1/* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7/* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13#include <linux/init.h> 14#include <linux/types.h> 15#include <linux/input.h> 16#include <linux/module.h> 17#include <linux/random.h> 18#include <linux/major.h> 19#include <linux/proc_fs.h> 20#include <linux/sched.h> 21#include <linux/seq_file.h> 22#include <linux/poll.h> 23#include <linux/device.h> 24#include <linux/mutex.h> 25#include <linux/rcupdate.h> 26#include <linux/smp_lock.h> 27#include "input-compat.h" 28 29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30MODULE_DESCRIPTION("Input core"); 31MODULE_LICENSE("GPL"); 32 33#define INPUT_DEVICES 256 34 35/* 36 * EV_ABS events which should not be cached are listed here. 37 */ 38static unsigned int input_abs_bypass_init_data[] __initdata = { 39 ABS_MT_TOUCH_MAJOR, 40 ABS_MT_TOUCH_MINOR, 41 ABS_MT_WIDTH_MAJOR, 42 ABS_MT_WIDTH_MINOR, 43 ABS_MT_ORIENTATION, 44 ABS_MT_POSITION_X, 45 ABS_MT_POSITION_Y, 46 ABS_MT_TOOL_TYPE, 47 ABS_MT_BLOB_ID, 48 ABS_MT_TRACKING_ID, 49 ABS_MT_PRESSURE, 50 0 51}; 52static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 53 54static LIST_HEAD(input_dev_list); 55static LIST_HEAD(input_handler_list); 56 57/* 58 * input_mutex protects access to both input_dev_list and input_handler_list. 59 * This also causes input_[un]register_device and input_[un]register_handler 60 * be mutually exclusive which simplifies locking in drivers implementing 61 * input handlers. 62 */ 63static DEFINE_MUTEX(input_mutex); 64 65static struct input_handler *input_table[8]; 66 67static inline int is_event_supported(unsigned int code, 68 unsigned long *bm, unsigned int max) 69{ 70 return code <= max && test_bit(code, bm); 71} 72 73static int input_defuzz_abs_event(int value, int old_val, int fuzz) 74{ 75 if (fuzz) { 76 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 77 return old_val; 78 79 if (value > old_val - fuzz && value < old_val + fuzz) 80 return (old_val * 3 + value) / 4; 81 82 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 83 return (old_val + value) / 2; 84 } 85 86 return value; 87} 88 89/* 90 * Pass event first through all filters and then, if event has not been 91 * filtered out, through all open handles. This function is called with 92 * dev->event_lock held and interrupts disabled. 93 */ 94static void input_pass_event(struct input_dev *dev, 95 unsigned int type, unsigned int code, int value) 96{ 97 struct input_handler *handler; 98 struct input_handle *handle; 99 100 rcu_read_lock(); 101 102 handle = rcu_dereference(dev->grab); 103 if (handle) 104 handle->handler->event(handle, type, code, value); 105 else { 106 bool filtered = false; 107 108 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 109 if (!handle->open) 110 continue; 111 112 handler = handle->handler; 113 if (!handler->filter) { 114 if (filtered) 115 break; 116 117 handler->event(handle, type, code, value); 118 119 } else if (handler->filter(handle, type, code, value)) 120 filtered = true; 121 } 122 } 123 124 rcu_read_unlock(); 125} 126 127/* 128 * Generate software autorepeat event. Note that we take 129 * dev->event_lock here to avoid racing with input_event 130 * which may cause keys get "stuck". 131 */ 132static void input_repeat_key(unsigned long data) 133{ 134 struct input_dev *dev = (void *) data; 135 unsigned long flags; 136 137 spin_lock_irqsave(&dev->event_lock, flags); 138 139 if (test_bit(dev->repeat_key, dev->key) && 140 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 141 142 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 143 144 if (dev->sync) { 145 /* 146 * Only send SYN_REPORT if we are not in a middle 147 * of driver parsing a new hardware packet. 148 * Otherwise assume that the driver will send 149 * SYN_REPORT once it's done. 150 */ 151 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 152 } 153 154 if (dev->rep[REP_PERIOD]) 155 mod_timer(&dev->timer, jiffies + 156 msecs_to_jiffies(dev->rep[REP_PERIOD])); 157 } 158 159 spin_unlock_irqrestore(&dev->event_lock, flags); 160} 161 162static void input_start_autorepeat(struct input_dev *dev, int code) 163{ 164 if (test_bit(EV_REP, dev->evbit) && 165 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 166 dev->timer.data) { 167 dev->repeat_key = code; 168 mod_timer(&dev->timer, 169 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 170 } 171} 172 173static void input_stop_autorepeat(struct input_dev *dev) 174{ 175 del_timer(&dev->timer); 176} 177 178#define INPUT_IGNORE_EVENT 0 179#define INPUT_PASS_TO_HANDLERS 1 180#define INPUT_PASS_TO_DEVICE 2 181#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 182 183static void input_handle_event(struct input_dev *dev, 184 unsigned int type, unsigned int code, int value) 185{ 186 int disposition = INPUT_IGNORE_EVENT; 187 188 switch (type) { 189 190 case EV_SYN: 191 switch (code) { 192 case SYN_CONFIG: 193 disposition = INPUT_PASS_TO_ALL; 194 break; 195 196 case SYN_REPORT: 197 if (!dev->sync) { 198 dev->sync = 1; 199 disposition = INPUT_PASS_TO_HANDLERS; 200 } 201 break; 202 case SYN_MT_REPORT: 203 dev->sync = 0; 204 disposition = INPUT_PASS_TO_HANDLERS; 205 break; 206 } 207 break; 208 209 case EV_KEY: 210 if (is_event_supported(code, dev->keybit, KEY_MAX) && 211 !!test_bit(code, dev->key) != value) { 212 213 if (value != 2) { 214 __change_bit(code, dev->key); 215 if (value) 216 input_start_autorepeat(dev, code); 217 else 218 input_stop_autorepeat(dev); 219 } 220 221 disposition = INPUT_PASS_TO_HANDLERS; 222 } 223 break; 224 225 case EV_SW: 226 if (is_event_supported(code, dev->swbit, SW_MAX) && 227 !!test_bit(code, dev->sw) != value) { 228 229 __change_bit(code, dev->sw); 230 disposition = INPUT_PASS_TO_HANDLERS; 231 } 232 break; 233 234 case EV_ABS: 235 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 236 237 if (test_bit(code, input_abs_bypass)) { 238 disposition = INPUT_PASS_TO_HANDLERS; 239 break; 240 } 241 242 value = input_defuzz_abs_event(value, 243 dev->abs[code], dev->absfuzz[code]); 244 245 if (dev->abs[code] != value) { 246 dev->abs[code] = value; 247 disposition = INPUT_PASS_TO_HANDLERS; 248 } 249 } 250 break; 251 252 case EV_REL: 253 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 254 disposition = INPUT_PASS_TO_HANDLERS; 255 256 break; 257 258 case EV_MSC: 259 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 260 disposition = INPUT_PASS_TO_ALL; 261 262 break; 263 264 case EV_LED: 265 if (is_event_supported(code, dev->ledbit, LED_MAX) && 266 !!test_bit(code, dev->led) != value) { 267 268 __change_bit(code, dev->led); 269 disposition = INPUT_PASS_TO_ALL; 270 } 271 break; 272 273 case EV_SND: 274 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 275 276 if (!!test_bit(code, dev->snd) != !!value) 277 __change_bit(code, dev->snd); 278 disposition = INPUT_PASS_TO_ALL; 279 } 280 break; 281 282 case EV_REP: 283 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 284 dev->rep[code] = value; 285 disposition = INPUT_PASS_TO_ALL; 286 } 287 break; 288 289 case EV_FF: 290 if (value >= 0) 291 disposition = INPUT_PASS_TO_ALL; 292 break; 293 294 case EV_PWR: 295 disposition = INPUT_PASS_TO_ALL; 296 break; 297 } 298 299 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 300 dev->sync = 0; 301 302 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 303 dev->event(dev, type, code, value); 304 305 if (disposition & INPUT_PASS_TO_HANDLERS) 306 input_pass_event(dev, type, code, value); 307} 308 309/** 310 * input_event() - report new input event 311 * @dev: device that generated the event 312 * @type: type of the event 313 * @code: event code 314 * @value: value of the event 315 * 316 * This function should be used by drivers implementing various input 317 * devices to report input events. See also input_inject_event(). 318 * 319 * NOTE: input_event() may be safely used right after input device was 320 * allocated with input_allocate_device(), even before it is registered 321 * with input_register_device(), but the event will not reach any of the 322 * input handlers. Such early invocation of input_event() may be used 323 * to 'seed' initial state of a switch or initial position of absolute 324 * axis, etc. 325 */ 326void input_event(struct input_dev *dev, 327 unsigned int type, unsigned int code, int value) 328{ 329 unsigned long flags; 330 331 if (is_event_supported(type, dev->evbit, EV_MAX)) { 332 333 spin_lock_irqsave(&dev->event_lock, flags); 334 add_input_randomness(type, code, value); 335 input_handle_event(dev, type, code, value); 336 spin_unlock_irqrestore(&dev->event_lock, flags); 337 } 338} 339EXPORT_SYMBOL(input_event); 340 341/** 342 * input_inject_event() - send input event from input handler 343 * @handle: input handle to send event through 344 * @type: type of the event 345 * @code: event code 346 * @value: value of the event 347 * 348 * Similar to input_event() but will ignore event if device is 349 * "grabbed" and handle injecting event is not the one that owns 350 * the device. 351 */ 352void input_inject_event(struct input_handle *handle, 353 unsigned int type, unsigned int code, int value) 354{ 355 struct input_dev *dev = handle->dev; 356 struct input_handle *grab; 357 unsigned long flags; 358 359 if (is_event_supported(type, dev->evbit, EV_MAX)) { 360 spin_lock_irqsave(&dev->event_lock, flags); 361 362 rcu_read_lock(); 363 grab = rcu_dereference(dev->grab); 364 if (!grab || grab == handle) 365 input_handle_event(dev, type, code, value); 366 rcu_read_unlock(); 367 368 spin_unlock_irqrestore(&dev->event_lock, flags); 369 } 370} 371EXPORT_SYMBOL(input_inject_event); 372 373/** 374 * input_grab_device - grabs device for exclusive use 375 * @handle: input handle that wants to own the device 376 * 377 * When a device is grabbed by an input handle all events generated by 378 * the device are delivered only to this handle. Also events injected 379 * by other input handles are ignored while device is grabbed. 380 */ 381int input_grab_device(struct input_handle *handle) 382{ 383 struct input_dev *dev = handle->dev; 384 int retval; 385 386 retval = mutex_lock_interruptible(&dev->mutex); 387 if (retval) 388 return retval; 389 390 if (dev->grab) { 391 retval = -EBUSY; 392 goto out; 393 } 394 395 rcu_assign_pointer(dev->grab, handle); 396 synchronize_rcu(); 397 398 out: 399 mutex_unlock(&dev->mutex); 400 return retval; 401} 402EXPORT_SYMBOL(input_grab_device); 403 404static void __input_release_device(struct input_handle *handle) 405{ 406 struct input_dev *dev = handle->dev; 407 408 if (dev->grab == handle) { 409 rcu_assign_pointer(dev->grab, NULL); 410 /* Make sure input_pass_event() notices that grab is gone */ 411 synchronize_rcu(); 412 413 list_for_each_entry(handle, &dev->h_list, d_node) 414 if (handle->open && handle->handler->start) 415 handle->handler->start(handle); 416 } 417} 418 419/** 420 * input_release_device - release previously grabbed device 421 * @handle: input handle that owns the device 422 * 423 * Releases previously grabbed device so that other input handles can 424 * start receiving input events. Upon release all handlers attached 425 * to the device have their start() method called so they have a change 426 * to synchronize device state with the rest of the system. 427 */ 428void input_release_device(struct input_handle *handle) 429{ 430 struct input_dev *dev = handle->dev; 431 432 mutex_lock(&dev->mutex); 433 __input_release_device(handle); 434 mutex_unlock(&dev->mutex); 435} 436EXPORT_SYMBOL(input_release_device); 437 438/** 439 * input_open_device - open input device 440 * @handle: handle through which device is being accessed 441 * 442 * This function should be called by input handlers when they 443 * want to start receive events from given input device. 444 */ 445int input_open_device(struct input_handle *handle) 446{ 447 struct input_dev *dev = handle->dev; 448 int retval; 449 450 retval = mutex_lock_interruptible(&dev->mutex); 451 if (retval) 452 return retval; 453 454 if (dev->going_away) { 455 retval = -ENODEV; 456 goto out; 457 } 458 459 handle->open++; 460 461 if (!dev->users++ && dev->open) 462 retval = dev->open(dev); 463 464 if (retval) { 465 dev->users--; 466 if (!--handle->open) { 467 /* 468 * Make sure we are not delivering any more events 469 * through this handle 470 */ 471 synchronize_rcu(); 472 } 473 } 474 475 out: 476 mutex_unlock(&dev->mutex); 477 return retval; 478} 479EXPORT_SYMBOL(input_open_device); 480 481int input_flush_device(struct input_handle *handle, struct file *file) 482{ 483 struct input_dev *dev = handle->dev; 484 int retval; 485 486 retval = mutex_lock_interruptible(&dev->mutex); 487 if (retval) 488 return retval; 489 490 if (dev->flush) 491 retval = dev->flush(dev, file); 492 493 mutex_unlock(&dev->mutex); 494 return retval; 495} 496EXPORT_SYMBOL(input_flush_device); 497 498/** 499 * input_close_device - close input device 500 * @handle: handle through which device is being accessed 501 * 502 * This function should be called by input handlers when they 503 * want to stop receive events from given input device. 504 */ 505void input_close_device(struct input_handle *handle) 506{ 507 struct input_dev *dev = handle->dev; 508 509 mutex_lock(&dev->mutex); 510 511 __input_release_device(handle); 512 513 if (!--dev->users && dev->close) 514 dev->close(dev); 515 516 if (!--handle->open) { 517 /* 518 * synchronize_rcu() makes sure that input_pass_event() 519 * completed and that no more input events are delivered 520 * through this handle 521 */ 522 synchronize_rcu(); 523 } 524 525 mutex_unlock(&dev->mutex); 526} 527EXPORT_SYMBOL(input_close_device); 528 529/* 530 * Prepare device for unregistering 531 */ 532static void input_disconnect_device(struct input_dev *dev) 533{ 534 struct input_handle *handle; 535 int code; 536 537 /* 538 * Mark device as going away. Note that we take dev->mutex here 539 * not to protect access to dev->going_away but rather to ensure 540 * that there are no threads in the middle of input_open_device() 541 */ 542 mutex_lock(&dev->mutex); 543 dev->going_away = true; 544 mutex_unlock(&dev->mutex); 545 546 spin_lock_irq(&dev->event_lock); 547 548 /* 549 * Simulate keyup events for all pressed keys so that handlers 550 * are not left with "stuck" keys. The driver may continue 551 * generate events even after we done here but they will not 552 * reach any handlers. 553 */ 554 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 555 for (code = 0; code <= KEY_MAX; code++) { 556 if (is_event_supported(code, dev->keybit, KEY_MAX) && 557 __test_and_clear_bit(code, dev->key)) { 558 input_pass_event(dev, EV_KEY, code, 0); 559 } 560 } 561 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 562 } 563 564 list_for_each_entry(handle, &dev->h_list, d_node) 565 handle->open = 0; 566 567 spin_unlock_irq(&dev->event_lock); 568} 569 570static int input_fetch_keycode(struct input_dev *dev, int scancode) 571{ 572 switch (dev->keycodesize) { 573 case 1: 574 return ((u8 *)dev->keycode)[scancode]; 575 576 case 2: 577 return ((u16 *)dev->keycode)[scancode]; 578 579 default: 580 return ((u32 *)dev->keycode)[scancode]; 581 } 582} 583 584static int input_default_getkeycode(struct input_dev *dev, 585 int scancode, int *keycode) 586{ 587 if (!dev->keycodesize) 588 return -EINVAL; 589 590 if (scancode >= dev->keycodemax) 591 return -EINVAL; 592 593 *keycode = input_fetch_keycode(dev, scancode); 594 595 return 0; 596} 597 598static int input_default_setkeycode(struct input_dev *dev, 599 int scancode, int keycode) 600{ 601 int old_keycode; 602 int i; 603 604 if (scancode >= dev->keycodemax) 605 return -EINVAL; 606 607 if (!dev->keycodesize) 608 return -EINVAL; 609 610 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 611 return -EINVAL; 612 613 switch (dev->keycodesize) { 614 case 1: { 615 u8 *k = (u8 *)dev->keycode; 616 old_keycode = k[scancode]; 617 k[scancode] = keycode; 618 break; 619 } 620 case 2: { 621 u16 *k = (u16 *)dev->keycode; 622 old_keycode = k[scancode]; 623 k[scancode] = keycode; 624 break; 625 } 626 default: { 627 u32 *k = (u32 *)dev->keycode; 628 old_keycode = k[scancode]; 629 k[scancode] = keycode; 630 break; 631 } 632 } 633 634 __clear_bit(old_keycode, dev->keybit); 635 __set_bit(keycode, dev->keybit); 636 637 for (i = 0; i < dev->keycodemax; i++) { 638 if (input_fetch_keycode(dev, i) == old_keycode) { 639 __set_bit(old_keycode, dev->keybit); 640 break; /* Setting the bit twice is useless, so break */ 641 } 642 } 643 644 return 0; 645} 646 647/** 648 * input_get_keycode - retrieve keycode currently mapped to a given scancode 649 * @dev: input device which keymap is being queried 650 * @scancode: scancode (or its equivalent for device in question) for which 651 * keycode is needed 652 * @keycode: result 653 * 654 * This function should be called by anyone interested in retrieving current 655 * keymap. Presently keyboard and evdev handlers use it. 656 */ 657int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 658{ 659 if (scancode < 0) 660 return -EINVAL; 661 662 return dev->getkeycode(dev, scancode, keycode); 663} 664EXPORT_SYMBOL(input_get_keycode); 665 666/** 667 * input_get_keycode - assign new keycode to a given scancode 668 * @dev: input device which keymap is being updated 669 * @scancode: scancode (or its equivalent for device in question) 670 * @keycode: new keycode to be assigned to the scancode 671 * 672 * This function should be called by anyone needing to update current 673 * keymap. Presently keyboard and evdev handlers use it. 674 */ 675int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 676{ 677 unsigned long flags; 678 int old_keycode; 679 int retval; 680 681 if (scancode < 0) 682 return -EINVAL; 683 684 if (keycode < 0 || keycode > KEY_MAX) 685 return -EINVAL; 686 687 spin_lock_irqsave(&dev->event_lock, flags); 688 689 retval = dev->getkeycode(dev, scancode, &old_keycode); 690 if (retval) 691 goto out; 692 693 retval = dev->setkeycode(dev, scancode, keycode); 694 if (retval) 695 goto out; 696 697 /* Make sure KEY_RESERVED did not get enabled. */ 698 __clear_bit(KEY_RESERVED, dev->keybit); 699 700 /* 701 * Simulate keyup event if keycode is not present 702 * in the keymap anymore 703 */ 704 if (test_bit(EV_KEY, dev->evbit) && 705 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 706 __test_and_clear_bit(old_keycode, dev->key)) { 707 708 input_pass_event(dev, EV_KEY, old_keycode, 0); 709 if (dev->sync) 710 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 711 } 712 713 out: 714 spin_unlock_irqrestore(&dev->event_lock, flags); 715 716 return retval; 717} 718EXPORT_SYMBOL(input_set_keycode); 719 720#define MATCH_BIT(bit, max) \ 721 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 722 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 723 break; \ 724 if (i != BITS_TO_LONGS(max)) \ 725 continue; 726 727static const struct input_device_id *input_match_device(struct input_handler *handler, 728 struct input_dev *dev) 729{ 730 const struct input_device_id *id; 731 int i; 732 733 for (id = handler->id_table; id->flags || id->driver_info; id++) { 734 735 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 736 if (id->bustype != dev->id.bustype) 737 continue; 738 739 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 740 if (id->vendor != dev->id.vendor) 741 continue; 742 743 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 744 if (id->product != dev->id.product) 745 continue; 746 747 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 748 if (id->version != dev->id.version) 749 continue; 750 751 MATCH_BIT(evbit, EV_MAX); 752 MATCH_BIT(keybit, KEY_MAX); 753 MATCH_BIT(relbit, REL_MAX); 754 MATCH_BIT(absbit, ABS_MAX); 755 MATCH_BIT(mscbit, MSC_MAX); 756 MATCH_BIT(ledbit, LED_MAX); 757 MATCH_BIT(sndbit, SND_MAX); 758 MATCH_BIT(ffbit, FF_MAX); 759 MATCH_BIT(swbit, SW_MAX); 760 761 if (!handler->match || handler->match(handler, dev)) 762 return id; 763 } 764 765 return NULL; 766} 767 768static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 769{ 770 const struct input_device_id *id; 771 int error; 772 773 id = input_match_device(handler, dev); 774 if (!id) 775 return -ENODEV; 776 777 error = handler->connect(handler, dev, id); 778 if (error && error != -ENODEV) 779 printk(KERN_ERR 780 "input: failed to attach handler %s to device %s, " 781 "error: %d\n", 782 handler->name, kobject_name(&dev->dev.kobj), error); 783 784 return error; 785} 786 787#ifdef CONFIG_COMPAT 788 789static int input_bits_to_string(char *buf, int buf_size, 790 unsigned long bits, bool skip_empty) 791{ 792 int len = 0; 793 794 if (INPUT_COMPAT_TEST) { 795 u32 dword = bits >> 32; 796 if (dword || !skip_empty) 797 len += snprintf(buf, buf_size, "%x ", dword); 798 799 dword = bits & 0xffffffffUL; 800 if (dword || !skip_empty || len) 801 len += snprintf(buf + len, max(buf_size - len, 0), 802 "%x", dword); 803 } else { 804 if (bits || !skip_empty) 805 len += snprintf(buf, buf_size, "%lx", bits); 806 } 807 808 return len; 809} 810 811#else /* !CONFIG_COMPAT */ 812 813static int input_bits_to_string(char *buf, int buf_size, 814 unsigned long bits, bool skip_empty) 815{ 816 return bits || !skip_empty ? 817 snprintf(buf, buf_size, "%lx", bits) : 0; 818} 819 820#endif 821 822#ifdef CONFIG_PROC_FS 823 824static struct proc_dir_entry *proc_bus_input_dir; 825static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 826static int input_devices_state; 827 828static inline void input_wakeup_procfs_readers(void) 829{ 830 input_devices_state++; 831 wake_up(&input_devices_poll_wait); 832} 833 834static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 835{ 836 poll_wait(file, &input_devices_poll_wait, wait); 837 if (file->f_version != input_devices_state) { 838 file->f_version = input_devices_state; 839 return POLLIN | POLLRDNORM; 840 } 841 842 return 0; 843} 844 845union input_seq_state { 846 struct { 847 unsigned short pos; 848 bool mutex_acquired; 849 }; 850 void *p; 851}; 852 853static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 854{ 855 union input_seq_state *state = (union input_seq_state *)&seq->private; 856 int error; 857 858 /* We need to fit into seq->private pointer */ 859 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 860 861 error = mutex_lock_interruptible(&input_mutex); 862 if (error) { 863 state->mutex_acquired = false; 864 return ERR_PTR(error); 865 } 866 867 state->mutex_acquired = true; 868 869 return seq_list_start(&input_dev_list, *pos); 870} 871 872static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 873{ 874 return seq_list_next(v, &input_dev_list, pos); 875} 876 877static void input_seq_stop(struct seq_file *seq, void *v) 878{ 879 union input_seq_state *state = (union input_seq_state *)&seq->private; 880 881 if (state->mutex_acquired) 882 mutex_unlock(&input_mutex); 883} 884 885static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 886 unsigned long *bitmap, int max) 887{ 888 int i; 889 bool skip_empty = true; 890 char buf[18]; 891 892 seq_printf(seq, "B: %s=", name); 893 894 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 895 if (input_bits_to_string(buf, sizeof(buf), 896 bitmap[i], skip_empty)) { 897 skip_empty = false; 898 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 899 } 900 } 901 902 /* 903 * If no output was produced print a single 0. 904 */ 905 if (skip_empty) 906 seq_puts(seq, "0"); 907 908 seq_putc(seq, '\n'); 909} 910 911static int input_devices_seq_show(struct seq_file *seq, void *v) 912{ 913 struct input_dev *dev = container_of(v, struct input_dev, node); 914 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 915 struct input_handle *handle; 916 917 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 918 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 919 920 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 921 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 922 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 923 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 924 seq_printf(seq, "H: Handlers="); 925 926 list_for_each_entry(handle, &dev->h_list, d_node) 927 seq_printf(seq, "%s ", handle->name); 928 seq_putc(seq, '\n'); 929 930 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 931 if (test_bit(EV_KEY, dev->evbit)) 932 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 933 if (test_bit(EV_REL, dev->evbit)) 934 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 935 if (test_bit(EV_ABS, dev->evbit)) 936 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 937 if (test_bit(EV_MSC, dev->evbit)) 938 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 939 if (test_bit(EV_LED, dev->evbit)) 940 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 941 if (test_bit(EV_SND, dev->evbit)) 942 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 943 if (test_bit(EV_FF, dev->evbit)) 944 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 945 if (test_bit(EV_SW, dev->evbit)) 946 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 947 948 seq_putc(seq, '\n'); 949 950 kfree(path); 951 return 0; 952} 953 954static const struct seq_operations input_devices_seq_ops = { 955 .start = input_devices_seq_start, 956 .next = input_devices_seq_next, 957 .stop = input_seq_stop, 958 .show = input_devices_seq_show, 959}; 960 961static int input_proc_devices_open(struct inode *inode, struct file *file) 962{ 963 return seq_open(file, &input_devices_seq_ops); 964} 965 966static const struct file_operations input_devices_fileops = { 967 .owner = THIS_MODULE, 968 .open = input_proc_devices_open, 969 .poll = input_proc_devices_poll, 970 .read = seq_read, 971 .llseek = seq_lseek, 972 .release = seq_release, 973}; 974 975static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 976{ 977 union input_seq_state *state = (union input_seq_state *)&seq->private; 978 int error; 979 980 /* We need to fit into seq->private pointer */ 981 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 982 983 error = mutex_lock_interruptible(&input_mutex); 984 if (error) { 985 state->mutex_acquired = false; 986 return ERR_PTR(error); 987 } 988 989 state->mutex_acquired = true; 990 state->pos = *pos; 991 992 return seq_list_start(&input_handler_list, *pos); 993} 994 995static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 996{ 997 union input_seq_state *state = (union input_seq_state *)&seq->private; 998 999 state->pos = *pos + 1; 1000 return seq_list_next(v, &input_handler_list, pos); 1001} 1002 1003static int input_handlers_seq_show(struct seq_file *seq, void *v) 1004{ 1005 struct input_handler *handler = container_of(v, struct input_handler, node); 1006 union input_seq_state *state = (union input_seq_state *)&seq->private; 1007 1008 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1009 if (handler->filter) 1010 seq_puts(seq, " (filter)"); 1011 if (handler->fops) 1012 seq_printf(seq, " Minor=%d", handler->minor); 1013 seq_putc(seq, '\n'); 1014 1015 return 0; 1016} 1017 1018static const struct seq_operations input_handlers_seq_ops = { 1019 .start = input_handlers_seq_start, 1020 .next = input_handlers_seq_next, 1021 .stop = input_seq_stop, 1022 .show = input_handlers_seq_show, 1023}; 1024 1025static int input_proc_handlers_open(struct inode *inode, struct file *file) 1026{ 1027 return seq_open(file, &input_handlers_seq_ops); 1028} 1029 1030static const struct file_operations input_handlers_fileops = { 1031 .owner = THIS_MODULE, 1032 .open = input_proc_handlers_open, 1033 .read = seq_read, 1034 .llseek = seq_lseek, 1035 .release = seq_release, 1036}; 1037 1038static int __init input_proc_init(void) 1039{ 1040 struct proc_dir_entry *entry; 1041 1042 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1043 if (!proc_bus_input_dir) 1044 return -ENOMEM; 1045 1046 entry = proc_create("devices", 0, proc_bus_input_dir, 1047 &input_devices_fileops); 1048 if (!entry) 1049 goto fail1; 1050 1051 entry = proc_create("handlers", 0, proc_bus_input_dir, 1052 &input_handlers_fileops); 1053 if (!entry) 1054 goto fail2; 1055 1056 return 0; 1057 1058 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1059 fail1: remove_proc_entry("bus/input", NULL); 1060 return -ENOMEM; 1061} 1062 1063static void input_proc_exit(void) 1064{ 1065 remove_proc_entry("devices", proc_bus_input_dir); 1066 remove_proc_entry("handlers", proc_bus_input_dir); 1067 remove_proc_entry("bus/input", NULL); 1068} 1069 1070#else /* !CONFIG_PROC_FS */ 1071static inline void input_wakeup_procfs_readers(void) { } 1072static inline int input_proc_init(void) { return 0; } 1073static inline void input_proc_exit(void) { } 1074#endif 1075 1076#define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1077static ssize_t input_dev_show_##name(struct device *dev, \ 1078 struct device_attribute *attr, \ 1079 char *buf) \ 1080{ \ 1081 struct input_dev *input_dev = to_input_dev(dev); \ 1082 \ 1083 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1084 input_dev->name ? input_dev->name : ""); \ 1085} \ 1086static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1087 1088INPUT_DEV_STRING_ATTR_SHOW(name); 1089INPUT_DEV_STRING_ATTR_SHOW(phys); 1090INPUT_DEV_STRING_ATTR_SHOW(uniq); 1091 1092static int input_print_modalias_bits(char *buf, int size, 1093 char name, unsigned long *bm, 1094 unsigned int min_bit, unsigned int max_bit) 1095{ 1096 int len = 0, i; 1097 1098 len += snprintf(buf, max(size, 0), "%c", name); 1099 for (i = min_bit; i < max_bit; i++) 1100 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1101 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1102 return len; 1103} 1104 1105static int input_print_modalias(char *buf, int size, struct input_dev *id, 1106 int add_cr) 1107{ 1108 int len; 1109 1110 len = snprintf(buf, max(size, 0), 1111 "input:b%04Xv%04Xp%04Xe%04X-", 1112 id->id.bustype, id->id.vendor, 1113 id->id.product, id->id.version); 1114 1115 len += input_print_modalias_bits(buf + len, size - len, 1116 'e', id->evbit, 0, EV_MAX); 1117 len += input_print_modalias_bits(buf + len, size - len, 1118 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1119 len += input_print_modalias_bits(buf + len, size - len, 1120 'r', id->relbit, 0, REL_MAX); 1121 len += input_print_modalias_bits(buf + len, size - len, 1122 'a', id->absbit, 0, ABS_MAX); 1123 len += input_print_modalias_bits(buf + len, size - len, 1124 'm', id->mscbit, 0, MSC_MAX); 1125 len += input_print_modalias_bits(buf + len, size - len, 1126 'l', id->ledbit, 0, LED_MAX); 1127 len += input_print_modalias_bits(buf + len, size - len, 1128 's', id->sndbit, 0, SND_MAX); 1129 len += input_print_modalias_bits(buf + len, size - len, 1130 'f', id->ffbit, 0, FF_MAX); 1131 len += input_print_modalias_bits(buf + len, size - len, 1132 'w', id->swbit, 0, SW_MAX); 1133 1134 if (add_cr) 1135 len += snprintf(buf + len, max(size - len, 0), "\n"); 1136 1137 return len; 1138} 1139 1140static ssize_t input_dev_show_modalias(struct device *dev, 1141 struct device_attribute *attr, 1142 char *buf) 1143{ 1144 struct input_dev *id = to_input_dev(dev); 1145 ssize_t len; 1146 1147 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1148 1149 return min_t(int, len, PAGE_SIZE); 1150} 1151static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1152 1153static struct attribute *input_dev_attrs[] = { 1154 &dev_attr_name.attr, 1155 &dev_attr_phys.attr, 1156 &dev_attr_uniq.attr, 1157 &dev_attr_modalias.attr, 1158 NULL 1159}; 1160 1161static struct attribute_group input_dev_attr_group = { 1162 .attrs = input_dev_attrs, 1163}; 1164 1165#define INPUT_DEV_ID_ATTR(name) \ 1166static ssize_t input_dev_show_id_##name(struct device *dev, \ 1167 struct device_attribute *attr, \ 1168 char *buf) \ 1169{ \ 1170 struct input_dev *input_dev = to_input_dev(dev); \ 1171 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1172} \ 1173static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1174 1175INPUT_DEV_ID_ATTR(bustype); 1176INPUT_DEV_ID_ATTR(vendor); 1177INPUT_DEV_ID_ATTR(product); 1178INPUT_DEV_ID_ATTR(version); 1179 1180static struct attribute *input_dev_id_attrs[] = { 1181 &dev_attr_bustype.attr, 1182 &dev_attr_vendor.attr, 1183 &dev_attr_product.attr, 1184 &dev_attr_version.attr, 1185 NULL 1186}; 1187 1188static struct attribute_group input_dev_id_attr_group = { 1189 .name = "id", 1190 .attrs = input_dev_id_attrs, 1191}; 1192 1193static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1194 int max, int add_cr) 1195{ 1196 int i; 1197 int len = 0; 1198 bool skip_empty = true; 1199 1200 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1201 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1202 bitmap[i], skip_empty); 1203 if (len) { 1204 skip_empty = false; 1205 if (i > 0) 1206 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1207 } 1208 } 1209 1210 /* 1211 * If no output was produced print a single 0. 1212 */ 1213 if (len == 0) 1214 len = snprintf(buf, buf_size, "%d", 0); 1215 1216 if (add_cr) 1217 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1218 1219 return len; 1220} 1221 1222#define INPUT_DEV_CAP_ATTR(ev, bm) \ 1223static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1224 struct device_attribute *attr, \ 1225 char *buf) \ 1226{ \ 1227 struct input_dev *input_dev = to_input_dev(dev); \ 1228 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1229 input_dev->bm##bit, ev##_MAX, \ 1230 true); \ 1231 return min_t(int, len, PAGE_SIZE); \ 1232} \ 1233static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1234 1235INPUT_DEV_CAP_ATTR(EV, ev); 1236INPUT_DEV_CAP_ATTR(KEY, key); 1237INPUT_DEV_CAP_ATTR(REL, rel); 1238INPUT_DEV_CAP_ATTR(ABS, abs); 1239INPUT_DEV_CAP_ATTR(MSC, msc); 1240INPUT_DEV_CAP_ATTR(LED, led); 1241INPUT_DEV_CAP_ATTR(SND, snd); 1242INPUT_DEV_CAP_ATTR(FF, ff); 1243INPUT_DEV_CAP_ATTR(SW, sw); 1244 1245static struct attribute *input_dev_caps_attrs[] = { 1246 &dev_attr_ev.attr, 1247 &dev_attr_key.attr, 1248 &dev_attr_rel.attr, 1249 &dev_attr_abs.attr, 1250 &dev_attr_msc.attr, 1251 &dev_attr_led.attr, 1252 &dev_attr_snd.attr, 1253 &dev_attr_ff.attr, 1254 &dev_attr_sw.attr, 1255 NULL 1256}; 1257 1258static struct attribute_group input_dev_caps_attr_group = { 1259 .name = "capabilities", 1260 .attrs = input_dev_caps_attrs, 1261}; 1262 1263static const struct attribute_group *input_dev_attr_groups[] = { 1264 &input_dev_attr_group, 1265 &input_dev_id_attr_group, 1266 &input_dev_caps_attr_group, 1267 NULL 1268}; 1269 1270static void input_dev_release(struct device *device) 1271{ 1272 struct input_dev *dev = to_input_dev(device); 1273 1274 input_ff_destroy(dev); 1275 kfree(dev); 1276 1277 module_put(THIS_MODULE); 1278} 1279 1280/* 1281 * Input uevent interface - loading event handlers based on 1282 * device bitfields. 1283 */ 1284static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1285 const char *name, unsigned long *bitmap, int max) 1286{ 1287 int len; 1288 1289 if (add_uevent_var(env, "%s=", name)) 1290 return -ENOMEM; 1291 1292 len = input_print_bitmap(&env->buf[env->buflen - 1], 1293 sizeof(env->buf) - env->buflen, 1294 bitmap, max, false); 1295 if (len >= (sizeof(env->buf) - env->buflen)) 1296 return -ENOMEM; 1297 1298 env->buflen += len; 1299 return 0; 1300} 1301 1302static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1303 struct input_dev *dev) 1304{ 1305 int len; 1306 1307 if (add_uevent_var(env, "MODALIAS=")) 1308 return -ENOMEM; 1309 1310 len = input_print_modalias(&env->buf[env->buflen - 1], 1311 sizeof(env->buf) - env->buflen, 1312 dev, 0); 1313 if (len >= (sizeof(env->buf) - env->buflen)) 1314 return -ENOMEM; 1315 1316 env->buflen += len; 1317 return 0; 1318} 1319 1320#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1321 do { \ 1322 int err = add_uevent_var(env, fmt, val); \ 1323 if (err) \ 1324 return err; \ 1325 } while (0) 1326 1327#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1328 do { \ 1329 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1330 if (err) \ 1331 return err; \ 1332 } while (0) 1333 1334#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1335 do { \ 1336 int err = input_add_uevent_modalias_var(env, dev); \ 1337 if (err) \ 1338 return err; \ 1339 } while (0) 1340 1341static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1342{ 1343 struct input_dev *dev = to_input_dev(device); 1344 1345 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1346 dev->id.bustype, dev->id.vendor, 1347 dev->id.product, dev->id.version); 1348 if (dev->name) 1349 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1350 if (dev->phys) 1351 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1352 if (dev->uniq) 1353 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1354 1355 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1356 if (test_bit(EV_KEY, dev->evbit)) 1357 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1358 if (test_bit(EV_REL, dev->evbit)) 1359 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1360 if (test_bit(EV_ABS, dev->evbit)) 1361 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1362 if (test_bit(EV_MSC, dev->evbit)) 1363 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1364 if (test_bit(EV_LED, dev->evbit)) 1365 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1366 if (test_bit(EV_SND, dev->evbit)) 1367 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1368 if (test_bit(EV_FF, dev->evbit)) 1369 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1370 if (test_bit(EV_SW, dev->evbit)) 1371 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1372 1373 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1374 1375 return 0; 1376} 1377 1378#define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1379 do { \ 1380 int i; \ 1381 bool active; \ 1382 \ 1383 if (!test_bit(EV_##type, dev->evbit)) \ 1384 break; \ 1385 \ 1386 for (i = 0; i < type##_MAX; i++) { \ 1387 if (!test_bit(i, dev->bits##bit)) \ 1388 continue; \ 1389 \ 1390 active = test_bit(i, dev->bits); \ 1391 if (!active && !on) \ 1392 continue; \ 1393 \ 1394 dev->event(dev, EV_##type, i, on ? active : 0); \ 1395 } \ 1396 } while (0) 1397 1398#ifdef CONFIG_PM 1399static void input_dev_reset(struct input_dev *dev, bool activate) 1400{ 1401 if (!dev->event) 1402 return; 1403 1404 INPUT_DO_TOGGLE(dev, LED, led, activate); 1405 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1406 1407 if (activate && test_bit(EV_REP, dev->evbit)) { 1408 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1409 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1410 } 1411} 1412 1413static int input_dev_suspend(struct device *dev) 1414{ 1415 struct input_dev *input_dev = to_input_dev(dev); 1416 1417 mutex_lock(&input_dev->mutex); 1418 input_dev_reset(input_dev, false); 1419 mutex_unlock(&input_dev->mutex); 1420 1421 return 0; 1422} 1423 1424static int input_dev_resume(struct device *dev) 1425{ 1426 struct input_dev *input_dev = to_input_dev(dev); 1427 1428 mutex_lock(&input_dev->mutex); 1429 input_dev_reset(input_dev, true); 1430 mutex_unlock(&input_dev->mutex); 1431 1432 return 0; 1433} 1434 1435static const struct dev_pm_ops input_dev_pm_ops = { 1436 .suspend = input_dev_suspend, 1437 .resume = input_dev_resume, 1438 .poweroff = input_dev_suspend, 1439 .restore = input_dev_resume, 1440}; 1441#endif /* CONFIG_PM */ 1442 1443static struct device_type input_dev_type = { 1444 .groups = input_dev_attr_groups, 1445 .release = input_dev_release, 1446 .uevent = input_dev_uevent, 1447#ifdef CONFIG_PM 1448 .pm = &input_dev_pm_ops, 1449#endif 1450}; 1451 1452static char *input_devnode(struct device *dev, mode_t *mode) 1453{ 1454 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1455} 1456 1457struct class input_class = { 1458 .name = "input", 1459 .devnode = input_devnode, 1460}; 1461EXPORT_SYMBOL_GPL(input_class); 1462 1463/** 1464 * input_allocate_device - allocate memory for new input device 1465 * 1466 * Returns prepared struct input_dev or NULL. 1467 * 1468 * NOTE: Use input_free_device() to free devices that have not been 1469 * registered; input_unregister_device() should be used for already 1470 * registered devices. 1471 */ 1472struct input_dev *input_allocate_device(void) 1473{ 1474 struct input_dev *dev; 1475 1476 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1477 if (dev) { 1478 dev->dev.type = &input_dev_type; 1479 dev->dev.class = &input_class; 1480 device_initialize(&dev->dev); 1481 mutex_init(&dev->mutex); 1482 spin_lock_init(&dev->event_lock); 1483 INIT_LIST_HEAD(&dev->h_list); 1484 INIT_LIST_HEAD(&dev->node); 1485 1486 __module_get(THIS_MODULE); 1487 } 1488 1489 return dev; 1490} 1491EXPORT_SYMBOL(input_allocate_device); 1492 1493/** 1494 * input_free_device - free memory occupied by input_dev structure 1495 * @dev: input device to free 1496 * 1497 * This function should only be used if input_register_device() 1498 * was not called yet or if it failed. Once device was registered 1499 * use input_unregister_device() and memory will be freed once last 1500 * reference to the device is dropped. 1501 * 1502 * Device should be allocated by input_allocate_device(). 1503 * 1504 * NOTE: If there are references to the input device then memory 1505 * will not be freed until last reference is dropped. 1506 */ 1507void input_free_device(struct input_dev *dev) 1508{ 1509 if (dev) 1510 input_put_device(dev); 1511} 1512EXPORT_SYMBOL(input_free_device); 1513 1514/** 1515 * input_set_capability - mark device as capable of a certain event 1516 * @dev: device that is capable of emitting or accepting event 1517 * @type: type of the event (EV_KEY, EV_REL, etc...) 1518 * @code: event code 1519 * 1520 * In addition to setting up corresponding bit in appropriate capability 1521 * bitmap the function also adjusts dev->evbit. 1522 */ 1523void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1524{ 1525 switch (type) { 1526 case EV_KEY: 1527 __set_bit(code, dev->keybit); 1528 break; 1529 1530 case EV_REL: 1531 __set_bit(code, dev->relbit); 1532 break; 1533 1534 case EV_ABS: 1535 __set_bit(code, dev->absbit); 1536 break; 1537 1538 case EV_MSC: 1539 __set_bit(code, dev->mscbit); 1540 break; 1541 1542 case EV_SW: 1543 __set_bit(code, dev->swbit); 1544 break; 1545 1546 case EV_LED: 1547 __set_bit(code, dev->ledbit); 1548 break; 1549 1550 case EV_SND: 1551 __set_bit(code, dev->sndbit); 1552 break; 1553 1554 case EV_FF: 1555 __set_bit(code, dev->ffbit); 1556 break; 1557 1558 case EV_PWR: 1559 /* do nothing */ 1560 break; 1561 1562 default: 1563 printk(KERN_ERR 1564 "input_set_capability: unknown type %u (code %u)\n", 1565 type, code); 1566 dump_stack(); 1567 return; 1568 } 1569 1570 __set_bit(type, dev->evbit); 1571} 1572EXPORT_SYMBOL(input_set_capability); 1573 1574#define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1575 do { \ 1576 if (!test_bit(EV_##type, dev->evbit)) \ 1577 memset(dev->bits##bit, 0, \ 1578 sizeof(dev->bits##bit)); \ 1579 } while (0) 1580 1581static void input_cleanse_bitmasks(struct input_dev *dev) 1582{ 1583 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1584 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1585 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1586 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1587 INPUT_CLEANSE_BITMASK(dev, LED, led); 1588 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1589 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1590 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1591} 1592 1593/** 1594 * input_register_device - register device with input core 1595 * @dev: device to be registered 1596 * 1597 * This function registers device with input core. The device must be 1598 * allocated with input_allocate_device() and all it's capabilities 1599 * set up before registering. 1600 * If function fails the device must be freed with input_free_device(). 1601 * Once device has been successfully registered it can be unregistered 1602 * with input_unregister_device(); input_free_device() should not be 1603 * called in this case. 1604 */ 1605int input_register_device(struct input_dev *dev) 1606{ 1607 static atomic_t input_no = ATOMIC_INIT(0); 1608 struct input_handler *handler; 1609 const char *path; 1610 int error; 1611 1612 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1613 __set_bit(EV_SYN, dev->evbit); 1614 1615 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1616 __clear_bit(KEY_RESERVED, dev->keybit); 1617 1618 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1619 input_cleanse_bitmasks(dev); 1620 1621 /* 1622 * If delay and period are pre-set by the driver, then autorepeating 1623 * is handled by the driver itself and we don't do it in input.c. 1624 */ 1625 init_timer(&dev->timer); 1626 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1627 dev->timer.data = (long) dev; 1628 dev->timer.function = input_repeat_key; 1629 dev->rep[REP_DELAY] = 250; 1630 dev->rep[REP_PERIOD] = 33; 1631 } 1632 1633 if (!dev->getkeycode) 1634 dev->getkeycode = input_default_getkeycode; 1635 1636 if (!dev->setkeycode) 1637 dev->setkeycode = input_default_setkeycode; 1638 1639 dev_set_name(&dev->dev, "input%ld", 1640 (unsigned long) atomic_inc_return(&input_no) - 1); 1641 1642 error = device_add(&dev->dev); 1643 if (error) 1644 return error; 1645 1646 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1647 printk(KERN_INFO "input: %s as %s\n", 1648 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1649 kfree(path); 1650 1651 error = mutex_lock_interruptible(&input_mutex); 1652 if (error) { 1653 device_del(&dev->dev); 1654 return error; 1655 } 1656 1657 list_add_tail(&dev->node, &input_dev_list); 1658 1659 list_for_each_entry(handler, &input_handler_list, node) 1660 input_attach_handler(dev, handler); 1661 1662 input_wakeup_procfs_readers(); 1663 1664 mutex_unlock(&input_mutex); 1665 1666 return 0; 1667} 1668EXPORT_SYMBOL(input_register_device); 1669 1670/** 1671 * input_unregister_device - unregister previously registered device 1672 * @dev: device to be unregistered 1673 * 1674 * This function unregisters an input device. Once device is unregistered 1675 * the caller should not try to access it as it may get freed at any moment. 1676 */ 1677void input_unregister_device(struct input_dev *dev) 1678{ 1679 struct input_handle *handle, *next; 1680 1681 input_disconnect_device(dev); 1682 1683 mutex_lock(&input_mutex); 1684 1685 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1686 handle->handler->disconnect(handle); 1687 WARN_ON(!list_empty(&dev->h_list)); 1688 1689 del_timer_sync(&dev->timer); 1690 list_del_init(&dev->node); 1691 1692 input_wakeup_procfs_readers(); 1693 1694 mutex_unlock(&input_mutex); 1695 1696 device_unregister(&dev->dev); 1697} 1698EXPORT_SYMBOL(input_unregister_device); 1699 1700/** 1701 * input_register_handler - register a new input handler 1702 * @handler: handler to be registered 1703 * 1704 * This function registers a new input handler (interface) for input 1705 * devices in the system and attaches it to all input devices that 1706 * are compatible with the handler. 1707 */ 1708int input_register_handler(struct input_handler *handler) 1709{ 1710 struct input_dev *dev; 1711 int retval; 1712 1713 retval = mutex_lock_interruptible(&input_mutex); 1714 if (retval) 1715 return retval; 1716 1717 INIT_LIST_HEAD(&handler->h_list); 1718 1719 if (handler->fops != NULL) { 1720 if (input_table[handler->minor >> 5]) { 1721 retval = -EBUSY; 1722 goto out; 1723 } 1724 input_table[handler->minor >> 5] = handler; 1725 } 1726 1727 list_add_tail(&handler->node, &input_handler_list); 1728 1729 list_for_each_entry(dev, &input_dev_list, node) 1730 input_attach_handler(dev, handler); 1731 1732 input_wakeup_procfs_readers(); 1733 1734 out: 1735 mutex_unlock(&input_mutex); 1736 return retval; 1737} 1738EXPORT_SYMBOL(input_register_handler); 1739 1740/** 1741 * input_unregister_handler - unregisters an input handler 1742 * @handler: handler to be unregistered 1743 * 1744 * This function disconnects a handler from its input devices and 1745 * removes it from lists of known handlers. 1746 */ 1747void input_unregister_handler(struct input_handler *handler) 1748{ 1749 struct input_handle *handle, *next; 1750 1751 mutex_lock(&input_mutex); 1752 1753 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1754 handler->disconnect(handle); 1755 WARN_ON(!list_empty(&handler->h_list)); 1756 1757 list_del_init(&handler->node); 1758 1759 if (handler->fops != NULL) 1760 input_table[handler->minor >> 5] = NULL; 1761 1762 input_wakeup_procfs_readers(); 1763 1764 mutex_unlock(&input_mutex); 1765} 1766EXPORT_SYMBOL(input_unregister_handler); 1767 1768/** 1769 * input_handler_for_each_handle - handle iterator 1770 * @handler: input handler to iterate 1771 * @data: data for the callback 1772 * @fn: function to be called for each handle 1773 * 1774 * Iterate over @bus's list of devices, and call @fn for each, passing 1775 * it @data and stop when @fn returns a non-zero value. The function is 1776 * using RCU to traverse the list and therefore may be usind in atonic 1777 * contexts. The @fn callback is invoked from RCU critical section and 1778 * thus must not sleep. 1779 */ 1780int input_handler_for_each_handle(struct input_handler *handler, void *data, 1781 int (*fn)(struct input_handle *, void *)) 1782{ 1783 struct input_handle *handle; 1784 int retval = 0; 1785 1786 rcu_read_lock(); 1787 1788 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1789 retval = fn(handle, data); 1790 if (retval) 1791 break; 1792 } 1793 1794 rcu_read_unlock(); 1795 1796 return retval; 1797} 1798EXPORT_SYMBOL(input_handler_for_each_handle); 1799 1800/** 1801 * input_register_handle - register a new input handle 1802 * @handle: handle to register 1803 * 1804 * This function puts a new input handle onto device's 1805 * and handler's lists so that events can flow through 1806 * it once it is opened using input_open_device(). 1807 * 1808 * This function is supposed to be called from handler's 1809 * connect() method. 1810 */ 1811int input_register_handle(struct input_handle *handle) 1812{ 1813 struct input_handler *handler = handle->handler; 1814 struct input_dev *dev = handle->dev; 1815 int error; 1816 1817 /* 1818 * We take dev->mutex here to prevent race with 1819 * input_release_device(). 1820 */ 1821 error = mutex_lock_interruptible(&dev->mutex); 1822 if (error) 1823 return error; 1824 1825 /* 1826 * Filters go to the head of the list, normal handlers 1827 * to the tail. 1828 */ 1829 if (handler->filter) 1830 list_add_rcu(&handle->d_node, &dev->h_list); 1831 else 1832 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1833 1834 mutex_unlock(&dev->mutex); 1835 1836 /* 1837 * Since we are supposed to be called from ->connect() 1838 * which is mutually exclusive with ->disconnect() 1839 * we can't be racing with input_unregister_handle() 1840 * and so separate lock is not needed here. 1841 */ 1842 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1843 1844 if (handler->start) 1845 handler->start(handle); 1846 1847 return 0; 1848} 1849EXPORT_SYMBOL(input_register_handle); 1850 1851/** 1852 * input_unregister_handle - unregister an input handle 1853 * @handle: handle to unregister 1854 * 1855 * This function removes input handle from device's 1856 * and handler's lists. 1857 * 1858 * This function is supposed to be called from handler's 1859 * disconnect() method. 1860 */ 1861void input_unregister_handle(struct input_handle *handle) 1862{ 1863 struct input_dev *dev = handle->dev; 1864 1865 list_del_rcu(&handle->h_node); 1866 1867 /* 1868 * Take dev->mutex to prevent race with input_release_device(). 1869 */ 1870 mutex_lock(&dev->mutex); 1871 list_del_rcu(&handle->d_node); 1872 mutex_unlock(&dev->mutex); 1873 1874 synchronize_rcu(); 1875} 1876EXPORT_SYMBOL(input_unregister_handle); 1877 1878static int input_open_file(struct inode *inode, struct file *file) 1879{ 1880 struct input_handler *handler; 1881 const struct file_operations *old_fops, *new_fops = NULL; 1882 int err; 1883 1884 lock_kernel(); 1885 /* No load-on-demand here? */ 1886 handler = input_table[iminor(inode) >> 5]; 1887 if (!handler || !(new_fops = fops_get(handler->fops))) { 1888 err = -ENODEV; 1889 goto out; 1890 } 1891 1892 /* 1893 * That's _really_ odd. Usually NULL ->open means "nothing special", 1894 * not "no device". Oh, well... 1895 */ 1896 if (!new_fops->open) { 1897 fops_put(new_fops); 1898 err = -ENODEV; 1899 goto out; 1900 } 1901 old_fops = file->f_op; 1902 file->f_op = new_fops; 1903 1904 err = new_fops->open(inode, file); 1905 1906 if (err) { 1907 fops_put(file->f_op); 1908 file->f_op = fops_get(old_fops); 1909 } 1910 fops_put(old_fops); 1911out: 1912 unlock_kernel(); 1913 return err; 1914} 1915 1916static const struct file_operations input_fops = { 1917 .owner = THIS_MODULE, 1918 .open = input_open_file, 1919}; 1920 1921static void __init input_init_abs_bypass(void) 1922{ 1923 const unsigned int *p; 1924 1925 for (p = input_abs_bypass_init_data; *p; p++) 1926 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1927} 1928 1929static int __init input_init(void) 1930{ 1931 int err; 1932 1933 input_init_abs_bypass(); 1934 1935 err = class_register(&input_class); 1936 if (err) { 1937 printk(KERN_ERR "input: unable to register input_dev class\n"); 1938 return err; 1939 } 1940 1941 err = input_proc_init(); 1942 if (err) 1943 goto fail1; 1944 1945 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1946 if (err) { 1947 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1948 goto fail2; 1949 } 1950 1951 return 0; 1952 1953 fail2: input_proc_exit(); 1954 fail1: class_unregister(&input_class); 1955 return err; 1956} 1957 1958static void __exit input_exit(void) 1959{ 1960 input_proc_exit(); 1961 unregister_chrdev(INPUT_MAJOR, "input"); 1962 class_unregister(&input_class); 1963} 1964 1965subsys_initcall(input_init); 1966module_exit(input_exit);