at v2.6.33 63 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * - a SuperSpeed endpoint has a companion descriptor 40 * 41 * And there might be other descriptors mixed in with those. 42 * 43 * Devices may also have class-specific or vendor-specific descriptors. 44 */ 45 46struct ep_device; 47 48/* For SS devices */ 49/** 50 * struct usb_host_ss_ep_comp - Valid for SuperSpeed devices only 51 * @desc: endpoint companion descriptor, wMaxPacketSize in native byteorder 52 * @extra: descriptors following this endpoint companion descriptor 53 * @extralen: how many bytes of "extra" are valid 54 */ 55struct usb_host_ss_ep_comp { 56 struct usb_ss_ep_comp_descriptor desc; 57 unsigned char *extra; /* Extra descriptors */ 58 int extralen; 59}; 60 61/** 62 * struct usb_host_endpoint - host-side endpoint descriptor and queue 63 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 64 * @urb_list: urbs queued to this endpoint; maintained by usbcore 65 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 66 * with one or more transfer descriptors (TDs) per urb 67 * @ep_dev: ep_device for sysfs info 68 * @ss_ep_comp: companion descriptor information for this endpoint 69 * @extra: descriptors following this endpoint in the configuration 70 * @extralen: how many bytes of "extra" are valid 71 * @enabled: URBs may be submitted to this endpoint 72 * 73 * USB requests are always queued to a given endpoint, identified by a 74 * descriptor within an active interface in a given USB configuration. 75 */ 76struct usb_host_endpoint { 77 struct usb_endpoint_descriptor desc; 78 struct list_head urb_list; 79 void *hcpriv; 80 struct ep_device *ep_dev; /* For sysfs info */ 81 struct usb_host_ss_ep_comp *ss_ep_comp; /* For SS devices */ 82 83 unsigned char *extra; /* Extra descriptors */ 84 int extralen; 85 int enabled; 86}; 87 88/* host-side wrapper for one interface setting's parsed descriptors */ 89struct usb_host_interface { 90 struct usb_interface_descriptor desc; 91 92 /* array of desc.bNumEndpoint endpoints associated with this 93 * interface setting. these will be in no particular order. 94 */ 95 struct usb_host_endpoint *endpoint; 96 97 char *string; /* iInterface string, if present */ 98 unsigned char *extra; /* Extra descriptors */ 99 int extralen; 100}; 101 102enum usb_interface_condition { 103 USB_INTERFACE_UNBOUND = 0, 104 USB_INTERFACE_BINDING, 105 USB_INTERFACE_BOUND, 106 USB_INTERFACE_UNBINDING, 107}; 108 109/** 110 * struct usb_interface - what usb device drivers talk to 111 * @altsetting: array of interface structures, one for each alternate 112 * setting that may be selected. Each one includes a set of 113 * endpoint configurations. They will be in no particular order. 114 * @cur_altsetting: the current altsetting. 115 * @num_altsetting: number of altsettings defined. 116 * @intf_assoc: interface association descriptor 117 * @minor: the minor number assigned to this interface, if this 118 * interface is bound to a driver that uses the USB major number. 119 * If this interface does not use the USB major, this field should 120 * be unused. The driver should set this value in the probe() 121 * function of the driver, after it has been assigned a minor 122 * number from the USB core by calling usb_register_dev(). 123 * @condition: binding state of the interface: not bound, binding 124 * (in probe()), bound to a driver, or unbinding (in disconnect()) 125 * @is_active: flag set when the interface is bound and not suspended. 126 * @sysfs_files_created: sysfs attributes exist 127 * @ep_devs_created: endpoint child pseudo-devices exist 128 * @unregistering: flag set when the interface is being unregistered 129 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 130 * capability during autosuspend. 131 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 132 * has been deferred. 133 * @needs_binding: flag set when the driver should be re-probed or unbound 134 * following a reset or suspend operation it doesn't support. 135 * @dev: driver model's view of this device 136 * @usb_dev: if an interface is bound to the USB major, this will point 137 * to the sysfs representation for that device. 138 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 139 * allowed unless the counter is 0. 140 * @reset_ws: Used for scheduling resets from atomic context. 141 * @reset_running: set to 1 if the interface is currently running a 142 * queued reset so that usb_cancel_queued_reset() doesn't try to 143 * remove from the workqueue when running inside the worker 144 * thread. See __usb_queue_reset_device(). 145 * 146 * USB device drivers attach to interfaces on a physical device. Each 147 * interface encapsulates a single high level function, such as feeding 148 * an audio stream to a speaker or reporting a change in a volume control. 149 * Many USB devices only have one interface. The protocol used to talk to 150 * an interface's endpoints can be defined in a usb "class" specification, 151 * or by a product's vendor. The (default) control endpoint is part of 152 * every interface, but is never listed among the interface's descriptors. 153 * 154 * The driver that is bound to the interface can use standard driver model 155 * calls such as dev_get_drvdata() on the dev member of this structure. 156 * 157 * Each interface may have alternate settings. The initial configuration 158 * of a device sets altsetting 0, but the device driver can change 159 * that setting using usb_set_interface(). Alternate settings are often 160 * used to control the use of periodic endpoints, such as by having 161 * different endpoints use different amounts of reserved USB bandwidth. 162 * All standards-conformant USB devices that use isochronous endpoints 163 * will use them in non-default settings. 164 * 165 * The USB specification says that alternate setting numbers must run from 166 * 0 to one less than the total number of alternate settings. But some 167 * devices manage to mess this up, and the structures aren't necessarily 168 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 169 * look up an alternate setting in the altsetting array based on its number. 170 */ 171struct usb_interface { 172 /* array of alternate settings for this interface, 173 * stored in no particular order */ 174 struct usb_host_interface *altsetting; 175 176 struct usb_host_interface *cur_altsetting; /* the currently 177 * active alternate setting */ 178 unsigned num_altsetting; /* number of alternate settings */ 179 180 /* If there is an interface association descriptor then it will list 181 * the associated interfaces */ 182 struct usb_interface_assoc_descriptor *intf_assoc; 183 184 int minor; /* minor number this interface is 185 * bound to */ 186 enum usb_interface_condition condition; /* state of binding */ 187 unsigned is_active:1; /* the interface is not suspended */ 188 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 189 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 190 unsigned unregistering:1; /* unregistration is in progress */ 191 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 192 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 193 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 194 unsigned reset_running:1; 195 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 196 197 struct device dev; /* interface specific device info */ 198 struct device *usb_dev; 199 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 200 struct work_struct reset_ws; /* for resets in atomic context */ 201}; 202#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 203#define interface_to_usbdev(intf) \ 204 container_of(intf->dev.parent, struct usb_device, dev) 205 206static inline void *usb_get_intfdata(struct usb_interface *intf) 207{ 208 return dev_get_drvdata(&intf->dev); 209} 210 211static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 212{ 213 dev_set_drvdata(&intf->dev, data); 214} 215 216struct usb_interface *usb_get_intf(struct usb_interface *intf); 217void usb_put_intf(struct usb_interface *intf); 218 219/* this maximum is arbitrary */ 220#define USB_MAXINTERFACES 32 221#define USB_MAXIADS USB_MAXINTERFACES/2 222 223/** 224 * struct usb_interface_cache - long-term representation of a device interface 225 * @num_altsetting: number of altsettings defined. 226 * @ref: reference counter. 227 * @altsetting: variable-length array of interface structures, one for 228 * each alternate setting that may be selected. Each one includes a 229 * set of endpoint configurations. They will be in no particular order. 230 * 231 * These structures persist for the lifetime of a usb_device, unlike 232 * struct usb_interface (which persists only as long as its configuration 233 * is installed). The altsetting arrays can be accessed through these 234 * structures at any time, permitting comparison of configurations and 235 * providing support for the /proc/bus/usb/devices pseudo-file. 236 */ 237struct usb_interface_cache { 238 unsigned num_altsetting; /* number of alternate settings */ 239 struct kref ref; /* reference counter */ 240 241 /* variable-length array of alternate settings for this interface, 242 * stored in no particular order */ 243 struct usb_host_interface altsetting[0]; 244}; 245#define ref_to_usb_interface_cache(r) \ 246 container_of(r, struct usb_interface_cache, ref) 247#define altsetting_to_usb_interface_cache(a) \ 248 container_of(a, struct usb_interface_cache, altsetting[0]) 249 250/** 251 * struct usb_host_config - representation of a device's configuration 252 * @desc: the device's configuration descriptor. 253 * @string: pointer to the cached version of the iConfiguration string, if 254 * present for this configuration. 255 * @intf_assoc: list of any interface association descriptors in this config 256 * @interface: array of pointers to usb_interface structures, one for each 257 * interface in the configuration. The number of interfaces is stored 258 * in desc.bNumInterfaces. These pointers are valid only while the 259 * the configuration is active. 260 * @intf_cache: array of pointers to usb_interface_cache structures, one 261 * for each interface in the configuration. These structures exist 262 * for the entire life of the device. 263 * @extra: pointer to buffer containing all extra descriptors associated 264 * with this configuration (those preceding the first interface 265 * descriptor). 266 * @extralen: length of the extra descriptors buffer. 267 * 268 * USB devices may have multiple configurations, but only one can be active 269 * at any time. Each encapsulates a different operational environment; 270 * for example, a dual-speed device would have separate configurations for 271 * full-speed and high-speed operation. The number of configurations 272 * available is stored in the device descriptor as bNumConfigurations. 273 * 274 * A configuration can contain multiple interfaces. Each corresponds to 275 * a different function of the USB device, and all are available whenever 276 * the configuration is active. The USB standard says that interfaces 277 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 278 * of devices get this wrong. In addition, the interface array is not 279 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 280 * look up an interface entry based on its number. 281 * 282 * Device drivers should not attempt to activate configurations. The choice 283 * of which configuration to install is a policy decision based on such 284 * considerations as available power, functionality provided, and the user's 285 * desires (expressed through userspace tools). However, drivers can call 286 * usb_reset_configuration() to reinitialize the current configuration and 287 * all its interfaces. 288 */ 289struct usb_host_config { 290 struct usb_config_descriptor desc; 291 292 char *string; /* iConfiguration string, if present */ 293 294 /* List of any Interface Association Descriptors in this 295 * configuration. */ 296 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 297 298 /* the interfaces associated with this configuration, 299 * stored in no particular order */ 300 struct usb_interface *interface[USB_MAXINTERFACES]; 301 302 /* Interface information available even when this is not the 303 * active configuration */ 304 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 305 306 unsigned char *extra; /* Extra descriptors */ 307 int extralen; 308}; 309 310int __usb_get_extra_descriptor(char *buffer, unsigned size, 311 unsigned char type, void **ptr); 312#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 313 __usb_get_extra_descriptor((ifpoint)->extra, \ 314 (ifpoint)->extralen, \ 315 type, (void **)ptr) 316 317/* ----------------------------------------------------------------------- */ 318 319/* USB device number allocation bitmap */ 320struct usb_devmap { 321 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 322}; 323 324/* 325 * Allocated per bus (tree of devices) we have: 326 */ 327struct usb_bus { 328 struct device *controller; /* host/master side hardware */ 329 int busnum; /* Bus number (in order of reg) */ 330 const char *bus_name; /* stable id (PCI slot_name etc) */ 331 u8 uses_dma; /* Does the host controller use DMA? */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 336 337 int devnum_next; /* Next open device number in 338 * round-robin allocation */ 339 340 struct usb_devmap devmap; /* device address allocation map */ 341 struct usb_device *root_hub; /* Root hub */ 342 struct list_head bus_list; /* list of busses */ 343 344 int bandwidth_allocated; /* on this bus: how much of the time 345 * reserved for periodic (intr/iso) 346 * requests is used, on average? 347 * Units: microseconds/frame. 348 * Limits: Full/low speed reserve 90%, 349 * while high speed reserves 80%. 350 */ 351 int bandwidth_int_reqs; /* number of Interrupt requests */ 352 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 353 354#ifdef CONFIG_USB_DEVICEFS 355 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 356#endif 357 358#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 359 struct mon_bus *mon_bus; /* non-null when associated */ 360 int monitored; /* non-zero when monitored */ 361#endif 362}; 363 364/* ----------------------------------------------------------------------- */ 365 366/* This is arbitrary. 367 * From USB 2.0 spec Table 11-13, offset 7, a hub can 368 * have up to 255 ports. The most yet reported is 10. 369 * 370 * Current Wireless USB host hardware (Intel i1480 for example) allows 371 * up to 22 devices to connect. Upcoming hardware might raise that 372 * limit. Because the arrays need to add a bit for hub status data, we 373 * do 31, so plus one evens out to four bytes. 374 */ 375#define USB_MAXCHILDREN (31) 376 377struct usb_tt; 378 379/** 380 * struct usb_device - kernel's representation of a USB device 381 * @devnum: device number; address on a USB bus 382 * @devpath: device ID string for use in messages (e.g., /port/...) 383 * @route: tree topology hex string for use with xHCI 384 * @state: device state: configured, not attached, etc. 385 * @speed: device speed: high/full/low (or error) 386 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 387 * @ttport: device port on that tt hub 388 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 389 * @parent: our hub, unless we're the root 390 * @bus: bus we're part of 391 * @ep0: endpoint 0 data (default control pipe) 392 * @dev: generic device interface 393 * @descriptor: USB device descriptor 394 * @config: all of the device's configs 395 * @actconfig: the active configuration 396 * @ep_in: array of IN endpoints 397 * @ep_out: array of OUT endpoints 398 * @rawdescriptors: raw descriptors for each config 399 * @bus_mA: Current available from the bus 400 * @portnum: parent port number (origin 1) 401 * @level: number of USB hub ancestors 402 * @can_submit: URBs may be submitted 403 * @discon_suspended: disconnected while suspended 404 * @persist_enabled: USB_PERSIST enabled for this device 405 * @have_langid: whether string_langid is valid 406 * @authorized: policy has said we can use it; 407 * (user space) policy determines if we authorize this device to be 408 * used or not. By default, wired USB devices are authorized. 409 * WUSB devices are not, until we authorize them from user space. 410 * FIXME -- complete doc 411 * @authenticated: Crypto authentication passed 412 * @wusb: device is Wireless USB 413 * @string_langid: language ID for strings 414 * @product: iProduct string, if present (static) 415 * @manufacturer: iManufacturer string, if present (static) 416 * @serial: iSerialNumber string, if present (static) 417 * @filelist: usbfs files that are open to this device 418 * @usb_classdev: USB class device that was created for usbfs device 419 * access from userspace 420 * @usbfs_dentry: usbfs dentry entry for the device 421 * @maxchild: number of ports if hub 422 * @children: child devices - USB devices that are attached to this hub 423 * @pm_usage_cnt: usage counter for autosuspend 424 * @quirks: quirks of the whole device 425 * @urbnum: number of URBs submitted for the whole device 426 * @active_duration: total time device is not suspended 427 * @autosuspend: for delayed autosuspends 428 * @autoresume: for autoresumes requested while in_interrupt 429 * @pm_mutex: protects PM operations 430 * @last_busy: time of last use 431 * @autosuspend_delay: in jiffies 432 * @connect_time: time device was first connected 433 * @do_remote_wakeup: remote wakeup should be enabled 434 * @reset_resume: needs reset instead of resume 435 * @autosuspend_disabled: autosuspend disabled by the user 436 * @skip_sys_resume: skip the next system resume 437 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 438 * specific data for the device. 439 * @slot_id: Slot ID assigned by xHCI 440 * 441 * Notes: 442 * Usbcore drivers should not set usbdev->state directly. Instead use 443 * usb_set_device_state(). 444 */ 445struct usb_device { 446 int devnum; 447 char devpath [16]; 448 u32 route; 449 enum usb_device_state state; 450 enum usb_device_speed speed; 451 452 struct usb_tt *tt; 453 int ttport; 454 455 unsigned int toggle[2]; 456 457 struct usb_device *parent; 458 struct usb_bus *bus; 459 struct usb_host_endpoint ep0; 460 461 struct device dev; 462 463 struct usb_device_descriptor descriptor; 464 struct usb_host_config *config; 465 466 struct usb_host_config *actconfig; 467 struct usb_host_endpoint *ep_in[16]; 468 struct usb_host_endpoint *ep_out[16]; 469 470 char **rawdescriptors; 471 472 unsigned short bus_mA; 473 u8 portnum; 474 u8 level; 475 476 unsigned can_submit:1; 477 unsigned discon_suspended:1; 478 unsigned persist_enabled:1; 479 unsigned have_langid:1; 480 unsigned authorized:1; 481 unsigned authenticated:1; 482 unsigned wusb:1; 483 int string_langid; 484 485 /* static strings from the device */ 486 char *product; 487 char *manufacturer; 488 char *serial; 489 490 struct list_head filelist; 491#ifdef CONFIG_USB_DEVICE_CLASS 492 struct device *usb_classdev; 493#endif 494#ifdef CONFIG_USB_DEVICEFS 495 struct dentry *usbfs_dentry; 496#endif 497 498 int maxchild; 499 struct usb_device *children[USB_MAXCHILDREN]; 500 501 int pm_usage_cnt; 502 u32 quirks; 503 atomic_t urbnum; 504 505 unsigned long active_duration; 506 507#ifdef CONFIG_PM 508 struct delayed_work autosuspend; 509 struct work_struct autoresume; 510 struct mutex pm_mutex; 511 512 unsigned long last_busy; 513 int autosuspend_delay; 514 unsigned long connect_time; 515 516 unsigned do_remote_wakeup:1; 517 unsigned reset_resume:1; 518 unsigned autosuspend_disabled:1; 519 unsigned skip_sys_resume:1; 520#endif 521 struct wusb_dev *wusb_dev; 522 int slot_id; 523}; 524#define to_usb_device(d) container_of(d, struct usb_device, dev) 525 526extern struct usb_device *usb_get_dev(struct usb_device *dev); 527extern void usb_put_dev(struct usb_device *dev); 528 529/* USB device locking */ 530#define usb_lock_device(udev) down(&(udev)->dev.sem) 531#define usb_unlock_device(udev) up(&(udev)->dev.sem) 532#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 533extern int usb_lock_device_for_reset(struct usb_device *udev, 534 const struct usb_interface *iface); 535 536/* USB port reset for device reinitialization */ 537extern int usb_reset_device(struct usb_device *dev); 538extern void usb_queue_reset_device(struct usb_interface *dev); 539 540extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 541 542/* USB autosuspend and autoresume */ 543#ifdef CONFIG_USB_SUSPEND 544extern int usb_autopm_get_interface(struct usb_interface *intf); 545extern void usb_autopm_put_interface(struct usb_interface *intf); 546extern int usb_autopm_get_interface_async(struct usb_interface *intf); 547extern void usb_autopm_put_interface_async(struct usb_interface *intf); 548 549static inline void usb_autopm_get_interface_no_resume( 550 struct usb_interface *intf) 551{ 552 atomic_inc(&intf->pm_usage_cnt); 553} 554static inline void usb_autopm_put_interface_no_suspend( 555 struct usb_interface *intf) 556{ 557 atomic_dec(&intf->pm_usage_cnt); 558} 559 560static inline void usb_mark_last_busy(struct usb_device *udev) 561{ 562 udev->last_busy = jiffies; 563} 564 565#else 566 567static inline int usb_autopm_get_interface(struct usb_interface *intf) 568{ return 0; } 569static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 570{ return 0; } 571 572static inline void usb_autopm_put_interface(struct usb_interface *intf) 573{ } 574static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 575{ } 576static inline void usb_autopm_get_interface_no_resume( 577 struct usb_interface *intf) 578{ } 579static inline void usb_autopm_put_interface_no_suspend( 580 struct usb_interface *intf) 581{ } 582static inline void usb_mark_last_busy(struct usb_device *udev) 583{ } 584#endif 585 586/*-------------------------------------------------------------------------*/ 587 588/* for drivers using iso endpoints */ 589extern int usb_get_current_frame_number(struct usb_device *usb_dev); 590 591/* used these for multi-interface device registration */ 592extern int usb_driver_claim_interface(struct usb_driver *driver, 593 struct usb_interface *iface, void *priv); 594 595/** 596 * usb_interface_claimed - returns true iff an interface is claimed 597 * @iface: the interface being checked 598 * 599 * Returns true (nonzero) iff the interface is claimed, else false (zero). 600 * Callers must own the driver model's usb bus readlock. So driver 601 * probe() entries don't need extra locking, but other call contexts 602 * may need to explicitly claim that lock. 603 * 604 */ 605static inline int usb_interface_claimed(struct usb_interface *iface) 606{ 607 return (iface->dev.driver != NULL); 608} 609 610extern void usb_driver_release_interface(struct usb_driver *driver, 611 struct usb_interface *iface); 612const struct usb_device_id *usb_match_id(struct usb_interface *interface, 613 const struct usb_device_id *id); 614extern int usb_match_one_id(struct usb_interface *interface, 615 const struct usb_device_id *id); 616 617extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 618 int minor); 619extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 620 unsigned ifnum); 621extern struct usb_host_interface *usb_altnum_to_altsetting( 622 const struct usb_interface *intf, unsigned int altnum); 623extern struct usb_host_interface *usb_find_alt_setting( 624 struct usb_host_config *config, 625 unsigned int iface_num, 626 unsigned int alt_num); 627 628 629/** 630 * usb_make_path - returns stable device path in the usb tree 631 * @dev: the device whose path is being constructed 632 * @buf: where to put the string 633 * @size: how big is "buf"? 634 * 635 * Returns length of the string (> 0) or negative if size was too small. 636 * 637 * This identifier is intended to be "stable", reflecting physical paths in 638 * hardware such as physical bus addresses for host controllers or ports on 639 * USB hubs. That makes it stay the same until systems are physically 640 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 641 * controllers. Adding and removing devices, including virtual root hubs 642 * in host controller driver modules, does not change these path identifers; 643 * neither does rebooting or re-enumerating. These are more useful identifiers 644 * than changeable ("unstable") ones like bus numbers or device addresses. 645 * 646 * With a partial exception for devices connected to USB 2.0 root hubs, these 647 * identifiers are also predictable. So long as the device tree isn't changed, 648 * plugging any USB device into a given hub port always gives it the same path. 649 * Because of the use of "companion" controllers, devices connected to ports on 650 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 651 * high speed, and a different one if they are full or low speed. 652 */ 653static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 654{ 655 int actual; 656 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 657 dev->devpath); 658 return (actual >= (int)size) ? -1 : actual; 659} 660 661/*-------------------------------------------------------------------------*/ 662 663#define USB_DEVICE_ID_MATCH_DEVICE \ 664 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 665#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 666 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 667#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 668 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 669#define USB_DEVICE_ID_MATCH_DEV_INFO \ 670 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 671 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 672 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 673#define USB_DEVICE_ID_MATCH_INT_INFO \ 674 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 675 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 676 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 677 678/** 679 * USB_DEVICE - macro used to describe a specific usb device 680 * @vend: the 16 bit USB Vendor ID 681 * @prod: the 16 bit USB Product ID 682 * 683 * This macro is used to create a struct usb_device_id that matches a 684 * specific device. 685 */ 686#define USB_DEVICE(vend,prod) \ 687 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 688 .idVendor = (vend), \ 689 .idProduct = (prod) 690/** 691 * USB_DEVICE_VER - describe a specific usb device with a version range 692 * @vend: the 16 bit USB Vendor ID 693 * @prod: the 16 bit USB Product ID 694 * @lo: the bcdDevice_lo value 695 * @hi: the bcdDevice_hi value 696 * 697 * This macro is used to create a struct usb_device_id that matches a 698 * specific device, with a version range. 699 */ 700#define USB_DEVICE_VER(vend, prod, lo, hi) \ 701 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 702 .idVendor = (vend), \ 703 .idProduct = (prod), \ 704 .bcdDevice_lo = (lo), \ 705 .bcdDevice_hi = (hi) 706 707/** 708 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 709 * @vend: the 16 bit USB Vendor ID 710 * @prod: the 16 bit USB Product ID 711 * @pr: bInterfaceProtocol value 712 * 713 * This macro is used to create a struct usb_device_id that matches a 714 * specific interface protocol of devices. 715 */ 716#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 717 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 718 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 719 .idVendor = (vend), \ 720 .idProduct = (prod), \ 721 .bInterfaceProtocol = (pr) 722 723/** 724 * USB_DEVICE_INFO - macro used to describe a class of usb devices 725 * @cl: bDeviceClass value 726 * @sc: bDeviceSubClass value 727 * @pr: bDeviceProtocol value 728 * 729 * This macro is used to create a struct usb_device_id that matches a 730 * specific class of devices. 731 */ 732#define USB_DEVICE_INFO(cl, sc, pr) \ 733 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 734 .bDeviceClass = (cl), \ 735 .bDeviceSubClass = (sc), \ 736 .bDeviceProtocol = (pr) 737 738/** 739 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 740 * @cl: bInterfaceClass value 741 * @sc: bInterfaceSubClass value 742 * @pr: bInterfaceProtocol value 743 * 744 * This macro is used to create a struct usb_device_id that matches a 745 * specific class of interfaces. 746 */ 747#define USB_INTERFACE_INFO(cl, sc, pr) \ 748 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 749 .bInterfaceClass = (cl), \ 750 .bInterfaceSubClass = (sc), \ 751 .bInterfaceProtocol = (pr) 752 753/** 754 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 755 * @vend: the 16 bit USB Vendor ID 756 * @prod: the 16 bit USB Product ID 757 * @cl: bInterfaceClass value 758 * @sc: bInterfaceSubClass value 759 * @pr: bInterfaceProtocol value 760 * 761 * This macro is used to create a struct usb_device_id that matches a 762 * specific device with a specific class of interfaces. 763 * 764 * This is especially useful when explicitly matching devices that have 765 * vendor specific bDeviceClass values, but standards-compliant interfaces. 766 */ 767#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 768 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 769 | USB_DEVICE_ID_MATCH_DEVICE, \ 770 .idVendor = (vend), \ 771 .idProduct = (prod), \ 772 .bInterfaceClass = (cl), \ 773 .bInterfaceSubClass = (sc), \ 774 .bInterfaceProtocol = (pr) 775 776/* ----------------------------------------------------------------------- */ 777 778/* Stuff for dynamic usb ids */ 779struct usb_dynids { 780 spinlock_t lock; 781 struct list_head list; 782}; 783 784struct usb_dynid { 785 struct list_head node; 786 struct usb_device_id id; 787}; 788 789extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 790 struct device_driver *driver, 791 const char *buf, size_t count); 792 793/** 794 * struct usbdrv_wrap - wrapper for driver-model structure 795 * @driver: The driver-model core driver structure. 796 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 797 */ 798struct usbdrv_wrap { 799 struct device_driver driver; 800 int for_devices; 801}; 802 803/** 804 * struct usb_driver - identifies USB interface driver to usbcore 805 * @name: The driver name should be unique among USB drivers, 806 * and should normally be the same as the module name. 807 * @probe: Called to see if the driver is willing to manage a particular 808 * interface on a device. If it is, probe returns zero and uses 809 * usb_set_intfdata() to associate driver-specific data with the 810 * interface. It may also use usb_set_interface() to specify the 811 * appropriate altsetting. If unwilling to manage the interface, 812 * return -ENODEV, if genuine IO errors occured, an appropriate 813 * negative errno value. 814 * @disconnect: Called when the interface is no longer accessible, usually 815 * because its device has been (or is being) disconnected or the 816 * driver module is being unloaded. 817 * @ioctl: Used for drivers that want to talk to userspace through 818 * the "usbfs" filesystem. This lets devices provide ways to 819 * expose information to user space regardless of where they 820 * do (or don't) show up otherwise in the filesystem. 821 * @suspend: Called when the device is going to be suspended by the system. 822 * @resume: Called when the device is being resumed by the system. 823 * @reset_resume: Called when the suspended device has been reset instead 824 * of being resumed. 825 * @pre_reset: Called by usb_reset_device() when the device 826 * is about to be reset. 827 * @post_reset: Called by usb_reset_device() after the device 828 * has been reset 829 * @id_table: USB drivers use ID table to support hotplugging. 830 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 831 * or your driver's probe function will never get called. 832 * @dynids: used internally to hold the list of dynamically added device 833 * ids for this driver. 834 * @drvwrap: Driver-model core structure wrapper. 835 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 836 * added to this driver by preventing the sysfs file from being created. 837 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 838 * for interfaces bound to this driver. 839 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 840 * endpoints before calling the driver's disconnect method. 841 * 842 * USB interface drivers must provide a name, probe() and disconnect() 843 * methods, and an id_table. Other driver fields are optional. 844 * 845 * The id_table is used in hotplugging. It holds a set of descriptors, 846 * and specialized data may be associated with each entry. That table 847 * is used by both user and kernel mode hotplugging support. 848 * 849 * The probe() and disconnect() methods are called in a context where 850 * they can sleep, but they should avoid abusing the privilege. Most 851 * work to connect to a device should be done when the device is opened, 852 * and undone at the last close. The disconnect code needs to address 853 * concurrency issues with respect to open() and close() methods, as 854 * well as forcing all pending I/O requests to complete (by unlinking 855 * them as necessary, and blocking until the unlinks complete). 856 */ 857struct usb_driver { 858 const char *name; 859 860 int (*probe) (struct usb_interface *intf, 861 const struct usb_device_id *id); 862 863 void (*disconnect) (struct usb_interface *intf); 864 865 int (*ioctl) (struct usb_interface *intf, unsigned int code, 866 void *buf); 867 868 int (*suspend) (struct usb_interface *intf, pm_message_t message); 869 int (*resume) (struct usb_interface *intf); 870 int (*reset_resume)(struct usb_interface *intf); 871 872 int (*pre_reset)(struct usb_interface *intf); 873 int (*post_reset)(struct usb_interface *intf); 874 875 const struct usb_device_id *id_table; 876 877 struct usb_dynids dynids; 878 struct usbdrv_wrap drvwrap; 879 unsigned int no_dynamic_id:1; 880 unsigned int supports_autosuspend:1; 881 unsigned int soft_unbind:1; 882}; 883#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 884 885/** 886 * struct usb_device_driver - identifies USB device driver to usbcore 887 * @name: The driver name should be unique among USB drivers, 888 * and should normally be the same as the module name. 889 * @probe: Called to see if the driver is willing to manage a particular 890 * device. If it is, probe returns zero and uses dev_set_drvdata() 891 * to associate driver-specific data with the device. If unwilling 892 * to manage the device, return a negative errno value. 893 * @disconnect: Called when the device is no longer accessible, usually 894 * because it has been (or is being) disconnected or the driver's 895 * module is being unloaded. 896 * @suspend: Called when the device is going to be suspended by the system. 897 * @resume: Called when the device is being resumed by the system. 898 * @drvwrap: Driver-model core structure wrapper. 899 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 900 * for devices bound to this driver. 901 * 902 * USB drivers must provide all the fields listed above except drvwrap. 903 */ 904struct usb_device_driver { 905 const char *name; 906 907 int (*probe) (struct usb_device *udev); 908 void (*disconnect) (struct usb_device *udev); 909 910 int (*suspend) (struct usb_device *udev, pm_message_t message); 911 int (*resume) (struct usb_device *udev, pm_message_t message); 912 struct usbdrv_wrap drvwrap; 913 unsigned int supports_autosuspend:1; 914}; 915#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 916 drvwrap.driver) 917 918extern struct bus_type usb_bus_type; 919 920/** 921 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 922 * @name: the usb class device name for this driver. Will show up in sysfs. 923 * @devnode: Callback to provide a naming hint for a possible 924 * device node to create. 925 * @fops: pointer to the struct file_operations of this driver. 926 * @minor_base: the start of the minor range for this driver. 927 * 928 * This structure is used for the usb_register_dev() and 929 * usb_unregister_dev() functions, to consolidate a number of the 930 * parameters used for them. 931 */ 932struct usb_class_driver { 933 char *name; 934 char *(*devnode)(struct device *dev, mode_t *mode); 935 const struct file_operations *fops; 936 int minor_base; 937}; 938 939/* 940 * use these in module_init()/module_exit() 941 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 942 */ 943extern int usb_register_driver(struct usb_driver *, struct module *, 944 const char *); 945static inline int usb_register(struct usb_driver *driver) 946{ 947 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 948} 949extern void usb_deregister(struct usb_driver *); 950 951extern int usb_register_device_driver(struct usb_device_driver *, 952 struct module *); 953extern void usb_deregister_device_driver(struct usb_device_driver *); 954 955extern int usb_register_dev(struct usb_interface *intf, 956 struct usb_class_driver *class_driver); 957extern void usb_deregister_dev(struct usb_interface *intf, 958 struct usb_class_driver *class_driver); 959 960extern int usb_disabled(void); 961 962/* ----------------------------------------------------------------------- */ 963 964/* 965 * URB support, for asynchronous request completions 966 */ 967 968/* 969 * urb->transfer_flags: 970 * 971 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 972 */ 973#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 974#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 975 * ignored */ 976#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 977#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 978#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 979#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 980#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 981 * needed */ 982#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 983 984#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 985#define URB_DIR_OUT 0 986#define URB_DIR_MASK URB_DIR_IN 987 988struct usb_iso_packet_descriptor { 989 unsigned int offset; 990 unsigned int length; /* expected length */ 991 unsigned int actual_length; 992 int status; 993}; 994 995struct urb; 996 997struct usb_anchor { 998 struct list_head urb_list; 999 wait_queue_head_t wait; 1000 spinlock_t lock; 1001 unsigned int poisoned:1; 1002}; 1003 1004static inline void init_usb_anchor(struct usb_anchor *anchor) 1005{ 1006 INIT_LIST_HEAD(&anchor->urb_list); 1007 init_waitqueue_head(&anchor->wait); 1008 spin_lock_init(&anchor->lock); 1009} 1010 1011typedef void (*usb_complete_t)(struct urb *); 1012 1013/** 1014 * struct urb - USB Request Block 1015 * @urb_list: For use by current owner of the URB. 1016 * @anchor_list: membership in the list of an anchor 1017 * @anchor: to anchor URBs to a common mooring 1018 * @ep: Points to the endpoint's data structure. Will eventually 1019 * replace @pipe. 1020 * @pipe: Holds endpoint number, direction, type, and more. 1021 * Create these values with the eight macros available; 1022 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1023 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1024 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1025 * numbers range from zero to fifteen. Note that "in" endpoint two 1026 * is a different endpoint (and pipe) from "out" endpoint two. 1027 * The current configuration controls the existence, type, and 1028 * maximum packet size of any given endpoint. 1029 * @dev: Identifies the USB device to perform the request. 1030 * @status: This is read in non-iso completion functions to get the 1031 * status of the particular request. ISO requests only use it 1032 * to tell whether the URB was unlinked; detailed status for 1033 * each frame is in the fields of the iso_frame-desc. 1034 * @transfer_flags: A variety of flags may be used to affect how URB 1035 * submission, unlinking, or operation are handled. Different 1036 * kinds of URB can use different flags. 1037 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1038 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1039 * (however, do not leave garbage in transfer_buffer even then). 1040 * This buffer must be suitable for DMA; allocate it with 1041 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1042 * of this buffer will be modified. This buffer is used for the data 1043 * stage of control transfers. 1044 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1045 * the device driver is saying that it provided this DMA address, 1046 * which the host controller driver should use in preference to the 1047 * transfer_buffer. 1048 * @sg: scatter gather buffer list 1049 * @num_sgs: number of entries in the sg list 1050 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1051 * be broken up into chunks according to the current maximum packet 1052 * size for the endpoint, which is a function of the configuration 1053 * and is encoded in the pipe. When the length is zero, neither 1054 * transfer_buffer nor transfer_dma is used. 1055 * @actual_length: This is read in non-iso completion functions, and 1056 * it tells how many bytes (out of transfer_buffer_length) were 1057 * transferred. It will normally be the same as requested, unless 1058 * either an error was reported or a short read was performed. 1059 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1060 * short reads be reported as errors. 1061 * @setup_packet: Only used for control transfers, this points to eight bytes 1062 * of setup data. Control transfers always start by sending this data 1063 * to the device. Then transfer_buffer is read or written, if needed. 1064 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1065 * device driver has provided this DMA address for the setup packet. 1066 * The host controller driver should use this in preference to 1067 * setup_packet, but the HCD may chose to ignore the address if it must 1068 * copy the setup packet into internal structures. Therefore, setup_packet 1069 * must always point to a valid buffer. 1070 * @start_frame: Returns the initial frame for isochronous transfers. 1071 * @number_of_packets: Lists the number of ISO transfer buffers. 1072 * @interval: Specifies the polling interval for interrupt or isochronous 1073 * transfers. The units are frames (milliseconds) for full and low 1074 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1075 * @error_count: Returns the number of ISO transfers that reported errors. 1076 * @context: For use in completion functions. This normally points to 1077 * request-specific driver context. 1078 * @complete: Completion handler. This URB is passed as the parameter to the 1079 * completion function. The completion function may then do what 1080 * it likes with the URB, including resubmitting or freeing it. 1081 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1082 * collect the transfer status for each buffer. 1083 * 1084 * This structure identifies USB transfer requests. URBs must be allocated by 1085 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1086 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1087 * are submitted using usb_submit_urb(), and pending requests may be canceled 1088 * using usb_unlink_urb() or usb_kill_urb(). 1089 * 1090 * Data Transfer Buffers: 1091 * 1092 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1093 * taken from the general page pool. That is provided by transfer_buffer 1094 * (control requests also use setup_packet), and host controller drivers 1095 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1096 * mapping operations can be expensive on some platforms (perhaps using a dma 1097 * bounce buffer or talking to an IOMMU), 1098 * although they're cheap on commodity x86 and ppc hardware. 1099 * 1100 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1101 * which tell the host controller driver that no such mapping is needed since 1102 * the device driver is DMA-aware. For example, a device driver might 1103 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1104 * When these transfer flags are provided, host controller drivers will 1105 * attempt to use the dma addresses found in the transfer_dma and/or 1106 * setup_dma fields rather than determining a dma address themselves. 1107 * 1108 * Note that transfer_buffer must still be set if the controller 1109 * does not support DMA (as indicated by bus.uses_dma) and when talking 1110 * to root hub. If you have to trasfer between highmem zone and the device 1111 * on such controller, create a bounce buffer or bail out with an error. 1112 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1113 * capable, assign NULL to it, so that usbmon knows not to use the value. 1114 * The setup_packet must always be set, so it cannot be located in highmem. 1115 * 1116 * Initialization: 1117 * 1118 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1119 * zero), and complete fields. All URBs must also initialize 1120 * transfer_buffer and transfer_buffer_length. They may provide the 1121 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1122 * to be treated as errors; that flag is invalid for write requests. 1123 * 1124 * Bulk URBs may 1125 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1126 * should always terminate with a short packet, even if it means adding an 1127 * extra zero length packet. 1128 * 1129 * Control URBs must provide a setup_packet. The setup_packet and 1130 * transfer_buffer may each be mapped for DMA or not, independently of 1131 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1132 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1133 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1134 * 1135 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1136 * or, for highspeed devices, 125 microsecond units) 1137 * to poll for transfers. After the URB has been submitted, the interval 1138 * field reflects how the transfer was actually scheduled. 1139 * The polling interval may be more frequent than requested. 1140 * For example, some controllers have a maximum interval of 32 milliseconds, 1141 * while others support intervals of up to 1024 milliseconds. 1142 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1143 * endpoints, as well as high speed interrupt endpoints, the encoding of 1144 * the transfer interval in the endpoint descriptor is logarithmic. 1145 * Device drivers must convert that value to linear units themselves.) 1146 * 1147 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1148 * the host controller to schedule the transfer as soon as bandwidth 1149 * utilization allows, and then set start_frame to reflect the actual frame 1150 * selected during submission. Otherwise drivers must specify the start_frame 1151 * and handle the case where the transfer can't begin then. However, drivers 1152 * won't know how bandwidth is currently allocated, and while they can 1153 * find the current frame using usb_get_current_frame_number () they can't 1154 * know the range for that frame number. (Ranges for frame counter values 1155 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1156 * 1157 * Isochronous URBs have a different data transfer model, in part because 1158 * the quality of service is only "best effort". Callers provide specially 1159 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1160 * at the end. Each such packet is an individual ISO transfer. Isochronous 1161 * URBs are normally queued, submitted by drivers to arrange that 1162 * transfers are at least double buffered, and then explicitly resubmitted 1163 * in completion handlers, so 1164 * that data (such as audio or video) streams at as constant a rate as the 1165 * host controller scheduler can support. 1166 * 1167 * Completion Callbacks: 1168 * 1169 * The completion callback is made in_interrupt(), and one of the first 1170 * things that a completion handler should do is check the status field. 1171 * The status field is provided for all URBs. It is used to report 1172 * unlinked URBs, and status for all non-ISO transfers. It should not 1173 * be examined before the URB is returned to the completion handler. 1174 * 1175 * The context field is normally used to link URBs back to the relevant 1176 * driver or request state. 1177 * 1178 * When the completion callback is invoked for non-isochronous URBs, the 1179 * actual_length field tells how many bytes were transferred. This field 1180 * is updated even when the URB terminated with an error or was unlinked. 1181 * 1182 * ISO transfer status is reported in the status and actual_length fields 1183 * of the iso_frame_desc array, and the number of errors is reported in 1184 * error_count. Completion callbacks for ISO transfers will normally 1185 * (re)submit URBs to ensure a constant transfer rate. 1186 * 1187 * Note that even fields marked "public" should not be touched by the driver 1188 * when the urb is owned by the hcd, that is, since the call to 1189 * usb_submit_urb() till the entry into the completion routine. 1190 */ 1191struct urb { 1192 /* private: usb core and host controller only fields in the urb */ 1193 struct kref kref; /* reference count of the URB */ 1194 void *hcpriv; /* private data for host controller */ 1195 atomic_t use_count; /* concurrent submissions counter */ 1196 atomic_t reject; /* submissions will fail */ 1197 int unlinked; /* unlink error code */ 1198 1199 /* public: documented fields in the urb that can be used by drivers */ 1200 struct list_head urb_list; /* list head for use by the urb's 1201 * current owner */ 1202 struct list_head anchor_list; /* the URB may be anchored */ 1203 struct usb_anchor *anchor; 1204 struct usb_device *dev; /* (in) pointer to associated device */ 1205 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1206 unsigned int pipe; /* (in) pipe information */ 1207 int status; /* (return) non-ISO status */ 1208 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1209 void *transfer_buffer; /* (in) associated data buffer */ 1210 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1211 struct usb_sg_request *sg; /* (in) scatter gather buffer list */ 1212 int num_sgs; /* (in) number of entries in the sg list */ 1213 u32 transfer_buffer_length; /* (in) data buffer length */ 1214 u32 actual_length; /* (return) actual transfer length */ 1215 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1216 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1217 int start_frame; /* (modify) start frame (ISO) */ 1218 int number_of_packets; /* (in) number of ISO packets */ 1219 int interval; /* (modify) transfer interval 1220 * (INT/ISO) */ 1221 int error_count; /* (return) number of ISO errors */ 1222 void *context; /* (in) context for completion */ 1223 usb_complete_t complete; /* (in) completion routine */ 1224 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1225 /* (in) ISO ONLY */ 1226}; 1227 1228/* ----------------------------------------------------------------------- */ 1229 1230/** 1231 * usb_fill_control_urb - initializes a control urb 1232 * @urb: pointer to the urb to initialize. 1233 * @dev: pointer to the struct usb_device for this urb. 1234 * @pipe: the endpoint pipe 1235 * @setup_packet: pointer to the setup_packet buffer 1236 * @transfer_buffer: pointer to the transfer buffer 1237 * @buffer_length: length of the transfer buffer 1238 * @complete_fn: pointer to the usb_complete_t function 1239 * @context: what to set the urb context to. 1240 * 1241 * Initializes a control urb with the proper information needed to submit 1242 * it to a device. 1243 */ 1244static inline void usb_fill_control_urb(struct urb *urb, 1245 struct usb_device *dev, 1246 unsigned int pipe, 1247 unsigned char *setup_packet, 1248 void *transfer_buffer, 1249 int buffer_length, 1250 usb_complete_t complete_fn, 1251 void *context) 1252{ 1253 urb->dev = dev; 1254 urb->pipe = pipe; 1255 urb->setup_packet = setup_packet; 1256 urb->transfer_buffer = transfer_buffer; 1257 urb->transfer_buffer_length = buffer_length; 1258 urb->complete = complete_fn; 1259 urb->context = context; 1260} 1261 1262/** 1263 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1264 * @urb: pointer to the urb to initialize. 1265 * @dev: pointer to the struct usb_device for this urb. 1266 * @pipe: the endpoint pipe 1267 * @transfer_buffer: pointer to the transfer buffer 1268 * @buffer_length: length of the transfer buffer 1269 * @complete_fn: pointer to the usb_complete_t function 1270 * @context: what to set the urb context to. 1271 * 1272 * Initializes a bulk urb with the proper information needed to submit it 1273 * to a device. 1274 */ 1275static inline void usb_fill_bulk_urb(struct urb *urb, 1276 struct usb_device *dev, 1277 unsigned int pipe, 1278 void *transfer_buffer, 1279 int buffer_length, 1280 usb_complete_t complete_fn, 1281 void *context) 1282{ 1283 urb->dev = dev; 1284 urb->pipe = pipe; 1285 urb->transfer_buffer = transfer_buffer; 1286 urb->transfer_buffer_length = buffer_length; 1287 urb->complete = complete_fn; 1288 urb->context = context; 1289} 1290 1291/** 1292 * usb_fill_int_urb - macro to help initialize a interrupt urb 1293 * @urb: pointer to the urb to initialize. 1294 * @dev: pointer to the struct usb_device for this urb. 1295 * @pipe: the endpoint pipe 1296 * @transfer_buffer: pointer to the transfer buffer 1297 * @buffer_length: length of the transfer buffer 1298 * @complete_fn: pointer to the usb_complete_t function 1299 * @context: what to set the urb context to. 1300 * @interval: what to set the urb interval to, encoded like 1301 * the endpoint descriptor's bInterval value. 1302 * 1303 * Initializes a interrupt urb with the proper information needed to submit 1304 * it to a device. 1305 * Note that high speed interrupt endpoints use a logarithmic encoding of 1306 * the endpoint interval, and express polling intervals in microframes 1307 * (eight per millisecond) rather than in frames (one per millisecond). 1308 */ 1309static inline void usb_fill_int_urb(struct urb *urb, 1310 struct usb_device *dev, 1311 unsigned int pipe, 1312 void *transfer_buffer, 1313 int buffer_length, 1314 usb_complete_t complete_fn, 1315 void *context, 1316 int interval) 1317{ 1318 urb->dev = dev; 1319 urb->pipe = pipe; 1320 urb->transfer_buffer = transfer_buffer; 1321 urb->transfer_buffer_length = buffer_length; 1322 urb->complete = complete_fn; 1323 urb->context = context; 1324 if (dev->speed == USB_SPEED_HIGH) 1325 urb->interval = 1 << (interval - 1); 1326 else 1327 urb->interval = interval; 1328 urb->start_frame = -1; 1329} 1330 1331extern void usb_init_urb(struct urb *urb); 1332extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1333extern void usb_free_urb(struct urb *urb); 1334#define usb_put_urb usb_free_urb 1335extern struct urb *usb_get_urb(struct urb *urb); 1336extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1337extern int usb_unlink_urb(struct urb *urb); 1338extern void usb_kill_urb(struct urb *urb); 1339extern void usb_poison_urb(struct urb *urb); 1340extern void usb_unpoison_urb(struct urb *urb); 1341extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1342extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1343extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1344extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1345extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1346extern void usb_unanchor_urb(struct urb *urb); 1347extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1348 unsigned int timeout); 1349extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1350extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1351extern int usb_anchor_empty(struct usb_anchor *anchor); 1352 1353/** 1354 * usb_urb_dir_in - check if an URB describes an IN transfer 1355 * @urb: URB to be checked 1356 * 1357 * Returns 1 if @urb describes an IN transfer (device-to-host), 1358 * otherwise 0. 1359 */ 1360static inline int usb_urb_dir_in(struct urb *urb) 1361{ 1362 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1363} 1364 1365/** 1366 * usb_urb_dir_out - check if an URB describes an OUT transfer 1367 * @urb: URB to be checked 1368 * 1369 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1370 * otherwise 0. 1371 */ 1372static inline int usb_urb_dir_out(struct urb *urb) 1373{ 1374 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1375} 1376 1377void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1378 gfp_t mem_flags, dma_addr_t *dma); 1379void usb_buffer_free(struct usb_device *dev, size_t size, 1380 void *addr, dma_addr_t dma); 1381 1382#if 0 1383struct urb *usb_buffer_map(struct urb *urb); 1384void usb_buffer_dmasync(struct urb *urb); 1385void usb_buffer_unmap(struct urb *urb); 1386#endif 1387 1388struct scatterlist; 1389int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1390 struct scatterlist *sg, int nents); 1391#if 0 1392void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1393 struct scatterlist *sg, int n_hw_ents); 1394#endif 1395void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1396 struct scatterlist *sg, int n_hw_ents); 1397 1398/*-------------------------------------------------------------------* 1399 * SYNCHRONOUS CALL SUPPORT * 1400 *-------------------------------------------------------------------*/ 1401 1402extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1403 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1404 void *data, __u16 size, int timeout); 1405extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1406 void *data, int len, int *actual_length, int timeout); 1407extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1408 void *data, int len, int *actual_length, 1409 int timeout); 1410 1411/* wrappers around usb_control_msg() for the most common standard requests */ 1412extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1413 unsigned char descindex, void *buf, int size); 1414extern int usb_get_status(struct usb_device *dev, 1415 int type, int target, void *data); 1416extern int usb_string(struct usb_device *dev, int index, 1417 char *buf, size_t size); 1418 1419/* wrappers that also update important state inside usbcore */ 1420extern int usb_clear_halt(struct usb_device *dev, int pipe); 1421extern int usb_reset_configuration(struct usb_device *dev); 1422extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1423extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1424 1425/* this request isn't really synchronous, but it belongs with the others */ 1426extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1427 1428/* 1429 * timeouts, in milliseconds, used for sending/receiving control messages 1430 * they typically complete within a few frames (msec) after they're issued 1431 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1432 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1433 */ 1434#define USB_CTRL_GET_TIMEOUT 5000 1435#define USB_CTRL_SET_TIMEOUT 5000 1436 1437 1438/** 1439 * struct usb_sg_request - support for scatter/gather I/O 1440 * @status: zero indicates success, else negative errno 1441 * @bytes: counts bytes transferred. 1442 * 1443 * These requests are initialized using usb_sg_init(), and then are used 1444 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1445 * members of the request object aren't for driver access. 1446 * 1447 * The status and bytecount values are valid only after usb_sg_wait() 1448 * returns. If the status is zero, then the bytecount matches the total 1449 * from the request. 1450 * 1451 * After an error completion, drivers may need to clear a halt condition 1452 * on the endpoint. 1453 */ 1454struct usb_sg_request { 1455 int status; 1456 size_t bytes; 1457 1458 /* private: 1459 * members below are private to usbcore, 1460 * and are not provided for driver access! 1461 */ 1462 spinlock_t lock; 1463 1464 struct usb_device *dev; 1465 int pipe; 1466 struct scatterlist *sg; 1467 int nents; 1468 1469 int entries; 1470 struct urb **urbs; 1471 1472 int count; 1473 struct completion complete; 1474}; 1475 1476int usb_sg_init( 1477 struct usb_sg_request *io, 1478 struct usb_device *dev, 1479 unsigned pipe, 1480 unsigned period, 1481 struct scatterlist *sg, 1482 int nents, 1483 size_t length, 1484 gfp_t mem_flags 1485); 1486void usb_sg_cancel(struct usb_sg_request *io); 1487void usb_sg_wait(struct usb_sg_request *io); 1488 1489 1490/* ----------------------------------------------------------------------- */ 1491 1492/* 1493 * For various legacy reasons, Linux has a small cookie that's paired with 1494 * a struct usb_device to identify an endpoint queue. Queue characteristics 1495 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1496 * an unsigned int encoded as: 1497 * 1498 * - direction: bit 7 (0 = Host-to-Device [Out], 1499 * 1 = Device-to-Host [In] ... 1500 * like endpoint bEndpointAddress) 1501 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1502 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1503 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1504 * 10 = control, 11 = bulk) 1505 * 1506 * Given the device address and endpoint descriptor, pipes are redundant. 1507 */ 1508 1509/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1510/* (yet ... they're the values used by usbfs) */ 1511#define PIPE_ISOCHRONOUS 0 1512#define PIPE_INTERRUPT 1 1513#define PIPE_CONTROL 2 1514#define PIPE_BULK 3 1515 1516#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1517#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1518 1519#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1520#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1521 1522#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1523#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1524#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1525#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1526#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1527 1528static inline unsigned int __create_pipe(struct usb_device *dev, 1529 unsigned int endpoint) 1530{ 1531 return (dev->devnum << 8) | (endpoint << 15); 1532} 1533 1534/* Create various pipes... */ 1535#define usb_sndctrlpipe(dev,endpoint) \ 1536 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1537#define usb_rcvctrlpipe(dev,endpoint) \ 1538 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1539#define usb_sndisocpipe(dev,endpoint) \ 1540 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1541#define usb_rcvisocpipe(dev,endpoint) \ 1542 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1543#define usb_sndbulkpipe(dev,endpoint) \ 1544 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1545#define usb_rcvbulkpipe(dev,endpoint) \ 1546 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1547#define usb_sndintpipe(dev,endpoint) \ 1548 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1549#define usb_rcvintpipe(dev,endpoint) \ 1550 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1551 1552/*-------------------------------------------------------------------------*/ 1553 1554static inline __u16 1555usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1556{ 1557 struct usb_host_endpoint *ep; 1558 unsigned epnum = usb_pipeendpoint(pipe); 1559 1560 if (is_out) { 1561 WARN_ON(usb_pipein(pipe)); 1562 ep = udev->ep_out[epnum]; 1563 } else { 1564 WARN_ON(usb_pipeout(pipe)); 1565 ep = udev->ep_in[epnum]; 1566 } 1567 if (!ep) 1568 return 0; 1569 1570 /* NOTE: only 0x07ff bits are for packet size... */ 1571 return le16_to_cpu(ep->desc.wMaxPacketSize); 1572} 1573 1574/* ----------------------------------------------------------------------- */ 1575 1576/* Events from the usb core */ 1577#define USB_DEVICE_ADD 0x0001 1578#define USB_DEVICE_REMOVE 0x0002 1579#define USB_BUS_ADD 0x0003 1580#define USB_BUS_REMOVE 0x0004 1581extern void usb_register_notify(struct notifier_block *nb); 1582extern void usb_unregister_notify(struct notifier_block *nb); 1583 1584#ifdef DEBUG 1585#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1586 __FILE__ , ## arg) 1587#else 1588#define dbg(format, arg...) do {} while (0) 1589#endif 1590 1591#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1592 format "\n" , ## arg) 1593 1594/* debugfs stuff */ 1595extern struct dentry *usb_debug_root; 1596 1597#endif /* __KERNEL__ */ 1598 1599#endif