at v2.6.33-rc2 2335 lines 62 kB view raw
1/* 2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter 3 * 4 * Copyright (C) 2003, 2007 IC Plus Corp 5 * 6 * Original Author: 7 * 8 * Craig Rich 9 * Sundance Technology, Inc. 10 * www.sundanceti.com 11 * craig_rich@sundanceti.com 12 * 13 * Current Maintainer: 14 * 15 * Sorbica Shieh. 16 * http://www.icplus.com.tw 17 * sorbica@icplus.com.tw 18 * 19 * Jesse Huang 20 * http://www.icplus.com.tw 21 * jesse@icplus.com.tw 22 */ 23#include <linux/crc32.h> 24#include <linux/ethtool.h> 25#include <linux/mii.h> 26#include <linux/mutex.h> 27 28#include <asm/div64.h> 29 30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) 31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) 32#define IPG_RESET_MASK \ 33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ 34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ 35 IPG_AC_AUTO_INIT) 36 37#define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) 38#define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) 39#define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) 40 41#define ipg_r32(reg) ioread32(ioaddr + (reg)) 42#define ipg_r16(reg) ioread16(ioaddr + (reg)) 43#define ipg_r8(reg) ioread8(ioaddr + (reg)) 44 45enum { 46 netdev_io_size = 128 47}; 48 49#include "ipg.h" 50#define DRV_NAME "ipg" 51 52MODULE_AUTHOR("IC Plus Corp. 2003"); 53MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); 54MODULE_LICENSE("GPL"); 55 56/* 57 * Defaults 58 */ 59#define IPG_MAX_RXFRAME_SIZE 0x0600 60#define IPG_RXFRAG_SIZE 0x0600 61#define IPG_RXSUPPORT_SIZE 0x0600 62#define IPG_IS_JUMBO false 63 64/* 65 * Variable record -- index by leading revision/length 66 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN 67 */ 68static unsigned short DefaultPhyParam[] = { 69 /* 11/12/03 IP1000A v1-3 rev=0x40 */ 70 /*-------------------------------------------------------------------------- 71 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 72 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 73 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, 74 --------------------------------------------------------------------------*/ 75 /* 12/17/03 IP1000A v1-4 rev=0x40 */ 76 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 77 0x0000, 78 30, 0x005e, 9, 0x0700, 79 /* 01/09/04 IP1000A v1-5 rev=0x41 */ 80 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 81 0x0000, 82 30, 0x005e, 9, 0x0700, 83 0x0000 84}; 85 86static const char *ipg_brand_name[] = { 87 "IC PLUS IP1000 1000/100/10 based NIC", 88 "Sundance Technology ST2021 based NIC", 89 "Tamarack Microelectronics TC9020/9021 based NIC", 90 "Tamarack Microelectronics TC9020/9021 based NIC", 91 "D-Link NIC", 92 "D-Link NIC IP1000A" 93}; 94 95static struct pci_device_id ipg_pci_tbl[] __devinitdata = { 96 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, 97 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, 98 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, 99 { PCI_VDEVICE(DLINK, 0x9021), 3 }, 100 { PCI_VDEVICE(DLINK, 0x4000), 4 }, 101 { PCI_VDEVICE(DLINK, 0x4020), 5 }, 102 { 0, } 103}; 104 105MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); 106 107static inline void __iomem *ipg_ioaddr(struct net_device *dev) 108{ 109 struct ipg_nic_private *sp = netdev_priv(dev); 110 return sp->ioaddr; 111} 112 113#ifdef IPG_DEBUG 114static void ipg_dump_rfdlist(struct net_device *dev) 115{ 116 struct ipg_nic_private *sp = netdev_priv(dev); 117 void __iomem *ioaddr = sp->ioaddr; 118 unsigned int i; 119 u32 offset; 120 121 IPG_DEBUG_MSG("_dump_rfdlist\n"); 122 123 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); 124 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); 125 printk(KERN_INFO "RFDList start address = %16.16lx\n", 126 (unsigned long) sp->rxd_map); 127 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", 128 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); 129 130 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 131 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; 132 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, 133 offset, (unsigned long) sp->rxd[i].next_desc); 134 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; 135 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, 136 offset, (unsigned long) sp->rxd[i].rfs); 137 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; 138 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 139 offset, (unsigned long) sp->rxd[i].frag_info); 140 } 141} 142 143static void ipg_dump_tfdlist(struct net_device *dev) 144{ 145 struct ipg_nic_private *sp = netdev_priv(dev); 146 void __iomem *ioaddr = sp->ioaddr; 147 unsigned int i; 148 u32 offset; 149 150 IPG_DEBUG_MSG("_dump_tfdlist\n"); 151 152 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); 153 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); 154 printk(KERN_INFO "TFDList start address = %16.16lx\n", 155 (unsigned long) sp->txd_map); 156 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", 157 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); 158 159 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 160 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; 161 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, 162 offset, (unsigned long) sp->txd[i].next_desc); 163 164 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; 165 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, 166 offset, (unsigned long) sp->txd[i].tfc); 167 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; 168 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 169 offset, (unsigned long) sp->txd[i].frag_info); 170 } 171} 172#endif 173 174static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) 175{ 176 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); 177 ndelay(IPG_PC_PHYCTRLWAIT_NS); 178} 179 180static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) 181{ 182 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); 183 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); 184} 185 186static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) 187{ 188 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; 189 190 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); 191} 192 193static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) 194{ 195 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | 196 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); 197} 198 199static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) 200{ 201 u16 bit_data; 202 203 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); 204 205 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; 206 207 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); 208 209 return bit_data; 210} 211 212/* 213 * Read a register from the Physical Layer device located 214 * on the IPG NIC, using the IPG PHYCTRL register. 215 */ 216static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) 217{ 218 void __iomem *ioaddr = ipg_ioaddr(dev); 219 /* 220 * The GMII mangement frame structure for a read is as follows: 221 * 222 * |Preamble|st|op|phyad|regad|ta| data |idle| 223 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 224 * 225 * <32 1s> = 32 consecutive logic 1 values 226 * A = bit of Physical Layer device address (MSB first) 227 * R = bit of register address (MSB first) 228 * z = High impedance state 229 * D = bit of read data (MSB first) 230 * 231 * Transmission order is 'Preamble' field first, bits transmitted 232 * left to right (first to last). 233 */ 234 struct { 235 u32 field; 236 unsigned int len; 237 } p[] = { 238 { GMII_PREAMBLE, 32 }, /* Preamble */ 239 { GMII_ST, 2 }, /* ST */ 240 { GMII_READ, 2 }, /* OP */ 241 { phy_id, 5 }, /* PHYAD */ 242 { phy_reg, 5 }, /* REGAD */ 243 { 0x0000, 2 }, /* TA */ 244 { 0x0000, 16 }, /* DATA */ 245 { 0x0000, 1 } /* IDLE */ 246 }; 247 unsigned int i, j; 248 u8 polarity, data; 249 250 polarity = ipg_r8(PHY_CTRL); 251 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 252 253 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 254 for (j = 0; j < 5; j++) { 255 for (i = 0; i < p[j].len; i++) { 256 /* For each variable length field, the MSB must be 257 * transmitted first. Rotate through the field bits, 258 * starting with the MSB, and move each bit into the 259 * the 1st (2^1) bit position (this is the bit position 260 * corresponding to the MgmtData bit of the PhyCtrl 261 * register for the IPG). 262 * 263 * Example: ST = 01; 264 * 265 * First write a '0' to bit 1 of the PhyCtrl 266 * register, then write a '1' to bit 1 of the 267 * PhyCtrl register. 268 * 269 * To do this, right shift the MSB of ST by the value: 270 * [field length - 1 - #ST bits already written] 271 * then left shift this result by 1. 272 */ 273 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 274 data &= IPG_PC_MGMTDATA; 275 data |= polarity | IPG_PC_MGMTDIR; 276 277 ipg_drive_phy_ctl_low_high(ioaddr, data); 278 } 279 } 280 281 send_three_state(ioaddr, polarity); 282 283 read_phy_bit(ioaddr, polarity); 284 285 /* 286 * For a read cycle, the bits for the next two fields (TA and 287 * DATA) are driven by the PHY (the IPG reads these bits). 288 */ 289 for (i = 0; i < p[6].len; i++) { 290 p[6].field |= 291 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); 292 } 293 294 send_three_state(ioaddr, polarity); 295 send_three_state(ioaddr, polarity); 296 send_three_state(ioaddr, polarity); 297 send_end(ioaddr, polarity); 298 299 /* Return the value of the DATA field. */ 300 return p[6].field; 301} 302 303/* 304 * Write to a register from the Physical Layer device located 305 * on the IPG NIC, using the IPG PHYCTRL register. 306 */ 307static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) 308{ 309 void __iomem *ioaddr = ipg_ioaddr(dev); 310 /* 311 * The GMII mangement frame structure for a read is as follows: 312 * 313 * |Preamble|st|op|phyad|regad|ta| data |idle| 314 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 315 * 316 * <32 1s> = 32 consecutive logic 1 values 317 * A = bit of Physical Layer device address (MSB first) 318 * R = bit of register address (MSB first) 319 * z = High impedance state 320 * D = bit of write data (MSB first) 321 * 322 * Transmission order is 'Preamble' field first, bits transmitted 323 * left to right (first to last). 324 */ 325 struct { 326 u32 field; 327 unsigned int len; 328 } p[] = { 329 { GMII_PREAMBLE, 32 }, /* Preamble */ 330 { GMII_ST, 2 }, /* ST */ 331 { GMII_WRITE, 2 }, /* OP */ 332 { phy_id, 5 }, /* PHYAD */ 333 { phy_reg, 5 }, /* REGAD */ 334 { 0x0002, 2 }, /* TA */ 335 { val & 0xffff, 16 }, /* DATA */ 336 { 0x0000, 1 } /* IDLE */ 337 }; 338 unsigned int i, j; 339 u8 polarity, data; 340 341 polarity = ipg_r8(PHY_CTRL); 342 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 343 344 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 345 for (j = 0; j < 7; j++) { 346 for (i = 0; i < p[j].len; i++) { 347 /* For each variable length field, the MSB must be 348 * transmitted first. Rotate through the field bits, 349 * starting with the MSB, and move each bit into the 350 * the 1st (2^1) bit position (this is the bit position 351 * corresponding to the MgmtData bit of the PhyCtrl 352 * register for the IPG). 353 * 354 * Example: ST = 01; 355 * 356 * First write a '0' to bit 1 of the PhyCtrl 357 * register, then write a '1' to bit 1 of the 358 * PhyCtrl register. 359 * 360 * To do this, right shift the MSB of ST by the value: 361 * [field length - 1 - #ST bits already written] 362 * then left shift this result by 1. 363 */ 364 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 365 data &= IPG_PC_MGMTDATA; 366 data |= polarity | IPG_PC_MGMTDIR; 367 368 ipg_drive_phy_ctl_low_high(ioaddr, data); 369 } 370 } 371 372 /* The last cycle is a tri-state, so read from the PHY. */ 373 for (j = 7; j < 8; j++) { 374 for (i = 0; i < p[j].len; i++) { 375 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); 376 377 p[j].field |= ((ipg_r8(PHY_CTRL) & 378 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); 379 380 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); 381 } 382 } 383} 384 385static void ipg_set_led_mode(struct net_device *dev) 386{ 387 struct ipg_nic_private *sp = netdev_priv(dev); 388 void __iomem *ioaddr = sp->ioaddr; 389 u32 mode; 390 391 mode = ipg_r32(ASIC_CTRL); 392 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 393 394 if ((sp->led_mode & 0x03) > 1) 395 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ 396 397 if ((sp->led_mode & 0x01) == 1) 398 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ 399 400 if ((sp->led_mode & 0x08) == 8) 401 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ 402 403 ipg_w32(mode, ASIC_CTRL); 404} 405 406static void ipg_set_phy_set(struct net_device *dev) 407{ 408 struct ipg_nic_private *sp = netdev_priv(dev); 409 void __iomem *ioaddr = sp->ioaddr; 410 int physet; 411 412 physet = ipg_r8(PHY_SET); 413 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); 414 physet |= ((sp->led_mode & 0x70) >> 4); 415 ipg_w8(physet, PHY_SET); 416} 417 418static int ipg_reset(struct net_device *dev, u32 resetflags) 419{ 420 /* Assert functional resets via the IPG AsicCtrl 421 * register as specified by the 'resetflags' input 422 * parameter. 423 */ 424 void __iomem *ioaddr = ipg_ioaddr(dev); 425 unsigned int timeout_count = 0; 426 427 IPG_DEBUG_MSG("_reset\n"); 428 429 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); 430 431 /* Delay added to account for problem with 10Mbps reset. */ 432 mdelay(IPG_AC_RESETWAIT); 433 434 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { 435 mdelay(IPG_AC_RESETWAIT); 436 if (++timeout_count > IPG_AC_RESET_TIMEOUT) 437 return -ETIME; 438 } 439 /* Set LED Mode in Asic Control */ 440 ipg_set_led_mode(dev); 441 442 /* Set PHYSet Register Value */ 443 ipg_set_phy_set(dev); 444 return 0; 445} 446 447/* Find the GMII PHY address. */ 448static int ipg_find_phyaddr(struct net_device *dev) 449{ 450 unsigned int phyaddr, i; 451 452 for (i = 0; i < 32; i++) { 453 u32 status; 454 455 /* Search for the correct PHY address among 32 possible. */ 456 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; 457 458 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to 459 GMII_PHY_ID1 460 */ 461 462 status = mdio_read(dev, phyaddr, MII_BMSR); 463 464 if ((status != 0xFFFF) && (status != 0)) 465 return phyaddr; 466 } 467 468 return 0x1f; 469} 470 471/* 472 * Configure IPG based on result of IEEE 802.3 PHY 473 * auto-negotiation. 474 */ 475static int ipg_config_autoneg(struct net_device *dev) 476{ 477 struct ipg_nic_private *sp = netdev_priv(dev); 478 void __iomem *ioaddr = sp->ioaddr; 479 unsigned int txflowcontrol; 480 unsigned int rxflowcontrol; 481 unsigned int fullduplex; 482 u32 mac_ctrl_val; 483 u32 asicctrl; 484 u8 phyctrl; 485 486 IPG_DEBUG_MSG("_config_autoneg\n"); 487 488 asicctrl = ipg_r32(ASIC_CTRL); 489 phyctrl = ipg_r8(PHY_CTRL); 490 mac_ctrl_val = ipg_r32(MAC_CTRL); 491 492 /* Set flags for use in resolving auto-negotation, assuming 493 * non-1000Mbps, half duplex, no flow control. 494 */ 495 fullduplex = 0; 496 txflowcontrol = 0; 497 rxflowcontrol = 0; 498 499 /* To accomodate a problem in 10Mbps operation, 500 * set a global flag if PHY running in 10Mbps mode. 501 */ 502 sp->tenmbpsmode = 0; 503 504 printk(KERN_INFO "%s: Link speed = ", dev->name); 505 506 /* Determine actual speed of operation. */ 507 switch (phyctrl & IPG_PC_LINK_SPEED) { 508 case IPG_PC_LINK_SPEED_10MBPS: 509 printk("10Mbps.\n"); 510 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", 511 dev->name); 512 sp->tenmbpsmode = 1; 513 break; 514 case IPG_PC_LINK_SPEED_100MBPS: 515 printk("100Mbps.\n"); 516 break; 517 case IPG_PC_LINK_SPEED_1000MBPS: 518 printk("1000Mbps.\n"); 519 break; 520 default: 521 printk("undefined!\n"); 522 return 0; 523 } 524 525 if (phyctrl & IPG_PC_DUPLEX_STATUS) { 526 fullduplex = 1; 527 txflowcontrol = 1; 528 rxflowcontrol = 1; 529 } 530 531 /* Configure full duplex, and flow control. */ 532 if (fullduplex == 1) { 533 /* Configure IPG for full duplex operation. */ 534 printk(KERN_INFO "%s: setting full duplex, ", dev->name); 535 536 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; 537 538 if (txflowcontrol == 1) { 539 printk("TX flow control"); 540 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; 541 } else { 542 printk("no TX flow control"); 543 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; 544 } 545 546 if (rxflowcontrol == 1) { 547 printk(", RX flow control."); 548 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; 549 } else { 550 printk(", no RX flow control."); 551 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 552 } 553 554 printk("\n"); 555 } else { 556 /* Configure IPG for half duplex operation. */ 557 printk(KERN_INFO "%s: setting half duplex, " 558 "no TX flow control, no RX flow control.\n", dev->name); 559 560 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & 561 ~IPG_MC_TX_FLOW_CONTROL_ENABLE & 562 ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 563 } 564 ipg_w32(mac_ctrl_val, MAC_CTRL); 565 return 0; 566} 567 568/* Determine and configure multicast operation and set 569 * receive mode for IPG. 570 */ 571static void ipg_nic_set_multicast_list(struct net_device *dev) 572{ 573 void __iomem *ioaddr = ipg_ioaddr(dev); 574 struct dev_mc_list *mc_list_ptr; 575 unsigned int hashindex; 576 u32 hashtable[2]; 577 u8 receivemode; 578 579 IPG_DEBUG_MSG("_nic_set_multicast_list\n"); 580 581 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; 582 583 if (dev->flags & IFF_PROMISC) { 584 /* NIC to be configured in promiscuous mode. */ 585 receivemode = IPG_RM_RECEIVEALLFRAMES; 586 } else if ((dev->flags & IFF_ALLMULTI) || 587 ((dev->flags & IFF_MULTICAST) && 588 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { 589 /* NIC to be configured to receive all multicast 590 * frames. */ 591 receivemode |= IPG_RM_RECEIVEMULTICAST; 592 } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) { 593 /* NIC to be configured to receive selected 594 * multicast addresses. */ 595 receivemode |= IPG_RM_RECEIVEMULTICASTHASH; 596 } 597 598 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. 599 * The IPG applies a cyclic-redundancy-check (the same CRC 600 * used to calculate the frame data FCS) to the destination 601 * address all incoming multicast frames whose destination 602 * address has the multicast bit set. The least significant 603 * 6 bits of the CRC result are used as an addressing index 604 * into the hash table. If the value of the bit addressed by 605 * this index is a 1, the frame is passed to the host system. 606 */ 607 608 /* Clear hashtable. */ 609 hashtable[0] = 0x00000000; 610 hashtable[1] = 0x00000000; 611 612 /* Cycle through all multicast addresses to filter. */ 613 for (mc_list_ptr = dev->mc_list; 614 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { 615 /* Calculate CRC result for each multicast address. */ 616 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, 617 ETH_ALEN); 618 619 /* Use only the least significant 6 bits. */ 620 hashindex = hashindex & 0x3F; 621 622 /* Within "hashtable", set bit number "hashindex" 623 * to a logic 1. 624 */ 625 set_bit(hashindex, (void *)hashtable); 626 } 627 628 /* Write the value of the hashtable, to the 4, 16 bit 629 * HASHTABLE IPG registers. 630 */ 631 ipg_w32(hashtable[0], HASHTABLE_0); 632 ipg_w32(hashtable[1], HASHTABLE_1); 633 634 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); 635 636 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); 637} 638 639static int ipg_io_config(struct net_device *dev) 640{ 641 struct ipg_nic_private *sp = netdev_priv(dev); 642 void __iomem *ioaddr = ipg_ioaddr(dev); 643 u32 origmacctrl; 644 u32 restoremacctrl; 645 646 IPG_DEBUG_MSG("_io_config\n"); 647 648 origmacctrl = ipg_r32(MAC_CTRL); 649 650 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; 651 652 /* Based on compilation option, determine if FCS is to be 653 * stripped on receive frames by IPG. 654 */ 655 if (!IPG_STRIP_FCS_ON_RX) 656 restoremacctrl |= IPG_MC_RCV_FCS; 657 658 /* Determine if transmitter and/or receiver are 659 * enabled so we may restore MACCTRL correctly. 660 */ 661 if (origmacctrl & IPG_MC_TX_ENABLED) 662 restoremacctrl |= IPG_MC_TX_ENABLE; 663 664 if (origmacctrl & IPG_MC_RX_ENABLED) 665 restoremacctrl |= IPG_MC_RX_ENABLE; 666 667 /* Transmitter and receiver must be disabled before setting 668 * IFSSelect. 669 */ 670 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & 671 IPG_MC_RSVD_MASK, MAC_CTRL); 672 673 /* Now that transmitter and receiver are disabled, write 674 * to IFSSelect. 675 */ 676 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); 677 678 /* Set RECEIVEMODE register. */ 679 ipg_nic_set_multicast_list(dev); 680 681 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); 682 683 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); 684 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); 685 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); 686 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); 687 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); 688 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); 689 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | 690 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | 691 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | 692 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); 693 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); 694 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); 695 696 /* IPG multi-frag frame bug workaround. 697 * Per silicon revision B3 eratta. 698 */ 699 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); 700 701 /* IPG TX poll now bug workaround. 702 * Per silicon revision B3 eratta. 703 */ 704 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); 705 706 /* IPG RX poll now bug workaround. 707 * Per silicon revision B3 eratta. 708 */ 709 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); 710 711 /* Now restore MACCTRL to original setting. */ 712 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); 713 714 /* Disable unused RMON statistics. */ 715 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); 716 717 /* Disable unused MIB statistics. */ 718 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | 719 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | 720 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | 721 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | 722 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | 723 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); 724 725 return 0; 726} 727 728/* 729 * Create a receive buffer within system memory and update 730 * NIC private structure appropriately. 731 */ 732static int ipg_get_rxbuff(struct net_device *dev, int entry) 733{ 734 struct ipg_nic_private *sp = netdev_priv(dev); 735 struct ipg_rx *rxfd = sp->rxd + entry; 736 struct sk_buff *skb; 737 u64 rxfragsize; 738 739 IPG_DEBUG_MSG("_get_rxbuff\n"); 740 741 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size); 742 if (!skb) { 743 sp->rx_buff[entry] = NULL; 744 return -ENOMEM; 745 } 746 747 /* Associate the receive buffer with the IPG NIC. */ 748 skb->dev = dev; 749 750 /* Save the address of the sk_buff structure. */ 751 sp->rx_buff[entry] = skb; 752 753 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 754 sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 755 756 /* Set the RFD fragment length. */ 757 rxfragsize = sp->rxfrag_size; 758 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); 759 760 return 0; 761} 762 763static int init_rfdlist(struct net_device *dev) 764{ 765 struct ipg_nic_private *sp = netdev_priv(dev); 766 void __iomem *ioaddr = sp->ioaddr; 767 unsigned int i; 768 769 IPG_DEBUG_MSG("_init_rfdlist\n"); 770 771 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 772 struct ipg_rx *rxfd = sp->rxd + i; 773 774 if (sp->rx_buff[i]) { 775 pci_unmap_single(sp->pdev, 776 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 777 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 778 dev_kfree_skb_irq(sp->rx_buff[i]); 779 sp->rx_buff[i] = NULL; 780 } 781 782 /* Clear out the RFS field. */ 783 rxfd->rfs = 0x0000000000000000; 784 785 if (ipg_get_rxbuff(dev, i) < 0) { 786 /* 787 * A receive buffer was not ready, break the 788 * RFD list here. 789 */ 790 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); 791 792 /* Just in case we cannot allocate a single RFD. 793 * Should not occur. 794 */ 795 if (i == 0) { 796 printk(KERN_ERR "%s: No memory available" 797 " for RFD list.\n", dev->name); 798 return -ENOMEM; 799 } 800 } 801 802 rxfd->next_desc = cpu_to_le64(sp->rxd_map + 803 sizeof(struct ipg_rx)*(i + 1)); 804 } 805 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); 806 807 sp->rx_current = 0; 808 sp->rx_dirty = 0; 809 810 /* Write the location of the RFDList to the IPG. */ 811 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); 812 ipg_w32(0x00000000, RFD_LIST_PTR_1); 813 814 return 0; 815} 816 817static void init_tfdlist(struct net_device *dev) 818{ 819 struct ipg_nic_private *sp = netdev_priv(dev); 820 void __iomem *ioaddr = sp->ioaddr; 821 unsigned int i; 822 823 IPG_DEBUG_MSG("_init_tfdlist\n"); 824 825 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 826 struct ipg_tx *txfd = sp->txd + i; 827 828 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 829 830 if (sp->tx_buff[i]) { 831 dev_kfree_skb_irq(sp->tx_buff[i]); 832 sp->tx_buff[i] = NULL; 833 } 834 835 txfd->next_desc = cpu_to_le64(sp->txd_map + 836 sizeof(struct ipg_tx)*(i + 1)); 837 } 838 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); 839 840 sp->tx_current = 0; 841 sp->tx_dirty = 0; 842 843 /* Write the location of the TFDList to the IPG. */ 844 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", 845 (u32) sp->txd_map); 846 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); 847 ipg_w32(0x00000000, TFD_LIST_PTR_1); 848 849 sp->reset_current_tfd = 1; 850} 851 852/* 853 * Free all transmit buffers which have already been transfered 854 * via DMA to the IPG. 855 */ 856static void ipg_nic_txfree(struct net_device *dev) 857{ 858 struct ipg_nic_private *sp = netdev_priv(dev); 859 unsigned int released, pending, dirty; 860 861 IPG_DEBUG_MSG("_nic_txfree\n"); 862 863 pending = sp->tx_current - sp->tx_dirty; 864 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; 865 866 for (released = 0; released < pending; released++) { 867 struct sk_buff *skb = sp->tx_buff[dirty]; 868 struct ipg_tx *txfd = sp->txd + dirty; 869 870 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); 871 872 /* Look at each TFD's TFC field beginning 873 * at the last freed TFD up to the current TFD. 874 * If the TFDDone bit is set, free the associated 875 * buffer. 876 */ 877 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) 878 break; 879 880 /* Free the transmit buffer. */ 881 if (skb) { 882 pci_unmap_single(sp->pdev, 883 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 884 skb->len, PCI_DMA_TODEVICE); 885 886 dev_kfree_skb_irq(skb); 887 888 sp->tx_buff[dirty] = NULL; 889 } 890 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; 891 } 892 893 sp->tx_dirty += released; 894 895 if (netif_queue_stopped(dev) && 896 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { 897 netif_wake_queue(dev); 898 } 899} 900 901static void ipg_tx_timeout(struct net_device *dev) 902{ 903 struct ipg_nic_private *sp = netdev_priv(dev); 904 void __iomem *ioaddr = sp->ioaddr; 905 906 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | 907 IPG_AC_FIFO); 908 909 spin_lock_irq(&sp->lock); 910 911 /* Re-configure after DMA reset. */ 912 if (ipg_io_config(dev) < 0) { 913 printk(KERN_INFO "%s: Error during re-configuration.\n", 914 dev->name); 915 } 916 917 init_tfdlist(dev); 918 919 spin_unlock_irq(&sp->lock); 920 921 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, 922 MAC_CTRL); 923} 924 925/* 926 * For TxComplete interrupts, free all transmit 927 * buffers which have already been transfered via DMA 928 * to the IPG. 929 */ 930static void ipg_nic_txcleanup(struct net_device *dev) 931{ 932 struct ipg_nic_private *sp = netdev_priv(dev); 933 void __iomem *ioaddr = sp->ioaddr; 934 unsigned int i; 935 936 IPG_DEBUG_MSG("_nic_txcleanup\n"); 937 938 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 939 /* Reading the TXSTATUS register clears the 940 * TX_COMPLETE interrupt. 941 */ 942 u32 txstatusdword = ipg_r32(TX_STATUS); 943 944 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); 945 946 /* Check for Transmit errors. Error bits only valid if 947 * TX_COMPLETE bit in the TXSTATUS register is a 1. 948 */ 949 if (!(txstatusdword & IPG_TS_TX_COMPLETE)) 950 break; 951 952 /* If in 10Mbps mode, indicate transmit is ready. */ 953 if (sp->tenmbpsmode) { 954 netif_wake_queue(dev); 955 } 956 957 /* Transmit error, increment stat counters. */ 958 if (txstatusdword & IPG_TS_TX_ERROR) { 959 IPG_DEBUG_MSG("Transmit error.\n"); 960 sp->stats.tx_errors++; 961 } 962 963 /* Late collision, re-enable transmitter. */ 964 if (txstatusdword & IPG_TS_LATE_COLLISION) { 965 IPG_DEBUG_MSG("Late collision on transmit.\n"); 966 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 967 IPG_MC_RSVD_MASK, MAC_CTRL); 968 } 969 970 /* Maximum collisions, re-enable transmitter. */ 971 if (txstatusdword & IPG_TS_TX_MAX_COLL) { 972 IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); 973 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 974 IPG_MC_RSVD_MASK, MAC_CTRL); 975 } 976 977 /* Transmit underrun, reset and re-enable 978 * transmitter. 979 */ 980 if (txstatusdword & IPG_TS_TX_UNDERRUN) { 981 IPG_DEBUG_MSG("Transmitter underrun.\n"); 982 sp->stats.tx_fifo_errors++; 983 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | 984 IPG_AC_NETWORK | IPG_AC_FIFO); 985 986 /* Re-configure after DMA reset. */ 987 if (ipg_io_config(dev) < 0) { 988 printk(KERN_INFO 989 "%s: Error during re-configuration.\n", 990 dev->name); 991 } 992 init_tfdlist(dev); 993 994 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 995 IPG_MC_RSVD_MASK, MAC_CTRL); 996 } 997 } 998 999 ipg_nic_txfree(dev); 1000} 1001 1002/* Provides statistical information about the IPG NIC. */ 1003static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) 1004{ 1005 struct ipg_nic_private *sp = netdev_priv(dev); 1006 void __iomem *ioaddr = sp->ioaddr; 1007 u16 temp1; 1008 u16 temp2; 1009 1010 IPG_DEBUG_MSG("_nic_get_stats\n"); 1011 1012 /* Check to see if the NIC has been initialized via nic_open, 1013 * before trying to read statistic registers. 1014 */ 1015 if (!test_bit(__LINK_STATE_START, &dev->state)) 1016 return &sp->stats; 1017 1018 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); 1019 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); 1020 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); 1021 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); 1022 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); 1023 sp->stats.rx_errors += temp1; 1024 sp->stats.rx_missed_errors += temp1; 1025 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + 1026 ipg_r32(IPG_LATECOLLISIONS); 1027 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); 1028 sp->stats.collisions += temp1; 1029 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); 1030 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + 1031 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; 1032 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); 1033 1034 /* detailed tx_errors */ 1035 sp->stats.tx_carrier_errors += temp2; 1036 1037 /* detailed rx_errors */ 1038 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + 1039 ipg_r16(IPG_FRAMETOOLONGERRRORS); 1040 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); 1041 1042 /* Unutilized IPG statistic registers. */ 1043 ipg_r32(IPG_MCSTFRAMESRCVDOK); 1044 1045 return &sp->stats; 1046} 1047 1048/* Restore used receive buffers. */ 1049static int ipg_nic_rxrestore(struct net_device *dev) 1050{ 1051 struct ipg_nic_private *sp = netdev_priv(dev); 1052 const unsigned int curr = sp->rx_current; 1053 unsigned int dirty = sp->rx_dirty; 1054 1055 IPG_DEBUG_MSG("_nic_rxrestore\n"); 1056 1057 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { 1058 unsigned int entry = dirty % IPG_RFDLIST_LENGTH; 1059 1060 /* rx_copybreak may poke hole here and there. */ 1061 if (sp->rx_buff[entry]) 1062 continue; 1063 1064 /* Generate a new receive buffer to replace the 1065 * current buffer (which will be released by the 1066 * Linux system). 1067 */ 1068 if (ipg_get_rxbuff(dev, entry) < 0) { 1069 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); 1070 1071 break; 1072 } 1073 1074 /* Reset the RFS field. */ 1075 sp->rxd[entry].rfs = 0x0000000000000000; 1076 } 1077 sp->rx_dirty = dirty; 1078 1079 return 0; 1080} 1081 1082/* use jumboindex and jumbosize to control jumbo frame status 1083 * initial status is jumboindex=-1 and jumbosize=0 1084 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. 1085 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving 1086 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump 1087 * previous receiving and need to continue dumping the current one 1088 */ 1089enum { 1090 NORMAL_PACKET, 1091 ERROR_PACKET 1092}; 1093 1094enum { 1095 FRAME_NO_START_NO_END = 0, 1096 FRAME_WITH_START = 1, 1097 FRAME_WITH_END = 10, 1098 FRAME_WITH_START_WITH_END = 11 1099}; 1100 1101static void ipg_nic_rx_free_skb(struct net_device *dev) 1102{ 1103 struct ipg_nic_private *sp = netdev_priv(dev); 1104 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1105 1106 if (sp->rx_buff[entry]) { 1107 struct ipg_rx *rxfd = sp->rxd + entry; 1108 1109 pci_unmap_single(sp->pdev, 1110 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1111 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1112 dev_kfree_skb_irq(sp->rx_buff[entry]); 1113 sp->rx_buff[entry] = NULL; 1114 } 1115} 1116 1117static int ipg_nic_rx_check_frame_type(struct net_device *dev) 1118{ 1119 struct ipg_nic_private *sp = netdev_priv(dev); 1120 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); 1121 int type = FRAME_NO_START_NO_END; 1122 1123 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) 1124 type += FRAME_WITH_START; 1125 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) 1126 type += FRAME_WITH_END; 1127 return type; 1128} 1129 1130static int ipg_nic_rx_check_error(struct net_device *dev) 1131{ 1132 struct ipg_nic_private *sp = netdev_priv(dev); 1133 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1134 struct ipg_rx *rxfd = sp->rxd + entry; 1135 1136 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1137 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1138 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1139 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { 1140 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1141 (unsigned long) rxfd->rfs); 1142 1143 /* Increment general receive error statistic. */ 1144 sp->stats.rx_errors++; 1145 1146 /* Increment detailed receive error statistics. */ 1147 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1148 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1149 1150 sp->stats.rx_fifo_errors++; 1151 } 1152 1153 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1154 IPG_DEBUG_MSG("RX runt occured.\n"); 1155 sp->stats.rx_length_errors++; 1156 } 1157 1158 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, 1159 * error count handled by a IPG statistic register. 1160 */ 1161 1162 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1163 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1164 sp->stats.rx_frame_errors++; 1165 } 1166 1167 /* Do nothing for IPG_RFS_RXFCSERROR, error count 1168 * handled by a IPG statistic register. 1169 */ 1170 1171 /* Free the memory associated with the RX 1172 * buffer since it is erroneous and we will 1173 * not pass it to higher layer processes. 1174 */ 1175 if (sp->rx_buff[entry]) { 1176 pci_unmap_single(sp->pdev, 1177 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1178 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1179 1180 dev_kfree_skb_irq(sp->rx_buff[entry]); 1181 sp->rx_buff[entry] = NULL; 1182 } 1183 return ERROR_PACKET; 1184 } 1185 return NORMAL_PACKET; 1186} 1187 1188static void ipg_nic_rx_with_start_and_end(struct net_device *dev, 1189 struct ipg_nic_private *sp, 1190 struct ipg_rx *rxfd, unsigned entry) 1191{ 1192 struct ipg_jumbo *jumbo = &sp->jumbo; 1193 struct sk_buff *skb; 1194 int framelen; 1195 1196 if (jumbo->found_start) { 1197 dev_kfree_skb_irq(jumbo->skb); 1198 jumbo->found_start = 0; 1199 jumbo->current_size = 0; 1200 jumbo->skb = NULL; 1201 } 1202 1203 /* 1: found error, 0 no error */ 1204 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1205 return; 1206 1207 skb = sp->rx_buff[entry]; 1208 if (!skb) 1209 return; 1210 1211 /* accept this frame and send to upper layer */ 1212 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1213 if (framelen > sp->rxfrag_size) 1214 framelen = sp->rxfrag_size; 1215 1216 skb_put(skb, framelen); 1217 skb->protocol = eth_type_trans(skb, dev); 1218 skb->ip_summed = CHECKSUM_NONE; 1219 netif_rx(skb); 1220 sp->rx_buff[entry] = NULL; 1221} 1222 1223static void ipg_nic_rx_with_start(struct net_device *dev, 1224 struct ipg_nic_private *sp, 1225 struct ipg_rx *rxfd, unsigned entry) 1226{ 1227 struct ipg_jumbo *jumbo = &sp->jumbo; 1228 struct pci_dev *pdev = sp->pdev; 1229 struct sk_buff *skb; 1230 1231 /* 1: found error, 0 no error */ 1232 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1233 return; 1234 1235 /* accept this frame and send to upper layer */ 1236 skb = sp->rx_buff[entry]; 1237 if (!skb) 1238 return; 1239 1240 if (jumbo->found_start) 1241 dev_kfree_skb_irq(jumbo->skb); 1242 1243 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1244 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1245 1246 skb_put(skb, sp->rxfrag_size); 1247 1248 jumbo->found_start = 1; 1249 jumbo->current_size = sp->rxfrag_size; 1250 jumbo->skb = skb; 1251 1252 sp->rx_buff[entry] = NULL; 1253} 1254 1255static void ipg_nic_rx_with_end(struct net_device *dev, 1256 struct ipg_nic_private *sp, 1257 struct ipg_rx *rxfd, unsigned entry) 1258{ 1259 struct ipg_jumbo *jumbo = &sp->jumbo; 1260 1261 /* 1: found error, 0 no error */ 1262 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1263 struct sk_buff *skb = sp->rx_buff[entry]; 1264 1265 if (!skb) 1266 return; 1267 1268 if (jumbo->found_start) { 1269 int framelen, endframelen; 1270 1271 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1272 1273 endframelen = framelen - jumbo->current_size; 1274 if (framelen > sp->rxsupport_size) 1275 dev_kfree_skb_irq(jumbo->skb); 1276 else { 1277 memcpy(skb_put(jumbo->skb, endframelen), 1278 skb->data, endframelen); 1279 1280 jumbo->skb->protocol = 1281 eth_type_trans(jumbo->skb, dev); 1282 1283 jumbo->skb->ip_summed = CHECKSUM_NONE; 1284 netif_rx(jumbo->skb); 1285 } 1286 } 1287 1288 jumbo->found_start = 0; 1289 jumbo->current_size = 0; 1290 jumbo->skb = NULL; 1291 1292 ipg_nic_rx_free_skb(dev); 1293 } else { 1294 dev_kfree_skb_irq(jumbo->skb); 1295 jumbo->found_start = 0; 1296 jumbo->current_size = 0; 1297 jumbo->skb = NULL; 1298 } 1299} 1300 1301static void ipg_nic_rx_no_start_no_end(struct net_device *dev, 1302 struct ipg_nic_private *sp, 1303 struct ipg_rx *rxfd, unsigned entry) 1304{ 1305 struct ipg_jumbo *jumbo = &sp->jumbo; 1306 1307 /* 1: found error, 0 no error */ 1308 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1309 struct sk_buff *skb = sp->rx_buff[entry]; 1310 1311 if (skb) { 1312 if (jumbo->found_start) { 1313 jumbo->current_size += sp->rxfrag_size; 1314 if (jumbo->current_size <= sp->rxsupport_size) { 1315 memcpy(skb_put(jumbo->skb, 1316 sp->rxfrag_size), 1317 skb->data, sp->rxfrag_size); 1318 } 1319 } 1320 ipg_nic_rx_free_skb(dev); 1321 } 1322 } else { 1323 dev_kfree_skb_irq(jumbo->skb); 1324 jumbo->found_start = 0; 1325 jumbo->current_size = 0; 1326 jumbo->skb = NULL; 1327 } 1328} 1329 1330static int ipg_nic_rx_jumbo(struct net_device *dev) 1331{ 1332 struct ipg_nic_private *sp = netdev_priv(dev); 1333 unsigned int curr = sp->rx_current; 1334 void __iomem *ioaddr = sp->ioaddr; 1335 unsigned int i; 1336 1337 IPG_DEBUG_MSG("_nic_rx\n"); 1338 1339 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1340 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1341 struct ipg_rx *rxfd = sp->rxd + entry; 1342 1343 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE))) 1344 break; 1345 1346 switch (ipg_nic_rx_check_frame_type(dev)) { 1347 case FRAME_WITH_START_WITH_END: 1348 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); 1349 break; 1350 case FRAME_WITH_START: 1351 ipg_nic_rx_with_start(dev, sp, rxfd, entry); 1352 break; 1353 case FRAME_WITH_END: 1354 ipg_nic_rx_with_end(dev, sp, rxfd, entry); 1355 break; 1356 case FRAME_NO_START_NO_END: 1357 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); 1358 break; 1359 } 1360 } 1361 1362 sp->rx_current = curr; 1363 1364 if (i == IPG_MAXRFDPROCESS_COUNT) { 1365 /* There are more RFDs to process, however the 1366 * allocated amount of RFD processing time has 1367 * expired. Assert Interrupt Requested to make 1368 * sure we come back to process the remaining RFDs. 1369 */ 1370 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1371 } 1372 1373 ipg_nic_rxrestore(dev); 1374 1375 return 0; 1376} 1377 1378static int ipg_nic_rx(struct net_device *dev) 1379{ 1380 /* Transfer received Ethernet frames to higher network layers. */ 1381 struct ipg_nic_private *sp = netdev_priv(dev); 1382 unsigned int curr = sp->rx_current; 1383 void __iomem *ioaddr = sp->ioaddr; 1384 struct ipg_rx *rxfd; 1385 unsigned int i; 1386 1387 IPG_DEBUG_MSG("_nic_rx\n"); 1388 1389#define __RFS_MASK \ 1390 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) 1391 1392 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1393 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1394 struct sk_buff *skb = sp->rx_buff[entry]; 1395 unsigned int framelen; 1396 1397 rxfd = sp->rxd + entry; 1398 1399 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) 1400 break; 1401 1402 /* Get received frame length. */ 1403 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1404 1405 /* Check for jumbo frame arrival with too small 1406 * RXFRAG_SIZE. 1407 */ 1408 if (framelen > sp->rxfrag_size) { 1409 IPG_DEBUG_MSG 1410 ("RFS FrameLen > allocated fragment size.\n"); 1411 1412 framelen = sp->rxfrag_size; 1413 } 1414 1415 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1416 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1417 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1418 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { 1419 1420 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1421 (unsigned long int) rxfd->rfs); 1422 1423 /* Increment general receive error statistic. */ 1424 sp->stats.rx_errors++; 1425 1426 /* Increment detailed receive error statistics. */ 1427 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1428 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1429 sp->stats.rx_fifo_errors++; 1430 } 1431 1432 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1433 IPG_DEBUG_MSG("RX runt occured.\n"); 1434 sp->stats.rx_length_errors++; 1435 } 1436 1437 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; 1438 /* Do nothing, error count handled by a IPG 1439 * statistic register. 1440 */ 1441 1442 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1443 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1444 sp->stats.rx_frame_errors++; 1445 } 1446 1447 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; 1448 /* Do nothing, error count handled by a IPG 1449 * statistic register. 1450 */ 1451 1452 /* Free the memory associated with the RX 1453 * buffer since it is erroneous and we will 1454 * not pass it to higher layer processes. 1455 */ 1456 if (skb) { 1457 __le64 info = rxfd->frag_info; 1458 1459 pci_unmap_single(sp->pdev, 1460 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, 1461 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1462 1463 dev_kfree_skb_irq(skb); 1464 } 1465 } else { 1466 1467 /* Adjust the new buffer length to accomodate the size 1468 * of the received frame. 1469 */ 1470 skb_put(skb, framelen); 1471 1472 /* Set the buffer's protocol field to Ethernet. */ 1473 skb->protocol = eth_type_trans(skb, dev); 1474 1475 /* The IPG encountered an error with (or 1476 * there were no) IP/TCP/UDP checksums. 1477 * This may or may not indicate an invalid 1478 * IP/TCP/UDP frame was received. Let the 1479 * upper layer decide. 1480 */ 1481 skb->ip_summed = CHECKSUM_NONE; 1482 1483 /* Hand off frame for higher layer processing. 1484 * The function netif_rx() releases the sk_buff 1485 * when processing completes. 1486 */ 1487 netif_rx(skb); 1488 } 1489 1490 /* Assure RX buffer is not reused by IPG. */ 1491 sp->rx_buff[entry] = NULL; 1492 } 1493 1494 /* 1495 * If there are more RFDs to proces and the allocated amount of RFD 1496 * processing time has expired, assert Interrupt Requested to make 1497 * sure we come back to process the remaining RFDs. 1498 */ 1499 if (i == IPG_MAXRFDPROCESS_COUNT) 1500 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1501 1502#ifdef IPG_DEBUG 1503 /* Check if the RFD list contained no receive frame data. */ 1504 if (!i) 1505 sp->EmptyRFDListCount++; 1506#endif 1507 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && 1508 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && 1509 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { 1510 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; 1511 1512 rxfd = sp->rxd + entry; 1513 1514 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); 1515 1516 /* An unexpected event, additional code needed to handle 1517 * properly. So for the time being, just disregard the 1518 * frame. 1519 */ 1520 1521 /* Free the memory associated with the RX 1522 * buffer since it is erroneous and we will 1523 * not pass it to higher layer processes. 1524 */ 1525 if (sp->rx_buff[entry]) { 1526 pci_unmap_single(sp->pdev, 1527 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1528 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1529 dev_kfree_skb_irq(sp->rx_buff[entry]); 1530 } 1531 1532 /* Assure RX buffer is not reused by IPG. */ 1533 sp->rx_buff[entry] = NULL; 1534 } 1535 1536 sp->rx_current = curr; 1537 1538 /* Check to see if there are a minimum number of used 1539 * RFDs before restoring any (should improve performance.) 1540 */ 1541 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) 1542 ipg_nic_rxrestore(dev); 1543 1544 return 0; 1545} 1546 1547static void ipg_reset_after_host_error(struct work_struct *work) 1548{ 1549 struct ipg_nic_private *sp = 1550 container_of(work, struct ipg_nic_private, task.work); 1551 struct net_device *dev = sp->dev; 1552 1553 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); 1554 1555 /* 1556 * Acknowledge HostError interrupt by resetting 1557 * IPG DMA and HOST. 1558 */ 1559 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1560 1561 init_rfdlist(dev); 1562 init_tfdlist(dev); 1563 1564 if (ipg_io_config(dev) < 0) { 1565 printk(KERN_INFO "%s: Cannot recover from PCI error.\n", 1566 dev->name); 1567 schedule_delayed_work(&sp->task, HZ); 1568 } 1569} 1570 1571static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) 1572{ 1573 struct net_device *dev = dev_inst; 1574 struct ipg_nic_private *sp = netdev_priv(dev); 1575 void __iomem *ioaddr = sp->ioaddr; 1576 unsigned int handled = 0; 1577 u16 status; 1578 1579 IPG_DEBUG_MSG("_interrupt_handler\n"); 1580 1581 if (sp->is_jumbo) 1582 ipg_nic_rxrestore(dev); 1583 1584 spin_lock(&sp->lock); 1585 1586 /* Get interrupt source information, and acknowledge 1587 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, 1588 * IntRequested, MacControlFrame, LinkEvent) interrupts 1589 * if issued. Also, all IPG interrupts are disabled by 1590 * reading IntStatusAck. 1591 */ 1592 status = ipg_r16(INT_STATUS_ACK); 1593 1594 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); 1595 1596 /* Shared IRQ of remove event. */ 1597 if (!(status & IPG_IS_RSVD_MASK)) 1598 goto out_enable; 1599 1600 handled = 1; 1601 1602 if (unlikely(!netif_running(dev))) 1603 goto out_unlock; 1604 1605 /* If RFDListEnd interrupt, restore all used RFDs. */ 1606 if (status & IPG_IS_RFD_LIST_END) { 1607 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); 1608 1609 /* The RFD list end indicates an RFD was encountered 1610 * with a 0 NextPtr, or with an RFDDone bit set to 1 1611 * (indicating the RFD is not read for use by the 1612 * IPG.) Try to restore all RFDs. 1613 */ 1614 ipg_nic_rxrestore(dev); 1615 1616#ifdef IPG_DEBUG 1617 /* Increment the RFDlistendCount counter. */ 1618 sp->RFDlistendCount++; 1619#endif 1620 } 1621 1622 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or 1623 * IntRequested interrupt, process received frames. */ 1624 if ((status & IPG_IS_RX_DMA_PRIORITY) || 1625 (status & IPG_IS_RFD_LIST_END) || 1626 (status & IPG_IS_RX_DMA_COMPLETE) || 1627 (status & IPG_IS_INT_REQUESTED)) { 1628#ifdef IPG_DEBUG 1629 /* Increment the RFD list checked counter if interrupted 1630 * only to check the RFD list. */ 1631 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | 1632 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & 1633 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | 1634 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | 1635 IPG_IS_UPDATE_STATS))) 1636 sp->RFDListCheckedCount++; 1637#endif 1638 1639 if (sp->is_jumbo) 1640 ipg_nic_rx_jumbo(dev); 1641 else 1642 ipg_nic_rx(dev); 1643 } 1644 1645 /* If TxDMAComplete interrupt, free used TFDs. */ 1646 if (status & IPG_IS_TX_DMA_COMPLETE) 1647 ipg_nic_txfree(dev); 1648 1649 /* TxComplete interrupts indicate one of numerous actions. 1650 * Determine what action to take based on TXSTATUS register. 1651 */ 1652 if (status & IPG_IS_TX_COMPLETE) 1653 ipg_nic_txcleanup(dev); 1654 1655 /* If UpdateStats interrupt, update Linux Ethernet statistics */ 1656 if (status & IPG_IS_UPDATE_STATS) 1657 ipg_nic_get_stats(dev); 1658 1659 /* If HostError interrupt, reset IPG. */ 1660 if (status & IPG_IS_HOST_ERROR) { 1661 IPG_DDEBUG_MSG("HostError Interrupt\n"); 1662 1663 schedule_delayed_work(&sp->task, 0); 1664 } 1665 1666 /* If LinkEvent interrupt, resolve autonegotiation. */ 1667 if (status & IPG_IS_LINK_EVENT) { 1668 if (ipg_config_autoneg(dev) < 0) 1669 printk(KERN_INFO "%s: Auto-negotiation error.\n", 1670 dev->name); 1671 } 1672 1673 /* If MACCtrlFrame interrupt, do nothing. */ 1674 if (status & IPG_IS_MAC_CTRL_FRAME) 1675 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); 1676 1677 /* If RxComplete interrupt, do nothing. */ 1678 if (status & IPG_IS_RX_COMPLETE) 1679 IPG_DEBUG_MSG("RxComplete interrupt.\n"); 1680 1681 /* If RxEarly interrupt, do nothing. */ 1682 if (status & IPG_IS_RX_EARLY) 1683 IPG_DEBUG_MSG("RxEarly interrupt.\n"); 1684 1685out_enable: 1686 /* Re-enable IPG interrupts. */ 1687 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | 1688 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | 1689 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); 1690out_unlock: 1691 spin_unlock(&sp->lock); 1692 1693 return IRQ_RETVAL(handled); 1694} 1695 1696static void ipg_rx_clear(struct ipg_nic_private *sp) 1697{ 1698 unsigned int i; 1699 1700 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 1701 if (sp->rx_buff[i]) { 1702 struct ipg_rx *rxfd = sp->rxd + i; 1703 1704 dev_kfree_skb_irq(sp->rx_buff[i]); 1705 sp->rx_buff[i] = NULL; 1706 pci_unmap_single(sp->pdev, 1707 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1708 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1709 } 1710 } 1711} 1712 1713static void ipg_tx_clear(struct ipg_nic_private *sp) 1714{ 1715 unsigned int i; 1716 1717 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 1718 if (sp->tx_buff[i]) { 1719 struct ipg_tx *txfd = sp->txd + i; 1720 1721 pci_unmap_single(sp->pdev, 1722 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 1723 sp->tx_buff[i]->len, PCI_DMA_TODEVICE); 1724 1725 dev_kfree_skb_irq(sp->tx_buff[i]); 1726 1727 sp->tx_buff[i] = NULL; 1728 } 1729 } 1730} 1731 1732static int ipg_nic_open(struct net_device *dev) 1733{ 1734 struct ipg_nic_private *sp = netdev_priv(dev); 1735 void __iomem *ioaddr = sp->ioaddr; 1736 struct pci_dev *pdev = sp->pdev; 1737 int rc; 1738 1739 IPG_DEBUG_MSG("_nic_open\n"); 1740 1741 sp->rx_buf_sz = sp->rxsupport_size; 1742 1743 /* Check for interrupt line conflicts, and request interrupt 1744 * line for IPG. 1745 * 1746 * IMPORTANT: Disable IPG interrupts prior to registering 1747 * IRQ. 1748 */ 1749 ipg_w16(0x0000, INT_ENABLE); 1750 1751 /* Register the interrupt line to be used by the IPG within 1752 * the Linux system. 1753 */ 1754 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED, 1755 dev->name, dev); 1756 if (rc < 0) { 1757 printk(KERN_INFO "%s: Error when requesting interrupt.\n", 1758 dev->name); 1759 goto out; 1760 } 1761 1762 dev->irq = pdev->irq; 1763 1764 rc = -ENOMEM; 1765 1766 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, 1767 &sp->rxd_map, GFP_KERNEL); 1768 if (!sp->rxd) 1769 goto err_free_irq_0; 1770 1771 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, 1772 &sp->txd_map, GFP_KERNEL); 1773 if (!sp->txd) 1774 goto err_free_rx_1; 1775 1776 rc = init_rfdlist(dev); 1777 if (rc < 0) { 1778 printk(KERN_INFO "%s: Error during configuration.\n", 1779 dev->name); 1780 goto err_free_tx_2; 1781 } 1782 1783 init_tfdlist(dev); 1784 1785 rc = ipg_io_config(dev); 1786 if (rc < 0) { 1787 printk(KERN_INFO "%s: Error during configuration.\n", 1788 dev->name); 1789 goto err_release_tfdlist_3; 1790 } 1791 1792 /* Resolve autonegotiation. */ 1793 if (ipg_config_autoneg(dev) < 0) 1794 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); 1795 1796 /* initialize JUMBO Frame control variable */ 1797 sp->jumbo.found_start = 0; 1798 sp->jumbo.current_size = 0; 1799 sp->jumbo.skb = NULL; 1800 1801 /* Enable transmit and receive operation of the IPG. */ 1802 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & 1803 IPG_MC_RSVD_MASK, MAC_CTRL); 1804 1805 netif_start_queue(dev); 1806out: 1807 return rc; 1808 1809err_release_tfdlist_3: 1810 ipg_tx_clear(sp); 1811 ipg_rx_clear(sp); 1812err_free_tx_2: 1813 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1814err_free_rx_1: 1815 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1816err_free_irq_0: 1817 free_irq(pdev->irq, dev); 1818 goto out; 1819} 1820 1821static int ipg_nic_stop(struct net_device *dev) 1822{ 1823 struct ipg_nic_private *sp = netdev_priv(dev); 1824 void __iomem *ioaddr = sp->ioaddr; 1825 struct pci_dev *pdev = sp->pdev; 1826 1827 IPG_DEBUG_MSG("_nic_stop\n"); 1828 1829 netif_stop_queue(dev); 1830 1831 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); 1832 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); 1833 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); 1834 IPG_DUMPTFDLIST(dev); 1835 1836 do { 1837 (void) ipg_r16(INT_STATUS_ACK); 1838 1839 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1840 1841 synchronize_irq(pdev->irq); 1842 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); 1843 1844 ipg_rx_clear(sp); 1845 1846 ipg_tx_clear(sp); 1847 1848 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1849 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1850 1851 free_irq(pdev->irq, dev); 1852 1853 return 0; 1854} 1855 1856static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb, 1857 struct net_device *dev) 1858{ 1859 struct ipg_nic_private *sp = netdev_priv(dev); 1860 void __iomem *ioaddr = sp->ioaddr; 1861 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; 1862 unsigned long flags; 1863 struct ipg_tx *txfd; 1864 1865 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); 1866 1867 /* If in 10Mbps mode, stop the transmit queue so 1868 * no more transmit frames are accepted. 1869 */ 1870 if (sp->tenmbpsmode) 1871 netif_stop_queue(dev); 1872 1873 if (sp->reset_current_tfd) { 1874 sp->reset_current_tfd = 0; 1875 entry = 0; 1876 } 1877 1878 txfd = sp->txd + entry; 1879 1880 sp->tx_buff[entry] = skb; 1881 1882 /* Clear all TFC fields, except TFDDONE. */ 1883 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 1884 1885 /* Specify the TFC field within the TFD. */ 1886 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | 1887 (IPG_TFC_FRAMEID & sp->tx_current) | 1888 (IPG_TFC_FRAGCOUNT & (1 << 24))); 1889 /* 1890 * 16--17 (WordAlign) <- 3 (disable), 1891 * 0--15 (FrameId) <- sp->tx_current, 1892 * 24--27 (FragCount) <- 1 1893 */ 1894 1895 /* Request TxComplete interrupts at an interval defined 1896 * by the constant IPG_FRAMESBETWEENTXCOMPLETES. 1897 * Request TxComplete interrupt for every frame 1898 * if in 10Mbps mode to accomodate problem with 10Mbps 1899 * processing. 1900 */ 1901 if (sp->tenmbpsmode) 1902 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); 1903 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); 1904 /* Based on compilation option, determine if FCS is to be 1905 * appended to transmit frame by IPG. 1906 */ 1907 if (!(IPG_APPEND_FCS_ON_TX)) 1908 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); 1909 1910 /* Based on compilation option, determine if IP, TCP and/or 1911 * UDP checksums are to be added to transmit frame by IPG. 1912 */ 1913 if (IPG_ADD_IPCHECKSUM_ON_TX) 1914 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); 1915 1916 if (IPG_ADD_TCPCHECKSUM_ON_TX) 1917 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); 1918 1919 if (IPG_ADD_UDPCHECKSUM_ON_TX) 1920 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); 1921 1922 /* Based on compilation option, determine if VLAN tag info is to be 1923 * inserted into transmit frame by IPG. 1924 */ 1925 if (IPG_INSERT_MANUAL_VLAN_TAG) { 1926 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | 1927 ((u64) IPG_MANUAL_VLAN_VID << 32) | 1928 ((u64) IPG_MANUAL_VLAN_CFI << 44) | 1929 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); 1930 } 1931 1932 /* The fragment start location within system memory is defined 1933 * by the sk_buff structure's data field. The physical address 1934 * of this location within the system's virtual memory space 1935 * is determined using the IPG_HOST2BUS_MAP function. 1936 */ 1937 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 1938 skb->len, PCI_DMA_TODEVICE)); 1939 1940 /* The length of the fragment within system memory is defined by 1941 * the sk_buff structure's len field. 1942 */ 1943 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & 1944 ((u64) (skb->len & 0xffff) << 48)); 1945 1946 /* Clear the TFDDone bit last to indicate the TFD is ready 1947 * for transfer to the IPG. 1948 */ 1949 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); 1950 1951 spin_lock_irqsave(&sp->lock, flags); 1952 1953 sp->tx_current++; 1954 1955 mmiowb(); 1956 1957 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); 1958 1959 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) 1960 netif_stop_queue(dev); 1961 1962 spin_unlock_irqrestore(&sp->lock, flags); 1963 1964 return NETDEV_TX_OK; 1965} 1966 1967static void ipg_set_phy_default_param(unsigned char rev, 1968 struct net_device *dev, int phy_address) 1969{ 1970 unsigned short length; 1971 unsigned char revision; 1972 unsigned short *phy_param; 1973 unsigned short address, value; 1974 1975 phy_param = &DefaultPhyParam[0]; 1976 length = *phy_param & 0x00FF; 1977 revision = (unsigned char)((*phy_param) >> 8); 1978 phy_param++; 1979 while (length != 0) { 1980 if (rev == revision) { 1981 while (length > 1) { 1982 address = *phy_param; 1983 value = *(phy_param + 1); 1984 phy_param += 2; 1985 mdio_write(dev, phy_address, address, value); 1986 length -= 4; 1987 } 1988 break; 1989 } else { 1990 phy_param += length / 2; 1991 length = *phy_param & 0x00FF; 1992 revision = (unsigned char)((*phy_param) >> 8); 1993 phy_param++; 1994 } 1995 } 1996} 1997 1998static int read_eeprom(struct net_device *dev, int eep_addr) 1999{ 2000 void __iomem *ioaddr = ipg_ioaddr(dev); 2001 unsigned int i; 2002 int ret = 0; 2003 u16 value; 2004 2005 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); 2006 ipg_w16(value, EEPROM_CTRL); 2007 2008 for (i = 0; i < 1000; i++) { 2009 u16 data; 2010 2011 mdelay(10); 2012 data = ipg_r16(EEPROM_CTRL); 2013 if (!(data & IPG_EC_EEPROM_BUSY)) { 2014 ret = ipg_r16(EEPROM_DATA); 2015 break; 2016 } 2017 } 2018 return ret; 2019} 2020 2021static void ipg_init_mii(struct net_device *dev) 2022{ 2023 struct ipg_nic_private *sp = netdev_priv(dev); 2024 struct mii_if_info *mii_if = &sp->mii_if; 2025 int phyaddr; 2026 2027 mii_if->dev = dev; 2028 mii_if->mdio_read = mdio_read; 2029 mii_if->mdio_write = mdio_write; 2030 mii_if->phy_id_mask = 0x1f; 2031 mii_if->reg_num_mask = 0x1f; 2032 2033 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); 2034 2035 if (phyaddr != 0x1f) { 2036 u16 mii_phyctrl, mii_1000cr; 2037 u8 revisionid = 0; 2038 2039 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); 2040 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | 2041 GMII_PHY_1000BASETCONTROL_PreferMaster; 2042 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); 2043 2044 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); 2045 2046 /* Set default phyparam */ 2047 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); 2048 ipg_set_phy_default_param(revisionid, dev, phyaddr); 2049 2050 /* Reset PHY */ 2051 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; 2052 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); 2053 2054 } 2055} 2056 2057static int ipg_hw_init(struct net_device *dev) 2058{ 2059 struct ipg_nic_private *sp = netdev_priv(dev); 2060 void __iomem *ioaddr = sp->ioaddr; 2061 unsigned int i; 2062 int rc; 2063 2064 /* Read/Write and Reset EEPROM Value */ 2065 /* Read LED Mode Configuration from EEPROM */ 2066 sp->led_mode = read_eeprom(dev, 6); 2067 2068 /* Reset all functions within the IPG. Do not assert 2069 * RST_OUT as not compatible with some PHYs. 2070 */ 2071 rc = ipg_reset(dev, IPG_RESET_MASK); 2072 if (rc < 0) 2073 goto out; 2074 2075 ipg_init_mii(dev); 2076 2077 /* Read MAC Address from EEPROM */ 2078 for (i = 0; i < 3; i++) 2079 sp->station_addr[i] = read_eeprom(dev, 16 + i); 2080 2081 for (i = 0; i < 3; i++) 2082 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); 2083 2084 /* Set station address in ethernet_device structure. */ 2085 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; 2086 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; 2087 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; 2088 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; 2089 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; 2090 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; 2091out: 2092 return rc; 2093} 2094 2095static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2096{ 2097 struct ipg_nic_private *sp = netdev_priv(dev); 2098 int rc; 2099 2100 mutex_lock(&sp->mii_mutex); 2101 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); 2102 mutex_unlock(&sp->mii_mutex); 2103 2104 return rc; 2105} 2106 2107static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) 2108{ 2109 struct ipg_nic_private *sp = netdev_priv(dev); 2110 int err; 2111 2112 /* Function to accomodate changes to Maximum Transfer Unit 2113 * (or MTU) of IPG NIC. Cannot use default function since 2114 * the default will not allow for MTU > 1500 bytes. 2115 */ 2116 2117 IPG_DEBUG_MSG("_nic_change_mtu\n"); 2118 2119 /* 2120 * Check that the new MTU value is between 68 (14 byte header, 46 byte 2121 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. 2122 */ 2123 if (new_mtu < 68 || new_mtu > 10240) 2124 return -EINVAL; 2125 2126 err = ipg_nic_stop(dev); 2127 if (err) 2128 return err; 2129 2130 dev->mtu = new_mtu; 2131 2132 sp->max_rxframe_size = new_mtu; 2133 2134 sp->rxfrag_size = new_mtu; 2135 if (sp->rxfrag_size > 4088) 2136 sp->rxfrag_size = 4088; 2137 2138 sp->rxsupport_size = sp->max_rxframe_size; 2139 2140 if (new_mtu > 0x0600) 2141 sp->is_jumbo = true; 2142 else 2143 sp->is_jumbo = false; 2144 2145 return ipg_nic_open(dev); 2146} 2147 2148static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2149{ 2150 struct ipg_nic_private *sp = netdev_priv(dev); 2151 int rc; 2152 2153 mutex_lock(&sp->mii_mutex); 2154 rc = mii_ethtool_gset(&sp->mii_if, cmd); 2155 mutex_unlock(&sp->mii_mutex); 2156 2157 return rc; 2158} 2159 2160static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2161{ 2162 struct ipg_nic_private *sp = netdev_priv(dev); 2163 int rc; 2164 2165 mutex_lock(&sp->mii_mutex); 2166 rc = mii_ethtool_sset(&sp->mii_if, cmd); 2167 mutex_unlock(&sp->mii_mutex); 2168 2169 return rc; 2170} 2171 2172static int ipg_nway_reset(struct net_device *dev) 2173{ 2174 struct ipg_nic_private *sp = netdev_priv(dev); 2175 int rc; 2176 2177 mutex_lock(&sp->mii_mutex); 2178 rc = mii_nway_restart(&sp->mii_if); 2179 mutex_unlock(&sp->mii_mutex); 2180 2181 return rc; 2182} 2183 2184static const struct ethtool_ops ipg_ethtool_ops = { 2185 .get_settings = ipg_get_settings, 2186 .set_settings = ipg_set_settings, 2187 .nway_reset = ipg_nway_reset, 2188}; 2189 2190static void __devexit ipg_remove(struct pci_dev *pdev) 2191{ 2192 struct net_device *dev = pci_get_drvdata(pdev); 2193 struct ipg_nic_private *sp = netdev_priv(dev); 2194 2195 IPG_DEBUG_MSG("_remove\n"); 2196 2197 /* Un-register Ethernet device. */ 2198 unregister_netdev(dev); 2199 2200 pci_iounmap(pdev, sp->ioaddr); 2201 2202 pci_release_regions(pdev); 2203 2204 free_netdev(dev); 2205 pci_disable_device(pdev); 2206 pci_set_drvdata(pdev, NULL); 2207} 2208 2209static const struct net_device_ops ipg_netdev_ops = { 2210 .ndo_open = ipg_nic_open, 2211 .ndo_stop = ipg_nic_stop, 2212 .ndo_start_xmit = ipg_nic_hard_start_xmit, 2213 .ndo_get_stats = ipg_nic_get_stats, 2214 .ndo_set_multicast_list = ipg_nic_set_multicast_list, 2215 .ndo_do_ioctl = ipg_ioctl, 2216 .ndo_tx_timeout = ipg_tx_timeout, 2217 .ndo_change_mtu = ipg_nic_change_mtu, 2218 .ndo_set_mac_address = eth_mac_addr, 2219 .ndo_validate_addr = eth_validate_addr, 2220}; 2221 2222static int __devinit ipg_probe(struct pci_dev *pdev, 2223 const struct pci_device_id *id) 2224{ 2225 unsigned int i = id->driver_data; 2226 struct ipg_nic_private *sp; 2227 struct net_device *dev; 2228 void __iomem *ioaddr; 2229 int rc; 2230 2231 rc = pci_enable_device(pdev); 2232 if (rc < 0) 2233 goto out; 2234 2235 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); 2236 2237 pci_set_master(pdev); 2238 2239 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 2240 if (rc < 0) { 2241 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2242 if (rc < 0) { 2243 printk(KERN_ERR "%s: DMA config failed.\n", 2244 pci_name(pdev)); 2245 goto err_disable_0; 2246 } 2247 } 2248 2249 /* 2250 * Initialize net device. 2251 */ 2252 dev = alloc_etherdev(sizeof(struct ipg_nic_private)); 2253 if (!dev) { 2254 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); 2255 rc = -ENOMEM; 2256 goto err_disable_0; 2257 } 2258 2259 sp = netdev_priv(dev); 2260 spin_lock_init(&sp->lock); 2261 mutex_init(&sp->mii_mutex); 2262 2263 sp->is_jumbo = IPG_IS_JUMBO; 2264 sp->rxfrag_size = IPG_RXFRAG_SIZE; 2265 sp->rxsupport_size = IPG_RXSUPPORT_SIZE; 2266 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; 2267 2268 /* Declare IPG NIC functions for Ethernet device methods. 2269 */ 2270 dev->netdev_ops = &ipg_netdev_ops; 2271 SET_NETDEV_DEV(dev, &pdev->dev); 2272 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); 2273 2274 rc = pci_request_regions(pdev, DRV_NAME); 2275 if (rc) 2276 goto err_free_dev_1; 2277 2278 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); 2279 if (!ioaddr) { 2280 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); 2281 rc = -EIO; 2282 goto err_release_regions_2; 2283 } 2284 2285 /* Save the pointer to the PCI device information. */ 2286 sp->ioaddr = ioaddr; 2287 sp->pdev = pdev; 2288 sp->dev = dev; 2289 2290 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); 2291 2292 pci_set_drvdata(pdev, dev); 2293 2294 rc = ipg_hw_init(dev); 2295 if (rc < 0) 2296 goto err_unmap_3; 2297 2298 rc = register_netdev(dev); 2299 if (rc < 0) 2300 goto err_unmap_3; 2301 2302 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); 2303out: 2304 return rc; 2305 2306err_unmap_3: 2307 pci_iounmap(pdev, ioaddr); 2308err_release_regions_2: 2309 pci_release_regions(pdev); 2310err_free_dev_1: 2311 free_netdev(dev); 2312err_disable_0: 2313 pci_disable_device(pdev); 2314 goto out; 2315} 2316 2317static struct pci_driver ipg_pci_driver = { 2318 .name = IPG_DRIVER_NAME, 2319 .id_table = ipg_pci_tbl, 2320 .probe = ipg_probe, 2321 .remove = __devexit_p(ipg_remove), 2322}; 2323 2324static int __init ipg_init_module(void) 2325{ 2326 return pci_register_driver(&ipg_pci_driver); 2327} 2328 2329static void __exit ipg_exit_module(void) 2330{ 2331 pci_unregister_driver(&ipg_pci_driver); 2332} 2333 2334module_init(ipg_init_module); 2335module_exit(ipg_exit_module);