at v2.6.33-rc2 1307 lines 41 kB view raw
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */ 2/* 3 Written/copyright 1993-1998 by Donald Becker. 4 5 Copyright 1993 United States Government as represented by the 6 Director, National Security Agency. 7 This software may be used and distributed according to the terms 8 of the GNU General Public License, incorporated herein by reference. 9 10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work 11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 Andrey V. Savochkin: 19 - alignment problem with 1.3.* kernel and some minor changes. 20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de): 21 - added support for Linux/Alpha, but removed most of it, because 22 it worked only for the PCI chip. 23 - added hook for the 32bit lance driver 24 - added PCnetPCI II (79C970A) to chip table 25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au): 26 - hopefully fix above so Linux/Alpha can use ISA cards too. 27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb 28 v1.12 10/27/97 Module support -djb 29 v1.14 2/3/98 Module support modified, made PCI support optional -djb 30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed 31 before unregister_netdev() which caused NULL pointer 32 reference later in the chain (in rtnetlink_fill_ifinfo()) 33 -- Mika Kuoppala <miku@iki.fi> 34 35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from 36 the 2.1 version of the old driver - Alan Cox 37 38 Get rid of check_region, check kmalloc return in lance_probe1 39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001 40 41 Reworked detection, added support for Racal InterLan EtherBlaster cards 42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004 43*/ 44 45static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n"; 46 47#include <linux/module.h> 48#include <linux/kernel.h> 49#include <linux/string.h> 50#include <linux/delay.h> 51#include <linux/errno.h> 52#include <linux/ioport.h> 53#include <linux/slab.h> 54#include <linux/interrupt.h> 55#include <linux/pci.h> 56#include <linux/init.h> 57#include <linux/netdevice.h> 58#include <linux/etherdevice.h> 59#include <linux/skbuff.h> 60#include <linux/mm.h> 61#include <linux/bitops.h> 62 63#include <asm/io.h> 64#include <asm/dma.h> 65 66static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0}; 67static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options); 68static int __init do_lance_probe(struct net_device *dev); 69 70 71static struct card { 72 char id_offset14; 73 char id_offset15; 74} cards[] = { 75 { //"normal" 76 .id_offset14 = 0x57, 77 .id_offset15 = 0x57, 78 }, 79 { //NI6510EB 80 .id_offset14 = 0x52, 81 .id_offset15 = 0x44, 82 }, 83 { //Racal InterLan EtherBlaster 84 .id_offset14 = 0x52, 85 .id_offset15 = 0x49, 86 }, 87}; 88#define NUM_CARDS 3 89 90#ifdef LANCE_DEBUG 91static int lance_debug = LANCE_DEBUG; 92#else 93static int lance_debug = 1; 94#endif 95 96/* 97 Theory of Operation 98 99I. Board Compatibility 100 101This device driver is designed for the AMD 79C960, the "PCnet-ISA 102single-chip ethernet controller for ISA". This chip is used in a wide 103variety of boards from vendors such as Allied Telesis, HP, Kingston, 104and Boca. This driver is also intended to work with older AMD 7990 105designs, such as the NE1500 and NE2100, and newer 79C961. For convenience, 106I use the name LANCE to refer to all of the AMD chips, even though it properly 107refers only to the original 7990. 108 109II. Board-specific settings 110 111The driver is designed to work the boards that use the faster 112bus-master mode, rather than in shared memory mode. (Only older designs 113have on-board buffer memory needed to support the slower shared memory mode.) 114 115Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA 116channel. This driver probes the likely base addresses: 117{0x300, 0x320, 0x340, 0x360}. 118After the board is found it generates a DMA-timeout interrupt and uses 119autoIRQ to find the IRQ line. The DMA channel can be set with the low bits 120of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is 121probed for by enabling each free DMA channel in turn and checking if 122initialization succeeds. 123 124The HP-J2405A board is an exception: with this board it is easy to read the 125EEPROM-set values for the base, IRQ, and DMA. (Of course you must already 126_know_ the base address -- that field is for writing the EEPROM.) 127 128III. Driver operation 129 130IIIa. Ring buffers 131The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes 132the base and length of the data buffer, along with status bits. The length 133of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of 134the buffer length (rather than being directly the buffer length) for 135implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to 136ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries 137needlessly uses extra space and reduces the chance that an upper layer will 138be able to reorder queued Tx packets based on priority. Decreasing the number 139of entries makes it more difficult to achieve back-to-back packet transmission 140and increases the chance that Rx ring will overflow. (Consider the worst case 141of receiving back-to-back minimum-sized packets.) 142 143The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver 144statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to 145avoid the administrative overhead. For the Rx side this avoids dynamically 146allocating full-sized buffers "just in case", at the expense of a 147memory-to-memory data copy for each packet received. For most systems this 148is a good tradeoff: the Rx buffer will always be in low memory, the copy 149is inexpensive, and it primes the cache for later packet processing. For Tx 150the buffers are only used when needed as low-memory bounce buffers. 151 152IIIB. 16M memory limitations. 153For the ISA bus master mode all structures used directly by the LANCE, 154the initialization block, Rx and Tx rings, and data buffers, must be 155accessible from the ISA bus, i.e. in the lower 16M of real memory. 156This is a problem for current Linux kernels on >16M machines. The network 157devices are initialized after memory initialization, and the kernel doles out 158memory from the top of memory downward. The current solution is to have a 159special network initialization routine that's called before memory 160initialization; this will eventually be generalized for all network devices. 161As mentioned before, low-memory "bounce-buffers" are used when needed. 162 163IIIC. Synchronization 164The driver runs as two independent, single-threaded flows of control. One 165is the send-packet routine, which enforces single-threaded use by the 166dev->tbusy flag. The other thread is the interrupt handler, which is single 167threaded by the hardware and other software. 168 169The send packet thread has partial control over the Tx ring and 'dev->tbusy' 170flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 171queue slot is empty, it clears the tbusy flag when finished otherwise it sets 172the 'lp->tx_full' flag. 173 174The interrupt handler has exclusive control over the Rx ring and records stats 175from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so 176we can't avoid the interrupt overhead by having the Tx routine reap the Tx 177stats.) After reaping the stats, it marks the queue entry as empty by setting 178the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the 179tx_full and tbusy flags. 180 181*/ 182 183/* Set the number of Tx and Rx buffers, using Log_2(# buffers). 184 Reasonable default values are 16 Tx buffers, and 16 Rx buffers. 185 That translates to 4 and 4 (16 == 2^^4). 186 This is a compile-time option for efficiency. 187 */ 188#ifndef LANCE_LOG_TX_BUFFERS 189#define LANCE_LOG_TX_BUFFERS 4 190#define LANCE_LOG_RX_BUFFERS 4 191#endif 192 193#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) 194#define TX_RING_MOD_MASK (TX_RING_SIZE - 1) 195#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) 196 197#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) 198#define RX_RING_MOD_MASK (RX_RING_SIZE - 1) 199#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) 200 201#define PKT_BUF_SZ 1544 202 203/* Offsets from base I/O address. */ 204#define LANCE_DATA 0x10 205#define LANCE_ADDR 0x12 206#define LANCE_RESET 0x14 207#define LANCE_BUS_IF 0x16 208#define LANCE_TOTAL_SIZE 0x18 209 210#define TX_TIMEOUT 20 211 212/* The LANCE Rx and Tx ring descriptors. */ 213struct lance_rx_head { 214 s32 base; 215 s16 buf_length; /* This length is 2s complement (negative)! */ 216 s16 msg_length; /* This length is "normal". */ 217}; 218 219struct lance_tx_head { 220 s32 base; 221 s16 length; /* Length is 2s complement (negative)! */ 222 s16 misc; 223}; 224 225/* The LANCE initialization block, described in databook. */ 226struct lance_init_block { 227 u16 mode; /* Pre-set mode (reg. 15) */ 228 u8 phys_addr[6]; /* Physical ethernet address */ 229 u32 filter[2]; /* Multicast filter (unused). */ 230 /* Receive and transmit ring base, along with extra bits. */ 231 u32 rx_ring; /* Tx and Rx ring base pointers */ 232 u32 tx_ring; 233}; 234 235struct lance_private { 236 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */ 237 struct lance_rx_head rx_ring[RX_RING_SIZE]; 238 struct lance_tx_head tx_ring[TX_RING_SIZE]; 239 struct lance_init_block init_block; 240 const char *name; 241 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 242 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 243 /* The addresses of receive-in-place skbuffs. */ 244 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 245 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */ 246 /* Tx low-memory "bounce buffer" address. */ 247 char (*tx_bounce_buffs)[PKT_BUF_SZ]; 248 int cur_rx, cur_tx; /* The next free ring entry */ 249 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 250 int dma; 251 struct net_device_stats stats; 252 unsigned char chip_version; /* See lance_chip_type. */ 253 spinlock_t devlock; 254}; 255 256#define LANCE_MUST_PAD 0x00000001 257#define LANCE_ENABLE_AUTOSELECT 0x00000002 258#define LANCE_MUST_REINIT_RING 0x00000004 259#define LANCE_MUST_UNRESET 0x00000008 260#define LANCE_HAS_MISSED_FRAME 0x00000010 261 262/* A mapping from the chip ID number to the part number and features. 263 These are from the datasheets -- in real life the '970 version 264 reportedly has the same ID as the '965. */ 265static struct lance_chip_type { 266 int id_number; 267 const char *name; 268 int flags; 269} chip_table[] = { 270 {0x0000, "LANCE 7990", /* Ancient lance chip. */ 271 LANCE_MUST_PAD + LANCE_MUST_UNRESET}, 272 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */ 273 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 274 LANCE_HAS_MISSED_FRAME}, 275 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */ 276 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 277 LANCE_HAS_MISSED_FRAME}, 278 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */ 279 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 280 LANCE_HAS_MISSED_FRAME}, 281 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call 282 it the PCnet32. */ 283 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */ 284 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 285 LANCE_HAS_MISSED_FRAME}, 286 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */ 287 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 288 LANCE_HAS_MISSED_FRAME}, 289 {0x0, "PCnet (unknown)", 290 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 291 LANCE_HAS_MISSED_FRAME}, 292}; 293 294enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6}; 295 296 297/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers. 298 Assume yes until we know the memory size. */ 299static unsigned char lance_need_isa_bounce_buffers = 1; 300 301static int lance_open(struct net_device *dev); 302static void lance_init_ring(struct net_device *dev, gfp_t mode); 303static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 304 struct net_device *dev); 305static int lance_rx(struct net_device *dev); 306static irqreturn_t lance_interrupt(int irq, void *dev_id); 307static int lance_close(struct net_device *dev); 308static struct net_device_stats *lance_get_stats(struct net_device *dev); 309static void set_multicast_list(struct net_device *dev); 310static void lance_tx_timeout (struct net_device *dev); 311 312 313 314#ifdef MODULE 315#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */ 316 317static struct net_device *dev_lance[MAX_CARDS]; 318static int io[MAX_CARDS]; 319static int dma[MAX_CARDS]; 320static int irq[MAX_CARDS]; 321 322module_param_array(io, int, NULL, 0); 323module_param_array(dma, int, NULL, 0); 324module_param_array(irq, int, NULL, 0); 325module_param(lance_debug, int, 0); 326MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required"); 327MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)"); 328MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)"); 329MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)"); 330 331int __init init_module(void) 332{ 333 struct net_device *dev; 334 int this_dev, found = 0; 335 336 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 337 if (io[this_dev] == 0) { 338 if (this_dev != 0) /* only complain once */ 339 break; 340 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n"); 341 return -EPERM; 342 } 343 dev = alloc_etherdev(0); 344 if (!dev) 345 break; 346 dev->irq = irq[this_dev]; 347 dev->base_addr = io[this_dev]; 348 dev->dma = dma[this_dev]; 349 if (do_lance_probe(dev) == 0) { 350 dev_lance[found++] = dev; 351 continue; 352 } 353 free_netdev(dev); 354 break; 355 } 356 if (found != 0) 357 return 0; 358 return -ENXIO; 359} 360 361static void cleanup_card(struct net_device *dev) 362{ 363 struct lance_private *lp = dev->ml_priv; 364 if (dev->dma != 4) 365 free_dma(dev->dma); 366 release_region(dev->base_addr, LANCE_TOTAL_SIZE); 367 kfree(lp->tx_bounce_buffs); 368 kfree((void*)lp->rx_buffs); 369 kfree(lp); 370} 371 372void __exit cleanup_module(void) 373{ 374 int this_dev; 375 376 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 377 struct net_device *dev = dev_lance[this_dev]; 378 if (dev) { 379 unregister_netdev(dev); 380 cleanup_card(dev); 381 free_netdev(dev); 382 } 383 } 384} 385#endif /* MODULE */ 386MODULE_LICENSE("GPL"); 387 388 389/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other 390 board probes now that kmalloc() can allocate ISA DMA-able regions. 391 This also allows the LANCE driver to be used as a module. 392 */ 393static int __init do_lance_probe(struct net_device *dev) 394{ 395 unsigned int *port; 396 int result; 397 398 if (high_memory <= phys_to_virt(16*1024*1024)) 399 lance_need_isa_bounce_buffers = 0; 400 401 for (port = lance_portlist; *port; port++) { 402 int ioaddr = *port; 403 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE, 404 "lance-probe"); 405 406 if (r) { 407 /* Detect the card with minimal I/O reads */ 408 char offset14 = inb(ioaddr + 14); 409 int card; 410 for (card = 0; card < NUM_CARDS; ++card) 411 if (cards[card].id_offset14 == offset14) 412 break; 413 if (card < NUM_CARDS) {/*yes, the first byte matches*/ 414 char offset15 = inb(ioaddr + 15); 415 for (card = 0; card < NUM_CARDS; ++card) 416 if ((cards[card].id_offset14 == offset14) && 417 (cards[card].id_offset15 == offset15)) 418 break; 419 } 420 if (card < NUM_CARDS) { /*Signature OK*/ 421 result = lance_probe1(dev, ioaddr, 0, 0); 422 if (!result) { 423 struct lance_private *lp = dev->ml_priv; 424 int ver = lp->chip_version; 425 426 r->name = chip_table[ver].name; 427 return 0; 428 } 429 } 430 release_region(ioaddr, LANCE_TOTAL_SIZE); 431 } 432 } 433 return -ENODEV; 434} 435 436#ifndef MODULE 437struct net_device * __init lance_probe(int unit) 438{ 439 struct net_device *dev = alloc_etherdev(0); 440 int err; 441 442 if (!dev) 443 return ERR_PTR(-ENODEV); 444 445 sprintf(dev->name, "eth%d", unit); 446 netdev_boot_setup_check(dev); 447 448 err = do_lance_probe(dev); 449 if (err) 450 goto out; 451 return dev; 452out: 453 free_netdev(dev); 454 return ERR_PTR(err); 455} 456#endif 457 458static const struct net_device_ops lance_netdev_ops = { 459 .ndo_open = lance_open, 460 .ndo_start_xmit = lance_start_xmit, 461 .ndo_stop = lance_close, 462 .ndo_get_stats = lance_get_stats, 463 .ndo_set_multicast_list = set_multicast_list, 464 .ndo_tx_timeout = lance_tx_timeout, 465 .ndo_change_mtu = eth_change_mtu, 466 .ndo_set_mac_address = eth_mac_addr, 467 .ndo_validate_addr = eth_validate_addr, 468}; 469 470static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options) 471{ 472 struct lance_private *lp; 473 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */ 474 int i, reset_val, lance_version; 475 const char *chipname; 476 /* Flags for specific chips or boards. */ 477 unsigned char hpJ2405A = 0; /* HP ISA adaptor */ 478 int hp_builtin = 0; /* HP on-board ethernet. */ 479 static int did_version; /* Already printed version info. */ 480 unsigned long flags; 481 int err = -ENOMEM; 482 void __iomem *bios; 483 484 /* First we look for special cases. 485 Check for HP's on-board ethernet by looking for 'HP' in the BIOS. 486 There are two HP versions, check the BIOS for the configuration port. 487 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com. 488 */ 489 bios = ioremap(0xf00f0, 0x14); 490 if (!bios) 491 return -ENOMEM; 492 if (readw(bios + 0x12) == 0x5048) { 493 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360}; 494 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99; 495 /* We can have boards other than the built-in! Verify this is on-board. */ 496 if ((inb(hp_port) & 0xc0) == 0x80 && 497 ioaddr_table[inb(hp_port) & 3] == ioaddr) 498 hp_builtin = hp_port; 499 } 500 iounmap(bios); 501 /* We also recognize the HP Vectra on-board here, but check below. */ 502 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 && 503 inb(ioaddr+2) == 0x09); 504 505 /* Reset the LANCE. */ 506 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */ 507 508 /* The Un-Reset needed is only needed for the real NE2100, and will 509 confuse the HP board. */ 510 if (!hpJ2405A) 511 outw(reset_val, ioaddr+LANCE_RESET); 512 513 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */ 514 if (inw(ioaddr+LANCE_DATA) != 0x0004) 515 return -ENODEV; 516 517 /* Get the version of the chip. */ 518 outw(88, ioaddr+LANCE_ADDR); 519 if (inw(ioaddr+LANCE_ADDR) != 88) { 520 lance_version = 0; 521 } else { /* Good, it's a newer chip. */ 522 int chip_version = inw(ioaddr+LANCE_DATA); 523 outw(89, ioaddr+LANCE_ADDR); 524 chip_version |= inw(ioaddr+LANCE_DATA) << 16; 525 if (lance_debug > 2) 526 printk(" LANCE chip version is %#x.\n", chip_version); 527 if ((chip_version & 0xfff) != 0x003) 528 return -ENODEV; 529 chip_version = (chip_version >> 12) & 0xffff; 530 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) { 531 if (chip_table[lance_version].id_number == chip_version) 532 break; 533 } 534 } 535 536 /* We can't allocate private data from alloc_etherdev() because it must 537 a ISA DMA-able region. */ 538 chipname = chip_table[lance_version].name; 539 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr); 540 541 /* There is a 16 byte station address PROM at the base address. 542 The first six bytes are the station address. */ 543 for (i = 0; i < 6; i++) 544 dev->dev_addr[i] = inb(ioaddr + i); 545 printk("%pM", dev->dev_addr); 546 547 dev->base_addr = ioaddr; 548 /* Make certain the data structures used by the LANCE are aligned and DMAble. */ 549 550 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL); 551 if(lp==NULL) 552 return -ENODEV; 553 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp); 554 dev->ml_priv = lp; 555 lp->name = chipname; 556 lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE, 557 GFP_DMA | GFP_KERNEL); 558 if (!lp->rx_buffs) 559 goto out_lp; 560 if (lance_need_isa_bounce_buffers) { 561 lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE, 562 GFP_DMA | GFP_KERNEL); 563 if (!lp->tx_bounce_buffs) 564 goto out_rx; 565 } else 566 lp->tx_bounce_buffs = NULL; 567 568 lp->chip_version = lance_version; 569 spin_lock_init(&lp->devlock); 570 571 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */ 572 for (i = 0; i < 6; i++) 573 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 574 lp->init_block.filter[0] = 0x00000000; 575 lp->init_block.filter[1] = 0x00000000; 576 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 577 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 578 579 outw(0x0001, ioaddr+LANCE_ADDR); 580 inw(ioaddr+LANCE_ADDR); 581 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 582 outw(0x0002, ioaddr+LANCE_ADDR); 583 inw(ioaddr+LANCE_ADDR); 584 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 585 outw(0x0000, ioaddr+LANCE_ADDR); 586 inw(ioaddr+LANCE_ADDR); 587 588 if (irq) { /* Set iff PCI card. */ 589 dev->dma = 4; /* Native bus-master, no DMA channel needed. */ 590 dev->irq = irq; 591 } else if (hp_builtin) { 592 static const char dma_tbl[4] = {3, 5, 6, 0}; 593 static const char irq_tbl[4] = {3, 4, 5, 9}; 594 unsigned char port_val = inb(hp_builtin); 595 dev->dma = dma_tbl[(port_val >> 4) & 3]; 596 dev->irq = irq_tbl[(port_val >> 2) & 3]; 597 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma); 598 } else if (hpJ2405A) { 599 static const char dma_tbl[4] = {3, 5, 6, 7}; 600 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15}; 601 short reset_val = inw(ioaddr+LANCE_RESET); 602 dev->dma = dma_tbl[(reset_val >> 2) & 3]; 603 dev->irq = irq_tbl[(reset_val >> 4) & 7]; 604 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma); 605 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */ 606 short bus_info; 607 outw(8, ioaddr+LANCE_ADDR); 608 bus_info = inw(ioaddr+LANCE_BUS_IF); 609 dev->dma = bus_info & 0x07; 610 dev->irq = (bus_info >> 4) & 0x0F; 611 } else { 612 /* The DMA channel may be passed in PARAM1. */ 613 if (dev->mem_start & 0x07) 614 dev->dma = dev->mem_start & 0x07; 615 } 616 617 if (dev->dma == 0) { 618 /* Read the DMA channel status register, so that we can avoid 619 stuck DMA channels in the DMA detection below. */ 620 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | 621 (inb(DMA2_STAT_REG) & 0xf0); 622 } 623 err = -ENODEV; 624 if (dev->irq >= 2) 625 printk(" assigned IRQ %d", dev->irq); 626 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */ 627 unsigned long irq_mask; 628 629 /* To auto-IRQ we enable the initialization-done and DMA error 630 interrupts. For ISA boards we get a DMA error, but VLB and PCI 631 boards will work. */ 632 irq_mask = probe_irq_on(); 633 634 /* Trigger an initialization just for the interrupt. */ 635 outw(0x0041, ioaddr+LANCE_DATA); 636 637 mdelay(20); 638 dev->irq = probe_irq_off(irq_mask); 639 if (dev->irq) 640 printk(", probed IRQ %d", dev->irq); 641 else { 642 printk(", failed to detect IRQ line.\n"); 643 goto out_tx; 644 } 645 646 /* Check for the initialization done bit, 0x0100, which means 647 that we don't need a DMA channel. */ 648 if (inw(ioaddr+LANCE_DATA) & 0x0100) 649 dev->dma = 4; 650 } 651 652 if (dev->dma == 4) { 653 printk(", no DMA needed.\n"); 654 } else if (dev->dma) { 655 if (request_dma(dev->dma, chipname)) { 656 printk("DMA %d allocation failed.\n", dev->dma); 657 goto out_tx; 658 } else 659 printk(", assigned DMA %d.\n", dev->dma); 660 } else { /* OK, we have to auto-DMA. */ 661 for (i = 0; i < 4; i++) { 662 static const char dmas[] = { 5, 6, 7, 3 }; 663 int dma = dmas[i]; 664 int boguscnt; 665 666 /* Don't enable a permanently busy DMA channel, or the machine 667 will hang. */ 668 if (test_bit(dma, &dma_channels)) 669 continue; 670 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */ 671 if (request_dma(dma, chipname)) 672 continue; 673 674 flags=claim_dma_lock(); 675 set_dma_mode(dma, DMA_MODE_CASCADE); 676 enable_dma(dma); 677 release_dma_lock(flags); 678 679 /* Trigger an initialization. */ 680 outw(0x0001, ioaddr+LANCE_DATA); 681 for (boguscnt = 100; boguscnt > 0; --boguscnt) 682 if (inw(ioaddr+LANCE_DATA) & 0x0900) 683 break; 684 if (inw(ioaddr+LANCE_DATA) & 0x0100) { 685 dev->dma = dma; 686 printk(", DMA %d.\n", dev->dma); 687 break; 688 } else { 689 flags=claim_dma_lock(); 690 disable_dma(dma); 691 release_dma_lock(flags); 692 free_dma(dma); 693 } 694 } 695 if (i == 4) { /* Failure: bail. */ 696 printk("DMA detection failed.\n"); 697 goto out_tx; 698 } 699 } 700 701 if (lance_version == 0 && dev->irq == 0) { 702 /* We may auto-IRQ now that we have a DMA channel. */ 703 /* Trigger an initialization just for the interrupt. */ 704 unsigned long irq_mask; 705 706 irq_mask = probe_irq_on(); 707 outw(0x0041, ioaddr+LANCE_DATA); 708 709 mdelay(40); 710 dev->irq = probe_irq_off(irq_mask); 711 if (dev->irq == 0) { 712 printk(" Failed to detect the 7990 IRQ line.\n"); 713 goto out_dma; 714 } 715 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq); 716 } 717 718 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 719 /* Turn on auto-select of media (10baseT or BNC) so that the user 720 can watch the LEDs even if the board isn't opened. */ 721 outw(0x0002, ioaddr+LANCE_ADDR); 722 /* Don't touch 10base2 power bit. */ 723 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 724 } 725 726 if (lance_debug > 0 && did_version++ == 0) 727 printk(version); 728 729 /* The LANCE-specific entries in the device structure. */ 730 dev->netdev_ops = &lance_netdev_ops; 731 dev->watchdog_timeo = TX_TIMEOUT; 732 733 err = register_netdev(dev); 734 if (err) 735 goto out_dma; 736 return 0; 737out_dma: 738 if (dev->dma != 4) 739 free_dma(dev->dma); 740out_tx: 741 kfree(lp->tx_bounce_buffs); 742out_rx: 743 kfree((void*)lp->rx_buffs); 744out_lp: 745 kfree(lp); 746 return err; 747} 748 749 750static int 751lance_open(struct net_device *dev) 752{ 753 struct lance_private *lp = dev->ml_priv; 754 int ioaddr = dev->base_addr; 755 int i; 756 757 if (dev->irq == 0 || 758 request_irq(dev->irq, lance_interrupt, 0, lp->name, dev)) { 759 return -EAGAIN; 760 } 761 762 /* We used to allocate DMA here, but that was silly. 763 DMA lines can't be shared! We now permanently allocate them. */ 764 765 /* Reset the LANCE */ 766 inw(ioaddr+LANCE_RESET); 767 768 /* The DMA controller is used as a no-operation slave, "cascade mode". */ 769 if (dev->dma != 4) { 770 unsigned long flags=claim_dma_lock(); 771 enable_dma(dev->dma); 772 set_dma_mode(dev->dma, DMA_MODE_CASCADE); 773 release_dma_lock(flags); 774 } 775 776 /* Un-Reset the LANCE, needed only for the NE2100. */ 777 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET) 778 outw(0, ioaddr+LANCE_RESET); 779 780 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 781 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */ 782 outw(0x0002, ioaddr+LANCE_ADDR); 783 /* Only touch autoselect bit. */ 784 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 785 } 786 787 if (lance_debug > 1) 788 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n", 789 dev->name, dev->irq, dev->dma, 790 (u32) isa_virt_to_bus(lp->tx_ring), 791 (u32) isa_virt_to_bus(lp->rx_ring), 792 (u32) isa_virt_to_bus(&lp->init_block)); 793 794 lance_init_ring(dev, GFP_KERNEL); 795 /* Re-initialize the LANCE, and start it when done. */ 796 outw(0x0001, ioaddr+LANCE_ADDR); 797 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 798 outw(0x0002, ioaddr+LANCE_ADDR); 799 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 800 801 outw(0x0004, ioaddr+LANCE_ADDR); 802 outw(0x0915, ioaddr+LANCE_DATA); 803 804 outw(0x0000, ioaddr+LANCE_ADDR); 805 outw(0x0001, ioaddr+LANCE_DATA); 806 807 netif_start_queue (dev); 808 809 i = 0; 810 while (i++ < 100) 811 if (inw(ioaddr+LANCE_DATA) & 0x0100) 812 break; 813 /* 814 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton 815 * reports that doing so triggers a bug in the '974. 816 */ 817 outw(0x0042, ioaddr+LANCE_DATA); 818 819 if (lance_debug > 2) 820 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n", 821 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA)); 822 823 return 0; /* Always succeed */ 824} 825 826/* The LANCE has been halted for one reason or another (busmaster memory 827 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure, 828 etc.). Modern LANCE variants always reload their ring-buffer 829 configuration when restarted, so we must reinitialize our ring 830 context before restarting. As part of this reinitialization, 831 find all packets still on the Tx ring and pretend that they had been 832 sent (in effect, drop the packets on the floor) - the higher-level 833 protocols will time out and retransmit. It'd be better to shuffle 834 these skbs to a temp list and then actually re-Tx them after 835 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com 836*/ 837 838static void 839lance_purge_ring(struct net_device *dev) 840{ 841 struct lance_private *lp = dev->ml_priv; 842 int i; 843 844 /* Free all the skbuffs in the Rx and Tx queues. */ 845 for (i = 0; i < RX_RING_SIZE; i++) { 846 struct sk_buff *skb = lp->rx_skbuff[i]; 847 lp->rx_skbuff[i] = NULL; 848 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */ 849 if (skb) 850 dev_kfree_skb_any(skb); 851 } 852 for (i = 0; i < TX_RING_SIZE; i++) { 853 if (lp->tx_skbuff[i]) { 854 dev_kfree_skb_any(lp->tx_skbuff[i]); 855 lp->tx_skbuff[i] = NULL; 856 } 857 } 858} 859 860 861/* Initialize the LANCE Rx and Tx rings. */ 862static void 863lance_init_ring(struct net_device *dev, gfp_t gfp) 864{ 865 struct lance_private *lp = dev->ml_priv; 866 int i; 867 868 lp->cur_rx = lp->cur_tx = 0; 869 lp->dirty_rx = lp->dirty_tx = 0; 870 871 for (i = 0; i < RX_RING_SIZE; i++) { 872 struct sk_buff *skb; 873 void *rx_buff; 874 875 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp); 876 lp->rx_skbuff[i] = skb; 877 if (skb) { 878 skb->dev = dev; 879 rx_buff = skb->data; 880 } else 881 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp); 882 if (rx_buff == NULL) 883 lp->rx_ring[i].base = 0; 884 else 885 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000; 886 lp->rx_ring[i].buf_length = -PKT_BUF_SZ; 887 } 888 /* The Tx buffer address is filled in as needed, but we do need to clear 889 the upper ownership bit. */ 890 for (i = 0; i < TX_RING_SIZE; i++) { 891 lp->tx_skbuff[i] = NULL; 892 lp->tx_ring[i].base = 0; 893 } 894 895 lp->init_block.mode = 0x0000; 896 for (i = 0; i < 6; i++) 897 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 898 lp->init_block.filter[0] = 0x00000000; 899 lp->init_block.filter[1] = 0x00000000; 900 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 901 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 902} 903 904static void 905lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit) 906{ 907 struct lance_private *lp = dev->ml_priv; 908 909 if (must_reinit || 910 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) { 911 lance_purge_ring(dev); 912 lance_init_ring(dev, GFP_ATOMIC); 913 } 914 outw(0x0000, dev->base_addr + LANCE_ADDR); 915 outw(csr0_bits, dev->base_addr + LANCE_DATA); 916} 917 918 919static void lance_tx_timeout (struct net_device *dev) 920{ 921 struct lance_private *lp = (struct lance_private *) dev->ml_priv; 922 int ioaddr = dev->base_addr; 923 924 outw (0, ioaddr + LANCE_ADDR); 925 printk ("%s: transmit timed out, status %4.4x, resetting.\n", 926 dev->name, inw (ioaddr + LANCE_DATA)); 927 outw (0x0004, ioaddr + LANCE_DATA); 928 lp->stats.tx_errors++; 929#ifndef final_version 930 if (lance_debug > 3) { 931 int i; 932 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.", 933 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "", 934 lp->cur_rx); 935 for (i = 0; i < RX_RING_SIZE; i++) 936 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 937 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length, 938 lp->rx_ring[i].msg_length); 939 for (i = 0; i < TX_RING_SIZE; i++) 940 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 941 lp->tx_ring[i].base, -lp->tx_ring[i].length, 942 lp->tx_ring[i].misc); 943 printk ("\n"); 944 } 945#endif 946 lance_restart (dev, 0x0043, 1); 947 948 dev->trans_start = jiffies; 949 netif_wake_queue (dev); 950} 951 952 953static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 954 struct net_device *dev) 955{ 956 struct lance_private *lp = dev->ml_priv; 957 int ioaddr = dev->base_addr; 958 int entry; 959 unsigned long flags; 960 961 spin_lock_irqsave(&lp->devlock, flags); 962 963 if (lance_debug > 3) { 964 outw(0x0000, ioaddr+LANCE_ADDR); 965 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name, 966 inw(ioaddr+LANCE_DATA)); 967 outw(0x0000, ioaddr+LANCE_DATA); 968 } 969 970 /* Fill in a Tx ring entry */ 971 972 /* Mask to ring buffer boundary. */ 973 entry = lp->cur_tx & TX_RING_MOD_MASK; 974 975 /* Caution: the write order is important here, set the base address 976 with the "ownership" bits last. */ 977 978 /* The old LANCE chips doesn't automatically pad buffers to min. size. */ 979 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) { 980 if (skb->len < ETH_ZLEN) { 981 if (skb_padto(skb, ETH_ZLEN)) 982 goto out; 983 lp->tx_ring[entry].length = -ETH_ZLEN; 984 } 985 else 986 lp->tx_ring[entry].length = -skb->len; 987 } else 988 lp->tx_ring[entry].length = -skb->len; 989 990 lp->tx_ring[entry].misc = 0x0000; 991 992 lp->stats.tx_bytes += skb->len; 993 994 /* If any part of this buffer is >16M we must copy it to a low-memory 995 buffer. */ 996 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) { 997 if (lance_debug > 5) 998 printk("%s: bouncing a high-memory packet (%#x).\n", 999 dev->name, (u32)isa_virt_to_bus(skb->data)); 1000 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len); 1001 lp->tx_ring[entry].base = 1002 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000; 1003 dev_kfree_skb(skb); 1004 } else { 1005 lp->tx_skbuff[entry] = skb; 1006 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000; 1007 } 1008 lp->cur_tx++; 1009 1010 /* Trigger an immediate send poll. */ 1011 outw(0x0000, ioaddr+LANCE_ADDR); 1012 outw(0x0048, ioaddr+LANCE_DATA); 1013 1014 dev->trans_start = jiffies; 1015 1016 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE) 1017 netif_stop_queue(dev); 1018 1019out: 1020 spin_unlock_irqrestore(&lp->devlock, flags); 1021 return NETDEV_TX_OK; 1022} 1023 1024/* The LANCE interrupt handler. */ 1025static irqreturn_t lance_interrupt(int irq, void *dev_id) 1026{ 1027 struct net_device *dev = dev_id; 1028 struct lance_private *lp; 1029 int csr0, ioaddr, boguscnt=10; 1030 int must_restart; 1031 1032 ioaddr = dev->base_addr; 1033 lp = dev->ml_priv; 1034 1035 spin_lock (&lp->devlock); 1036 1037 outw(0x00, dev->base_addr + LANCE_ADDR); 1038 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 && 1039 --boguscnt >= 0) { 1040 /* Acknowledge all of the current interrupt sources ASAP. */ 1041 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA); 1042 1043 must_restart = 0; 1044 1045 if (lance_debug > 5) 1046 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n", 1047 dev->name, csr0, inw(dev->base_addr + LANCE_DATA)); 1048 1049 if (csr0 & 0x0400) /* Rx interrupt */ 1050 lance_rx(dev); 1051 1052 if (csr0 & 0x0200) { /* Tx-done interrupt */ 1053 int dirty_tx = lp->dirty_tx; 1054 1055 while (dirty_tx < lp->cur_tx) { 1056 int entry = dirty_tx & TX_RING_MOD_MASK; 1057 int status = lp->tx_ring[entry].base; 1058 1059 if (status < 0) 1060 break; /* It still hasn't been Txed */ 1061 1062 lp->tx_ring[entry].base = 0; 1063 1064 if (status & 0x40000000) { 1065 /* There was an major error, log it. */ 1066 int err_status = lp->tx_ring[entry].misc; 1067 lp->stats.tx_errors++; 1068 if (err_status & 0x0400) lp->stats.tx_aborted_errors++; 1069 if (err_status & 0x0800) lp->stats.tx_carrier_errors++; 1070 if (err_status & 0x1000) lp->stats.tx_window_errors++; 1071 if (err_status & 0x4000) { 1072 /* Ackk! On FIFO errors the Tx unit is turned off! */ 1073 lp->stats.tx_fifo_errors++; 1074 /* Remove this verbosity later! */ 1075 printk("%s: Tx FIFO error! Status %4.4x.\n", 1076 dev->name, csr0); 1077 /* Restart the chip. */ 1078 must_restart = 1; 1079 } 1080 } else { 1081 if (status & 0x18000000) 1082 lp->stats.collisions++; 1083 lp->stats.tx_packets++; 1084 } 1085 1086 /* We must free the original skb if it's not a data-only copy 1087 in the bounce buffer. */ 1088 if (lp->tx_skbuff[entry]) { 1089 dev_kfree_skb_irq(lp->tx_skbuff[entry]); 1090 lp->tx_skbuff[entry] = NULL; 1091 } 1092 dirty_tx++; 1093 } 1094 1095#ifndef final_version 1096 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) { 1097 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n", 1098 dirty_tx, lp->cur_tx, 1099 netif_queue_stopped(dev) ? "yes" : "no"); 1100 dirty_tx += TX_RING_SIZE; 1101 } 1102#endif 1103 1104 /* if the ring is no longer full, accept more packets */ 1105 if (netif_queue_stopped(dev) && 1106 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) 1107 netif_wake_queue (dev); 1108 1109 lp->dirty_tx = dirty_tx; 1110 } 1111 1112 /* Log misc errors. */ 1113 if (csr0 & 0x4000) lp->stats.tx_errors++; /* Tx babble. */ 1114 if (csr0 & 0x1000) lp->stats.rx_errors++; /* Missed a Rx frame. */ 1115 if (csr0 & 0x0800) { 1116 printk("%s: Bus master arbitration failure, status %4.4x.\n", 1117 dev->name, csr0); 1118 /* Restart the chip. */ 1119 must_restart = 1; 1120 } 1121 1122 if (must_restart) { 1123 /* stop the chip to clear the error condition, then restart */ 1124 outw(0x0000, dev->base_addr + LANCE_ADDR); 1125 outw(0x0004, dev->base_addr + LANCE_DATA); 1126 lance_restart(dev, 0x0002, 0); 1127 } 1128 } 1129 1130 /* Clear any other interrupt, and set interrupt enable. */ 1131 outw(0x0000, dev->base_addr + LANCE_ADDR); 1132 outw(0x7940, dev->base_addr + LANCE_DATA); 1133 1134 if (lance_debug > 4) 1135 printk("%s: exiting interrupt, csr%d=%#4.4x.\n", 1136 dev->name, inw(ioaddr + LANCE_ADDR), 1137 inw(dev->base_addr + LANCE_DATA)); 1138 1139 spin_unlock (&lp->devlock); 1140 return IRQ_HANDLED; 1141} 1142 1143static int 1144lance_rx(struct net_device *dev) 1145{ 1146 struct lance_private *lp = dev->ml_priv; 1147 int entry = lp->cur_rx & RX_RING_MOD_MASK; 1148 int i; 1149 1150 /* If we own the next entry, it's a new packet. Send it up. */ 1151 while (lp->rx_ring[entry].base >= 0) { 1152 int status = lp->rx_ring[entry].base >> 24; 1153 1154 if (status != 0x03) { /* There was an error. */ 1155 /* There is a tricky error noted by John Murphy, 1156 <murf@perftech.com> to Russ Nelson: Even with full-sized 1157 buffers it's possible for a jabber packet to use two 1158 buffers, with only the last correctly noting the error. */ 1159 if (status & 0x01) /* Only count a general error at the */ 1160 lp->stats.rx_errors++; /* end of a packet.*/ 1161 if (status & 0x20) lp->stats.rx_frame_errors++; 1162 if (status & 0x10) lp->stats.rx_over_errors++; 1163 if (status & 0x08) lp->stats.rx_crc_errors++; 1164 if (status & 0x04) lp->stats.rx_fifo_errors++; 1165 lp->rx_ring[entry].base &= 0x03ffffff; 1166 } 1167 else 1168 { 1169 /* Malloc up new buffer, compatible with net3. */ 1170 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4; 1171 struct sk_buff *skb; 1172 1173 if(pkt_len<60) 1174 { 1175 printk("%s: Runt packet!\n",dev->name); 1176 lp->stats.rx_errors++; 1177 } 1178 else 1179 { 1180 skb = dev_alloc_skb(pkt_len+2); 1181 if (skb == NULL) 1182 { 1183 printk("%s: Memory squeeze, deferring packet.\n", dev->name); 1184 for (i=0; i < RX_RING_SIZE; i++) 1185 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0) 1186 break; 1187 1188 if (i > RX_RING_SIZE -2) 1189 { 1190 lp->stats.rx_dropped++; 1191 lp->rx_ring[entry].base |= 0x80000000; 1192 lp->cur_rx++; 1193 } 1194 break; 1195 } 1196 skb_reserve(skb,2); /* 16 byte align */ 1197 skb_put(skb,pkt_len); /* Make room */ 1198 skb_copy_to_linear_data(skb, 1199 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)), 1200 pkt_len); 1201 skb->protocol=eth_type_trans(skb,dev); 1202 netif_rx(skb); 1203 lp->stats.rx_packets++; 1204 lp->stats.rx_bytes+=pkt_len; 1205 } 1206 } 1207 /* The docs say that the buffer length isn't touched, but Andrew Boyd 1208 of QNX reports that some revs of the 79C965 clear it. */ 1209 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ; 1210 lp->rx_ring[entry].base |= 0x80000000; 1211 entry = (++lp->cur_rx) & RX_RING_MOD_MASK; 1212 } 1213 1214 /* We should check that at least two ring entries are free. If not, 1215 we should free one and mark stats->rx_dropped++. */ 1216 1217 return 0; 1218} 1219 1220static int 1221lance_close(struct net_device *dev) 1222{ 1223 int ioaddr = dev->base_addr; 1224 struct lance_private *lp = dev->ml_priv; 1225 1226 netif_stop_queue (dev); 1227 1228 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1229 outw(112, ioaddr+LANCE_ADDR); 1230 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1231 } 1232 outw(0, ioaddr+LANCE_ADDR); 1233 1234 if (lance_debug > 1) 1235 printk("%s: Shutting down ethercard, status was %2.2x.\n", 1236 dev->name, inw(ioaddr+LANCE_DATA)); 1237 1238 /* We stop the LANCE here -- it occasionally polls 1239 memory if we don't. */ 1240 outw(0x0004, ioaddr+LANCE_DATA); 1241 1242 if (dev->dma != 4) 1243 { 1244 unsigned long flags=claim_dma_lock(); 1245 disable_dma(dev->dma); 1246 release_dma_lock(flags); 1247 } 1248 free_irq(dev->irq, dev); 1249 1250 lance_purge_ring(dev); 1251 1252 return 0; 1253} 1254 1255static struct net_device_stats *lance_get_stats(struct net_device *dev) 1256{ 1257 struct lance_private *lp = dev->ml_priv; 1258 1259 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1260 short ioaddr = dev->base_addr; 1261 short saved_addr; 1262 unsigned long flags; 1263 1264 spin_lock_irqsave(&lp->devlock, flags); 1265 saved_addr = inw(ioaddr+LANCE_ADDR); 1266 outw(112, ioaddr+LANCE_ADDR); 1267 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1268 outw(saved_addr, ioaddr+LANCE_ADDR); 1269 spin_unlock_irqrestore(&lp->devlock, flags); 1270 } 1271 1272 return &lp->stats; 1273} 1274 1275/* Set or clear the multicast filter for this adaptor. 1276 */ 1277 1278static void set_multicast_list(struct net_device *dev) 1279{ 1280 short ioaddr = dev->base_addr; 1281 1282 outw(0, ioaddr+LANCE_ADDR); 1283 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */ 1284 1285 if (dev->flags&IFF_PROMISC) { 1286 outw(15, ioaddr+LANCE_ADDR); 1287 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */ 1288 } else { 1289 short multicast_table[4]; 1290 int i; 1291 int num_addrs=dev->mc_count; 1292 if(dev->flags&IFF_ALLMULTI) 1293 num_addrs=1; 1294 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */ 1295 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); 1296 for (i = 0; i < 4; i++) { 1297 outw(8 + i, ioaddr+LANCE_ADDR); 1298 outw(multicast_table[i], ioaddr+LANCE_DATA); 1299 } 1300 outw(15, ioaddr+LANCE_ADDR); 1301 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */ 1302 } 1303 1304 lance_restart(dev, 0x0142, 0); /* Resume normal operation */ 1305 1306} 1307