYPE_UNSPECIFIED: 813 case __NL80211_IFTYPE_AFTER_LAST: 814 /* not happening */ 815 break; 816 } 817 } 818 819 return err; 820} 821 822u16 cfg80211_calculate_bitrate(struct rate_info *rate) 823{ 824 int modulation, streams, bitrate; 825 826 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) 827 return rate->legacy; 828 829 /* the formula below does only work for MCS values smaller than 32 */ 830 if (rate->mcs >= 32) 831 return 0; 832 833 modulation = rate->mcs & 7; 834 streams = (rate->mcs >> 3) + 1; 835 836 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 837 13500000 : 6500000; 838 839 if (modulation < 4) 840 bitrate *= (modulation + 1); 841 else if (modulation == 4) 842 bitrate *= (modulation + 2); 843 else 844 bitrate *= (modulation + 3); 845 846 bitrate *= streams; 847 848 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 849 bitrate = (bitrate / 9) * 10; 850 851 /* do NOT round down here */ 852 return (bitrate + 50000) / 100000; 853}