at v2.6.33 912 lines 23 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57}; 58 59/* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75}; 76 77enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83}; 84 85enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90}; 91 92/* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110}; 111 112/* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130}; 131 132/* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159}; 160 161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163/* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 207 __reserved_1 : 49; 208 209 union { 210 __u32 wakeup_events; /* wakeup every n events */ 211 __u32 wakeup_watermark; /* bytes before wakeup */ 212 }; 213 214 __u32 bp_type; 215 __u64 bp_addr; 216 __u64 bp_len; 217}; 218 219/* 220 * Ioctls that can be done on a perf event fd: 221 */ 222#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 223#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 224#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 225#define PERF_EVENT_IOC_RESET _IO ('$', 3) 226#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 227#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 228#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 229 230enum perf_event_ioc_flags { 231 PERF_IOC_FLAG_GROUP = 1U << 0, 232}; 233 234/* 235 * Structure of the page that can be mapped via mmap 236 */ 237struct perf_event_mmap_page { 238 __u32 version; /* version number of this structure */ 239 __u32 compat_version; /* lowest version this is compat with */ 240 241 /* 242 * Bits needed to read the hw events in user-space. 243 * 244 * u32 seq; 245 * s64 count; 246 * 247 * do { 248 * seq = pc->lock; 249 * 250 * barrier() 251 * if (pc->index) { 252 * count = pmc_read(pc->index - 1); 253 * count += pc->offset; 254 * } else 255 * goto regular_read; 256 * 257 * barrier(); 258 * } while (pc->lock != seq); 259 * 260 * NOTE: for obvious reason this only works on self-monitoring 261 * processes. 262 */ 263 __u32 lock; /* seqlock for synchronization */ 264 __u32 index; /* hardware event identifier */ 265 __s64 offset; /* add to hardware event value */ 266 __u64 time_enabled; /* time event active */ 267 __u64 time_running; /* time event on cpu */ 268 269 /* 270 * Hole for extension of the self monitor capabilities 271 */ 272 273 __u64 __reserved[123]; /* align to 1k */ 274 275 /* 276 * Control data for the mmap() data buffer. 277 * 278 * User-space reading the @data_head value should issue an rmb(), on 279 * SMP capable platforms, after reading this value -- see 280 * perf_event_wakeup(). 281 * 282 * When the mapping is PROT_WRITE the @data_tail value should be 283 * written by userspace to reflect the last read data. In this case 284 * the kernel will not over-write unread data. 285 */ 286 __u64 data_head; /* head in the data section */ 287 __u64 data_tail; /* user-space written tail */ 288}; 289 290#define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0) 291#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 292#define PERF_RECORD_MISC_KERNEL (1 << 0) 293#define PERF_RECORD_MISC_USER (2 << 0) 294#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 295 296struct perf_event_header { 297 __u32 type; 298 __u16 misc; 299 __u16 size; 300}; 301 302enum perf_event_type { 303 304 /* 305 * The MMAP events record the PROT_EXEC mappings so that we can 306 * correlate userspace IPs to code. They have the following structure: 307 * 308 * struct { 309 * struct perf_event_header header; 310 * 311 * u32 pid, tid; 312 * u64 addr; 313 * u64 len; 314 * u64 pgoff; 315 * char filename[]; 316 * }; 317 */ 318 PERF_RECORD_MMAP = 1, 319 320 /* 321 * struct { 322 * struct perf_event_header header; 323 * u64 id; 324 * u64 lost; 325 * }; 326 */ 327 PERF_RECORD_LOST = 2, 328 329 /* 330 * struct { 331 * struct perf_event_header header; 332 * 333 * u32 pid, tid; 334 * char comm[]; 335 * }; 336 */ 337 PERF_RECORD_COMM = 3, 338 339 /* 340 * struct { 341 * struct perf_event_header header; 342 * u32 pid, ppid; 343 * u32 tid, ptid; 344 * u64 time; 345 * }; 346 */ 347 PERF_RECORD_EXIT = 4, 348 349 /* 350 * struct { 351 * struct perf_event_header header; 352 * u64 time; 353 * u64 id; 354 * u64 stream_id; 355 * }; 356 */ 357 PERF_RECORD_THROTTLE = 5, 358 PERF_RECORD_UNTHROTTLE = 6, 359 360 /* 361 * struct { 362 * struct perf_event_header header; 363 * u32 pid, ppid; 364 * u32 tid, ptid; 365 * u64 time; 366 * }; 367 */ 368 PERF_RECORD_FORK = 7, 369 370 /* 371 * struct { 372 * struct perf_event_header header; 373 * u32 pid, tid; 374 * 375 * struct read_format values; 376 * }; 377 */ 378 PERF_RECORD_READ = 8, 379 380 /* 381 * struct { 382 * struct perf_event_header header; 383 * 384 * { u64 ip; } && PERF_SAMPLE_IP 385 * { u32 pid, tid; } && PERF_SAMPLE_TID 386 * { u64 time; } && PERF_SAMPLE_TIME 387 * { u64 addr; } && PERF_SAMPLE_ADDR 388 * { u64 id; } && PERF_SAMPLE_ID 389 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 390 * { u32 cpu, res; } && PERF_SAMPLE_CPU 391 * { u64 period; } && PERF_SAMPLE_PERIOD 392 * 393 * { struct read_format values; } && PERF_SAMPLE_READ 394 * 395 * { u64 nr, 396 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 397 * 398 * # 399 * # The RAW record below is opaque data wrt the ABI 400 * # 401 * # That is, the ABI doesn't make any promises wrt to 402 * # the stability of its content, it may vary depending 403 * # on event, hardware, kernel version and phase of 404 * # the moon. 405 * # 406 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 407 * # 408 * 409 * { u32 size; 410 * char data[size];}&& PERF_SAMPLE_RAW 411 * }; 412 */ 413 PERF_RECORD_SAMPLE = 9, 414 415 PERF_RECORD_MAX, /* non-ABI */ 416}; 417 418enum perf_callchain_context { 419 PERF_CONTEXT_HV = (__u64)-32, 420 PERF_CONTEXT_KERNEL = (__u64)-128, 421 PERF_CONTEXT_USER = (__u64)-512, 422 423 PERF_CONTEXT_GUEST = (__u64)-2048, 424 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 425 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 426 427 PERF_CONTEXT_MAX = (__u64)-4095, 428}; 429 430#define PERF_FLAG_FD_NO_GROUP (1U << 0) 431#define PERF_FLAG_FD_OUTPUT (1U << 1) 432 433#ifdef __KERNEL__ 434/* 435 * Kernel-internal data types and definitions: 436 */ 437 438#ifdef CONFIG_PERF_EVENTS 439# include <asm/perf_event.h> 440#endif 441 442#ifdef CONFIG_HAVE_HW_BREAKPOINT 443#include <asm/hw_breakpoint.h> 444#endif 445 446#include <linux/list.h> 447#include <linux/mutex.h> 448#include <linux/rculist.h> 449#include <linux/rcupdate.h> 450#include <linux/spinlock.h> 451#include <linux/hrtimer.h> 452#include <linux/fs.h> 453#include <linux/pid_namespace.h> 454#include <linux/workqueue.h> 455#include <asm/atomic.h> 456 457#define PERF_MAX_STACK_DEPTH 255 458 459struct perf_callchain_entry { 460 __u64 nr; 461 __u64 ip[PERF_MAX_STACK_DEPTH]; 462}; 463 464struct perf_raw_record { 465 u32 size; 466 void *data; 467}; 468 469struct task_struct; 470 471/** 472 * struct hw_perf_event - performance event hardware details: 473 */ 474struct hw_perf_event { 475#ifdef CONFIG_PERF_EVENTS 476 union { 477 struct { /* hardware */ 478 u64 config; 479 unsigned long config_base; 480 unsigned long event_base; 481 int idx; 482 }; 483 struct { /* software */ 484 s64 remaining; 485 struct hrtimer hrtimer; 486 }; 487#ifdef CONFIG_HAVE_HW_BREAKPOINT 488 union { /* breakpoint */ 489 struct arch_hw_breakpoint info; 490 }; 491#endif 492 }; 493 atomic64_t prev_count; 494 u64 sample_period; 495 u64 last_period; 496 atomic64_t period_left; 497 u64 interrupts; 498 499 u64 freq_count; 500 u64 freq_interrupts; 501 u64 freq_stamp; 502#endif 503}; 504 505struct perf_event; 506 507/** 508 * struct pmu - generic performance monitoring unit 509 */ 510struct pmu { 511 int (*enable) (struct perf_event *event); 512 void (*disable) (struct perf_event *event); 513 void (*read) (struct perf_event *event); 514 void (*unthrottle) (struct perf_event *event); 515}; 516 517/** 518 * enum perf_event_active_state - the states of a event 519 */ 520enum perf_event_active_state { 521 PERF_EVENT_STATE_ERROR = -2, 522 PERF_EVENT_STATE_OFF = -1, 523 PERF_EVENT_STATE_INACTIVE = 0, 524 PERF_EVENT_STATE_ACTIVE = 1, 525}; 526 527struct file; 528 529struct perf_mmap_data { 530 struct rcu_head rcu_head; 531#ifdef CONFIG_PERF_USE_VMALLOC 532 struct work_struct work; 533#endif 534 int data_order; 535 int nr_pages; /* nr of data pages */ 536 int writable; /* are we writable */ 537 int nr_locked; /* nr pages mlocked */ 538 539 atomic_t poll; /* POLL_ for wakeups */ 540 atomic_t events; /* event_id limit */ 541 542 atomic_long_t head; /* write position */ 543 atomic_long_t done_head; /* completed head */ 544 545 atomic_t lock; /* concurrent writes */ 546 atomic_t wakeup; /* needs a wakeup */ 547 atomic_t lost; /* nr records lost */ 548 549 long watermark; /* wakeup watermark */ 550 551 struct perf_event_mmap_page *user_page; 552 void *data_pages[0]; 553}; 554 555struct perf_pending_entry { 556 struct perf_pending_entry *next; 557 void (*func)(struct perf_pending_entry *); 558}; 559 560struct perf_sample_data; 561 562typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 563 struct perf_sample_data *, 564 struct pt_regs *regs); 565 566/** 567 * struct perf_event - performance event kernel representation: 568 */ 569struct perf_event { 570#ifdef CONFIG_PERF_EVENTS 571 struct list_head group_entry; 572 struct list_head event_entry; 573 struct list_head sibling_list; 574 int nr_siblings; 575 struct perf_event *group_leader; 576 struct perf_event *output; 577 const struct pmu *pmu; 578 579 enum perf_event_active_state state; 580 atomic64_t count; 581 582 /* 583 * These are the total time in nanoseconds that the event 584 * has been enabled (i.e. eligible to run, and the task has 585 * been scheduled in, if this is a per-task event) 586 * and running (scheduled onto the CPU), respectively. 587 * 588 * They are computed from tstamp_enabled, tstamp_running and 589 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 590 */ 591 u64 total_time_enabled; 592 u64 total_time_running; 593 594 /* 595 * These are timestamps used for computing total_time_enabled 596 * and total_time_running when the event is in INACTIVE or 597 * ACTIVE state, measured in nanoseconds from an arbitrary point 598 * in time. 599 * tstamp_enabled: the notional time when the event was enabled 600 * tstamp_running: the notional time when the event was scheduled on 601 * tstamp_stopped: in INACTIVE state, the notional time when the 602 * event was scheduled off. 603 */ 604 u64 tstamp_enabled; 605 u64 tstamp_running; 606 u64 tstamp_stopped; 607 608 struct perf_event_attr attr; 609 struct hw_perf_event hw; 610 611 struct perf_event_context *ctx; 612 struct file *filp; 613 614 /* 615 * These accumulate total time (in nanoseconds) that children 616 * events have been enabled and running, respectively. 617 */ 618 atomic64_t child_total_time_enabled; 619 atomic64_t child_total_time_running; 620 621 /* 622 * Protect attach/detach and child_list: 623 */ 624 struct mutex child_mutex; 625 struct list_head child_list; 626 struct perf_event *parent; 627 628 int oncpu; 629 int cpu; 630 631 struct list_head owner_entry; 632 struct task_struct *owner; 633 634 /* mmap bits */ 635 struct mutex mmap_mutex; 636 atomic_t mmap_count; 637 struct perf_mmap_data *data; 638 639 /* poll related */ 640 wait_queue_head_t waitq; 641 struct fasync_struct *fasync; 642 643 /* delayed work for NMIs and such */ 644 int pending_wakeup; 645 int pending_kill; 646 int pending_disable; 647 struct perf_pending_entry pending; 648 649 atomic_t event_limit; 650 651 void (*destroy)(struct perf_event *); 652 struct rcu_head rcu_head; 653 654 struct pid_namespace *ns; 655 u64 id; 656 657 perf_overflow_handler_t overflow_handler; 658 659#ifdef CONFIG_EVENT_PROFILE 660 struct event_filter *filter; 661#endif 662 663#endif /* CONFIG_PERF_EVENTS */ 664}; 665 666/** 667 * struct perf_event_context - event context structure 668 * 669 * Used as a container for task events and CPU events as well: 670 */ 671struct perf_event_context { 672 /* 673 * Protect the states of the events in the list, 674 * nr_active, and the list: 675 */ 676 raw_spinlock_t lock; 677 /* 678 * Protect the list of events. Locking either mutex or lock 679 * is sufficient to ensure the list doesn't change; to change 680 * the list you need to lock both the mutex and the spinlock. 681 */ 682 struct mutex mutex; 683 684 struct list_head group_list; 685 struct list_head event_list; 686 int nr_events; 687 int nr_active; 688 int is_active; 689 int nr_stat; 690 atomic_t refcount; 691 struct task_struct *task; 692 693 /* 694 * Context clock, runs when context enabled. 695 */ 696 u64 time; 697 u64 timestamp; 698 699 /* 700 * These fields let us detect when two contexts have both 701 * been cloned (inherited) from a common ancestor. 702 */ 703 struct perf_event_context *parent_ctx; 704 u64 parent_gen; 705 u64 generation; 706 int pin_count; 707 struct rcu_head rcu_head; 708}; 709 710/** 711 * struct perf_event_cpu_context - per cpu event context structure 712 */ 713struct perf_cpu_context { 714 struct perf_event_context ctx; 715 struct perf_event_context *task_ctx; 716 int active_oncpu; 717 int max_pertask; 718 int exclusive; 719 720 /* 721 * Recursion avoidance: 722 * 723 * task, softirq, irq, nmi context 724 */ 725 int recursion[4]; 726}; 727 728struct perf_output_handle { 729 struct perf_event *event; 730 struct perf_mmap_data *data; 731 unsigned long head; 732 unsigned long offset; 733 int nmi; 734 int sample; 735 int locked; 736}; 737 738#ifdef CONFIG_PERF_EVENTS 739 740/* 741 * Set by architecture code: 742 */ 743extern int perf_max_events; 744 745extern const struct pmu *hw_perf_event_init(struct perf_event *event); 746 747extern void perf_event_task_sched_in(struct task_struct *task, int cpu); 748extern void perf_event_task_sched_out(struct task_struct *task, 749 struct task_struct *next, int cpu); 750extern void perf_event_task_tick(struct task_struct *task, int cpu); 751extern int perf_event_init_task(struct task_struct *child); 752extern void perf_event_exit_task(struct task_struct *child); 753extern void perf_event_free_task(struct task_struct *task); 754extern void set_perf_event_pending(void); 755extern void perf_event_do_pending(void); 756extern void perf_event_print_debug(void); 757extern void __perf_disable(void); 758extern bool __perf_enable(void); 759extern void perf_disable(void); 760extern void perf_enable(void); 761extern int perf_event_task_disable(void); 762extern int perf_event_task_enable(void); 763extern int hw_perf_group_sched_in(struct perf_event *group_leader, 764 struct perf_cpu_context *cpuctx, 765 struct perf_event_context *ctx, int cpu); 766extern void perf_event_update_userpage(struct perf_event *event); 767extern int perf_event_release_kernel(struct perf_event *event); 768extern struct perf_event * 769perf_event_create_kernel_counter(struct perf_event_attr *attr, 770 int cpu, 771 pid_t pid, 772 perf_overflow_handler_t callback); 773extern u64 perf_event_read_value(struct perf_event *event, 774 u64 *enabled, u64 *running); 775 776struct perf_sample_data { 777 u64 type; 778 779 u64 ip; 780 struct { 781 u32 pid; 782 u32 tid; 783 } tid_entry; 784 u64 time; 785 u64 addr; 786 u64 id; 787 u64 stream_id; 788 struct { 789 u32 cpu; 790 u32 reserved; 791 } cpu_entry; 792 u64 period; 793 struct perf_callchain_entry *callchain; 794 struct perf_raw_record *raw; 795}; 796 797extern void perf_output_sample(struct perf_output_handle *handle, 798 struct perf_event_header *header, 799 struct perf_sample_data *data, 800 struct perf_event *event); 801extern void perf_prepare_sample(struct perf_event_header *header, 802 struct perf_sample_data *data, 803 struct perf_event *event, 804 struct pt_regs *regs); 805 806extern int perf_event_overflow(struct perf_event *event, int nmi, 807 struct perf_sample_data *data, 808 struct pt_regs *regs); 809 810/* 811 * Return 1 for a software event, 0 for a hardware event 812 */ 813static inline int is_software_event(struct perf_event *event) 814{ 815 switch (event->attr.type) { 816 case PERF_TYPE_SOFTWARE: 817 case PERF_TYPE_TRACEPOINT: 818 /* for now the breakpoint stuff also works as software event */ 819 case PERF_TYPE_BREAKPOINT: 820 return 1; 821 } 822 return 0; 823} 824 825extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 826 827extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 828 829static inline void 830perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 831{ 832 if (atomic_read(&perf_swevent_enabled[event_id])) 833 __perf_sw_event(event_id, nr, nmi, regs, addr); 834} 835 836extern void __perf_event_mmap(struct vm_area_struct *vma); 837 838static inline void perf_event_mmap(struct vm_area_struct *vma) 839{ 840 if (vma->vm_flags & VM_EXEC) 841 __perf_event_mmap(vma); 842} 843 844extern void perf_event_comm(struct task_struct *tsk); 845extern void perf_event_fork(struct task_struct *tsk); 846 847extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 848 849extern int sysctl_perf_event_paranoid; 850extern int sysctl_perf_event_mlock; 851extern int sysctl_perf_event_sample_rate; 852 853extern void perf_event_init(void); 854extern void perf_tp_event(int event_id, u64 addr, u64 count, 855 void *record, int entry_size); 856extern void perf_bp_event(struct perf_event *event, void *data); 857 858#ifndef perf_misc_flags 859#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 860 PERF_RECORD_MISC_KERNEL) 861#define perf_instruction_pointer(regs) instruction_pointer(regs) 862#endif 863 864extern int perf_output_begin(struct perf_output_handle *handle, 865 struct perf_event *event, unsigned int size, 866 int nmi, int sample); 867extern void perf_output_end(struct perf_output_handle *handle); 868extern void perf_output_copy(struct perf_output_handle *handle, 869 const void *buf, unsigned int len); 870extern int perf_swevent_get_recursion_context(void); 871extern void perf_swevent_put_recursion_context(int rctx); 872extern void perf_event_enable(struct perf_event *event); 873extern void perf_event_disable(struct perf_event *event); 874#else 875static inline void 876perf_event_task_sched_in(struct task_struct *task, int cpu) { } 877static inline void 878perf_event_task_sched_out(struct task_struct *task, 879 struct task_struct *next, int cpu) { } 880static inline void 881perf_event_task_tick(struct task_struct *task, int cpu) { } 882static inline int perf_event_init_task(struct task_struct *child) { return 0; } 883static inline void perf_event_exit_task(struct task_struct *child) { } 884static inline void perf_event_free_task(struct task_struct *task) { } 885static inline void perf_event_do_pending(void) { } 886static inline void perf_event_print_debug(void) { } 887static inline void perf_disable(void) { } 888static inline void perf_enable(void) { } 889static inline int perf_event_task_disable(void) { return -EINVAL; } 890static inline int perf_event_task_enable(void) { return -EINVAL; } 891 892static inline void 893perf_sw_event(u32 event_id, u64 nr, int nmi, 894 struct pt_regs *regs, u64 addr) { } 895static inline void 896perf_bp_event(struct perf_event *event, void *data) { } 897 898static inline void perf_event_mmap(struct vm_area_struct *vma) { } 899static inline void perf_event_comm(struct task_struct *tsk) { } 900static inline void perf_event_fork(struct task_struct *tsk) { } 901static inline void perf_event_init(void) { } 902static inline int perf_swevent_get_recursion_context(void) { return -1; } 903static inline void perf_swevent_put_recursion_context(int rctx) { } 904static inline void perf_event_enable(struct perf_event *event) { } 905static inline void perf_event_disable(struct perf_event *event) { } 906#endif 907 908#define perf_output_put(handle, x) \ 909 perf_output_copy((handle), &(x), sizeof(x)) 910 911#endif /* __KERNEL__ */ 912#endif /* _LINUX_PERF_EVENT_H */