1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/ima.h> 20 21/* Boot-time LSM user choice */ 22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25/* things that live in capability.c */ 26extern struct security_operations default_security_ops; 27extern void security_fixup_ops(struct security_operations *ops); 28 29struct security_operations *security_ops; /* Initialized to NULL */ 30 31static inline int verify(struct security_operations *ops) 32{ 33 /* verify the security_operations structure exists */ 34 if (!ops) 35 return -EINVAL; 36 security_fixup_ops(ops); 37 return 0; 38} 39 40static void __init do_security_initcalls(void) 41{ 42 initcall_t *call; 43 call = __security_initcall_start; 44 while (call < __security_initcall_end) { 45 (*call) (); 46 call++; 47 } 48} 49 50/** 51 * security_init - initializes the security framework 52 * 53 * This should be called early in the kernel initialization sequence. 54 */ 55int __init security_init(void) 56{ 57 printk(KERN_INFO "Security Framework initialized\n"); 58 59 security_fixup_ops(&default_security_ops); 60 security_ops = &default_security_ops; 61 do_security_initcalls(); 62 63 return 0; 64} 65 66/* Save user chosen LSM */ 67static int __init choose_lsm(char *str) 68{ 69 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 70 return 1; 71} 72__setup("security=", choose_lsm); 73 74/** 75 * security_module_enable - Load given security module on boot ? 76 * @ops: a pointer to the struct security_operations that is to be checked. 77 * 78 * Each LSM must pass this method before registering its own operations 79 * to avoid security registration races. This method may also be used 80 * to check if your LSM is currently loaded during kernel initialization. 81 * 82 * Return true if: 83 * -The passed LSM is the one chosen by user at boot time, 84 * -or the passed LSM is configured as the default and the user did not 85 * choose an alternate LSM at boot time, 86 * -or there is no default LSM set and the user didn't specify a 87 * specific LSM and we're the first to ask for registration permission, 88 * -or the passed LSM is currently loaded. 89 * Otherwise, return false. 90 */ 91int __init security_module_enable(struct security_operations *ops) 92{ 93 if (!*chosen_lsm) 94 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 95 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 96 return 0; 97 98 return 1; 99} 100 101/** 102 * register_security - registers a security framework with the kernel 103 * @ops: a pointer to the struct security_options that is to be registered 104 * 105 * This function allows a security module to register itself with the 106 * kernel security subsystem. Some rudimentary checking is done on the @ops 107 * value passed to this function. You'll need to check first if your LSM 108 * is allowed to register its @ops by calling security_module_enable(@ops). 109 * 110 * If there is already a security module registered with the kernel, 111 * an error will be returned. Otherwise %0 is returned on success. 112 */ 113int register_security(struct security_operations *ops) 114{ 115 if (verify(ops)) { 116 printk(KERN_DEBUG "%s could not verify " 117 "security_operations structure.\n", __func__); 118 return -EINVAL; 119 } 120 121 if (security_ops != &default_security_ops) 122 return -EAGAIN; 123 124 security_ops = ops; 125 126 return 0; 127} 128 129/* Security operations */ 130 131int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 132{ 133 return security_ops->ptrace_access_check(child, mode); 134} 135 136int security_ptrace_traceme(struct task_struct *parent) 137{ 138 return security_ops->ptrace_traceme(parent); 139} 140 141int security_capget(struct task_struct *target, 142 kernel_cap_t *effective, 143 kernel_cap_t *inheritable, 144 kernel_cap_t *permitted) 145{ 146 return security_ops->capget(target, effective, inheritable, permitted); 147} 148 149int security_capset(struct cred *new, const struct cred *old, 150 const kernel_cap_t *effective, 151 const kernel_cap_t *inheritable, 152 const kernel_cap_t *permitted) 153{ 154 return security_ops->capset(new, old, 155 effective, inheritable, permitted); 156} 157 158int security_capable(int cap) 159{ 160 return security_ops->capable(current, current_cred(), cap, 161 SECURITY_CAP_AUDIT); 162} 163 164int security_real_capable(struct task_struct *tsk, int cap) 165{ 166 const struct cred *cred; 167 int ret; 168 169 cred = get_task_cred(tsk); 170 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 171 put_cred(cred); 172 return ret; 173} 174 175int security_real_capable_noaudit(struct task_struct *tsk, int cap) 176{ 177 const struct cred *cred; 178 int ret; 179 180 cred = get_task_cred(tsk); 181 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 182 put_cred(cred); 183 return ret; 184} 185 186int security_acct(struct file *file) 187{ 188 return security_ops->acct(file); 189} 190 191int security_sysctl(struct ctl_table *table, int op) 192{ 193 return security_ops->sysctl(table, op); 194} 195 196int security_quotactl(int cmds, int type, int id, struct super_block *sb) 197{ 198 return security_ops->quotactl(cmds, type, id, sb); 199} 200 201int security_quota_on(struct dentry *dentry) 202{ 203 return security_ops->quota_on(dentry); 204} 205 206int security_syslog(int type) 207{ 208 return security_ops->syslog(type); 209} 210 211int security_settime(struct timespec *ts, struct timezone *tz) 212{ 213 return security_ops->settime(ts, tz); 214} 215 216int security_vm_enough_memory(long pages) 217{ 218 WARN_ON(current->mm == NULL); 219 return security_ops->vm_enough_memory(current->mm, pages); 220} 221 222int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 223{ 224 WARN_ON(mm == NULL); 225 return security_ops->vm_enough_memory(mm, pages); 226} 227 228int security_vm_enough_memory_kern(long pages) 229{ 230 /* If current->mm is a kernel thread then we will pass NULL, 231 for this specific case that is fine */ 232 return security_ops->vm_enough_memory(current->mm, pages); 233} 234 235int security_bprm_set_creds(struct linux_binprm *bprm) 236{ 237 return security_ops->bprm_set_creds(bprm); 238} 239 240int security_bprm_check(struct linux_binprm *bprm) 241{ 242 int ret; 243 244 ret = security_ops->bprm_check_security(bprm); 245 if (ret) 246 return ret; 247 return ima_bprm_check(bprm); 248} 249 250void security_bprm_committing_creds(struct linux_binprm *bprm) 251{ 252 security_ops->bprm_committing_creds(bprm); 253} 254 255void security_bprm_committed_creds(struct linux_binprm *bprm) 256{ 257 security_ops->bprm_committed_creds(bprm); 258} 259 260int security_bprm_secureexec(struct linux_binprm *bprm) 261{ 262 return security_ops->bprm_secureexec(bprm); 263} 264 265int security_sb_alloc(struct super_block *sb) 266{ 267 return security_ops->sb_alloc_security(sb); 268} 269 270void security_sb_free(struct super_block *sb) 271{ 272 security_ops->sb_free_security(sb); 273} 274 275int security_sb_copy_data(char *orig, char *copy) 276{ 277 return security_ops->sb_copy_data(orig, copy); 278} 279EXPORT_SYMBOL(security_sb_copy_data); 280 281int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 282{ 283 return security_ops->sb_kern_mount(sb, flags, data); 284} 285 286int security_sb_show_options(struct seq_file *m, struct super_block *sb) 287{ 288 return security_ops->sb_show_options(m, sb); 289} 290 291int security_sb_statfs(struct dentry *dentry) 292{ 293 return security_ops->sb_statfs(dentry); 294} 295 296int security_sb_mount(char *dev_name, struct path *path, 297 char *type, unsigned long flags, void *data) 298{ 299 return security_ops->sb_mount(dev_name, path, type, flags, data); 300} 301 302int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 303{ 304 return security_ops->sb_check_sb(mnt, path); 305} 306 307int security_sb_umount(struct vfsmount *mnt, int flags) 308{ 309 return security_ops->sb_umount(mnt, flags); 310} 311 312void security_sb_umount_close(struct vfsmount *mnt) 313{ 314 security_ops->sb_umount_close(mnt); 315} 316 317void security_sb_umount_busy(struct vfsmount *mnt) 318{ 319 security_ops->sb_umount_busy(mnt); 320} 321 322void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 323{ 324 security_ops->sb_post_remount(mnt, flags, data); 325} 326 327void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 328{ 329 security_ops->sb_post_addmount(mnt, mountpoint); 330} 331 332int security_sb_pivotroot(struct path *old_path, struct path *new_path) 333{ 334 return security_ops->sb_pivotroot(old_path, new_path); 335} 336 337void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 338{ 339 security_ops->sb_post_pivotroot(old_path, new_path); 340} 341 342int security_sb_set_mnt_opts(struct super_block *sb, 343 struct security_mnt_opts *opts) 344{ 345 return security_ops->sb_set_mnt_opts(sb, opts); 346} 347EXPORT_SYMBOL(security_sb_set_mnt_opts); 348 349void security_sb_clone_mnt_opts(const struct super_block *oldsb, 350 struct super_block *newsb) 351{ 352 security_ops->sb_clone_mnt_opts(oldsb, newsb); 353} 354EXPORT_SYMBOL(security_sb_clone_mnt_opts); 355 356int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 357{ 358 return security_ops->sb_parse_opts_str(options, opts); 359} 360EXPORT_SYMBOL(security_sb_parse_opts_str); 361 362int security_inode_alloc(struct inode *inode) 363{ 364 int ret; 365 366 inode->i_security = NULL; 367 ret = security_ops->inode_alloc_security(inode); 368 if (ret) 369 return ret; 370 ret = ima_inode_alloc(inode); 371 if (ret) 372 security_inode_free(inode); 373 return ret; 374} 375 376void security_inode_free(struct inode *inode) 377{ 378 ima_inode_free(inode); 379 security_ops->inode_free_security(inode); 380} 381 382int security_inode_init_security(struct inode *inode, struct inode *dir, 383 char **name, void **value, size_t *len) 384{ 385 if (unlikely(IS_PRIVATE(inode))) 386 return -EOPNOTSUPP; 387 return security_ops->inode_init_security(inode, dir, name, value, len); 388} 389EXPORT_SYMBOL(security_inode_init_security); 390 391#ifdef CONFIG_SECURITY_PATH 392int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 393 unsigned int dev) 394{ 395 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 396 return 0; 397 return security_ops->path_mknod(path, dentry, mode, dev); 398} 399EXPORT_SYMBOL(security_path_mknod); 400 401int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 402{ 403 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 404 return 0; 405 return security_ops->path_mkdir(path, dentry, mode); 406} 407 408int security_path_rmdir(struct path *path, struct dentry *dentry) 409{ 410 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 411 return 0; 412 return security_ops->path_rmdir(path, dentry); 413} 414 415int security_path_unlink(struct path *path, struct dentry *dentry) 416{ 417 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 418 return 0; 419 return security_ops->path_unlink(path, dentry); 420} 421 422int security_path_symlink(struct path *path, struct dentry *dentry, 423 const char *old_name) 424{ 425 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 426 return 0; 427 return security_ops->path_symlink(path, dentry, old_name); 428} 429 430int security_path_link(struct dentry *old_dentry, struct path *new_dir, 431 struct dentry *new_dentry) 432{ 433 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 434 return 0; 435 return security_ops->path_link(old_dentry, new_dir, new_dentry); 436} 437 438int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 439 struct path *new_dir, struct dentry *new_dentry) 440{ 441 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 442 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 443 return 0; 444 return security_ops->path_rename(old_dir, old_dentry, new_dir, 445 new_dentry); 446} 447 448int security_path_truncate(struct path *path, loff_t length, 449 unsigned int time_attrs) 450{ 451 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 452 return 0; 453 return security_ops->path_truncate(path, length, time_attrs); 454} 455 456int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 457 mode_t mode) 458{ 459 if (unlikely(IS_PRIVATE(dentry->d_inode))) 460 return 0; 461 return security_ops->path_chmod(dentry, mnt, mode); 462} 463 464int security_path_chown(struct path *path, uid_t uid, gid_t gid) 465{ 466 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 467 return 0; 468 return security_ops->path_chown(path, uid, gid); 469} 470 471int security_path_chroot(struct path *path) 472{ 473 return security_ops->path_chroot(path); 474} 475#endif 476 477int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 478{ 479 if (unlikely(IS_PRIVATE(dir))) 480 return 0; 481 return security_ops->inode_create(dir, dentry, mode); 482} 483EXPORT_SYMBOL_GPL(security_inode_create); 484 485int security_inode_link(struct dentry *old_dentry, struct inode *dir, 486 struct dentry *new_dentry) 487{ 488 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 489 return 0; 490 return security_ops->inode_link(old_dentry, dir, new_dentry); 491} 492 493int security_inode_unlink(struct inode *dir, struct dentry *dentry) 494{ 495 if (unlikely(IS_PRIVATE(dentry->d_inode))) 496 return 0; 497 return security_ops->inode_unlink(dir, dentry); 498} 499 500int security_inode_symlink(struct inode *dir, struct dentry *dentry, 501 const char *old_name) 502{ 503 if (unlikely(IS_PRIVATE(dir))) 504 return 0; 505 return security_ops->inode_symlink(dir, dentry, old_name); 506} 507 508int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 509{ 510 if (unlikely(IS_PRIVATE(dir))) 511 return 0; 512 return security_ops->inode_mkdir(dir, dentry, mode); 513} 514EXPORT_SYMBOL_GPL(security_inode_mkdir); 515 516int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 517{ 518 if (unlikely(IS_PRIVATE(dentry->d_inode))) 519 return 0; 520 return security_ops->inode_rmdir(dir, dentry); 521} 522 523int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 524{ 525 if (unlikely(IS_PRIVATE(dir))) 526 return 0; 527 return security_ops->inode_mknod(dir, dentry, mode, dev); 528} 529 530int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 531 struct inode *new_dir, struct dentry *new_dentry) 532{ 533 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 534 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 535 return 0; 536 return security_ops->inode_rename(old_dir, old_dentry, 537 new_dir, new_dentry); 538} 539 540int security_inode_readlink(struct dentry *dentry) 541{ 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return 0; 544 return security_ops->inode_readlink(dentry); 545} 546 547int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 548{ 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_follow_link(dentry, nd); 552} 553 554int security_inode_permission(struct inode *inode, int mask) 555{ 556 if (unlikely(IS_PRIVATE(inode))) 557 return 0; 558 return security_ops->inode_permission(inode, mask); 559} 560 561int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 562{ 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_setattr(dentry, attr); 566} 567EXPORT_SYMBOL_GPL(security_inode_setattr); 568 569int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 570{ 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_getattr(mnt, dentry); 574} 575 576void security_inode_delete(struct inode *inode) 577{ 578 if (unlikely(IS_PRIVATE(inode))) 579 return; 580 security_ops->inode_delete(inode); 581} 582 583int security_inode_setxattr(struct dentry *dentry, const char *name, 584 const void *value, size_t size, int flags) 585{ 586 if (unlikely(IS_PRIVATE(dentry->d_inode))) 587 return 0; 588 return security_ops->inode_setxattr(dentry, name, value, size, flags); 589} 590 591void security_inode_post_setxattr(struct dentry *dentry, const char *name, 592 const void *value, size_t size, int flags) 593{ 594 if (unlikely(IS_PRIVATE(dentry->d_inode))) 595 return; 596 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 597} 598 599int security_inode_getxattr(struct dentry *dentry, const char *name) 600{ 601 if (unlikely(IS_PRIVATE(dentry->d_inode))) 602 return 0; 603 return security_ops->inode_getxattr(dentry, name); 604} 605 606int security_inode_listxattr(struct dentry *dentry) 607{ 608 if (unlikely(IS_PRIVATE(dentry->d_inode))) 609 return 0; 610 return security_ops->inode_listxattr(dentry); 611} 612 613int security_inode_removexattr(struct dentry *dentry, const char *name) 614{ 615 if (unlikely(IS_PRIVATE(dentry->d_inode))) 616 return 0; 617 return security_ops->inode_removexattr(dentry, name); 618} 619 620int security_inode_need_killpriv(struct dentry *dentry) 621{ 622 return security_ops->inode_need_killpriv(dentry); 623} 624 625int security_inode_killpriv(struct dentry *dentry) 626{ 627 return security_ops->inode_killpriv(dentry); 628} 629 630int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 631{ 632 if (unlikely(IS_PRIVATE(inode))) 633 return 0; 634 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 635} 636 637int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 638{ 639 if (unlikely(IS_PRIVATE(inode))) 640 return 0; 641 return security_ops->inode_setsecurity(inode, name, value, size, flags); 642} 643 644int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 645{ 646 if (unlikely(IS_PRIVATE(inode))) 647 return 0; 648 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 649} 650 651void security_inode_getsecid(const struct inode *inode, u32 *secid) 652{ 653 security_ops->inode_getsecid(inode, secid); 654} 655 656int security_file_permission(struct file *file, int mask) 657{ 658 return security_ops->file_permission(file, mask); 659} 660 661int security_file_alloc(struct file *file) 662{ 663 return security_ops->file_alloc_security(file); 664} 665 666void security_file_free(struct file *file) 667{ 668 security_ops->file_free_security(file); 669} 670 671int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 672{ 673 return security_ops->file_ioctl(file, cmd, arg); 674} 675 676int security_file_mmap(struct file *file, unsigned long reqprot, 677 unsigned long prot, unsigned long flags, 678 unsigned long addr, unsigned long addr_only) 679{ 680 int ret; 681 682 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 683 if (ret) 684 return ret; 685 return ima_file_mmap(file, prot); 686} 687 688int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 689 unsigned long prot) 690{ 691 return security_ops->file_mprotect(vma, reqprot, prot); 692} 693 694int security_file_lock(struct file *file, unsigned int cmd) 695{ 696 return security_ops->file_lock(file, cmd); 697} 698 699int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 700{ 701 return security_ops->file_fcntl(file, cmd, arg); 702} 703 704int security_file_set_fowner(struct file *file) 705{ 706 return security_ops->file_set_fowner(file); 707} 708 709int security_file_send_sigiotask(struct task_struct *tsk, 710 struct fown_struct *fown, int sig) 711{ 712 return security_ops->file_send_sigiotask(tsk, fown, sig); 713} 714 715int security_file_receive(struct file *file) 716{ 717 return security_ops->file_receive(file); 718} 719 720int security_dentry_open(struct file *file, const struct cred *cred) 721{ 722 return security_ops->dentry_open(file, cred); 723} 724 725int security_task_create(unsigned long clone_flags) 726{ 727 return security_ops->task_create(clone_flags); 728} 729 730int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 731{ 732 return security_ops->cred_alloc_blank(cred, gfp); 733} 734 735void security_cred_free(struct cred *cred) 736{ 737 security_ops->cred_free(cred); 738} 739 740int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 741{ 742 return security_ops->cred_prepare(new, old, gfp); 743} 744 745void security_commit_creds(struct cred *new, const struct cred *old) 746{ 747 security_ops->cred_commit(new, old); 748} 749 750void security_transfer_creds(struct cred *new, const struct cred *old) 751{ 752 security_ops->cred_transfer(new, old); 753} 754 755int security_kernel_act_as(struct cred *new, u32 secid) 756{ 757 return security_ops->kernel_act_as(new, secid); 758} 759 760int security_kernel_create_files_as(struct cred *new, struct inode *inode) 761{ 762 return security_ops->kernel_create_files_as(new, inode); 763} 764 765int security_kernel_module_request(char *kmod_name) 766{ 767 return security_ops->kernel_module_request(kmod_name); 768} 769 770int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 771{ 772 return security_ops->task_setuid(id0, id1, id2, flags); 773} 774 775int security_task_fix_setuid(struct cred *new, const struct cred *old, 776 int flags) 777{ 778 return security_ops->task_fix_setuid(new, old, flags); 779} 780 781int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 782{ 783 return security_ops->task_setgid(id0, id1, id2, flags); 784} 785 786int security_task_setpgid(struct task_struct *p, pid_t pgid) 787{ 788 return security_ops->task_setpgid(p, pgid); 789} 790 791int security_task_getpgid(struct task_struct *p) 792{ 793 return security_ops->task_getpgid(p); 794} 795 796int security_task_getsid(struct task_struct *p) 797{ 798 return security_ops->task_getsid(p); 799} 800 801void security_task_getsecid(struct task_struct *p, u32 *secid) 802{ 803 security_ops->task_getsecid(p, secid); 804} 805EXPORT_SYMBOL(security_task_getsecid); 806 807int security_task_setgroups(struct group_info *group_info) 808{ 809 return security_ops->task_setgroups(group_info); 810} 811 812int security_task_setnice(struct task_struct *p, int nice) 813{ 814 return security_ops->task_setnice(p, nice); 815} 816 817int security_task_setioprio(struct task_struct *p, int ioprio) 818{ 819 return security_ops->task_setioprio(p, ioprio); 820} 821 822int security_task_getioprio(struct task_struct *p) 823{ 824 return security_ops->task_getioprio(p); 825} 826 827int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 828{ 829 return security_ops->task_setrlimit(resource, new_rlim); 830} 831 832int security_task_setscheduler(struct task_struct *p, 833 int policy, struct sched_param *lp) 834{ 835 return security_ops->task_setscheduler(p, policy, lp); 836} 837 838int security_task_getscheduler(struct task_struct *p) 839{ 840 return security_ops->task_getscheduler(p); 841} 842 843int security_task_movememory(struct task_struct *p) 844{ 845 return security_ops->task_movememory(p); 846} 847 848int security_task_kill(struct task_struct *p, struct siginfo *info, 849 int sig, u32 secid) 850{ 851 return security_ops->task_kill(p, info, sig, secid); 852} 853 854int security_task_wait(struct task_struct *p) 855{ 856 return security_ops->task_wait(p); 857} 858 859int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 860 unsigned long arg4, unsigned long arg5) 861{ 862 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 863} 864 865void security_task_to_inode(struct task_struct *p, struct inode *inode) 866{ 867 security_ops->task_to_inode(p, inode); 868} 869 870int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 871{ 872 return security_ops->ipc_permission(ipcp, flag); 873} 874 875void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 876{ 877 security_ops->ipc_getsecid(ipcp, secid); 878} 879 880int security_msg_msg_alloc(struct msg_msg *msg) 881{ 882 return security_ops->msg_msg_alloc_security(msg); 883} 884 885void security_msg_msg_free(struct msg_msg *msg) 886{ 887 security_ops->msg_msg_free_security(msg); 888} 889 890int security_msg_queue_alloc(struct msg_queue *msq) 891{ 892 return security_ops->msg_queue_alloc_security(msq); 893} 894 895void security_msg_queue_free(struct msg_queue *msq) 896{ 897 security_ops->msg_queue_free_security(msq); 898} 899 900int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 901{ 902 return security_ops->msg_queue_associate(msq, msqflg); 903} 904 905int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 906{ 907 return security_ops->msg_queue_msgctl(msq, cmd); 908} 909 910int security_msg_queue_msgsnd(struct msg_queue *msq, 911 struct msg_msg *msg, int msqflg) 912{ 913 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 914} 915 916int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 917 struct task_struct *target, long type, int mode) 918{ 919 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 920} 921 922int security_shm_alloc(struct shmid_kernel *shp) 923{ 924 return security_ops->shm_alloc_security(shp); 925} 926 927void security_shm_free(struct shmid_kernel *shp) 928{ 929 security_ops->shm_free_security(shp); 930} 931 932int security_shm_associate(struct shmid_kernel *shp, int shmflg) 933{ 934 return security_ops->shm_associate(shp, shmflg); 935} 936 937int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 938{ 939 return security_ops->shm_shmctl(shp, cmd); 940} 941 942int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 943{ 944 return security_ops->shm_shmat(shp, shmaddr, shmflg); 945} 946 947int security_sem_alloc(struct sem_array *sma) 948{ 949 return security_ops->sem_alloc_security(sma); 950} 951 952void security_sem_free(struct sem_array *sma) 953{ 954 security_ops->sem_free_security(sma); 955} 956 957int security_sem_associate(struct sem_array *sma, int semflg) 958{ 959 return security_ops->sem_associate(sma, semflg); 960} 961 962int security_sem_semctl(struct sem_array *sma, int cmd) 963{ 964 return security_ops->sem_semctl(sma, cmd); 965} 966 967int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 968 unsigned nsops, int alter) 969{ 970 return security_ops->sem_semop(sma, sops, nsops, alter); 971} 972 973void security_d_instantiate(struct dentry *dentry, struct inode *inode) 974{ 975 if (unlikely(inode && IS_PRIVATE(inode))) 976 return; 977 security_ops->d_instantiate(dentry, inode); 978} 979EXPORT_SYMBOL(security_d_instantiate); 980 981int security_getprocattr(struct task_struct *p, char *name, char **value) 982{ 983 return security_ops->getprocattr(p, name, value); 984} 985 986int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 987{ 988 return security_ops->setprocattr(p, name, value, size); 989} 990 991int security_netlink_send(struct sock *sk, struct sk_buff *skb) 992{ 993 return security_ops->netlink_send(sk, skb); 994} 995 996int security_netlink_recv(struct sk_buff *skb, int cap) 997{ 998 return security_ops->netlink_recv(skb, cap); 999} 1000EXPORT_SYMBOL(security_netlink_recv); 1001 1002int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1003{ 1004 return security_ops->secid_to_secctx(secid, secdata, seclen); 1005} 1006EXPORT_SYMBOL(security_secid_to_secctx); 1007 1008int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1009{ 1010 return security_ops->secctx_to_secid(secdata, seclen, secid); 1011} 1012EXPORT_SYMBOL(security_secctx_to_secid); 1013 1014void security_release_secctx(char *secdata, u32 seclen) 1015{ 1016 security_ops->release_secctx(secdata, seclen); 1017} 1018EXPORT_SYMBOL(security_release_secctx); 1019 1020int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1021{ 1022 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1023} 1024EXPORT_SYMBOL(security_inode_notifysecctx); 1025 1026int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1027{ 1028 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1029} 1030EXPORT_SYMBOL(security_inode_setsecctx); 1031 1032int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1033{ 1034 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1035} 1036EXPORT_SYMBOL(security_inode_getsecctx); 1037 1038#ifdef CONFIG_SECURITY_NETWORK 1039 1040int security_unix_stream_connect(struct socket *sock, struct socket *other, 1041 struct sock *newsk) 1042{ 1043 return security_ops->unix_stream_connect(sock, other, newsk); 1044} 1045EXPORT_SYMBOL(security_unix_stream_connect); 1046 1047int security_unix_may_send(struct socket *sock, struct socket *other) 1048{ 1049 return security_ops->unix_may_send(sock, other); 1050} 1051EXPORT_SYMBOL(security_unix_may_send); 1052 1053int security_socket_create(int family, int type, int protocol, int kern) 1054{ 1055 return security_ops->socket_create(family, type, protocol, kern); 1056} 1057 1058int security_socket_post_create(struct socket *sock, int family, 1059 int type, int protocol, int kern) 1060{ 1061 return security_ops->socket_post_create(sock, family, type, 1062 protocol, kern); 1063} 1064 1065int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1066{ 1067 return security_ops->socket_bind(sock, address, addrlen); 1068} 1069 1070int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1071{ 1072 return security_ops->socket_connect(sock, address, addrlen); 1073} 1074 1075int security_socket_listen(struct socket *sock, int backlog) 1076{ 1077 return security_ops->socket_listen(sock, backlog); 1078} 1079 1080int security_socket_accept(struct socket *sock, struct socket *newsock) 1081{ 1082 return security_ops->socket_accept(sock, newsock); 1083} 1084 1085int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1086{ 1087 return security_ops->socket_sendmsg(sock, msg, size); 1088} 1089 1090int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1091 int size, int flags) 1092{ 1093 return security_ops->socket_recvmsg(sock, msg, size, flags); 1094} 1095 1096int security_socket_getsockname(struct socket *sock) 1097{ 1098 return security_ops->socket_getsockname(sock); 1099} 1100 1101int security_socket_getpeername(struct socket *sock) 1102{ 1103 return security_ops->socket_getpeername(sock); 1104} 1105 1106int security_socket_getsockopt(struct socket *sock, int level, int optname) 1107{ 1108 return security_ops->socket_getsockopt(sock, level, optname); 1109} 1110 1111int security_socket_setsockopt(struct socket *sock, int level, int optname) 1112{ 1113 return security_ops->socket_setsockopt(sock, level, optname); 1114} 1115 1116int security_socket_shutdown(struct socket *sock, int how) 1117{ 1118 return security_ops->socket_shutdown(sock, how); 1119} 1120 1121int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1122{ 1123 return security_ops->socket_sock_rcv_skb(sk, skb); 1124} 1125EXPORT_SYMBOL(security_sock_rcv_skb); 1126 1127int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1128 int __user *optlen, unsigned len) 1129{ 1130 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1131} 1132 1133int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1134{ 1135 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1136} 1137EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1138 1139int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1140{ 1141 return security_ops->sk_alloc_security(sk, family, priority); 1142} 1143 1144void security_sk_free(struct sock *sk) 1145{ 1146 security_ops->sk_free_security(sk); 1147} 1148 1149void security_sk_clone(const struct sock *sk, struct sock *newsk) 1150{ 1151 security_ops->sk_clone_security(sk, newsk); 1152} 1153 1154void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1155{ 1156 security_ops->sk_getsecid(sk, &fl->secid); 1157} 1158EXPORT_SYMBOL(security_sk_classify_flow); 1159 1160void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1161{ 1162 security_ops->req_classify_flow(req, fl); 1163} 1164EXPORT_SYMBOL(security_req_classify_flow); 1165 1166void security_sock_graft(struct sock *sk, struct socket *parent) 1167{ 1168 security_ops->sock_graft(sk, parent); 1169} 1170EXPORT_SYMBOL(security_sock_graft); 1171 1172int security_inet_conn_request(struct sock *sk, 1173 struct sk_buff *skb, struct request_sock *req) 1174{ 1175 return security_ops->inet_conn_request(sk, skb, req); 1176} 1177EXPORT_SYMBOL(security_inet_conn_request); 1178 1179void security_inet_csk_clone(struct sock *newsk, 1180 const struct request_sock *req) 1181{ 1182 security_ops->inet_csk_clone(newsk, req); 1183} 1184 1185void security_inet_conn_established(struct sock *sk, 1186 struct sk_buff *skb) 1187{ 1188 security_ops->inet_conn_established(sk, skb); 1189} 1190 1191int security_tun_dev_create(void) 1192{ 1193 return security_ops->tun_dev_create(); 1194} 1195EXPORT_SYMBOL(security_tun_dev_create); 1196 1197void security_tun_dev_post_create(struct sock *sk) 1198{ 1199 return security_ops->tun_dev_post_create(sk); 1200} 1201EXPORT_SYMBOL(security_tun_dev_post_create); 1202 1203int security_tun_dev_attach(struct sock *sk) 1204{ 1205 return security_ops->tun_dev_attach(sk); 1206} 1207EXPORT_SYMBOL(security_tun_dev_attach); 1208 1209#endif /* CONFIG_SECURITY_NETWORK */ 1210 1211#ifdef CONFIG_SECURITY_NETWORK_XFRM 1212 1213int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1214{ 1215 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1216} 1217EXPORT_SYMBOL(security_xfrm_policy_alloc); 1218 1219int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1220 struct xfrm_sec_ctx **new_ctxp) 1221{ 1222 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1223} 1224 1225void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1226{ 1227 security_ops->xfrm_policy_free_security(ctx); 1228} 1229EXPORT_SYMBOL(security_xfrm_policy_free); 1230 1231int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1232{ 1233 return security_ops->xfrm_policy_delete_security(ctx); 1234} 1235 1236int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1237{ 1238 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1239} 1240EXPORT_SYMBOL(security_xfrm_state_alloc); 1241 1242int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1243 struct xfrm_sec_ctx *polsec, u32 secid) 1244{ 1245 if (!polsec) 1246 return 0; 1247 /* 1248 * We want the context to be taken from secid which is usually 1249 * from the sock. 1250 */ 1251 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1252} 1253 1254int security_xfrm_state_delete(struct xfrm_state *x) 1255{ 1256 return security_ops->xfrm_state_delete_security(x); 1257} 1258EXPORT_SYMBOL(security_xfrm_state_delete); 1259 1260void security_xfrm_state_free(struct xfrm_state *x) 1261{ 1262 security_ops->xfrm_state_free_security(x); 1263} 1264 1265int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1266{ 1267 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1268} 1269 1270int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1271 struct xfrm_policy *xp, struct flowi *fl) 1272{ 1273 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1274} 1275 1276int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1277{ 1278 return security_ops->xfrm_decode_session(skb, secid, 1); 1279} 1280 1281void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1282{ 1283 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1284 1285 BUG_ON(rc); 1286} 1287EXPORT_SYMBOL(security_skb_classify_flow); 1288 1289#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1290 1291#ifdef CONFIG_KEYS 1292 1293int security_key_alloc(struct key *key, const struct cred *cred, 1294 unsigned long flags) 1295{ 1296 return security_ops->key_alloc(key, cred, flags); 1297} 1298 1299void security_key_free(struct key *key) 1300{ 1301 security_ops->key_free(key); 1302} 1303 1304int security_key_permission(key_ref_t key_ref, 1305 const struct cred *cred, key_perm_t perm) 1306{ 1307 return security_ops->key_permission(key_ref, cred, perm); 1308} 1309 1310int security_key_getsecurity(struct key *key, char **_buffer) 1311{ 1312 return security_ops->key_getsecurity(key, _buffer); 1313} 1314 1315int security_key_session_to_parent(const struct cred *cred, 1316 const struct cred *parent_cred, 1317 struct key *key) 1318{ 1319 return security_ops->key_session_to_parent(cred, parent_cred, key); 1320} 1321 1322#endif /* CONFIG_KEYS */ 1323 1324#ifdef CONFIG_AUDIT 1325 1326int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1327{ 1328 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1329} 1330 1331int security_audit_rule_known(struct audit_krule *krule) 1332{ 1333 return security_ops->audit_rule_known(krule); 1334} 1335 1336void security_audit_rule_free(void *lsmrule) 1337{ 1338 security_ops->audit_rule_free(lsmrule); 1339} 1340 1341int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1342 struct audit_context *actx) 1343{ 1344 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1345} 1346 1347#endif /* CONFIG_AUDIT */