at v2.6.33 20 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/slab.h> /* For kmalloc() */ 6#include <linux/smp.h> 7#include <linux/cpumask.h> 8#include <linux/pfn.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 extern int simple_identifier_##var(void); \ 31 preempt_disable(); \ 32 &__get_cpu_var(var); })) 33#define put_cpu_var(var) preempt_enable() 34 35#ifdef CONFIG_SMP 36 37/* minimum unit size, also is the maximum supported allocation size */ 38#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 39 40/* 41 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 42 * back on the first chunk for dynamic percpu allocation if arch is 43 * manually allocating and mapping it for faster access (as a part of 44 * large page mapping for example). 45 * 46 * The following values give between one and two pages of free space 47 * after typical minimal boot (2-way SMP, single disk and NIC) with 48 * both defconfig and a distro config on x86_64 and 32. More 49 * intelligent way to determine this would be nice. 50 */ 51#if BITS_PER_LONG > 32 52#define PERCPU_DYNAMIC_RESERVE (20 << 10) 53#else 54#define PERCPU_DYNAMIC_RESERVE (12 << 10) 55#endif 56 57extern void *pcpu_base_addr; 58extern const unsigned long *pcpu_unit_offsets; 59 60struct pcpu_group_info { 61 int nr_units; /* aligned # of units */ 62 unsigned long base_offset; /* base address offset */ 63 unsigned int *cpu_map; /* unit->cpu map, empty 64 * entries contain NR_CPUS */ 65}; 66 67struct pcpu_alloc_info { 68 size_t static_size; 69 size_t reserved_size; 70 size_t dyn_size; 71 size_t unit_size; 72 size_t atom_size; 73 size_t alloc_size; 74 size_t __ai_size; /* internal, don't use */ 75 int nr_groups; /* 0 if grouping unnecessary */ 76 struct pcpu_group_info groups[]; 77}; 78 79enum pcpu_fc { 80 PCPU_FC_AUTO, 81 PCPU_FC_EMBED, 82 PCPU_FC_PAGE, 83 84 PCPU_FC_NR, 85}; 86extern const char *pcpu_fc_names[PCPU_FC_NR]; 87 88extern enum pcpu_fc pcpu_chosen_fc; 89 90typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 91 size_t align); 92typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 93typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 94typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 95 96extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 97 int nr_units); 98extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 99 100extern struct pcpu_alloc_info * __init pcpu_build_alloc_info( 101 size_t reserved_size, ssize_t dyn_size, 102 size_t atom_size, 103 pcpu_fc_cpu_distance_fn_t cpu_distance_fn); 104 105extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 106 void *base_addr); 107 108#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 109extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 110 size_t atom_size, 111 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 112 pcpu_fc_alloc_fn_t alloc_fn, 113 pcpu_fc_free_fn_t free_fn); 114#endif 115 116#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 117extern int __init pcpu_page_first_chunk(size_t reserved_size, 118 pcpu_fc_alloc_fn_t alloc_fn, 119 pcpu_fc_free_fn_t free_fn, 120 pcpu_fc_populate_pte_fn_t populate_pte_fn); 121#endif 122 123/* 124 * Use this to get to a cpu's version of the per-cpu object 125 * dynamically allocated. Non-atomic access to the current CPU's 126 * version should probably be combined with get_cpu()/put_cpu(). 127 */ 128#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 129 130extern void *__alloc_reserved_percpu(size_t size, size_t align); 131extern void *__alloc_percpu(size_t size, size_t align); 132extern void free_percpu(void *__pdata); 133extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 134 135#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 136extern void __init setup_per_cpu_areas(void); 137#endif 138 139#else /* CONFIG_SMP */ 140 141#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 142 143static inline void *__alloc_percpu(size_t size, size_t align) 144{ 145 /* 146 * Can't easily make larger alignment work with kmalloc. WARN 147 * on it. Larger alignment should only be used for module 148 * percpu sections on SMP for which this path isn't used. 149 */ 150 WARN_ON_ONCE(align > SMP_CACHE_BYTES); 151 return kzalloc(size, GFP_KERNEL); 152} 153 154static inline void free_percpu(void *p) 155{ 156 kfree(p); 157} 158 159static inline phys_addr_t per_cpu_ptr_to_phys(void *addr) 160{ 161 return __pa(addr); 162} 163 164static inline void __init setup_per_cpu_areas(void) { } 165 166static inline void *pcpu_lpage_remapped(void *kaddr) 167{ 168 return NULL; 169} 170 171#endif /* CONFIG_SMP */ 172 173#define alloc_percpu(type) \ 174 (typeof(type) *)__alloc_percpu(sizeof(type), __alignof__(type)) 175 176/* 177 * Optional methods for optimized non-lvalue per-cpu variable access. 178 * 179 * @var can be a percpu variable or a field of it and its size should 180 * equal char, int or long. percpu_read() evaluates to a lvalue and 181 * all others to void. 182 * 183 * These operations are guaranteed to be atomic w.r.t. preemption. 184 * The generic versions use plain get/put_cpu_var(). Archs are 185 * encouraged to implement single-instruction alternatives which don't 186 * require preemption protection. 187 */ 188#ifndef percpu_read 189# define percpu_read(var) \ 190 ({ \ 191 typeof(per_cpu_var(var)) __tmp_var__; \ 192 __tmp_var__ = get_cpu_var(var); \ 193 put_cpu_var(var); \ 194 __tmp_var__; \ 195 }) 196#endif 197 198#define __percpu_generic_to_op(var, val, op) \ 199do { \ 200 get_cpu_var(var) op val; \ 201 put_cpu_var(var); \ 202} while (0) 203 204#ifndef percpu_write 205# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 206#endif 207 208#ifndef percpu_add 209# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 210#endif 211 212#ifndef percpu_sub 213# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 214#endif 215 216#ifndef percpu_and 217# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 218#endif 219 220#ifndef percpu_or 221# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 222#endif 223 224#ifndef percpu_xor 225# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 226#endif 227 228/* 229 * Branching function to split up a function into a set of functions that 230 * are called for different scalar sizes of the objects handled. 231 */ 232 233extern void __bad_size_call_parameter(void); 234 235#define __pcpu_size_call_return(stem, variable) \ 236({ typeof(variable) pscr_ret__; \ 237 switch(sizeof(variable)) { \ 238 case 1: pscr_ret__ = stem##1(variable);break; \ 239 case 2: pscr_ret__ = stem##2(variable);break; \ 240 case 4: pscr_ret__ = stem##4(variable);break; \ 241 case 8: pscr_ret__ = stem##8(variable);break; \ 242 default: \ 243 __bad_size_call_parameter();break; \ 244 } \ 245 pscr_ret__; \ 246}) 247 248#define __pcpu_size_call(stem, variable, ...) \ 249do { \ 250 switch(sizeof(variable)) { \ 251 case 1: stem##1(variable, __VA_ARGS__);break; \ 252 case 2: stem##2(variable, __VA_ARGS__);break; \ 253 case 4: stem##4(variable, __VA_ARGS__);break; \ 254 case 8: stem##8(variable, __VA_ARGS__);break; \ 255 default: \ 256 __bad_size_call_parameter();break; \ 257 } \ 258} while (0) 259 260/* 261 * Optimized manipulation for memory allocated through the per cpu 262 * allocator or for addresses of per cpu variables (can be determined 263 * using per_cpu_var(xx). 264 * 265 * These operation guarantee exclusivity of access for other operations 266 * on the *same* processor. The assumption is that per cpu data is only 267 * accessed by a single processor instance (the current one). 268 * 269 * The first group is used for accesses that must be done in a 270 * preemption safe way since we know that the context is not preempt 271 * safe. Interrupts may occur. If the interrupt modifies the variable 272 * too then RMW actions will not be reliable. 273 * 274 * The arch code can provide optimized functions in two ways: 275 * 276 * 1. Override the function completely. F.e. define this_cpu_add(). 277 * The arch must then ensure that the various scalar format passed 278 * are handled correctly. 279 * 280 * 2. Provide functions for certain scalar sizes. F.e. provide 281 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 282 * sized RMW actions. If arch code does not provide operations for 283 * a scalar size then the fallback in the generic code will be 284 * used. 285 */ 286 287#define _this_cpu_generic_read(pcp) \ 288({ typeof(pcp) ret__; \ 289 preempt_disable(); \ 290 ret__ = *this_cpu_ptr(&(pcp)); \ 291 preempt_enable(); \ 292 ret__; \ 293}) 294 295#ifndef this_cpu_read 296# ifndef this_cpu_read_1 297# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 298# endif 299# ifndef this_cpu_read_2 300# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 301# endif 302# ifndef this_cpu_read_4 303# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 304# endif 305# ifndef this_cpu_read_8 306# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 307# endif 308# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 309#endif 310 311#define _this_cpu_generic_to_op(pcp, val, op) \ 312do { \ 313 preempt_disable(); \ 314 *__this_cpu_ptr(&pcp) op val; \ 315 preempt_enable(); \ 316} while (0) 317 318#ifndef this_cpu_write 319# ifndef this_cpu_write_1 320# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 321# endif 322# ifndef this_cpu_write_2 323# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 324# endif 325# ifndef this_cpu_write_4 326# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 327# endif 328# ifndef this_cpu_write_8 329# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 330# endif 331# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 332#endif 333 334#ifndef this_cpu_add 335# ifndef this_cpu_add_1 336# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 337# endif 338# ifndef this_cpu_add_2 339# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 340# endif 341# ifndef this_cpu_add_4 342# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 343# endif 344# ifndef this_cpu_add_8 345# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 346# endif 347# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 348#endif 349 350#ifndef this_cpu_sub 351# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 352#endif 353 354#ifndef this_cpu_inc 355# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 356#endif 357 358#ifndef this_cpu_dec 359# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 360#endif 361 362#ifndef this_cpu_and 363# ifndef this_cpu_and_1 364# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 365# endif 366# ifndef this_cpu_and_2 367# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 368# endif 369# ifndef this_cpu_and_4 370# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 371# endif 372# ifndef this_cpu_and_8 373# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 374# endif 375# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 376#endif 377 378#ifndef this_cpu_or 379# ifndef this_cpu_or_1 380# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 381# endif 382# ifndef this_cpu_or_2 383# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 384# endif 385# ifndef this_cpu_or_4 386# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 387# endif 388# ifndef this_cpu_or_8 389# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 390# endif 391# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 392#endif 393 394#ifndef this_cpu_xor 395# ifndef this_cpu_xor_1 396# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 397# endif 398# ifndef this_cpu_xor_2 399# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 400# endif 401# ifndef this_cpu_xor_4 402# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 403# endif 404# ifndef this_cpu_xor_8 405# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 406# endif 407# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 408#endif 409 410/* 411 * Generic percpu operations that do not require preemption handling. 412 * Either we do not care about races or the caller has the 413 * responsibility of handling preemptions issues. Arch code can still 414 * override these instructions since the arch per cpu code may be more 415 * efficient and may actually get race freeness for free (that is the 416 * case for x86 for example). 417 * 418 * If there is no other protection through preempt disable and/or 419 * disabling interupts then one of these RMW operations can show unexpected 420 * behavior because the execution thread was rescheduled on another processor 421 * or an interrupt occurred and the same percpu variable was modified from 422 * the interrupt context. 423 */ 424#ifndef __this_cpu_read 425# ifndef __this_cpu_read_1 426# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 427# endif 428# ifndef __this_cpu_read_2 429# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 430# endif 431# ifndef __this_cpu_read_4 432# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 433# endif 434# ifndef __this_cpu_read_8 435# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 436# endif 437# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 438#endif 439 440#define __this_cpu_generic_to_op(pcp, val, op) \ 441do { \ 442 *__this_cpu_ptr(&(pcp)) op val; \ 443} while (0) 444 445#ifndef __this_cpu_write 446# ifndef __this_cpu_write_1 447# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 448# endif 449# ifndef __this_cpu_write_2 450# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 451# endif 452# ifndef __this_cpu_write_4 453# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 454# endif 455# ifndef __this_cpu_write_8 456# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 457# endif 458# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 459#endif 460 461#ifndef __this_cpu_add 462# ifndef __this_cpu_add_1 463# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 464# endif 465# ifndef __this_cpu_add_2 466# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 467# endif 468# ifndef __this_cpu_add_4 469# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 470# endif 471# ifndef __this_cpu_add_8 472# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 473# endif 474# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 475#endif 476 477#ifndef __this_cpu_sub 478# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 479#endif 480 481#ifndef __this_cpu_inc 482# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 483#endif 484 485#ifndef __this_cpu_dec 486# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 487#endif 488 489#ifndef __this_cpu_and 490# ifndef __this_cpu_and_1 491# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 492# endif 493# ifndef __this_cpu_and_2 494# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 495# endif 496# ifndef __this_cpu_and_4 497# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 498# endif 499# ifndef __this_cpu_and_8 500# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 501# endif 502# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 503#endif 504 505#ifndef __this_cpu_or 506# ifndef __this_cpu_or_1 507# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 508# endif 509# ifndef __this_cpu_or_2 510# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 511# endif 512# ifndef __this_cpu_or_4 513# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 514# endif 515# ifndef __this_cpu_or_8 516# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 517# endif 518# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 519#endif 520 521#ifndef __this_cpu_xor 522# ifndef __this_cpu_xor_1 523# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 524# endif 525# ifndef __this_cpu_xor_2 526# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 527# endif 528# ifndef __this_cpu_xor_4 529# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 530# endif 531# ifndef __this_cpu_xor_8 532# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 533# endif 534# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 535#endif 536 537/* 538 * IRQ safe versions of the per cpu RMW operations. Note that these operations 539 * are *not* safe against modification of the same variable from another 540 * processors (which one gets when using regular atomic operations) 541 . They are guaranteed to be atomic vs. local interrupts and 542 * preemption only. 543 */ 544#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 545do { \ 546 unsigned long flags; \ 547 local_irq_save(flags); \ 548 *__this_cpu_ptr(&(pcp)) op val; \ 549 local_irq_restore(flags); \ 550} while (0) 551 552#ifndef irqsafe_cpu_add 553# ifndef irqsafe_cpu_add_1 554# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 555# endif 556# ifndef irqsafe_cpu_add_2 557# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 558# endif 559# ifndef irqsafe_cpu_add_4 560# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 561# endif 562# ifndef irqsafe_cpu_add_8 563# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 564# endif 565# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 566#endif 567 568#ifndef irqsafe_cpu_sub 569# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 570#endif 571 572#ifndef irqsafe_cpu_inc 573# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 574#endif 575 576#ifndef irqsafe_cpu_dec 577# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 578#endif 579 580#ifndef irqsafe_cpu_and 581# ifndef irqsafe_cpu_and_1 582# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 583# endif 584# ifndef irqsafe_cpu_and_2 585# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 586# endif 587# ifndef irqsafe_cpu_and_4 588# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 589# endif 590# ifndef irqsafe_cpu_and_8 591# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 592# endif 593# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 594#endif 595 596#ifndef irqsafe_cpu_or 597# ifndef irqsafe_cpu_or_1 598# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 599# endif 600# ifndef irqsafe_cpu_or_2 601# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 602# endif 603# ifndef irqsafe_cpu_or_4 604# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 605# endif 606# ifndef irqsafe_cpu_or_8 607# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 608# endif 609# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 610#endif 611 612#ifndef irqsafe_cpu_xor 613# ifndef irqsafe_cpu_xor_1 614# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 615# endif 616# ifndef irqsafe_cpu_xor_2 617# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 618# endif 619# ifndef irqsafe_cpu_xor_4 620# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 621# endif 622# ifndef irqsafe_cpu_xor_8 623# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 624# endif 625# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 626#endif 627 628#endif /* __LINUX_PERCPU_H */