1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/slab.h> /* For kmalloc() */ 6#include <linux/smp.h> 7#include <linux/cpumask.h> 8#include <linux/pfn.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#ifdef CONFIG_SMP 43 44/* minimum unit size, also is the maximum supported allocation size */ 45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47/* 48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 49 * back on the first chunk for dynamic percpu allocation if arch is 50 * manually allocating and mapping it for faster access (as a part of 51 * large page mapping for example). 52 * 53 * The following values give between one and two pages of free space 54 * after typical minimal boot (2-way SMP, single disk and NIC) with 55 * both defconfig and a distro config on x86_64 and 32. More 56 * intelligent way to determine this would be nice. 57 */ 58#if BITS_PER_LONG > 32 59#define PERCPU_DYNAMIC_RESERVE (20 << 10) 60#else 61#define PERCPU_DYNAMIC_RESERVE (12 << 10) 62#endif 63 64extern void *pcpu_base_addr; 65extern const unsigned long *pcpu_unit_offsets; 66 67struct pcpu_group_info { 68 int nr_units; /* aligned # of units */ 69 unsigned long base_offset; /* base address offset */ 70 unsigned int *cpu_map; /* unit->cpu map, empty 71 * entries contain NR_CPUS */ 72}; 73 74struct pcpu_alloc_info { 75 size_t static_size; 76 size_t reserved_size; 77 size_t dyn_size; 78 size_t unit_size; 79 size_t atom_size; 80 size_t alloc_size; 81 size_t __ai_size; /* internal, don't use */ 82 int nr_groups; /* 0 if grouping unnecessary */ 83 struct pcpu_group_info groups[]; 84}; 85 86enum pcpu_fc { 87 PCPU_FC_AUTO, 88 PCPU_FC_EMBED, 89 PCPU_FC_PAGE, 90 91 PCPU_FC_NR, 92}; 93extern const char *pcpu_fc_names[PCPU_FC_NR]; 94 95extern enum pcpu_fc pcpu_chosen_fc; 96 97typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 98 size_t align); 99typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 100typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 101typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 102 103extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 104 int nr_units); 105extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 106 107extern struct pcpu_alloc_info * __init pcpu_build_alloc_info( 108 size_t reserved_size, ssize_t dyn_size, 109 size_t atom_size, 110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn); 111 112extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 113 void *base_addr); 114 115#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 116extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 117 size_t atom_size, 118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 119 pcpu_fc_alloc_fn_t alloc_fn, 120 pcpu_fc_free_fn_t free_fn); 121#endif 122 123#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 124extern int __init pcpu_page_first_chunk(size_t reserved_size, 125 pcpu_fc_alloc_fn_t alloc_fn, 126 pcpu_fc_free_fn_t free_fn, 127 pcpu_fc_populate_pte_fn_t populate_pte_fn); 128#endif 129 130/* 131 * Use this to get to a cpu's version of the per-cpu object 132 * dynamically allocated. Non-atomic access to the current CPU's 133 * version should probably be combined with get_cpu()/put_cpu(). 134 */ 135#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 136 137extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 138extern void __percpu *__alloc_percpu(size_t size, size_t align); 139extern void free_percpu(void __percpu *__pdata); 140extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 141 142#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 143extern void __init setup_per_cpu_areas(void); 144#endif 145 146#else /* CONFIG_SMP */ 147 148#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 149 150static inline void __percpu *__alloc_percpu(size_t size, size_t align) 151{ 152 /* 153 * Can't easily make larger alignment work with kmalloc. WARN 154 * on it. Larger alignment should only be used for module 155 * percpu sections on SMP for which this path isn't used. 156 */ 157 WARN_ON_ONCE(align > SMP_CACHE_BYTES); 158 return kzalloc(size, GFP_KERNEL); 159} 160 161static inline void free_percpu(void __percpu *p) 162{ 163 kfree(p); 164} 165 166static inline phys_addr_t per_cpu_ptr_to_phys(void *addr) 167{ 168 return __pa(addr); 169} 170 171static inline void __init setup_per_cpu_areas(void) { } 172 173static inline void *pcpu_lpage_remapped(void *kaddr) 174{ 175 return NULL; 176} 177 178#endif /* CONFIG_SMP */ 179 180#define alloc_percpu(type) \ 181 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 182 183/* 184 * Optional methods for optimized non-lvalue per-cpu variable access. 185 * 186 * @var can be a percpu variable or a field of it and its size should 187 * equal char, int or long. percpu_read() evaluates to a lvalue and 188 * all others to void. 189 * 190 * These operations are guaranteed to be atomic w.r.t. preemption. 191 * The generic versions use plain get/put_cpu_var(). Archs are 192 * encouraged to implement single-instruction alternatives which don't 193 * require preemption protection. 194 */ 195#ifndef percpu_read 196# define percpu_read(var) \ 197 ({ \ 198 typeof(var) *pr_ptr__ = &(var); \ 199 typeof(var) pr_ret__; \ 200 pr_ret__ = get_cpu_var(*pr_ptr__); \ 201 put_cpu_var(*pr_ptr__); \ 202 pr_ret__; \ 203 }) 204#endif 205 206#define __percpu_generic_to_op(var, val, op) \ 207do { \ 208 typeof(var) *pgto_ptr__ = &(var); \ 209 get_cpu_var(*pgto_ptr__) op val; \ 210 put_cpu_var(*pgto_ptr__); \ 211} while (0) 212 213#ifndef percpu_write 214# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 215#endif 216 217#ifndef percpu_add 218# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 219#endif 220 221#ifndef percpu_sub 222# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 223#endif 224 225#ifndef percpu_and 226# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 227#endif 228 229#ifndef percpu_or 230# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 231#endif 232 233#ifndef percpu_xor 234# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 235#endif 236 237/* 238 * Branching function to split up a function into a set of functions that 239 * are called for different scalar sizes of the objects handled. 240 */ 241 242extern void __bad_size_call_parameter(void); 243 244#define __pcpu_size_call_return(stem, variable) \ 245({ typeof(variable) pscr_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr_ret__ = stem##1(variable);break; \ 249 case 2: pscr_ret__ = stem##2(variable);break; \ 250 case 4: pscr_ret__ = stem##4(variable);break; \ 251 case 8: pscr_ret__ = stem##8(variable);break; \ 252 default: \ 253 __bad_size_call_parameter();break; \ 254 } \ 255 pscr_ret__; \ 256}) 257 258#define __pcpu_size_call(stem, variable, ...) \ 259do { \ 260 __verify_pcpu_ptr(&(variable)); \ 261 switch(sizeof(variable)) { \ 262 case 1: stem##1(variable, __VA_ARGS__);break; \ 263 case 2: stem##2(variable, __VA_ARGS__);break; \ 264 case 4: stem##4(variable, __VA_ARGS__);break; \ 265 case 8: stem##8(variable, __VA_ARGS__);break; \ 266 default: \ 267 __bad_size_call_parameter();break; \ 268 } \ 269} while (0) 270 271/* 272 * Optimized manipulation for memory allocated through the per cpu 273 * allocator or for addresses of per cpu variables. 274 * 275 * These operation guarantee exclusivity of access for other operations 276 * on the *same* processor. The assumption is that per cpu data is only 277 * accessed by a single processor instance (the current one). 278 * 279 * The first group is used for accesses that must be done in a 280 * preemption safe way since we know that the context is not preempt 281 * safe. Interrupts may occur. If the interrupt modifies the variable 282 * too then RMW actions will not be reliable. 283 * 284 * The arch code can provide optimized functions in two ways: 285 * 286 * 1. Override the function completely. F.e. define this_cpu_add(). 287 * The arch must then ensure that the various scalar format passed 288 * are handled correctly. 289 * 290 * 2. Provide functions for certain scalar sizes. F.e. provide 291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 292 * sized RMW actions. If arch code does not provide operations for 293 * a scalar size then the fallback in the generic code will be 294 * used. 295 */ 296 297#define _this_cpu_generic_read(pcp) \ 298({ typeof(pcp) ret__; \ 299 preempt_disable(); \ 300 ret__ = *this_cpu_ptr(&(pcp)); \ 301 preempt_enable(); \ 302 ret__; \ 303}) 304 305#ifndef this_cpu_read 306# ifndef this_cpu_read_1 307# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 308# endif 309# ifndef this_cpu_read_2 310# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 311# endif 312# ifndef this_cpu_read_4 313# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 314# endif 315# ifndef this_cpu_read_8 316# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 317# endif 318# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 319#endif 320 321#define _this_cpu_generic_to_op(pcp, val, op) \ 322do { \ 323 preempt_disable(); \ 324 *__this_cpu_ptr(&(pcp)) op val; \ 325 preempt_enable(); \ 326} while (0) 327 328#ifndef this_cpu_write 329# ifndef this_cpu_write_1 330# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 331# endif 332# ifndef this_cpu_write_2 333# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 334# endif 335# ifndef this_cpu_write_4 336# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 337# endif 338# ifndef this_cpu_write_8 339# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 340# endif 341# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 342#endif 343 344#ifndef this_cpu_add 345# ifndef this_cpu_add_1 346# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 347# endif 348# ifndef this_cpu_add_2 349# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 350# endif 351# ifndef this_cpu_add_4 352# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 353# endif 354# ifndef this_cpu_add_8 355# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 356# endif 357# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 358#endif 359 360#ifndef this_cpu_sub 361# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 362#endif 363 364#ifndef this_cpu_inc 365# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 366#endif 367 368#ifndef this_cpu_dec 369# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 370#endif 371 372#ifndef this_cpu_and 373# ifndef this_cpu_and_1 374# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 375# endif 376# ifndef this_cpu_and_2 377# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 378# endif 379# ifndef this_cpu_and_4 380# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 381# endif 382# ifndef this_cpu_and_8 383# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 384# endif 385# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 386#endif 387 388#ifndef this_cpu_or 389# ifndef this_cpu_or_1 390# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 391# endif 392# ifndef this_cpu_or_2 393# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 394# endif 395# ifndef this_cpu_or_4 396# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 397# endif 398# ifndef this_cpu_or_8 399# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 400# endif 401# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 402#endif 403 404#ifndef this_cpu_xor 405# ifndef this_cpu_xor_1 406# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 407# endif 408# ifndef this_cpu_xor_2 409# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 410# endif 411# ifndef this_cpu_xor_4 412# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 413# endif 414# ifndef this_cpu_xor_8 415# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 416# endif 417# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 418#endif 419 420/* 421 * Generic percpu operations that do not require preemption handling. 422 * Either we do not care about races or the caller has the 423 * responsibility of handling preemptions issues. Arch code can still 424 * override these instructions since the arch per cpu code may be more 425 * efficient and may actually get race freeness for free (that is the 426 * case for x86 for example). 427 * 428 * If there is no other protection through preempt disable and/or 429 * disabling interupts then one of these RMW operations can show unexpected 430 * behavior because the execution thread was rescheduled on another processor 431 * or an interrupt occurred and the same percpu variable was modified from 432 * the interrupt context. 433 */ 434#ifndef __this_cpu_read 435# ifndef __this_cpu_read_1 436# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 437# endif 438# ifndef __this_cpu_read_2 439# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 440# endif 441# ifndef __this_cpu_read_4 442# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 443# endif 444# ifndef __this_cpu_read_8 445# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 446# endif 447# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 448#endif 449 450#define __this_cpu_generic_to_op(pcp, val, op) \ 451do { \ 452 *__this_cpu_ptr(&(pcp)) op val; \ 453} while (0) 454 455#ifndef __this_cpu_write 456# ifndef __this_cpu_write_1 457# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 458# endif 459# ifndef __this_cpu_write_2 460# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 461# endif 462# ifndef __this_cpu_write_4 463# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 464# endif 465# ifndef __this_cpu_write_8 466# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 467# endif 468# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 469#endif 470 471#ifndef __this_cpu_add 472# ifndef __this_cpu_add_1 473# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 474# endif 475# ifndef __this_cpu_add_2 476# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 477# endif 478# ifndef __this_cpu_add_4 479# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 480# endif 481# ifndef __this_cpu_add_8 482# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 483# endif 484# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 485#endif 486 487#ifndef __this_cpu_sub 488# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 489#endif 490 491#ifndef __this_cpu_inc 492# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 493#endif 494 495#ifndef __this_cpu_dec 496# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 497#endif 498 499#ifndef __this_cpu_and 500# ifndef __this_cpu_and_1 501# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 502# endif 503# ifndef __this_cpu_and_2 504# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 505# endif 506# ifndef __this_cpu_and_4 507# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 508# endif 509# ifndef __this_cpu_and_8 510# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 511# endif 512# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 513#endif 514 515#ifndef __this_cpu_or 516# ifndef __this_cpu_or_1 517# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 518# endif 519# ifndef __this_cpu_or_2 520# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 521# endif 522# ifndef __this_cpu_or_4 523# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 524# endif 525# ifndef __this_cpu_or_8 526# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 527# endif 528# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 529#endif 530 531#ifndef __this_cpu_xor 532# ifndef __this_cpu_xor_1 533# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 534# endif 535# ifndef __this_cpu_xor_2 536# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 537# endif 538# ifndef __this_cpu_xor_4 539# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 540# endif 541# ifndef __this_cpu_xor_8 542# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 543# endif 544# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 545#endif 546 547/* 548 * IRQ safe versions of the per cpu RMW operations. Note that these operations 549 * are *not* safe against modification of the same variable from another 550 * processors (which one gets when using regular atomic operations) 551 . They are guaranteed to be atomic vs. local interrupts and 552 * preemption only. 553 */ 554#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 555do { \ 556 unsigned long flags; \ 557 local_irq_save(flags); \ 558 *__this_cpu_ptr(&(pcp)) op val; \ 559 local_irq_restore(flags); \ 560} while (0) 561 562#ifndef irqsafe_cpu_add 563# ifndef irqsafe_cpu_add_1 564# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 565# endif 566# ifndef irqsafe_cpu_add_2 567# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 568# endif 569# ifndef irqsafe_cpu_add_4 570# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 571# endif 572# ifndef irqsafe_cpu_add_8 573# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 574# endif 575# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 576#endif 577 578#ifndef irqsafe_cpu_sub 579# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 580#endif 581 582#ifndef irqsafe_cpu_inc 583# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 584#endif 585 586#ifndef irqsafe_cpu_dec 587# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 588#endif 589 590#ifndef irqsafe_cpu_and 591# ifndef irqsafe_cpu_and_1 592# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 593# endif 594# ifndef irqsafe_cpu_and_2 595# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 596# endif 597# ifndef irqsafe_cpu_and_4 598# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 599# endif 600# ifndef irqsafe_cpu_and_8 601# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 602# endif 603# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 604#endif 605 606#ifndef irqsafe_cpu_or 607# ifndef irqsafe_cpu_or_1 608# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 609# endif 610# ifndef irqsafe_cpu_or_2 611# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 612# endif 613# ifndef irqsafe_cpu_or_4 614# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 615# endif 616# ifndef irqsafe_cpu_or_8 617# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 618# endif 619# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 620#endif 621 622#ifndef irqsafe_cpu_xor 623# ifndef irqsafe_cpu_xor_1 624# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 625# endif 626# ifndef irqsafe_cpu_xor_2 627# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 628# endif 629# ifndef irqsafe_cpu_xor_4 630# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 631# endif 632# ifndef irqsafe_cpu_xor_8 633# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 634# endif 635# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 636#endif 637 638#endif /* __LINUX_PERCPU_H */