at v2.6.33 513 lines 18 kB view raw
1#ifndef _PARISC_PGTABLE_H 2#define _PARISC_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6#include <asm/fixmap.h> 7 8#ifndef __ASSEMBLY__ 9/* 10 * we simulate an x86-style page table for the linux mm code 11 */ 12 13#include <linux/mm.h> /* for vm_area_struct */ 14#include <linux/bitops.h> 15#include <asm/processor.h> 16#include <asm/cache.h> 17 18/* 19 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 20 * memory. For the return value to be meaningful, ADDR must be >= 21 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 22 * require a hash-, or multi-level tree-lookup or something of that 23 * sort) but it guarantees to return TRUE only if accessing the page 24 * at that address does not cause an error. Note that there may be 25 * addresses for which kern_addr_valid() returns FALSE even though an 26 * access would not cause an error (e.g., this is typically true for 27 * memory mapped I/O regions. 28 * 29 * XXX Need to implement this for parisc. 30 */ 31#define kern_addr_valid(addr) (1) 32 33/* Certain architectures need to do special things when PTEs 34 * within a page table are directly modified. Thus, the following 35 * hook is made available. 36 */ 37#define set_pte(pteptr, pteval) \ 38 do{ \ 39 *(pteptr) = (pteval); \ 40 } while(0) 41#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 42 43#endif /* !__ASSEMBLY__ */ 44 45#define pte_ERROR(e) \ 46 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 47#define pmd_ERROR(e) \ 48 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 49#define pgd_ERROR(e) \ 50 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 51 52/* This is the size of the initially mapped kernel memory */ 53#define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */ 54#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 55 56#if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB) 57#define PT_NLEVELS 3 58#define PGD_ORDER 1 /* Number of pages per pgd */ 59#define PMD_ORDER 1 /* Number of pages per pmd */ 60#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ 61#else 62#define PT_NLEVELS 2 63#define PGD_ORDER 1 /* Number of pages per pgd */ 64#define PGD_ALLOC_ORDER PGD_ORDER 65#endif 66 67/* Definitions for 3rd level (we use PLD here for Page Lower directory 68 * because PTE_SHIFT is used lower down to mean shift that has to be 69 * done to get usable bits out of the PTE) */ 70#define PLD_SHIFT PAGE_SHIFT 71#define PLD_SIZE PAGE_SIZE 72#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 73#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 74 75/* Definitions for 2nd level */ 76#define pgtable_cache_init() do { } while (0) 77 78#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 79#define PMD_SIZE (1UL << PMD_SHIFT) 80#define PMD_MASK (~(PMD_SIZE-1)) 81#if PT_NLEVELS == 3 82#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) 83#else 84#define BITS_PER_PMD 0 85#endif 86#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 87 88/* Definitions for 1st level */ 89#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) 90#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 91#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 92#else 93#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 94#endif 95#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 96#define PGDIR_MASK (~(PGDIR_SIZE-1)) 97#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 98#define USER_PTRS_PER_PGD PTRS_PER_PGD 99 100#ifdef CONFIG_64BIT 101#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 102#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 103#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 104#else 105#define MAX_ADDRBITS (BITS_PER_LONG) 106#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 107#define SPACEID_SHIFT 0 108#endif 109 110/* This calculates the number of initial pages we need for the initial 111 * page tables */ 112#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 113# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 114#else 115# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 116#endif 117 118/* 119 * pgd entries used up by user/kernel: 120 */ 121 122#define FIRST_USER_ADDRESS 0 123 124/* NB: The tlb miss handlers make certain assumptions about the order */ 125/* of the following bits, so be careful (One example, bits 25-31 */ 126/* are moved together in one instruction). */ 127 128#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 129#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 130#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 131#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 132#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 133#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 134#define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */ 135#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 136#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 137#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 138#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 139#define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */ 140 /* for cache flushing only */ 141#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 142 143/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 144/* following macro is ok for both 32 and 64 bit. */ 145 146#define xlate_pabit(x) (31 - x) 147 148/* this defines the shift to the usable bits in the PTE it is set so 149 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 150 * to zero */ 151#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 152 153/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 154#define PFN_PTE_SHIFT 12 155 156 157/* this is how many bits may be used by the file functions */ 158#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) 159 160#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) 161#define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) 162 163#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 164#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 165#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 166#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 167#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 168#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 169#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 170#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 171#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 172#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 173#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 174#define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT)) 175#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 176#define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT)) 177 178#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 179#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 180#define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 181 182/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 183 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 184 * for a few meta-information bits, so we shift the address to be 185 * able to effectively address 40/42/44-bits of physical address space 186 * depending on 4k/16k/64k PAGE_SIZE */ 187#define _PxD_PRESENT_BIT 31 188#define _PxD_ATTACHED_BIT 30 189#define _PxD_VALID_BIT 29 190 191#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 192#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) 193#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 194#define PxD_FLAG_MASK (0xf) 195#define PxD_FLAG_SHIFT (4) 196#define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */ 197 198#ifndef __ASSEMBLY__ 199 200#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 201#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) 202/* Others seem to make this executable, I don't know if that's correct 203 or not. The stack is mapped this way though so this is necessary 204 in the short term - dhd@linuxcare.com, 2000-08-08 */ 205#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) 206#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) 207#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) 208#define PAGE_COPY PAGE_EXECREAD 209#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) 210#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 211#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 212#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 213#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) 214#define PAGE_FLUSH __pgprot(_PAGE_FLUSH) 215 216 217/* 218 * We could have an execute only page using "gateway - promote to priv 219 * level 3", but that is kind of silly. So, the way things are defined 220 * now, we must always have read permission for pages with execute 221 * permission. For the fun of it we'll go ahead and support write only 222 * pages. 223 */ 224 225 /*xwr*/ 226#define __P000 PAGE_NONE 227#define __P001 PAGE_READONLY 228#define __P010 __P000 /* copy on write */ 229#define __P011 __P001 /* copy on write */ 230#define __P100 PAGE_EXECREAD 231#define __P101 PAGE_EXECREAD 232#define __P110 __P100 /* copy on write */ 233#define __P111 __P101 /* copy on write */ 234 235#define __S000 PAGE_NONE 236#define __S001 PAGE_READONLY 237#define __S010 PAGE_WRITEONLY 238#define __S011 PAGE_SHARED 239#define __S100 PAGE_EXECREAD 240#define __S101 PAGE_EXECREAD 241#define __S110 PAGE_RWX 242#define __S111 PAGE_RWX 243 244 245extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 246 247/* initial page tables for 0-8MB for kernel */ 248 249extern pte_t pg0[]; 250 251/* zero page used for uninitialized stuff */ 252 253extern unsigned long *empty_zero_page; 254 255/* 256 * ZERO_PAGE is a global shared page that is always zero: used 257 * for zero-mapped memory areas etc.. 258 */ 259 260#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 261 262#define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH)) 263#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 264#define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) 265 266#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 267#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 268#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 269#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 270 271#if PT_NLEVELS == 3 272/* The first entry of the permanent pmd is not there if it contains 273 * the gateway marker */ 274#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) 275#else 276#define pmd_none(x) (!pmd_val(x)) 277#endif 278#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 279#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 280static inline void pmd_clear(pmd_t *pmd) { 281#if PT_NLEVELS == 3 282 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) 283 /* This is the entry pointing to the permanent pmd 284 * attached to the pgd; cannot clear it */ 285 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); 286 else 287#endif 288 __pmd_val_set(*pmd, 0); 289} 290 291 292 293#if PT_NLEVELS == 3 294#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) 295#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) 296 297/* For 64 bit we have three level tables */ 298 299#define pgd_none(x) (!pgd_val(x)) 300#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) 301#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) 302static inline void pgd_clear(pgd_t *pgd) { 303#if PT_NLEVELS == 3 304 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) 305 /* This is the permanent pmd attached to the pgd; cannot 306 * free it */ 307 return; 308#endif 309 __pgd_val_set(*pgd, 0); 310} 311#else 312/* 313 * The "pgd_xxx()" functions here are trivial for a folded two-level 314 * setup: the pgd is never bad, and a pmd always exists (as it's folded 315 * into the pgd entry) 316 */ 317static inline int pgd_none(pgd_t pgd) { return 0; } 318static inline int pgd_bad(pgd_t pgd) { return 0; } 319static inline int pgd_present(pgd_t pgd) { return 1; } 320static inline void pgd_clear(pgd_t * pgdp) { } 321#endif 322 323/* 324 * The following only work if pte_present() is true. 325 * Undefined behaviour if not.. 326 */ 327static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 328static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 329static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 330static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 331static inline int pte_special(pte_t pte) { return 0; } 332 333static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 334static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 335static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 336static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 337static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 338static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 339static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 340 341/* 342 * Conversion functions: convert a page and protection to a page entry, 343 * and a page entry and page directory to the page they refer to. 344 */ 345#define __mk_pte(addr,pgprot) \ 346({ \ 347 pte_t __pte; \ 348 \ 349 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 350 \ 351 __pte; \ 352}) 353 354#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 355 356static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 357{ 358 pte_t pte; 359 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 360 return pte; 361} 362 363static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 364{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 365 366/* Permanent address of a page. On parisc we don't have highmem. */ 367 368#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 369 370#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 371 372#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) 373 374#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 375#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 376 377#define pgd_index(address) ((address) >> PGDIR_SHIFT) 378 379/* to find an entry in a page-table-directory */ 380#define pgd_offset(mm, address) \ 381((mm)->pgd + ((address) >> PGDIR_SHIFT)) 382 383/* to find an entry in a kernel page-table-directory */ 384#define pgd_offset_k(address) pgd_offset(&init_mm, address) 385 386/* Find an entry in the second-level page table.. */ 387 388#if PT_NLEVELS == 3 389#define pmd_offset(dir,address) \ 390((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) 391#else 392#define pmd_offset(dir,addr) ((pmd_t *) dir) 393#endif 394 395/* Find an entry in the third-level page table.. */ 396#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 397#define pte_offset_kernel(pmd, address) \ 398 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 399#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 400#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 401#define pte_unmap(pte) do { } while (0) 402#define pte_unmap_nested(pte) do { } while (0) 403 404#define pte_unmap(pte) do { } while (0) 405#define pte_unmap_nested(pte) do { } while (0) 406 407extern void paging_init (void); 408 409/* Used for deferring calls to flush_dcache_page() */ 410 411#define PG_dcache_dirty PG_arch_1 412 413extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); 414 415/* Encode and de-code a swap entry */ 416 417#define __swp_type(x) ((x).val & 0x1f) 418#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 419 (((x).val >> 8) & ~0x7) ) 420#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 421 ((offset & 0x7) << 6) | \ 422 ((offset & ~0x7) << 8) }) 423#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 424#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 425 426static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 427{ 428#ifdef CONFIG_SMP 429 if (!pte_young(*ptep)) 430 return 0; 431 return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep)); 432#else 433 pte_t pte = *ptep; 434 if (!pte_young(pte)) 435 return 0; 436 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 437 return 1; 438#endif 439} 440 441extern spinlock_t pa_dbit_lock; 442 443struct mm_struct; 444static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 445{ 446 pte_t old_pte; 447 pte_t pte; 448 449 spin_lock(&pa_dbit_lock); 450 pte = old_pte = *ptep; 451 pte_val(pte) &= ~_PAGE_PRESENT; 452 pte_val(pte) |= _PAGE_FLUSH; 453 set_pte_at(mm,addr,ptep,pte); 454 spin_unlock(&pa_dbit_lock); 455 456 return old_pte; 457} 458 459static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 460{ 461#ifdef CONFIG_SMP 462 unsigned long new, old; 463 464 do { 465 old = pte_val(*ptep); 466 new = pte_val(pte_wrprotect(__pte (old))); 467 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 468#else 469 pte_t old_pte = *ptep; 470 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 471#endif 472} 473 474#define pte_same(A,B) (pte_val(A) == pte_val(B)) 475 476#endif /* !__ASSEMBLY__ */ 477 478 479/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 480#define _PAGE_SIZE_ENCODING_4K 0 481#define _PAGE_SIZE_ENCODING_16K 1 482#define _PAGE_SIZE_ENCODING_64K 2 483#define _PAGE_SIZE_ENCODING_256K 3 484#define _PAGE_SIZE_ENCODING_1M 4 485#define _PAGE_SIZE_ENCODING_4M 5 486#define _PAGE_SIZE_ENCODING_16M 6 487#define _PAGE_SIZE_ENCODING_64M 7 488 489#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 490# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 491#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 492# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 493#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 494# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 495#endif 496 497 498#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 499 remap_pfn_range(vma, vaddr, pfn, size, prot) 500 501#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 502 503/* We provide our own get_unmapped_area to provide cache coherency */ 504 505#define HAVE_ARCH_UNMAPPED_AREA 506 507#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 508#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 509#define __HAVE_ARCH_PTEP_SET_WRPROTECT 510#define __HAVE_ARCH_PTE_SAME 511#include <asm-generic/pgtable.h> 512 513#endif /* _PARISC_PGTABLE_H */