at v2.6.33-rc2 3091 lines 90 kB view raw
1/******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Receive 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * In order to keep updates to the RFD link field from colliding with 110 * hardware writes to mark packets complete, we use the feature that 111 * hardware will not write to a size 0 descriptor and mark the previous 112 * packet as end-of-list (EL). After updating the link, we remove EL 113 * and only then restore the size such that hardware may use the 114 * previous-to-end RFD. 115 * 116 * Under typical operation, the receive unit (RU) is start once, 117 * and the controller happily fills RFDs as frames arrive. If 118 * replacement RFDs cannot be allocated, or the RU goes non-active, 119 * the RU must be restarted. Frame arrival generates an interrupt, 120 * and Rx indication and re-allocation happen in the same context, 121 * therefore no locking is required. A software-generated interrupt 122 * is generated from the watchdog to recover from a failed allocation 123 * scenario where all Rx resources have been indicated and none re- 124 * placed. 125 * 126 * V. Miscellaneous 127 * 128 * VLAN offloading of tagging, stripping and filtering is not 129 * supported, but driver will accommodate the extra 4-byte VLAN tag 130 * for processing by upper layers. Tx/Rx Checksum offloading is not 131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 132 * not supported (hardware limitation). 133 * 134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 135 * 136 * Thanks to JC (jchapman@katalix.com) for helping with 137 * testing/troubleshooting the development driver. 138 * 139 * TODO: 140 * o several entry points race with dev->close 141 * o check for tx-no-resources/stop Q races with tx clean/wake Q 142 * 143 * FIXES: 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 145 * - Stratus87247: protect MDI control register manipulations 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 148 */ 149 150#include <linux/module.h> 151#include <linux/moduleparam.h> 152#include <linux/kernel.h> 153#include <linux/types.h> 154#include <linux/sched.h> 155#include <linux/slab.h> 156#include <linux/delay.h> 157#include <linux/init.h> 158#include <linux/pci.h> 159#include <linux/dma-mapping.h> 160#include <linux/dmapool.h> 161#include <linux/netdevice.h> 162#include <linux/etherdevice.h> 163#include <linux/mii.h> 164#include <linux/if_vlan.h> 165#include <linux/skbuff.h> 166#include <linux/ethtool.h> 167#include <linux/string.h> 168#include <linux/firmware.h> 169#include <asm/unaligned.h> 170 171 172#define DRV_NAME "e100" 173#define DRV_EXT "-NAPI" 174#define DRV_VERSION "3.5.24-k2"DRV_EXT 175#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 176#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 177#define PFX DRV_NAME ": " 178 179#define E100_WATCHDOG_PERIOD (2 * HZ) 180#define E100_NAPI_WEIGHT 16 181 182#define FIRMWARE_D101M "e100/d101m_ucode.bin" 183#define FIRMWARE_D101S "e100/d101s_ucode.bin" 184#define FIRMWARE_D102E "e100/d102e_ucode.bin" 185 186MODULE_DESCRIPTION(DRV_DESCRIPTION); 187MODULE_AUTHOR(DRV_COPYRIGHT); 188MODULE_LICENSE("GPL"); 189MODULE_VERSION(DRV_VERSION); 190MODULE_FIRMWARE(FIRMWARE_D101M); 191MODULE_FIRMWARE(FIRMWARE_D101S); 192MODULE_FIRMWARE(FIRMWARE_D102E); 193 194static int debug = 3; 195static int eeprom_bad_csum_allow = 0; 196static int use_io = 0; 197module_param(debug, int, 0); 198module_param(eeprom_bad_csum_allow, int, 0); 199module_param(use_io, int, 0); 200MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 201MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 202MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 203#define DPRINTK(nlevel, klevel, fmt, args...) \ 204 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 205 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 206 __func__ , ## args)) 207 208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 211static struct pci_device_id e100_id_table[] = { 212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 254 { 0, } 255}; 256MODULE_DEVICE_TABLE(pci, e100_id_table); 257 258enum mac { 259 mac_82557_D100_A = 0, 260 mac_82557_D100_B = 1, 261 mac_82557_D100_C = 2, 262 mac_82558_D101_A4 = 4, 263 mac_82558_D101_B0 = 5, 264 mac_82559_D101M = 8, 265 mac_82559_D101S = 9, 266 mac_82550_D102 = 12, 267 mac_82550_D102_C = 13, 268 mac_82551_E = 14, 269 mac_82551_F = 15, 270 mac_82551_10 = 16, 271 mac_unknown = 0xFF, 272}; 273 274enum phy { 275 phy_100a = 0x000003E0, 276 phy_100c = 0x035002A8, 277 phy_82555_tx = 0x015002A8, 278 phy_nsc_tx = 0x5C002000, 279 phy_82562_et = 0x033002A8, 280 phy_82562_em = 0x032002A8, 281 phy_82562_ek = 0x031002A8, 282 phy_82562_eh = 0x017002A8, 283 phy_82552_v = 0xd061004d, 284 phy_unknown = 0xFFFFFFFF, 285}; 286 287/* CSR (Control/Status Registers) */ 288struct csr { 289 struct { 290 u8 status; 291 u8 stat_ack; 292 u8 cmd_lo; 293 u8 cmd_hi; 294 u32 gen_ptr; 295 } scb; 296 u32 port; 297 u16 flash_ctrl; 298 u8 eeprom_ctrl_lo; 299 u8 eeprom_ctrl_hi; 300 u32 mdi_ctrl; 301 u32 rx_dma_count; 302}; 303 304enum scb_status { 305 rus_no_res = 0x08, 306 rus_ready = 0x10, 307 rus_mask = 0x3C, 308}; 309 310enum ru_state { 311 RU_SUSPENDED = 0, 312 RU_RUNNING = 1, 313 RU_UNINITIALIZED = -1, 314}; 315 316enum scb_stat_ack { 317 stat_ack_not_ours = 0x00, 318 stat_ack_sw_gen = 0x04, 319 stat_ack_rnr = 0x10, 320 stat_ack_cu_idle = 0x20, 321 stat_ack_frame_rx = 0x40, 322 stat_ack_cu_cmd_done = 0x80, 323 stat_ack_not_present = 0xFF, 324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 326}; 327 328enum scb_cmd_hi { 329 irq_mask_none = 0x00, 330 irq_mask_all = 0x01, 331 irq_sw_gen = 0x02, 332}; 333 334enum scb_cmd_lo { 335 cuc_nop = 0x00, 336 ruc_start = 0x01, 337 ruc_load_base = 0x06, 338 cuc_start = 0x10, 339 cuc_resume = 0x20, 340 cuc_dump_addr = 0x40, 341 cuc_dump_stats = 0x50, 342 cuc_load_base = 0x60, 343 cuc_dump_reset = 0x70, 344}; 345 346enum cuc_dump { 347 cuc_dump_complete = 0x0000A005, 348 cuc_dump_reset_complete = 0x0000A007, 349}; 350 351enum port { 352 software_reset = 0x0000, 353 selftest = 0x0001, 354 selective_reset = 0x0002, 355}; 356 357enum eeprom_ctrl_lo { 358 eesk = 0x01, 359 eecs = 0x02, 360 eedi = 0x04, 361 eedo = 0x08, 362}; 363 364enum mdi_ctrl { 365 mdi_write = 0x04000000, 366 mdi_read = 0x08000000, 367 mdi_ready = 0x10000000, 368}; 369 370enum eeprom_op { 371 op_write = 0x05, 372 op_read = 0x06, 373 op_ewds = 0x10, 374 op_ewen = 0x13, 375}; 376 377enum eeprom_offsets { 378 eeprom_cnfg_mdix = 0x03, 379 eeprom_phy_iface = 0x06, 380 eeprom_id = 0x0A, 381 eeprom_config_asf = 0x0D, 382 eeprom_smbus_addr = 0x90, 383}; 384 385enum eeprom_cnfg_mdix { 386 eeprom_mdix_enabled = 0x0080, 387}; 388 389enum eeprom_phy_iface { 390 NoSuchPhy = 0, 391 I82553AB, 392 I82553C, 393 I82503, 394 DP83840, 395 S80C240, 396 S80C24, 397 I82555, 398 DP83840A = 10, 399}; 400 401enum eeprom_id { 402 eeprom_id_wol = 0x0020, 403}; 404 405enum eeprom_config_asf { 406 eeprom_asf = 0x8000, 407 eeprom_gcl = 0x4000, 408}; 409 410enum cb_status { 411 cb_complete = 0x8000, 412 cb_ok = 0x2000, 413}; 414 415enum cb_command { 416 cb_nop = 0x0000, 417 cb_iaaddr = 0x0001, 418 cb_config = 0x0002, 419 cb_multi = 0x0003, 420 cb_tx = 0x0004, 421 cb_ucode = 0x0005, 422 cb_dump = 0x0006, 423 cb_tx_sf = 0x0008, 424 cb_cid = 0x1f00, 425 cb_i = 0x2000, 426 cb_s = 0x4000, 427 cb_el = 0x8000, 428}; 429 430struct rfd { 431 __le16 status; 432 __le16 command; 433 __le32 link; 434 __le32 rbd; 435 __le16 actual_size; 436 __le16 size; 437}; 438 439struct rx { 440 struct rx *next, *prev; 441 struct sk_buff *skb; 442 dma_addr_t dma_addr; 443}; 444 445#if defined(__BIG_ENDIAN_BITFIELD) 446#define X(a,b) b,a 447#else 448#define X(a,b) a,b 449#endif 450struct config { 451/*0*/ u8 X(byte_count:6, pad0:2); 452/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 453/*2*/ u8 adaptive_ifs; 454/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 455 term_write_cache_line:1), pad3:4); 456/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 457/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 458/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 459 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 460 rx_discard_overruns:1), rx_save_bad_frames:1); 461/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 462 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 463 tx_dynamic_tbd:1); 464/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 465/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 466 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 467/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 468 loopback:2); 469/*11*/ u8 X(linear_priority:3, pad11:5); 470/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 471/*13*/ u8 ip_addr_lo; 472/*14*/ u8 ip_addr_hi; 473/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 474 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 475 pad15_2:1), crs_or_cdt:1); 476/*16*/ u8 fc_delay_lo; 477/*17*/ u8 fc_delay_hi; 478/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 479 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 480/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 481 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 482 full_duplex_force:1), full_duplex_pin:1); 483/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 484/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 485/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 486 u8 pad_d102[9]; 487}; 488 489#define E100_MAX_MULTICAST_ADDRS 64 490struct multi { 491 __le16 count; 492 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 493}; 494 495/* Important: keep total struct u32-aligned */ 496#define UCODE_SIZE 134 497struct cb { 498 __le16 status; 499 __le16 command; 500 __le32 link; 501 union { 502 u8 iaaddr[ETH_ALEN]; 503 __le32 ucode[UCODE_SIZE]; 504 struct config config; 505 struct multi multi; 506 struct { 507 u32 tbd_array; 508 u16 tcb_byte_count; 509 u8 threshold; 510 u8 tbd_count; 511 struct { 512 __le32 buf_addr; 513 __le16 size; 514 u16 eol; 515 } tbd; 516 } tcb; 517 __le32 dump_buffer_addr; 518 } u; 519 struct cb *next, *prev; 520 dma_addr_t dma_addr; 521 struct sk_buff *skb; 522}; 523 524enum loopback { 525 lb_none = 0, lb_mac = 1, lb_phy = 3, 526}; 527 528struct stats { 529 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 530 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 531 tx_multiple_collisions, tx_total_collisions; 532 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 533 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 534 rx_short_frame_errors; 535 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 536 __le16 xmt_tco_frames, rcv_tco_frames; 537 __le32 complete; 538}; 539 540struct mem { 541 struct { 542 u32 signature; 543 u32 result; 544 } selftest; 545 struct stats stats; 546 u8 dump_buf[596]; 547}; 548 549struct param_range { 550 u32 min; 551 u32 max; 552 u32 count; 553}; 554 555struct params { 556 struct param_range rfds; 557 struct param_range cbs; 558}; 559 560struct nic { 561 /* Begin: frequently used values: keep adjacent for cache effect */ 562 u32 msg_enable ____cacheline_aligned; 563 struct net_device *netdev; 564 struct pci_dev *pdev; 565 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 566 567 struct rx *rxs ____cacheline_aligned; 568 struct rx *rx_to_use; 569 struct rx *rx_to_clean; 570 struct rfd blank_rfd; 571 enum ru_state ru_running; 572 573 spinlock_t cb_lock ____cacheline_aligned; 574 spinlock_t cmd_lock; 575 struct csr __iomem *csr; 576 enum scb_cmd_lo cuc_cmd; 577 unsigned int cbs_avail; 578 struct napi_struct napi; 579 struct cb *cbs; 580 struct cb *cb_to_use; 581 struct cb *cb_to_send; 582 struct cb *cb_to_clean; 583 __le16 tx_command; 584 /* End: frequently used values: keep adjacent for cache effect */ 585 586 enum { 587 ich = (1 << 0), 588 promiscuous = (1 << 1), 589 multicast_all = (1 << 2), 590 wol_magic = (1 << 3), 591 ich_10h_workaround = (1 << 4), 592 } flags ____cacheline_aligned; 593 594 enum mac mac; 595 enum phy phy; 596 struct params params; 597 struct timer_list watchdog; 598 struct timer_list blink_timer; 599 struct mii_if_info mii; 600 struct work_struct tx_timeout_task; 601 enum loopback loopback; 602 603 struct mem *mem; 604 dma_addr_t dma_addr; 605 606 struct pci_pool *cbs_pool; 607 dma_addr_t cbs_dma_addr; 608 u8 adaptive_ifs; 609 u8 tx_threshold; 610 u32 tx_frames; 611 u32 tx_collisions; 612 u32 tx_deferred; 613 u32 tx_single_collisions; 614 u32 tx_multiple_collisions; 615 u32 tx_fc_pause; 616 u32 tx_tco_frames; 617 618 u32 rx_fc_pause; 619 u32 rx_fc_unsupported; 620 u32 rx_tco_frames; 621 u32 rx_over_length_errors; 622 623 u16 leds; 624 u16 eeprom_wc; 625 __le16 eeprom[256]; 626 spinlock_t mdio_lock; 627 const struct firmware *fw; 628}; 629 630static inline void e100_write_flush(struct nic *nic) 631{ 632 /* Flush previous PCI writes through intermediate bridges 633 * by doing a benign read */ 634 (void)ioread8(&nic->csr->scb.status); 635} 636 637static void e100_enable_irq(struct nic *nic) 638{ 639 unsigned long flags; 640 641 spin_lock_irqsave(&nic->cmd_lock, flags); 642 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 643 e100_write_flush(nic); 644 spin_unlock_irqrestore(&nic->cmd_lock, flags); 645} 646 647static void e100_disable_irq(struct nic *nic) 648{ 649 unsigned long flags; 650 651 spin_lock_irqsave(&nic->cmd_lock, flags); 652 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 653 e100_write_flush(nic); 654 spin_unlock_irqrestore(&nic->cmd_lock, flags); 655} 656 657static void e100_hw_reset(struct nic *nic) 658{ 659 /* Put CU and RU into idle with a selective reset to get 660 * device off of PCI bus */ 661 iowrite32(selective_reset, &nic->csr->port); 662 e100_write_flush(nic); udelay(20); 663 664 /* Now fully reset device */ 665 iowrite32(software_reset, &nic->csr->port); 666 e100_write_flush(nic); udelay(20); 667 668 /* Mask off our interrupt line - it's unmasked after reset */ 669 e100_disable_irq(nic); 670} 671 672static int e100_self_test(struct nic *nic) 673{ 674 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 675 676 /* Passing the self-test is a pretty good indication 677 * that the device can DMA to/from host memory */ 678 679 nic->mem->selftest.signature = 0; 680 nic->mem->selftest.result = 0xFFFFFFFF; 681 682 iowrite32(selftest | dma_addr, &nic->csr->port); 683 e100_write_flush(nic); 684 /* Wait 10 msec for self-test to complete */ 685 msleep(10); 686 687 /* Interrupts are enabled after self-test */ 688 e100_disable_irq(nic); 689 690 /* Check results of self-test */ 691 if (nic->mem->selftest.result != 0) { 692 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 693 nic->mem->selftest.result); 694 return -ETIMEDOUT; 695 } 696 if (nic->mem->selftest.signature == 0) { 697 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 698 return -ETIMEDOUT; 699 } 700 701 return 0; 702} 703 704static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 705{ 706 u32 cmd_addr_data[3]; 707 u8 ctrl; 708 int i, j; 709 710 /* Three cmds: write/erase enable, write data, write/erase disable */ 711 cmd_addr_data[0] = op_ewen << (addr_len - 2); 712 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 713 le16_to_cpu(data); 714 cmd_addr_data[2] = op_ewds << (addr_len - 2); 715 716 /* Bit-bang cmds to write word to eeprom */ 717 for (j = 0; j < 3; j++) { 718 719 /* Chip select */ 720 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 721 e100_write_flush(nic); udelay(4); 722 723 for (i = 31; i >= 0; i--) { 724 ctrl = (cmd_addr_data[j] & (1 << i)) ? 725 eecs | eedi : eecs; 726 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 727 e100_write_flush(nic); udelay(4); 728 729 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 730 e100_write_flush(nic); udelay(4); 731 } 732 /* Wait 10 msec for cmd to complete */ 733 msleep(10); 734 735 /* Chip deselect */ 736 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 737 e100_write_flush(nic); udelay(4); 738 } 739}; 740 741/* General technique stolen from the eepro100 driver - very clever */ 742static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 743{ 744 u32 cmd_addr_data; 745 u16 data = 0; 746 u8 ctrl; 747 int i; 748 749 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 750 751 /* Chip select */ 752 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 753 e100_write_flush(nic); udelay(4); 754 755 /* Bit-bang to read word from eeprom */ 756 for (i = 31; i >= 0; i--) { 757 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 758 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 759 e100_write_flush(nic); udelay(4); 760 761 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 762 e100_write_flush(nic); udelay(4); 763 764 /* Eeprom drives a dummy zero to EEDO after receiving 765 * complete address. Use this to adjust addr_len. */ 766 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 767 if (!(ctrl & eedo) && i > 16) { 768 *addr_len -= (i - 16); 769 i = 17; 770 } 771 772 data = (data << 1) | (ctrl & eedo ? 1 : 0); 773 } 774 775 /* Chip deselect */ 776 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 777 e100_write_flush(nic); udelay(4); 778 779 return cpu_to_le16(data); 780}; 781 782/* Load entire EEPROM image into driver cache and validate checksum */ 783static int e100_eeprom_load(struct nic *nic) 784{ 785 u16 addr, addr_len = 8, checksum = 0; 786 787 /* Try reading with an 8-bit addr len to discover actual addr len */ 788 e100_eeprom_read(nic, &addr_len, 0); 789 nic->eeprom_wc = 1 << addr_len; 790 791 for (addr = 0; addr < nic->eeprom_wc; addr++) { 792 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 793 if (addr < nic->eeprom_wc - 1) 794 checksum += le16_to_cpu(nic->eeprom[addr]); 795 } 796 797 /* The checksum, stored in the last word, is calculated such that 798 * the sum of words should be 0xBABA */ 799 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 800 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 801 if (!eeprom_bad_csum_allow) 802 return -EAGAIN; 803 } 804 805 return 0; 806} 807 808/* Save (portion of) driver EEPROM cache to device and update checksum */ 809static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 810{ 811 u16 addr, addr_len = 8, checksum = 0; 812 813 /* Try reading with an 8-bit addr len to discover actual addr len */ 814 e100_eeprom_read(nic, &addr_len, 0); 815 nic->eeprom_wc = 1 << addr_len; 816 817 if (start + count >= nic->eeprom_wc) 818 return -EINVAL; 819 820 for (addr = start; addr < start + count; addr++) 821 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 822 823 /* The checksum, stored in the last word, is calculated such that 824 * the sum of words should be 0xBABA */ 825 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 826 checksum += le16_to_cpu(nic->eeprom[addr]); 827 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 828 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 829 nic->eeprom[nic->eeprom_wc - 1]); 830 831 return 0; 832} 833 834#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 835#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 836static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 837{ 838 unsigned long flags; 839 unsigned int i; 840 int err = 0; 841 842 spin_lock_irqsave(&nic->cmd_lock, flags); 843 844 /* Previous command is accepted when SCB clears */ 845 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 846 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 847 break; 848 cpu_relax(); 849 if (unlikely(i > E100_WAIT_SCB_FAST)) 850 udelay(5); 851 } 852 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 853 err = -EAGAIN; 854 goto err_unlock; 855 } 856 857 if (unlikely(cmd != cuc_resume)) 858 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 859 iowrite8(cmd, &nic->csr->scb.cmd_lo); 860 861err_unlock: 862 spin_unlock_irqrestore(&nic->cmd_lock, flags); 863 864 return err; 865} 866 867static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 868 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 869{ 870 struct cb *cb; 871 unsigned long flags; 872 int err = 0; 873 874 spin_lock_irqsave(&nic->cb_lock, flags); 875 876 if (unlikely(!nic->cbs_avail)) { 877 err = -ENOMEM; 878 goto err_unlock; 879 } 880 881 cb = nic->cb_to_use; 882 nic->cb_to_use = cb->next; 883 nic->cbs_avail--; 884 cb->skb = skb; 885 886 if (unlikely(!nic->cbs_avail)) 887 err = -ENOSPC; 888 889 cb_prepare(nic, cb, skb); 890 891 /* Order is important otherwise we'll be in a race with h/w: 892 * set S-bit in current first, then clear S-bit in previous. */ 893 cb->command |= cpu_to_le16(cb_s); 894 wmb(); 895 cb->prev->command &= cpu_to_le16(~cb_s); 896 897 while (nic->cb_to_send != nic->cb_to_use) { 898 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 899 nic->cb_to_send->dma_addr))) { 900 /* Ok, here's where things get sticky. It's 901 * possible that we can't schedule the command 902 * because the controller is too busy, so 903 * let's just queue the command and try again 904 * when another command is scheduled. */ 905 if (err == -ENOSPC) { 906 //request a reset 907 schedule_work(&nic->tx_timeout_task); 908 } 909 break; 910 } else { 911 nic->cuc_cmd = cuc_resume; 912 nic->cb_to_send = nic->cb_to_send->next; 913 } 914 } 915 916err_unlock: 917 spin_unlock_irqrestore(&nic->cb_lock, flags); 918 919 return err; 920} 921 922static int mdio_read(struct net_device *netdev, int addr, int reg) 923{ 924 struct nic *nic = netdev_priv(netdev); 925 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 926} 927 928static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 929{ 930 struct nic *nic = netdev_priv(netdev); 931 932 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 933} 934 935/* the standard mdio_ctrl() function for usual MII-compliant hardware */ 936static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 937{ 938 u32 data_out = 0; 939 unsigned int i; 940 unsigned long flags; 941 942 943 /* 944 * Stratus87247: we shouldn't be writing the MDI control 945 * register until the Ready bit shows True. Also, since 946 * manipulation of the MDI control registers is a multi-step 947 * procedure it should be done under lock. 948 */ 949 spin_lock_irqsave(&nic->mdio_lock, flags); 950 for (i = 100; i; --i) { 951 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 952 break; 953 udelay(20); 954 } 955 if (unlikely(!i)) { 956 printk("e100.mdio_ctrl(%s) won't go Ready\n", 957 nic->netdev->name ); 958 spin_unlock_irqrestore(&nic->mdio_lock, flags); 959 return 0; /* No way to indicate timeout error */ 960 } 961 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 962 963 for (i = 0; i < 100; i++) { 964 udelay(20); 965 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 966 break; 967 } 968 spin_unlock_irqrestore(&nic->mdio_lock, flags); 969 DPRINTK(HW, DEBUG, 970 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 971 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 972 return (u16)data_out; 973} 974 975/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 976static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 977 u32 addr, 978 u32 dir, 979 u32 reg, 980 u16 data) 981{ 982 if ((reg == MII_BMCR) && (dir == mdi_write)) { 983 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 984 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 985 MII_ADVERTISE); 986 987 /* 988 * Workaround Si issue where sometimes the part will not 989 * autoneg to 100Mbps even when advertised. 990 */ 991 if (advert & ADVERTISE_100FULL) 992 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 993 else if (advert & ADVERTISE_100HALF) 994 data |= BMCR_SPEED100; 995 } 996 } 997 return mdio_ctrl_hw(nic, addr, dir, reg, data); 998} 999 1000/* Fully software-emulated mdio_ctrl() function for cards without 1001 * MII-compliant PHYs. 1002 * For now, this is mainly geared towards 80c24 support; in case of further 1003 * requirements for other types (i82503, ...?) either extend this mechanism 1004 * or split it, whichever is cleaner. 1005 */ 1006static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 1007 u32 addr, 1008 u32 dir, 1009 u32 reg, 1010 u16 data) 1011{ 1012 /* might need to allocate a netdev_priv'ed register array eventually 1013 * to be able to record state changes, but for now 1014 * some fully hardcoded register handling ought to be ok I guess. */ 1015 1016 if (dir == mdi_read) { 1017 switch (reg) { 1018 case MII_BMCR: 1019 /* Auto-negotiation, right? */ 1020 return BMCR_ANENABLE | 1021 BMCR_FULLDPLX; 1022 case MII_BMSR: 1023 return BMSR_LSTATUS /* for mii_link_ok() */ | 1024 BMSR_ANEGCAPABLE | 1025 BMSR_10FULL; 1026 case MII_ADVERTISE: 1027 /* 80c24 is a "combo card" PHY, right? */ 1028 return ADVERTISE_10HALF | 1029 ADVERTISE_10FULL; 1030 default: 1031 DPRINTK(HW, DEBUG, 1032 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1033 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); 1034 return 0xFFFF; 1035 } 1036 } else { 1037 switch (reg) { 1038 default: 1039 DPRINTK(HW, DEBUG, 1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1041 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); 1042 return 0xFFFF; 1043 } 1044 } 1045} 1046static inline int e100_phy_supports_mii(struct nic *nic) 1047{ 1048 /* for now, just check it by comparing whether we 1049 are using MII software emulation. 1050 */ 1051 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1052} 1053 1054static void e100_get_defaults(struct nic *nic) 1055{ 1056 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1057 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1058 1059 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1060 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1061 if (nic->mac == mac_unknown) 1062 nic->mac = mac_82557_D100_A; 1063 1064 nic->params.rfds = rfds; 1065 nic->params.cbs = cbs; 1066 1067 /* Quadwords to DMA into FIFO before starting frame transmit */ 1068 nic->tx_threshold = 0xE0; 1069 1070 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1071 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1072 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1073 1074 /* Template for a freshly allocated RFD */ 1075 nic->blank_rfd.command = 0; 1076 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1077 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 1078 1079 /* MII setup */ 1080 nic->mii.phy_id_mask = 0x1F; 1081 nic->mii.reg_num_mask = 0x1F; 1082 nic->mii.dev = nic->netdev; 1083 nic->mii.mdio_read = mdio_read; 1084 nic->mii.mdio_write = mdio_write; 1085} 1086 1087static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1088{ 1089 struct config *config = &cb->u.config; 1090 u8 *c = (u8 *)config; 1091 1092 cb->command = cpu_to_le16(cb_config); 1093 1094 memset(config, 0, sizeof(struct config)); 1095 1096 config->byte_count = 0x16; /* bytes in this struct */ 1097 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1098 config->direct_rx_dma = 0x1; /* reserved */ 1099 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1100 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1101 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1102 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1103 if (e100_phy_supports_mii(nic)) 1104 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1105 config->pad10 = 0x6; 1106 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1107 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1108 config->ifs = 0x6; /* x16 = inter frame spacing */ 1109 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1110 config->pad15_1 = 0x1; 1111 config->pad15_2 = 0x1; 1112 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1113 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1114 config->tx_padding = 0x1; /* 1=pad short frames */ 1115 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1116 config->pad18 = 0x1; 1117 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1118 config->pad20_1 = 0x1F; 1119 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1120 config->pad21_1 = 0x5; 1121 1122 config->adaptive_ifs = nic->adaptive_ifs; 1123 config->loopback = nic->loopback; 1124 1125 if (nic->mii.force_media && nic->mii.full_duplex) 1126 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1127 1128 if (nic->flags & promiscuous || nic->loopback) { 1129 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1130 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1131 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1132 } 1133 1134 if (nic->flags & multicast_all) 1135 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1136 1137 /* disable WoL when up */ 1138 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1139 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1140 1141 if (nic->mac >= mac_82558_D101_A4) { 1142 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1143 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1144 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1145 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1146 if (nic->mac >= mac_82559_D101M) { 1147 config->tno_intr = 0x1; /* TCO stats enable */ 1148 /* Enable TCO in extended config */ 1149 if (nic->mac >= mac_82551_10) { 1150 config->byte_count = 0x20; /* extended bytes */ 1151 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1152 } 1153 } else { 1154 config->standard_stat_counter = 0x0; 1155 } 1156 } 1157 1158 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1159 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1160 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1161 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1162 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1163 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1164} 1165 1166/************************************************************************* 1167* CPUSaver parameters 1168* 1169* All CPUSaver parameters are 16-bit literals that are part of a 1170* "move immediate value" instruction. By changing the value of 1171* the literal in the instruction before the code is loaded, the 1172* driver can change the algorithm. 1173* 1174* INTDELAY - This loads the dead-man timer with its initial value. 1175* When this timer expires the interrupt is asserted, and the 1176* timer is reset each time a new packet is received. (see 1177* BUNDLEMAX below to set the limit on number of chained packets) 1178* The current default is 0x600 or 1536. Experiments show that 1179* the value should probably stay within the 0x200 - 0x1000. 1180* 1181* BUNDLEMAX - 1182* This sets the maximum number of frames that will be bundled. In 1183* some situations, such as the TCP windowing algorithm, it may be 1184* better to limit the growth of the bundle size than let it go as 1185* high as it can, because that could cause too much added latency. 1186* The default is six, because this is the number of packets in the 1187* default TCP window size. A value of 1 would make CPUSaver indicate 1188* an interrupt for every frame received. If you do not want to put 1189* a limit on the bundle size, set this value to xFFFF. 1190* 1191* BUNDLESMALL - 1192* This contains a bit-mask describing the minimum size frame that 1193* will be bundled. The default masks the lower 7 bits, which means 1194* that any frame less than 128 bytes in length will not be bundled, 1195* but will instead immediately generate an interrupt. This does 1196* not affect the current bundle in any way. Any frame that is 128 1197* bytes or large will be bundled normally. This feature is meant 1198* to provide immediate indication of ACK frames in a TCP environment. 1199* Customers were seeing poor performance when a machine with CPUSaver 1200* enabled was sending but not receiving. The delay introduced when 1201* the ACKs were received was enough to reduce total throughput, because 1202* the sender would sit idle until the ACK was finally seen. 1203* 1204* The current default is 0xFF80, which masks out the lower 7 bits. 1205* This means that any frame which is x7F (127) bytes or smaller 1206* will cause an immediate interrupt. Because this value must be a 1207* bit mask, there are only a few valid values that can be used. To 1208* turn this feature off, the driver can write the value xFFFF to the 1209* lower word of this instruction (in the same way that the other 1210* parameters are used). Likewise, a value of 0xF800 (2047) would 1211* cause an interrupt to be generated for every frame, because all 1212* standard Ethernet frames are <= 2047 bytes in length. 1213*************************************************************************/ 1214 1215/* if you wish to disable the ucode functionality, while maintaining the 1216 * workarounds it provides, set the following defines to: 1217 * BUNDLESMALL 0 1218 * BUNDLEMAX 1 1219 * INTDELAY 1 1220 */ 1221#define BUNDLESMALL 1 1222#define BUNDLEMAX (u16)6 1223#define INTDELAY (u16)1536 /* 0x600 */ 1224 1225/* Initialize firmware */ 1226static const struct firmware *e100_request_firmware(struct nic *nic) 1227{ 1228 const char *fw_name; 1229 const struct firmware *fw = nic->fw; 1230 u8 timer, bundle, min_size; 1231 int err = 0; 1232 1233 /* do not load u-code for ICH devices */ 1234 if (nic->flags & ich) 1235 return NULL; 1236 1237 /* Search for ucode match against h/w revision */ 1238 if (nic->mac == mac_82559_D101M) 1239 fw_name = FIRMWARE_D101M; 1240 else if (nic->mac == mac_82559_D101S) 1241 fw_name = FIRMWARE_D101S; 1242 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) 1243 fw_name = FIRMWARE_D102E; 1244 else /* No ucode on other devices */ 1245 return NULL; 1246 1247 /* If the firmware has not previously been loaded, request a pointer 1248 * to it. If it was previously loaded, we are reinitializing the 1249 * adapter, possibly in a resume from hibernate, in which case 1250 * request_firmware() cannot be used. 1251 */ 1252 if (!fw) 1253 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1254 1255 if (err) { 1256 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n", 1257 fw_name, err); 1258 return ERR_PTR(err); 1259 } 1260 1261 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1262 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1263 if (fw->size != UCODE_SIZE * 4 + 3) { 1264 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n", 1265 fw_name, fw->size); 1266 release_firmware(fw); 1267 return ERR_PTR(-EINVAL); 1268 } 1269 1270 /* Read timer, bundle and min_size from end of firmware blob */ 1271 timer = fw->data[UCODE_SIZE * 4]; 1272 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1273 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1274 1275 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1276 min_size >= UCODE_SIZE) { 1277 DPRINTK(PROBE, ERR, 1278 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1279 fw_name, timer, bundle, min_size); 1280 release_firmware(fw); 1281 return ERR_PTR(-EINVAL); 1282 } 1283 1284 /* OK, firmware is validated and ready to use. Save a pointer 1285 * to it in the nic */ 1286 nic->fw = fw; 1287 return fw; 1288} 1289 1290static void e100_setup_ucode(struct nic *nic, struct cb *cb, 1291 struct sk_buff *skb) 1292{ 1293 const struct firmware *fw = (void *)skb; 1294 u8 timer, bundle, min_size; 1295 1296 /* It's not a real skb; we just abused the fact that e100_exec_cb 1297 will pass it through to here... */ 1298 cb->skb = NULL; 1299 1300 /* firmware is stored as little endian already */ 1301 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1302 1303 /* Read timer, bundle and min_size from end of firmware blob */ 1304 timer = fw->data[UCODE_SIZE * 4]; 1305 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1306 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1307 1308 /* Insert user-tunable settings in cb->u.ucode */ 1309 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1310 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1311 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1312 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1313 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1314 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1315 1316 cb->command = cpu_to_le16(cb_ucode | cb_el); 1317} 1318 1319static inline int e100_load_ucode_wait(struct nic *nic) 1320{ 1321 const struct firmware *fw; 1322 int err = 0, counter = 50; 1323 struct cb *cb = nic->cb_to_clean; 1324 1325 fw = e100_request_firmware(nic); 1326 /* If it's NULL, then no ucode is required */ 1327 if (!fw || IS_ERR(fw)) 1328 return PTR_ERR(fw); 1329 1330 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1331 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); 1332 1333 /* must restart cuc */ 1334 nic->cuc_cmd = cuc_start; 1335 1336 /* wait for completion */ 1337 e100_write_flush(nic); 1338 udelay(10); 1339 1340 /* wait for possibly (ouch) 500ms */ 1341 while (!(cb->status & cpu_to_le16(cb_complete))) { 1342 msleep(10); 1343 if (!--counter) break; 1344 } 1345 1346 /* ack any interrupts, something could have been set */ 1347 iowrite8(~0, &nic->csr->scb.stat_ack); 1348 1349 /* if the command failed, or is not OK, notify and return */ 1350 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1351 DPRINTK(PROBE,ERR, "ucode load failed\n"); 1352 err = -EPERM; 1353 } 1354 1355 return err; 1356} 1357 1358static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1359 struct sk_buff *skb) 1360{ 1361 cb->command = cpu_to_le16(cb_iaaddr); 1362 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1363} 1364 1365static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1366{ 1367 cb->command = cpu_to_le16(cb_dump); 1368 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1369 offsetof(struct mem, dump_buf)); 1370} 1371 1372static int e100_phy_check_without_mii(struct nic *nic) 1373{ 1374 u8 phy_type; 1375 int without_mii; 1376 1377 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; 1378 1379 switch (phy_type) { 1380 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1381 case I82503: /* Non-MII PHY; UNTESTED! */ 1382 case S80C24: /* Non-MII PHY; tested and working */ 1383 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1384 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1385 * doesn't have a programming interface of any sort. The 1386 * media is sensed automatically based on how the link partner 1387 * is configured. This is, in essence, manual configuration. 1388 */ 1389 DPRINTK(PROBE, INFO, 1390 "found MII-less i82503 or 80c24 or other PHY\n"); 1391 1392 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1393 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1394 1395 /* these might be needed for certain MII-less cards... 1396 * nic->flags |= ich; 1397 * nic->flags |= ich_10h_workaround; */ 1398 1399 without_mii = 1; 1400 break; 1401 default: 1402 without_mii = 0; 1403 break; 1404 } 1405 return without_mii; 1406} 1407 1408#define NCONFIG_AUTO_SWITCH 0x0080 1409#define MII_NSC_CONG MII_RESV1 1410#define NSC_CONG_ENABLE 0x0100 1411#define NSC_CONG_TXREADY 0x0400 1412#define ADVERTISE_FC_SUPPORTED 0x0400 1413static int e100_phy_init(struct nic *nic) 1414{ 1415 struct net_device *netdev = nic->netdev; 1416 u32 addr; 1417 u16 bmcr, stat, id_lo, id_hi, cong; 1418 1419 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1420 for (addr = 0; addr < 32; addr++) { 1421 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1422 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1423 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1424 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1425 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1426 break; 1427 } 1428 if (addr == 32) { 1429 /* uhoh, no PHY detected: check whether we seem to be some 1430 * weird, rare variant which is *known* to not have any MII. 1431 * But do this AFTER MII checking only, since this does 1432 * lookup of EEPROM values which may easily be unreliable. */ 1433 if (e100_phy_check_without_mii(nic)) 1434 return 0; /* simply return and hope for the best */ 1435 else { 1436 /* for unknown cases log a fatal error */ 1437 DPRINTK(HW, ERR, 1438 "Failed to locate any known PHY, aborting.\n"); 1439 return -EAGAIN; 1440 } 1441 } else 1442 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1443 1444 /* Get phy ID */ 1445 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1446 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1447 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1448 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1449 1450 /* Select the phy and isolate the rest */ 1451 for (addr = 0; addr < 32; addr++) { 1452 if (addr != nic->mii.phy_id) { 1453 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1454 } else if (nic->phy != phy_82552_v) { 1455 bmcr = mdio_read(netdev, addr, MII_BMCR); 1456 mdio_write(netdev, addr, MII_BMCR, 1457 bmcr & ~BMCR_ISOLATE); 1458 } 1459 } 1460 /* 1461 * Workaround for 82552: 1462 * Clear the ISOLATE bit on selected phy_id last (mirrored on all 1463 * other phy_id's) using bmcr value from addr discovery loop above. 1464 */ 1465 if (nic->phy == phy_82552_v) 1466 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, 1467 bmcr & ~BMCR_ISOLATE); 1468 1469 /* Handle National tx phys */ 1470#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1471 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1472 /* Disable congestion control */ 1473 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1474 cong |= NSC_CONG_TXREADY; 1475 cong &= ~NSC_CONG_ENABLE; 1476 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1477 } 1478 1479 if (nic->phy == phy_82552_v) { 1480 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1481 1482 /* assign special tweaked mdio_ctrl() function */ 1483 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1484 1485 /* Workaround Si not advertising flow-control during autoneg */ 1486 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1487 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1488 1489 /* Reset for the above changes to take effect */ 1490 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1491 bmcr |= BMCR_RESET; 1492 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1493 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1494 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1495 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1496 /* enable/disable MDI/MDI-X auto-switching. */ 1497 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1498 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1499 } 1500 1501 return 0; 1502} 1503 1504static int e100_hw_init(struct nic *nic) 1505{ 1506 int err; 1507 1508 e100_hw_reset(nic); 1509 1510 DPRINTK(HW, ERR, "e100_hw_init\n"); 1511 if (!in_interrupt() && (err = e100_self_test(nic))) 1512 return err; 1513 1514 if ((err = e100_phy_init(nic))) 1515 return err; 1516 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1517 return err; 1518 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1519 return err; 1520 if ((err = e100_load_ucode_wait(nic))) 1521 return err; 1522 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1523 return err; 1524 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1525 return err; 1526 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1527 nic->dma_addr + offsetof(struct mem, stats)))) 1528 return err; 1529 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1530 return err; 1531 1532 e100_disable_irq(nic); 1533 1534 return 0; 1535} 1536 1537static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1538{ 1539 struct net_device *netdev = nic->netdev; 1540 struct dev_mc_list *list = netdev->mc_list; 1541 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1542 1543 cb->command = cpu_to_le16(cb_multi); 1544 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1545 for (i = 0; list && i < count; i++, list = list->next) 1546 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1547 ETH_ALEN); 1548} 1549 1550static void e100_set_multicast_list(struct net_device *netdev) 1551{ 1552 struct nic *nic = netdev_priv(netdev); 1553 1554 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1555 netdev->mc_count, netdev->flags); 1556 1557 if (netdev->flags & IFF_PROMISC) 1558 nic->flags |= promiscuous; 1559 else 1560 nic->flags &= ~promiscuous; 1561 1562 if (netdev->flags & IFF_ALLMULTI || 1563 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1564 nic->flags |= multicast_all; 1565 else 1566 nic->flags &= ~multicast_all; 1567 1568 e100_exec_cb(nic, NULL, e100_configure); 1569 e100_exec_cb(nic, NULL, e100_multi); 1570} 1571 1572static void e100_update_stats(struct nic *nic) 1573{ 1574 struct net_device *dev = nic->netdev; 1575 struct net_device_stats *ns = &dev->stats; 1576 struct stats *s = &nic->mem->stats; 1577 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1578 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1579 &s->complete; 1580 1581 /* Device's stats reporting may take several microseconds to 1582 * complete, so we're always waiting for results of the 1583 * previous command. */ 1584 1585 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1586 *complete = 0; 1587 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1588 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1589 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1590 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1591 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1592 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1593 ns->collisions += nic->tx_collisions; 1594 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1595 le32_to_cpu(s->tx_lost_crs); 1596 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1597 nic->rx_over_length_errors; 1598 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1599 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1600 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1601 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1602 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1603 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1604 le32_to_cpu(s->rx_alignment_errors) + 1605 le32_to_cpu(s->rx_short_frame_errors) + 1606 le32_to_cpu(s->rx_cdt_errors); 1607 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1608 nic->tx_single_collisions += 1609 le32_to_cpu(s->tx_single_collisions); 1610 nic->tx_multiple_collisions += 1611 le32_to_cpu(s->tx_multiple_collisions); 1612 if (nic->mac >= mac_82558_D101_A4) { 1613 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1614 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1615 nic->rx_fc_unsupported += 1616 le32_to_cpu(s->fc_rcv_unsupported); 1617 if (nic->mac >= mac_82559_D101M) { 1618 nic->tx_tco_frames += 1619 le16_to_cpu(s->xmt_tco_frames); 1620 nic->rx_tco_frames += 1621 le16_to_cpu(s->rcv_tco_frames); 1622 } 1623 } 1624 } 1625 1626 1627 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1628 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1629} 1630 1631static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1632{ 1633 /* Adjust inter-frame-spacing (IFS) between two transmits if 1634 * we're getting collisions on a half-duplex connection. */ 1635 1636 if (duplex == DUPLEX_HALF) { 1637 u32 prev = nic->adaptive_ifs; 1638 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1639 1640 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1641 (nic->tx_frames > min_frames)) { 1642 if (nic->adaptive_ifs < 60) 1643 nic->adaptive_ifs += 5; 1644 } else if (nic->tx_frames < min_frames) { 1645 if (nic->adaptive_ifs >= 5) 1646 nic->adaptive_ifs -= 5; 1647 } 1648 if (nic->adaptive_ifs != prev) 1649 e100_exec_cb(nic, NULL, e100_configure); 1650 } 1651} 1652 1653static void e100_watchdog(unsigned long data) 1654{ 1655 struct nic *nic = (struct nic *)data; 1656 struct ethtool_cmd cmd; 1657 1658 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1659 1660 /* mii library handles link maintenance tasks */ 1661 1662 mii_ethtool_gset(&nic->mii, &cmd); 1663 1664 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1665 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n", 1666 nic->netdev->name, 1667 cmd.speed == SPEED_100 ? "100" : "10", 1668 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1669 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1670 printk(KERN_INFO "e100: %s NIC Link is Down\n", 1671 nic->netdev->name); 1672 } 1673 1674 mii_check_link(&nic->mii); 1675 1676 /* Software generated interrupt to recover from (rare) Rx 1677 * allocation failure. 1678 * Unfortunately have to use a spinlock to not re-enable interrupts 1679 * accidentally, due to hardware that shares a register between the 1680 * interrupt mask bit and the SW Interrupt generation bit */ 1681 spin_lock_irq(&nic->cmd_lock); 1682 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1683 e100_write_flush(nic); 1684 spin_unlock_irq(&nic->cmd_lock); 1685 1686 e100_update_stats(nic); 1687 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1688 1689 if (nic->mac <= mac_82557_D100_C) 1690 /* Issue a multicast command to workaround a 557 lock up */ 1691 e100_set_multicast_list(nic->netdev); 1692 1693 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1694 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1695 nic->flags |= ich_10h_workaround; 1696 else 1697 nic->flags &= ~ich_10h_workaround; 1698 1699 mod_timer(&nic->watchdog, 1700 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1701} 1702 1703static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1704 struct sk_buff *skb) 1705{ 1706 cb->command = nic->tx_command; 1707 /* interrupt every 16 packets regardless of delay */ 1708 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1709 cb->command |= cpu_to_le16(cb_i); 1710 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1711 cb->u.tcb.tcb_byte_count = 0; 1712 cb->u.tcb.threshold = nic->tx_threshold; 1713 cb->u.tcb.tbd_count = 1; 1714 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1715 skb->data, skb->len, PCI_DMA_TODEVICE)); 1716 /* check for mapping failure? */ 1717 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1718} 1719 1720static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, 1721 struct net_device *netdev) 1722{ 1723 struct nic *nic = netdev_priv(netdev); 1724 int err; 1725 1726 if (nic->flags & ich_10h_workaround) { 1727 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1728 Issue a NOP command followed by a 1us delay before 1729 issuing the Tx command. */ 1730 if (e100_exec_cmd(nic, cuc_nop, 0)) 1731 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1732 udelay(1); 1733 } 1734 1735 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1736 1737 switch (err) { 1738 case -ENOSPC: 1739 /* We queued the skb, but now we're out of space. */ 1740 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1741 netif_stop_queue(netdev); 1742 break; 1743 case -ENOMEM: 1744 /* This is a hard error - log it. */ 1745 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1746 netif_stop_queue(netdev); 1747 return NETDEV_TX_BUSY; 1748 } 1749 1750 netdev->trans_start = jiffies; 1751 return NETDEV_TX_OK; 1752} 1753 1754static int e100_tx_clean(struct nic *nic) 1755{ 1756 struct net_device *dev = nic->netdev; 1757 struct cb *cb; 1758 int tx_cleaned = 0; 1759 1760 spin_lock(&nic->cb_lock); 1761 1762 /* Clean CBs marked complete */ 1763 for (cb = nic->cb_to_clean; 1764 cb->status & cpu_to_le16(cb_complete); 1765 cb = nic->cb_to_clean = cb->next) { 1766 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", 1767 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1768 cb->status); 1769 1770 if (likely(cb->skb != NULL)) { 1771 dev->stats.tx_packets++; 1772 dev->stats.tx_bytes += cb->skb->len; 1773 1774 pci_unmap_single(nic->pdev, 1775 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1776 le16_to_cpu(cb->u.tcb.tbd.size), 1777 PCI_DMA_TODEVICE); 1778 dev_kfree_skb_any(cb->skb); 1779 cb->skb = NULL; 1780 tx_cleaned = 1; 1781 } 1782 cb->status = 0; 1783 nic->cbs_avail++; 1784 } 1785 1786 spin_unlock(&nic->cb_lock); 1787 1788 /* Recover from running out of Tx resources in xmit_frame */ 1789 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1790 netif_wake_queue(nic->netdev); 1791 1792 return tx_cleaned; 1793} 1794 1795static void e100_clean_cbs(struct nic *nic) 1796{ 1797 if (nic->cbs) { 1798 while (nic->cbs_avail != nic->params.cbs.count) { 1799 struct cb *cb = nic->cb_to_clean; 1800 if (cb->skb) { 1801 pci_unmap_single(nic->pdev, 1802 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1803 le16_to_cpu(cb->u.tcb.tbd.size), 1804 PCI_DMA_TODEVICE); 1805 dev_kfree_skb(cb->skb); 1806 } 1807 nic->cb_to_clean = nic->cb_to_clean->next; 1808 nic->cbs_avail++; 1809 } 1810 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); 1811 nic->cbs = NULL; 1812 nic->cbs_avail = 0; 1813 } 1814 nic->cuc_cmd = cuc_start; 1815 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1816 nic->cbs; 1817} 1818 1819static int e100_alloc_cbs(struct nic *nic) 1820{ 1821 struct cb *cb; 1822 unsigned int i, count = nic->params.cbs.count; 1823 1824 nic->cuc_cmd = cuc_start; 1825 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1826 nic->cbs_avail = 0; 1827 1828 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, 1829 &nic->cbs_dma_addr); 1830 if (!nic->cbs) 1831 return -ENOMEM; 1832 memset(nic->cbs, 0, count * sizeof(struct cb)); 1833 1834 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1835 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1836 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1837 1838 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1839 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1840 ((i+1) % count) * sizeof(struct cb)); 1841 } 1842 1843 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1844 nic->cbs_avail = count; 1845 1846 return 0; 1847} 1848 1849static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1850{ 1851 if (!nic->rxs) return; 1852 if (RU_SUSPENDED != nic->ru_running) return; 1853 1854 /* handle init time starts */ 1855 if (!rx) rx = nic->rxs; 1856 1857 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1858 if (rx->skb) { 1859 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1860 nic->ru_running = RU_RUNNING; 1861 } 1862} 1863 1864#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1865static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1866{ 1867 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) 1868 return -ENOMEM; 1869 1870 /* Init, and map the RFD. */ 1871 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1872 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1873 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1874 1875 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1876 dev_kfree_skb_any(rx->skb); 1877 rx->skb = NULL; 1878 rx->dma_addr = 0; 1879 return -ENOMEM; 1880 } 1881 1882 /* Link the RFD to end of RFA by linking previous RFD to 1883 * this one. We are safe to touch the previous RFD because 1884 * it is protected by the before last buffer's el bit being set */ 1885 if (rx->prev->skb) { 1886 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1887 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1888 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1889 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1890 } 1891 1892 return 0; 1893} 1894 1895static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1896 unsigned int *work_done, unsigned int work_to_do) 1897{ 1898 struct net_device *dev = nic->netdev; 1899 struct sk_buff *skb = rx->skb; 1900 struct rfd *rfd = (struct rfd *)skb->data; 1901 u16 rfd_status, actual_size; 1902 1903 if (unlikely(work_done && *work_done >= work_to_do)) 1904 return -EAGAIN; 1905 1906 /* Need to sync before taking a peek at cb_complete bit */ 1907 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1908 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1909 rfd_status = le16_to_cpu(rfd->status); 1910 1911 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1912 1913 /* If data isn't ready, nothing to indicate */ 1914 if (unlikely(!(rfd_status & cb_complete))) { 1915 /* If the next buffer has the el bit, but we think the receiver 1916 * is still running, check to see if it really stopped while 1917 * we had interrupts off. 1918 * This allows for a fast restart without re-enabling 1919 * interrupts */ 1920 if ((le16_to_cpu(rfd->command) & cb_el) && 1921 (RU_RUNNING == nic->ru_running)) 1922 1923 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1924 nic->ru_running = RU_SUSPENDED; 1925 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 1926 sizeof(struct rfd), 1927 PCI_DMA_FROMDEVICE); 1928 return -ENODATA; 1929 } 1930 1931 /* Get actual data size */ 1932 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1933 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1934 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1935 1936 /* Get data */ 1937 pci_unmap_single(nic->pdev, rx->dma_addr, 1938 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1939 1940 /* If this buffer has the el bit, but we think the receiver 1941 * is still running, check to see if it really stopped while 1942 * we had interrupts off. 1943 * This allows for a fast restart without re-enabling interrupts. 1944 * This can happen when the RU sees the size change but also sees 1945 * the el bit set. */ 1946 if ((le16_to_cpu(rfd->command) & cb_el) && 1947 (RU_RUNNING == nic->ru_running)) { 1948 1949 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1950 nic->ru_running = RU_SUSPENDED; 1951 } 1952 1953 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1954 skb_reserve(skb, sizeof(struct rfd)); 1955 skb_put(skb, actual_size); 1956 skb->protocol = eth_type_trans(skb, nic->netdev); 1957 1958 if (unlikely(!(rfd_status & cb_ok))) { 1959 /* Don't indicate if hardware indicates errors */ 1960 dev_kfree_skb_any(skb); 1961 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1962 /* Don't indicate oversized frames */ 1963 nic->rx_over_length_errors++; 1964 dev_kfree_skb_any(skb); 1965 } else { 1966 dev->stats.rx_packets++; 1967 dev->stats.rx_bytes += actual_size; 1968 netif_receive_skb(skb); 1969 if (work_done) 1970 (*work_done)++; 1971 } 1972 1973 rx->skb = NULL; 1974 1975 return 0; 1976} 1977 1978static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1979 unsigned int work_to_do) 1980{ 1981 struct rx *rx; 1982 int restart_required = 0, err = 0; 1983 struct rx *old_before_last_rx, *new_before_last_rx; 1984 struct rfd *old_before_last_rfd, *new_before_last_rfd; 1985 1986 /* Indicate newly arrived packets */ 1987 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1988 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1989 /* Hit quota or no more to clean */ 1990 if (-EAGAIN == err || -ENODATA == err) 1991 break; 1992 } 1993 1994 1995 /* On EAGAIN, hit quota so have more work to do, restart once 1996 * cleanup is complete. 1997 * Else, are we already rnr? then pay attention!!! this ensures that 1998 * the state machine progression never allows a start with a 1999 * partially cleaned list, avoiding a race between hardware 2000 * and rx_to_clean when in NAPI mode */ 2001 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 2002 restart_required = 1; 2003 2004 old_before_last_rx = nic->rx_to_use->prev->prev; 2005 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 2006 2007 /* Alloc new skbs to refill list */ 2008 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 2009 if (unlikely(e100_rx_alloc_skb(nic, rx))) 2010 break; /* Better luck next time (see watchdog) */ 2011 } 2012 2013 new_before_last_rx = nic->rx_to_use->prev->prev; 2014 if (new_before_last_rx != old_before_last_rx) { 2015 /* Set the el-bit on the buffer that is before the last buffer. 2016 * This lets us update the next pointer on the last buffer 2017 * without worrying about hardware touching it. 2018 * We set the size to 0 to prevent hardware from touching this 2019 * buffer. 2020 * When the hardware hits the before last buffer with el-bit 2021 * and size of 0, it will RNR interrupt, the RUS will go into 2022 * the No Resources state. It will not complete nor write to 2023 * this buffer. */ 2024 new_before_last_rfd = 2025 (struct rfd *)new_before_last_rx->skb->data; 2026 new_before_last_rfd->size = 0; 2027 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2028 pci_dma_sync_single_for_device(nic->pdev, 2029 new_before_last_rx->dma_addr, sizeof(struct rfd), 2030 PCI_DMA_BIDIRECTIONAL); 2031 2032 /* Now that we have a new stopping point, we can clear the old 2033 * stopping point. We must sync twice to get the proper 2034 * ordering on the hardware side of things. */ 2035 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2036 pci_dma_sync_single_for_device(nic->pdev, 2037 old_before_last_rx->dma_addr, sizeof(struct rfd), 2038 PCI_DMA_BIDIRECTIONAL); 2039 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 2040 pci_dma_sync_single_for_device(nic->pdev, 2041 old_before_last_rx->dma_addr, sizeof(struct rfd), 2042 PCI_DMA_BIDIRECTIONAL); 2043 } 2044 2045 if (restart_required) { 2046 // ack the rnr? 2047 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2048 e100_start_receiver(nic, nic->rx_to_clean); 2049 if (work_done) 2050 (*work_done)++; 2051 } 2052} 2053 2054static void e100_rx_clean_list(struct nic *nic) 2055{ 2056 struct rx *rx; 2057 unsigned int i, count = nic->params.rfds.count; 2058 2059 nic->ru_running = RU_UNINITIALIZED; 2060 2061 if (nic->rxs) { 2062 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2063 if (rx->skb) { 2064 pci_unmap_single(nic->pdev, rx->dma_addr, 2065 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2066 dev_kfree_skb(rx->skb); 2067 } 2068 } 2069 kfree(nic->rxs); 2070 nic->rxs = NULL; 2071 } 2072 2073 nic->rx_to_use = nic->rx_to_clean = NULL; 2074} 2075 2076static int e100_rx_alloc_list(struct nic *nic) 2077{ 2078 struct rx *rx; 2079 unsigned int i, count = nic->params.rfds.count; 2080 struct rfd *before_last; 2081 2082 nic->rx_to_use = nic->rx_to_clean = NULL; 2083 nic->ru_running = RU_UNINITIALIZED; 2084 2085 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2086 return -ENOMEM; 2087 2088 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2089 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2090 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2091 if (e100_rx_alloc_skb(nic, rx)) { 2092 e100_rx_clean_list(nic); 2093 return -ENOMEM; 2094 } 2095 } 2096 /* Set the el-bit on the buffer that is before the last buffer. 2097 * This lets us update the next pointer on the last buffer without 2098 * worrying about hardware touching it. 2099 * We set the size to 0 to prevent hardware from touching this buffer. 2100 * When the hardware hits the before last buffer with el-bit and size 2101 * of 0, it will RNR interrupt, the RU will go into the No Resources 2102 * state. It will not complete nor write to this buffer. */ 2103 rx = nic->rxs->prev->prev; 2104 before_last = (struct rfd *)rx->skb->data; 2105 before_last->command |= cpu_to_le16(cb_el); 2106 before_last->size = 0; 2107 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2108 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 2109 2110 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2111 nic->ru_running = RU_SUSPENDED; 2112 2113 return 0; 2114} 2115 2116static irqreturn_t e100_intr(int irq, void *dev_id) 2117{ 2118 struct net_device *netdev = dev_id; 2119 struct nic *nic = netdev_priv(netdev); 2120 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2121 2122 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 2123 2124 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2125 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2126 return IRQ_NONE; 2127 2128 /* Ack interrupt(s) */ 2129 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2130 2131 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2132 if (stat_ack & stat_ack_rnr) 2133 nic->ru_running = RU_SUSPENDED; 2134 2135 if (likely(napi_schedule_prep(&nic->napi))) { 2136 e100_disable_irq(nic); 2137 __napi_schedule(&nic->napi); 2138 } 2139 2140 return IRQ_HANDLED; 2141} 2142 2143static int e100_poll(struct napi_struct *napi, int budget) 2144{ 2145 struct nic *nic = container_of(napi, struct nic, napi); 2146 unsigned int work_done = 0; 2147 2148 e100_rx_clean(nic, &work_done, budget); 2149 e100_tx_clean(nic); 2150 2151 /* If budget not fully consumed, exit the polling mode */ 2152 if (work_done < budget) { 2153 napi_complete(napi); 2154 e100_enable_irq(nic); 2155 } 2156 2157 return work_done; 2158} 2159 2160#ifdef CONFIG_NET_POLL_CONTROLLER 2161static void e100_netpoll(struct net_device *netdev) 2162{ 2163 struct nic *nic = netdev_priv(netdev); 2164 2165 e100_disable_irq(nic); 2166 e100_intr(nic->pdev->irq, netdev); 2167 e100_tx_clean(nic); 2168 e100_enable_irq(nic); 2169} 2170#endif 2171 2172static int e100_set_mac_address(struct net_device *netdev, void *p) 2173{ 2174 struct nic *nic = netdev_priv(netdev); 2175 struct sockaddr *addr = p; 2176 2177 if (!is_valid_ether_addr(addr->sa_data)) 2178 return -EADDRNOTAVAIL; 2179 2180 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2181 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2182 2183 return 0; 2184} 2185 2186static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2187{ 2188 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2189 return -EINVAL; 2190 netdev->mtu = new_mtu; 2191 return 0; 2192} 2193 2194static int e100_asf(struct nic *nic) 2195{ 2196 /* ASF can be enabled from eeprom */ 2197 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2198 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2199 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2200 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 2201} 2202 2203static int e100_up(struct nic *nic) 2204{ 2205 int err; 2206 2207 if ((err = e100_rx_alloc_list(nic))) 2208 return err; 2209 if ((err = e100_alloc_cbs(nic))) 2210 goto err_rx_clean_list; 2211 if ((err = e100_hw_init(nic))) 2212 goto err_clean_cbs; 2213 e100_set_multicast_list(nic->netdev); 2214 e100_start_receiver(nic, NULL); 2215 mod_timer(&nic->watchdog, jiffies); 2216 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2217 nic->netdev->name, nic->netdev))) 2218 goto err_no_irq; 2219 netif_wake_queue(nic->netdev); 2220 napi_enable(&nic->napi); 2221 /* enable ints _after_ enabling poll, preventing a race between 2222 * disable ints+schedule */ 2223 e100_enable_irq(nic); 2224 return 0; 2225 2226err_no_irq: 2227 del_timer_sync(&nic->watchdog); 2228err_clean_cbs: 2229 e100_clean_cbs(nic); 2230err_rx_clean_list: 2231 e100_rx_clean_list(nic); 2232 return err; 2233} 2234 2235static void e100_down(struct nic *nic) 2236{ 2237 /* wait here for poll to complete */ 2238 napi_disable(&nic->napi); 2239 netif_stop_queue(nic->netdev); 2240 e100_hw_reset(nic); 2241 free_irq(nic->pdev->irq, nic->netdev); 2242 del_timer_sync(&nic->watchdog); 2243 netif_carrier_off(nic->netdev); 2244 e100_clean_cbs(nic); 2245 e100_rx_clean_list(nic); 2246} 2247 2248static void e100_tx_timeout(struct net_device *netdev) 2249{ 2250 struct nic *nic = netdev_priv(netdev); 2251 2252 /* Reset outside of interrupt context, to avoid request_irq 2253 * in interrupt context */ 2254 schedule_work(&nic->tx_timeout_task); 2255} 2256 2257static void e100_tx_timeout_task(struct work_struct *work) 2258{ 2259 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2260 struct net_device *netdev = nic->netdev; 2261 2262 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2263 ioread8(&nic->csr->scb.status)); 2264 e100_down(netdev_priv(netdev)); 2265 e100_up(netdev_priv(netdev)); 2266} 2267 2268static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2269{ 2270 int err; 2271 struct sk_buff *skb; 2272 2273 /* Use driver resources to perform internal MAC or PHY 2274 * loopback test. A single packet is prepared and transmitted 2275 * in loopback mode, and the test passes if the received 2276 * packet compares byte-for-byte to the transmitted packet. */ 2277 2278 if ((err = e100_rx_alloc_list(nic))) 2279 return err; 2280 if ((err = e100_alloc_cbs(nic))) 2281 goto err_clean_rx; 2282 2283 /* ICH PHY loopback is broken so do MAC loopback instead */ 2284 if (nic->flags & ich && loopback_mode == lb_phy) 2285 loopback_mode = lb_mac; 2286 2287 nic->loopback = loopback_mode; 2288 if ((err = e100_hw_init(nic))) 2289 goto err_loopback_none; 2290 2291 if (loopback_mode == lb_phy) 2292 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2293 BMCR_LOOPBACK); 2294 2295 e100_start_receiver(nic, NULL); 2296 2297 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2298 err = -ENOMEM; 2299 goto err_loopback_none; 2300 } 2301 skb_put(skb, ETH_DATA_LEN); 2302 memset(skb->data, 0xFF, ETH_DATA_LEN); 2303 e100_xmit_frame(skb, nic->netdev); 2304 2305 msleep(10); 2306 2307 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2308 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2309 2310 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2311 skb->data, ETH_DATA_LEN)) 2312 err = -EAGAIN; 2313 2314err_loopback_none: 2315 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2316 nic->loopback = lb_none; 2317 e100_clean_cbs(nic); 2318 e100_hw_reset(nic); 2319err_clean_rx: 2320 e100_rx_clean_list(nic); 2321 return err; 2322} 2323 2324#define MII_LED_CONTROL 0x1B 2325#define E100_82552_LED_OVERRIDE 0x19 2326#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2327#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2328static void e100_blink_led(unsigned long data) 2329{ 2330 struct nic *nic = (struct nic *)data; 2331 enum led_state { 2332 led_on = 0x01, 2333 led_off = 0x04, 2334 led_on_559 = 0x05, 2335 led_on_557 = 0x07, 2336 }; 2337 u16 led_reg = MII_LED_CONTROL; 2338 2339 if (nic->phy == phy_82552_v) { 2340 led_reg = E100_82552_LED_OVERRIDE; 2341 2342 nic->leds = (nic->leds == E100_82552_LED_ON) ? 2343 E100_82552_LED_OFF : E100_82552_LED_ON; 2344 } else { 2345 nic->leds = (nic->leds & led_on) ? led_off : 2346 (nic->mac < mac_82559_D101M) ? led_on_557 : 2347 led_on_559; 2348 } 2349 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); 2350 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2351} 2352 2353static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2354{ 2355 struct nic *nic = netdev_priv(netdev); 2356 return mii_ethtool_gset(&nic->mii, cmd); 2357} 2358 2359static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2360{ 2361 struct nic *nic = netdev_priv(netdev); 2362 int err; 2363 2364 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2365 err = mii_ethtool_sset(&nic->mii, cmd); 2366 e100_exec_cb(nic, NULL, e100_configure); 2367 2368 return err; 2369} 2370 2371static void e100_get_drvinfo(struct net_device *netdev, 2372 struct ethtool_drvinfo *info) 2373{ 2374 struct nic *nic = netdev_priv(netdev); 2375 strcpy(info->driver, DRV_NAME); 2376 strcpy(info->version, DRV_VERSION); 2377 strcpy(info->fw_version, "N/A"); 2378 strcpy(info->bus_info, pci_name(nic->pdev)); 2379} 2380 2381#define E100_PHY_REGS 0x1C 2382static int e100_get_regs_len(struct net_device *netdev) 2383{ 2384 struct nic *nic = netdev_priv(netdev); 2385 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2386} 2387 2388static void e100_get_regs(struct net_device *netdev, 2389 struct ethtool_regs *regs, void *p) 2390{ 2391 struct nic *nic = netdev_priv(netdev); 2392 u32 *buff = p; 2393 int i; 2394 2395 regs->version = (1 << 24) | nic->pdev->revision; 2396 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2397 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2398 ioread16(&nic->csr->scb.status); 2399 for (i = E100_PHY_REGS; i >= 0; i--) 2400 buff[1 + E100_PHY_REGS - i] = 2401 mdio_read(netdev, nic->mii.phy_id, i); 2402 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2403 e100_exec_cb(nic, NULL, e100_dump); 2404 msleep(10); 2405 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2406 sizeof(nic->mem->dump_buf)); 2407} 2408 2409static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2410{ 2411 struct nic *nic = netdev_priv(netdev); 2412 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2413 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2414} 2415 2416static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2417{ 2418 struct nic *nic = netdev_priv(netdev); 2419 2420 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2421 !device_can_wakeup(&nic->pdev->dev)) 2422 return -EOPNOTSUPP; 2423 2424 if (wol->wolopts) 2425 nic->flags |= wol_magic; 2426 else 2427 nic->flags &= ~wol_magic; 2428 2429 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2430 2431 e100_exec_cb(nic, NULL, e100_configure); 2432 2433 return 0; 2434} 2435 2436static u32 e100_get_msglevel(struct net_device *netdev) 2437{ 2438 struct nic *nic = netdev_priv(netdev); 2439 return nic->msg_enable; 2440} 2441 2442static void e100_set_msglevel(struct net_device *netdev, u32 value) 2443{ 2444 struct nic *nic = netdev_priv(netdev); 2445 nic->msg_enable = value; 2446} 2447 2448static int e100_nway_reset(struct net_device *netdev) 2449{ 2450 struct nic *nic = netdev_priv(netdev); 2451 return mii_nway_restart(&nic->mii); 2452} 2453 2454static u32 e100_get_link(struct net_device *netdev) 2455{ 2456 struct nic *nic = netdev_priv(netdev); 2457 return mii_link_ok(&nic->mii); 2458} 2459 2460static int e100_get_eeprom_len(struct net_device *netdev) 2461{ 2462 struct nic *nic = netdev_priv(netdev); 2463 return nic->eeprom_wc << 1; 2464} 2465 2466#define E100_EEPROM_MAGIC 0x1234 2467static int e100_get_eeprom(struct net_device *netdev, 2468 struct ethtool_eeprom *eeprom, u8 *bytes) 2469{ 2470 struct nic *nic = netdev_priv(netdev); 2471 2472 eeprom->magic = E100_EEPROM_MAGIC; 2473 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2474 2475 return 0; 2476} 2477 2478static int e100_set_eeprom(struct net_device *netdev, 2479 struct ethtool_eeprom *eeprom, u8 *bytes) 2480{ 2481 struct nic *nic = netdev_priv(netdev); 2482 2483 if (eeprom->magic != E100_EEPROM_MAGIC) 2484 return -EINVAL; 2485 2486 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2487 2488 return e100_eeprom_save(nic, eeprom->offset >> 1, 2489 (eeprom->len >> 1) + 1); 2490} 2491 2492static void e100_get_ringparam(struct net_device *netdev, 2493 struct ethtool_ringparam *ring) 2494{ 2495 struct nic *nic = netdev_priv(netdev); 2496 struct param_range *rfds = &nic->params.rfds; 2497 struct param_range *cbs = &nic->params.cbs; 2498 2499 ring->rx_max_pending = rfds->max; 2500 ring->tx_max_pending = cbs->max; 2501 ring->rx_mini_max_pending = 0; 2502 ring->rx_jumbo_max_pending = 0; 2503 ring->rx_pending = rfds->count; 2504 ring->tx_pending = cbs->count; 2505 ring->rx_mini_pending = 0; 2506 ring->rx_jumbo_pending = 0; 2507} 2508 2509static int e100_set_ringparam(struct net_device *netdev, 2510 struct ethtool_ringparam *ring) 2511{ 2512 struct nic *nic = netdev_priv(netdev); 2513 struct param_range *rfds = &nic->params.rfds; 2514 struct param_range *cbs = &nic->params.cbs; 2515 2516 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2517 return -EINVAL; 2518 2519 if (netif_running(netdev)) 2520 e100_down(nic); 2521 rfds->count = max(ring->rx_pending, rfds->min); 2522 rfds->count = min(rfds->count, rfds->max); 2523 cbs->count = max(ring->tx_pending, cbs->min); 2524 cbs->count = min(cbs->count, cbs->max); 2525 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2526 rfds->count, cbs->count); 2527 if (netif_running(netdev)) 2528 e100_up(nic); 2529 2530 return 0; 2531} 2532 2533static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2534 "Link test (on/offline)", 2535 "Eeprom test (on/offline)", 2536 "Self test (offline)", 2537 "Mac loopback (offline)", 2538 "Phy loopback (offline)", 2539}; 2540#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2541 2542static void e100_diag_test(struct net_device *netdev, 2543 struct ethtool_test *test, u64 *data) 2544{ 2545 struct ethtool_cmd cmd; 2546 struct nic *nic = netdev_priv(netdev); 2547 int i, err; 2548 2549 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2550 data[0] = !mii_link_ok(&nic->mii); 2551 data[1] = e100_eeprom_load(nic); 2552 if (test->flags & ETH_TEST_FL_OFFLINE) { 2553 2554 /* save speed, duplex & autoneg settings */ 2555 err = mii_ethtool_gset(&nic->mii, &cmd); 2556 2557 if (netif_running(netdev)) 2558 e100_down(nic); 2559 data[2] = e100_self_test(nic); 2560 data[3] = e100_loopback_test(nic, lb_mac); 2561 data[4] = e100_loopback_test(nic, lb_phy); 2562 2563 /* restore speed, duplex & autoneg settings */ 2564 err = mii_ethtool_sset(&nic->mii, &cmd); 2565 2566 if (netif_running(netdev)) 2567 e100_up(nic); 2568 } 2569 for (i = 0; i < E100_TEST_LEN; i++) 2570 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2571 2572 msleep_interruptible(4 * 1000); 2573} 2574 2575static int e100_phys_id(struct net_device *netdev, u32 data) 2576{ 2577 struct nic *nic = netdev_priv(netdev); 2578 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2579 MII_LED_CONTROL; 2580 2581 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2582 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2583 mod_timer(&nic->blink_timer, jiffies); 2584 msleep_interruptible(data * 1000); 2585 del_timer_sync(&nic->blink_timer); 2586 mdio_write(netdev, nic->mii.phy_id, led_reg, 0); 2587 2588 return 0; 2589} 2590 2591static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2592 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2593 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2594 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2595 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2596 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2597 "tx_heartbeat_errors", "tx_window_errors", 2598 /* device-specific stats */ 2599 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2600 "tx_flow_control_pause", "rx_flow_control_pause", 2601 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2602}; 2603#define E100_NET_STATS_LEN 21 2604#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2605 2606static int e100_get_sset_count(struct net_device *netdev, int sset) 2607{ 2608 switch (sset) { 2609 case ETH_SS_TEST: 2610 return E100_TEST_LEN; 2611 case ETH_SS_STATS: 2612 return E100_STATS_LEN; 2613 default: 2614 return -EOPNOTSUPP; 2615 } 2616} 2617 2618static void e100_get_ethtool_stats(struct net_device *netdev, 2619 struct ethtool_stats *stats, u64 *data) 2620{ 2621 struct nic *nic = netdev_priv(netdev); 2622 int i; 2623 2624 for (i = 0; i < E100_NET_STATS_LEN; i++) 2625 data[i] = ((unsigned long *)&netdev->stats)[i]; 2626 2627 data[i++] = nic->tx_deferred; 2628 data[i++] = nic->tx_single_collisions; 2629 data[i++] = nic->tx_multiple_collisions; 2630 data[i++] = nic->tx_fc_pause; 2631 data[i++] = nic->rx_fc_pause; 2632 data[i++] = nic->rx_fc_unsupported; 2633 data[i++] = nic->tx_tco_frames; 2634 data[i++] = nic->rx_tco_frames; 2635} 2636 2637static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2638{ 2639 switch (stringset) { 2640 case ETH_SS_TEST: 2641 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2642 break; 2643 case ETH_SS_STATS: 2644 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2645 break; 2646 } 2647} 2648 2649static const struct ethtool_ops e100_ethtool_ops = { 2650 .get_settings = e100_get_settings, 2651 .set_settings = e100_set_settings, 2652 .get_drvinfo = e100_get_drvinfo, 2653 .get_regs_len = e100_get_regs_len, 2654 .get_regs = e100_get_regs, 2655 .get_wol = e100_get_wol, 2656 .set_wol = e100_set_wol, 2657 .get_msglevel = e100_get_msglevel, 2658 .set_msglevel = e100_set_msglevel, 2659 .nway_reset = e100_nway_reset, 2660 .get_link = e100_get_link, 2661 .get_eeprom_len = e100_get_eeprom_len, 2662 .get_eeprom = e100_get_eeprom, 2663 .set_eeprom = e100_set_eeprom, 2664 .get_ringparam = e100_get_ringparam, 2665 .set_ringparam = e100_set_ringparam, 2666 .self_test = e100_diag_test, 2667 .get_strings = e100_get_strings, 2668 .phys_id = e100_phys_id, 2669 .get_ethtool_stats = e100_get_ethtool_stats, 2670 .get_sset_count = e100_get_sset_count, 2671}; 2672 2673static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2674{ 2675 struct nic *nic = netdev_priv(netdev); 2676 2677 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2678} 2679 2680static int e100_alloc(struct nic *nic) 2681{ 2682 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2683 &nic->dma_addr); 2684 return nic->mem ? 0 : -ENOMEM; 2685} 2686 2687static void e100_free(struct nic *nic) 2688{ 2689 if (nic->mem) { 2690 pci_free_consistent(nic->pdev, sizeof(struct mem), 2691 nic->mem, nic->dma_addr); 2692 nic->mem = NULL; 2693 } 2694} 2695 2696static int e100_open(struct net_device *netdev) 2697{ 2698 struct nic *nic = netdev_priv(netdev); 2699 int err = 0; 2700 2701 netif_carrier_off(netdev); 2702 if ((err = e100_up(nic))) 2703 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2704 return err; 2705} 2706 2707static int e100_close(struct net_device *netdev) 2708{ 2709 e100_down(netdev_priv(netdev)); 2710 return 0; 2711} 2712 2713static const struct net_device_ops e100_netdev_ops = { 2714 .ndo_open = e100_open, 2715 .ndo_stop = e100_close, 2716 .ndo_start_xmit = e100_xmit_frame, 2717 .ndo_validate_addr = eth_validate_addr, 2718 .ndo_set_multicast_list = e100_set_multicast_list, 2719 .ndo_set_mac_address = e100_set_mac_address, 2720 .ndo_change_mtu = e100_change_mtu, 2721 .ndo_do_ioctl = e100_do_ioctl, 2722 .ndo_tx_timeout = e100_tx_timeout, 2723#ifdef CONFIG_NET_POLL_CONTROLLER 2724 .ndo_poll_controller = e100_netpoll, 2725#endif 2726}; 2727 2728static int __devinit e100_probe(struct pci_dev *pdev, 2729 const struct pci_device_id *ent) 2730{ 2731 struct net_device *netdev; 2732 struct nic *nic; 2733 int err; 2734 2735 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2736 if (((1 << debug) - 1) & NETIF_MSG_PROBE) 2737 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2738 return -ENOMEM; 2739 } 2740 2741 netdev->netdev_ops = &e100_netdev_ops; 2742 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2743 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2744 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2745 2746 nic = netdev_priv(netdev); 2747 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2748 nic->netdev = netdev; 2749 nic->pdev = pdev; 2750 nic->msg_enable = (1 << debug) - 1; 2751 nic->mdio_ctrl = mdio_ctrl_hw; 2752 pci_set_drvdata(pdev, netdev); 2753 2754 if ((err = pci_enable_device(pdev))) { 2755 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2756 goto err_out_free_dev; 2757 } 2758 2759 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2760 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2761 "base address, aborting.\n"); 2762 err = -ENODEV; 2763 goto err_out_disable_pdev; 2764 } 2765 2766 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2767 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2768 goto err_out_disable_pdev; 2769 } 2770 2771 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 2772 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2773 goto err_out_free_res; 2774 } 2775 2776 SET_NETDEV_DEV(netdev, &pdev->dev); 2777 2778 if (use_io) 2779 DPRINTK(PROBE, INFO, "using i/o access mode\n"); 2780 2781 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2782 if (!nic->csr) { 2783 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2784 err = -ENOMEM; 2785 goto err_out_free_res; 2786 } 2787 2788 if (ent->driver_data) 2789 nic->flags |= ich; 2790 else 2791 nic->flags &= ~ich; 2792 2793 e100_get_defaults(nic); 2794 2795 /* locks must be initialized before calling hw_reset */ 2796 spin_lock_init(&nic->cb_lock); 2797 spin_lock_init(&nic->cmd_lock); 2798 spin_lock_init(&nic->mdio_lock); 2799 2800 /* Reset the device before pci_set_master() in case device is in some 2801 * funky state and has an interrupt pending - hint: we don't have the 2802 * interrupt handler registered yet. */ 2803 e100_hw_reset(nic); 2804 2805 pci_set_master(pdev); 2806 2807 init_timer(&nic->watchdog); 2808 nic->watchdog.function = e100_watchdog; 2809 nic->watchdog.data = (unsigned long)nic; 2810 init_timer(&nic->blink_timer); 2811 nic->blink_timer.function = e100_blink_led; 2812 nic->blink_timer.data = (unsigned long)nic; 2813 2814 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2815 2816 if ((err = e100_alloc(nic))) { 2817 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2818 goto err_out_iounmap; 2819 } 2820 2821 if ((err = e100_eeprom_load(nic))) 2822 goto err_out_free; 2823 2824 e100_phy_init(nic); 2825 2826 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2827 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2828 if (!is_valid_ether_addr(netdev->perm_addr)) { 2829 if (!eeprom_bad_csum_allow) { 2830 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2831 "EEPROM, aborting.\n"); 2832 err = -EAGAIN; 2833 goto err_out_free; 2834 } else { 2835 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " 2836 "you MUST configure one.\n"); 2837 } 2838 } 2839 2840 /* Wol magic packet can be enabled from eeprom */ 2841 if ((nic->mac >= mac_82558_D101_A4) && 2842 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { 2843 nic->flags |= wol_magic; 2844 device_set_wakeup_enable(&pdev->dev, true); 2845 } 2846 2847 /* ack any pending wake events, disable PME */ 2848 pci_pme_active(pdev, false); 2849 2850 strcpy(netdev->name, "eth%d"); 2851 if ((err = register_netdev(netdev))) { 2852 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2853 goto err_out_free; 2854 } 2855 nic->cbs_pool = pci_pool_create(netdev->name, 2856 nic->pdev, 2857 nic->params.cbs.count * sizeof(struct cb), 2858 sizeof(u32), 2859 0); 2860 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n", 2861 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2862 pdev->irq, netdev->dev_addr); 2863 2864 return 0; 2865 2866err_out_free: 2867 e100_free(nic); 2868err_out_iounmap: 2869 pci_iounmap(pdev, nic->csr); 2870err_out_free_res: 2871 pci_release_regions(pdev); 2872err_out_disable_pdev: 2873 pci_disable_device(pdev); 2874err_out_free_dev: 2875 pci_set_drvdata(pdev, NULL); 2876 free_netdev(netdev); 2877 return err; 2878} 2879 2880static void __devexit e100_remove(struct pci_dev *pdev) 2881{ 2882 struct net_device *netdev = pci_get_drvdata(pdev); 2883 2884 if (netdev) { 2885 struct nic *nic = netdev_priv(netdev); 2886 unregister_netdev(netdev); 2887 e100_free(nic); 2888 pci_iounmap(pdev, nic->csr); 2889 pci_pool_destroy(nic->cbs_pool); 2890 free_netdev(netdev); 2891 pci_release_regions(pdev); 2892 pci_disable_device(pdev); 2893 pci_set_drvdata(pdev, NULL); 2894 } 2895} 2896 2897#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 2898#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 2899#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 2900static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 2901{ 2902 struct net_device *netdev = pci_get_drvdata(pdev); 2903 struct nic *nic = netdev_priv(netdev); 2904 2905 if (netif_running(netdev)) 2906 e100_down(nic); 2907 netif_device_detach(netdev); 2908 2909 pci_save_state(pdev); 2910 2911 if ((nic->flags & wol_magic) | e100_asf(nic)) { 2912 /* enable reverse auto-negotiation */ 2913 if (nic->phy == phy_82552_v) { 2914 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 2915 E100_82552_SMARTSPEED); 2916 2917 mdio_write(netdev, nic->mii.phy_id, 2918 E100_82552_SMARTSPEED, smartspeed | 2919 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 2920 } 2921 *enable_wake = true; 2922 } else { 2923 *enable_wake = false; 2924 } 2925 2926 pci_disable_device(pdev); 2927} 2928 2929static int __e100_power_off(struct pci_dev *pdev, bool wake) 2930{ 2931 if (wake) 2932 return pci_prepare_to_sleep(pdev); 2933 2934 pci_wake_from_d3(pdev, false); 2935 pci_set_power_state(pdev, PCI_D3hot); 2936 2937 return 0; 2938} 2939 2940#ifdef CONFIG_PM 2941static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2942{ 2943 bool wake; 2944 __e100_shutdown(pdev, &wake); 2945 return __e100_power_off(pdev, wake); 2946} 2947 2948static int e100_resume(struct pci_dev *pdev) 2949{ 2950 struct net_device *netdev = pci_get_drvdata(pdev); 2951 struct nic *nic = netdev_priv(netdev); 2952 2953 pci_set_power_state(pdev, PCI_D0); 2954 pci_restore_state(pdev); 2955 /* ack any pending wake events, disable PME */ 2956 pci_enable_wake(pdev, 0, 0); 2957 2958 /* disable reverse auto-negotiation */ 2959 if (nic->phy == phy_82552_v) { 2960 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 2961 E100_82552_SMARTSPEED); 2962 2963 mdio_write(netdev, nic->mii.phy_id, 2964 E100_82552_SMARTSPEED, 2965 smartspeed & ~(E100_82552_REV_ANEG)); 2966 } 2967 2968 netif_device_attach(netdev); 2969 if (netif_running(netdev)) 2970 e100_up(nic); 2971 2972 return 0; 2973} 2974#endif /* CONFIG_PM */ 2975 2976static void e100_shutdown(struct pci_dev *pdev) 2977{ 2978 bool wake; 2979 __e100_shutdown(pdev, &wake); 2980 if (system_state == SYSTEM_POWER_OFF) 2981 __e100_power_off(pdev, wake); 2982} 2983 2984/* ------------------ PCI Error Recovery infrastructure -------------- */ 2985/** 2986 * e100_io_error_detected - called when PCI error is detected. 2987 * @pdev: Pointer to PCI device 2988 * @state: The current pci connection state 2989 */ 2990static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2991{ 2992 struct net_device *netdev = pci_get_drvdata(pdev); 2993 struct nic *nic = netdev_priv(netdev); 2994 2995 netif_device_detach(netdev); 2996 2997 if (state == pci_channel_io_perm_failure) 2998 return PCI_ERS_RESULT_DISCONNECT; 2999 3000 if (netif_running(netdev)) 3001 e100_down(nic); 3002 pci_disable_device(pdev); 3003 3004 /* Request a slot reset. */ 3005 return PCI_ERS_RESULT_NEED_RESET; 3006} 3007 3008/** 3009 * e100_io_slot_reset - called after the pci bus has been reset. 3010 * @pdev: Pointer to PCI device 3011 * 3012 * Restart the card from scratch. 3013 */ 3014static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 3015{ 3016 struct net_device *netdev = pci_get_drvdata(pdev); 3017 struct nic *nic = netdev_priv(netdev); 3018 3019 if (pci_enable_device(pdev)) { 3020 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); 3021 return PCI_ERS_RESULT_DISCONNECT; 3022 } 3023 pci_set_master(pdev); 3024 3025 /* Only one device per card can do a reset */ 3026 if (0 != PCI_FUNC(pdev->devfn)) 3027 return PCI_ERS_RESULT_RECOVERED; 3028 e100_hw_reset(nic); 3029 e100_phy_init(nic); 3030 3031 return PCI_ERS_RESULT_RECOVERED; 3032} 3033 3034/** 3035 * e100_io_resume - resume normal operations 3036 * @pdev: Pointer to PCI device 3037 * 3038 * Resume normal operations after an error recovery 3039 * sequence has been completed. 3040 */ 3041static void e100_io_resume(struct pci_dev *pdev) 3042{ 3043 struct net_device *netdev = pci_get_drvdata(pdev); 3044 struct nic *nic = netdev_priv(netdev); 3045 3046 /* ack any pending wake events, disable PME */ 3047 pci_enable_wake(pdev, 0, 0); 3048 3049 netif_device_attach(netdev); 3050 if (netif_running(netdev)) { 3051 e100_open(netdev); 3052 mod_timer(&nic->watchdog, jiffies); 3053 } 3054} 3055 3056static struct pci_error_handlers e100_err_handler = { 3057 .error_detected = e100_io_error_detected, 3058 .slot_reset = e100_io_slot_reset, 3059 .resume = e100_io_resume, 3060}; 3061 3062static struct pci_driver e100_driver = { 3063 .name = DRV_NAME, 3064 .id_table = e100_id_table, 3065 .probe = e100_probe, 3066 .remove = __devexit_p(e100_remove), 3067#ifdef CONFIG_PM 3068 /* Power Management hooks */ 3069 .suspend = e100_suspend, 3070 .resume = e100_resume, 3071#endif 3072 .shutdown = e100_shutdown, 3073 .err_handler = &e100_err_handler, 3074}; 3075 3076static int __init e100_init_module(void) 3077{ 3078 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3079 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 3080 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 3081 } 3082 return pci_register_driver(&e100_driver); 3083} 3084 3085static void __exit e100_cleanup_module(void) 3086{ 3087 pci_unregister_driver(&e100_driver); 3088} 3089 3090module_init(e100_init_module); 3091module_exit(e100_cleanup_module);