at v2.6.33-rc2 1697 lines 43 kB view raw
1/* 2 * Network device driver for the BMAC ethernet controller on 3 * Apple Powermacs. Assumes it's under a DBDMA controller. 4 * 5 * Copyright (C) 1998 Randy Gobbel. 6 * 7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to 8 * dynamic procfs inode. 9 */ 10#include <linux/module.h> 11#include <linux/kernel.h> 12#include <linux/netdevice.h> 13#include <linux/etherdevice.h> 14#include <linux/delay.h> 15#include <linux/string.h> 16#include <linux/timer.h> 17#include <linux/proc_fs.h> 18#include <linux/init.h> 19#include <linux/spinlock.h> 20#include <linux/crc32.h> 21#include <linux/bitrev.h> 22#include <linux/ethtool.h> 23#include <asm/prom.h> 24#include <asm/dbdma.h> 25#include <asm/io.h> 26#include <asm/page.h> 27#include <asm/pgtable.h> 28#include <asm/machdep.h> 29#include <asm/pmac_feature.h> 30#include <asm/macio.h> 31#include <asm/irq.h> 32 33#include "bmac.h" 34 35#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1)))) 36#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1))) 37 38/* 39 * CRC polynomial - used in working out multicast filter bits. 40 */ 41#define ENET_CRCPOLY 0x04c11db7 42 43/* switch to use multicast code lifted from sunhme driver */ 44#define SUNHME_MULTICAST 45 46#define N_RX_RING 64 47#define N_TX_RING 32 48#define MAX_TX_ACTIVE 1 49#define ETHERCRC 4 50#define ETHERMINPACKET 64 51#define ETHERMTU 1500 52#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2) 53#define TX_TIMEOUT HZ /* 1 second */ 54 55/* Bits in transmit DMA status */ 56#define TX_DMA_ERR 0x80 57 58#define XXDEBUG(args) 59 60struct bmac_data { 61 /* volatile struct bmac *bmac; */ 62 struct sk_buff_head *queue; 63 volatile struct dbdma_regs __iomem *tx_dma; 64 int tx_dma_intr; 65 volatile struct dbdma_regs __iomem *rx_dma; 66 int rx_dma_intr; 67 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ 68 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ 69 struct macio_dev *mdev; 70 int is_bmac_plus; 71 struct sk_buff *rx_bufs[N_RX_RING]; 72 int rx_fill; 73 int rx_empty; 74 struct sk_buff *tx_bufs[N_TX_RING]; 75 int tx_fill; 76 int tx_empty; 77 unsigned char tx_fullup; 78 struct timer_list tx_timeout; 79 int timeout_active; 80 int sleeping; 81 int opened; 82 unsigned short hash_use_count[64]; 83 unsigned short hash_table_mask[4]; 84 spinlock_t lock; 85}; 86 87#if 0 /* Move that to ethtool */ 88 89typedef struct bmac_reg_entry { 90 char *name; 91 unsigned short reg_offset; 92} bmac_reg_entry_t; 93 94#define N_REG_ENTRIES 31 95 96static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = { 97 {"MEMADD", MEMADD}, 98 {"MEMDATAHI", MEMDATAHI}, 99 {"MEMDATALO", MEMDATALO}, 100 {"TXPNTR", TXPNTR}, 101 {"RXPNTR", RXPNTR}, 102 {"IPG1", IPG1}, 103 {"IPG2", IPG2}, 104 {"ALIMIT", ALIMIT}, 105 {"SLOT", SLOT}, 106 {"PALEN", PALEN}, 107 {"PAPAT", PAPAT}, 108 {"TXSFD", TXSFD}, 109 {"JAM", JAM}, 110 {"TXCFG", TXCFG}, 111 {"TXMAX", TXMAX}, 112 {"TXMIN", TXMIN}, 113 {"PAREG", PAREG}, 114 {"DCNT", DCNT}, 115 {"NCCNT", NCCNT}, 116 {"NTCNT", NTCNT}, 117 {"EXCNT", EXCNT}, 118 {"LTCNT", LTCNT}, 119 {"TXSM", TXSM}, 120 {"RXCFG", RXCFG}, 121 {"RXMAX", RXMAX}, 122 {"RXMIN", RXMIN}, 123 {"FRCNT", FRCNT}, 124 {"AECNT", AECNT}, 125 {"FECNT", FECNT}, 126 {"RXSM", RXSM}, 127 {"RXCV", RXCV} 128}; 129 130#endif 131 132static unsigned char *bmac_emergency_rxbuf; 133 134/* 135 * Number of bytes of private data per BMAC: allow enough for 136 * the rx and tx dma commands plus a branch dma command each, 137 * and another 16 bytes to allow us to align the dma command 138 * buffers on a 16 byte boundary. 139 */ 140#define PRIV_BYTES (sizeof(struct bmac_data) \ 141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \ 142 + sizeof(struct sk_buff_head)) 143 144static int bmac_open(struct net_device *dev); 145static int bmac_close(struct net_device *dev); 146static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev); 147static void bmac_set_multicast(struct net_device *dev); 148static void bmac_reset_and_enable(struct net_device *dev); 149static void bmac_start_chip(struct net_device *dev); 150static void bmac_init_chip(struct net_device *dev); 151static void bmac_init_registers(struct net_device *dev); 152static void bmac_enable_and_reset_chip(struct net_device *dev); 153static int bmac_set_address(struct net_device *dev, void *addr); 154static irqreturn_t bmac_misc_intr(int irq, void *dev_id); 155static irqreturn_t bmac_txdma_intr(int irq, void *dev_id); 156static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id); 157static void bmac_set_timeout(struct net_device *dev); 158static void bmac_tx_timeout(unsigned long data); 159static int bmac_output(struct sk_buff *skb, struct net_device *dev); 160static void bmac_start(struct net_device *dev); 161 162#define DBDMA_SET(x) ( ((x) | (x) << 16) ) 163#define DBDMA_CLEAR(x) ( (x) << 16) 164 165static inline void 166dbdma_st32(volatile __u32 __iomem *a, unsigned long x) 167{ 168 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory"); 169 return; 170} 171 172static inline unsigned long 173dbdma_ld32(volatile __u32 __iomem *a) 174{ 175 __u32 swap; 176 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a)); 177 return swap; 178} 179 180static void 181dbdma_continue(volatile struct dbdma_regs __iomem *dmap) 182{ 183 dbdma_st32(&dmap->control, 184 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD)); 185 eieio(); 186} 187 188static void 189dbdma_reset(volatile struct dbdma_regs __iomem *dmap) 190{ 191 dbdma_st32(&dmap->control, 192 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN)); 193 eieio(); 194 while (dbdma_ld32(&dmap->status) & RUN) 195 eieio(); 196} 197 198static void 199dbdma_setcmd(volatile struct dbdma_cmd *cp, 200 unsigned short cmd, unsigned count, unsigned long addr, 201 unsigned long cmd_dep) 202{ 203 out_le16(&cp->command, cmd); 204 out_le16(&cp->req_count, count); 205 out_le32(&cp->phy_addr, addr); 206 out_le32(&cp->cmd_dep, cmd_dep); 207 out_le16(&cp->xfer_status, 0); 208 out_le16(&cp->res_count, 0); 209} 210 211static inline 212void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data ) 213{ 214 out_le16((void __iomem *)dev->base_addr + reg_offset, data); 215} 216 217 218static inline 219unsigned short bmread(struct net_device *dev, unsigned long reg_offset ) 220{ 221 return in_le16((void __iomem *)dev->base_addr + reg_offset); 222} 223 224static void 225bmac_enable_and_reset_chip(struct net_device *dev) 226{ 227 struct bmac_data *bp = netdev_priv(dev); 228 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 229 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 230 231 if (rd) 232 dbdma_reset(rd); 233 if (td) 234 dbdma_reset(td); 235 236 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1); 237} 238 239#define MIFDELAY udelay(10) 240 241static unsigned int 242bmac_mif_readbits(struct net_device *dev, int nb) 243{ 244 unsigned int val = 0; 245 246 while (--nb >= 0) { 247 bmwrite(dev, MIFCSR, 0); 248 MIFDELAY; 249 if (bmread(dev, MIFCSR) & 8) 250 val |= 1 << nb; 251 bmwrite(dev, MIFCSR, 1); 252 MIFDELAY; 253 } 254 bmwrite(dev, MIFCSR, 0); 255 MIFDELAY; 256 bmwrite(dev, MIFCSR, 1); 257 MIFDELAY; 258 return val; 259} 260 261static void 262bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb) 263{ 264 int b; 265 266 while (--nb >= 0) { 267 b = (val & (1 << nb))? 6: 4; 268 bmwrite(dev, MIFCSR, b); 269 MIFDELAY; 270 bmwrite(dev, MIFCSR, b|1); 271 MIFDELAY; 272 } 273} 274 275static unsigned int 276bmac_mif_read(struct net_device *dev, unsigned int addr) 277{ 278 unsigned int val; 279 280 bmwrite(dev, MIFCSR, 4); 281 MIFDELAY; 282 bmac_mif_writebits(dev, ~0U, 32); 283 bmac_mif_writebits(dev, 6, 4); 284 bmac_mif_writebits(dev, addr, 10); 285 bmwrite(dev, MIFCSR, 2); 286 MIFDELAY; 287 bmwrite(dev, MIFCSR, 1); 288 MIFDELAY; 289 val = bmac_mif_readbits(dev, 17); 290 bmwrite(dev, MIFCSR, 4); 291 MIFDELAY; 292 return val; 293} 294 295static void 296bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val) 297{ 298 bmwrite(dev, MIFCSR, 4); 299 MIFDELAY; 300 bmac_mif_writebits(dev, ~0U, 32); 301 bmac_mif_writebits(dev, 5, 4); 302 bmac_mif_writebits(dev, addr, 10); 303 bmac_mif_writebits(dev, 2, 2); 304 bmac_mif_writebits(dev, val, 16); 305 bmac_mif_writebits(dev, 3, 2); 306} 307 308static void 309bmac_init_registers(struct net_device *dev) 310{ 311 struct bmac_data *bp = netdev_priv(dev); 312 volatile unsigned short regValue; 313 unsigned short *pWord16; 314 int i; 315 316 /* XXDEBUG(("bmac: enter init_registers\n")); */ 317 318 bmwrite(dev, RXRST, RxResetValue); 319 bmwrite(dev, TXRST, TxResetBit); 320 321 i = 100; 322 do { 323 --i; 324 udelay(10000); 325 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */ 326 } while ((regValue & TxResetBit) && i > 0); 327 328 if (!bp->is_bmac_plus) { 329 regValue = bmread(dev, XCVRIF); 330 regValue |= ClkBit | SerialMode | COLActiveLow; 331 bmwrite(dev, XCVRIF, regValue); 332 udelay(10000); 333 } 334 335 bmwrite(dev, RSEED, (unsigned short)0x1968); 336 337 regValue = bmread(dev, XIFC); 338 regValue |= TxOutputEnable; 339 bmwrite(dev, XIFC, regValue); 340 341 bmread(dev, PAREG); 342 343 /* set collision counters to 0 */ 344 bmwrite(dev, NCCNT, 0); 345 bmwrite(dev, NTCNT, 0); 346 bmwrite(dev, EXCNT, 0); 347 bmwrite(dev, LTCNT, 0); 348 349 /* set rx counters to 0 */ 350 bmwrite(dev, FRCNT, 0); 351 bmwrite(dev, LECNT, 0); 352 bmwrite(dev, AECNT, 0); 353 bmwrite(dev, FECNT, 0); 354 bmwrite(dev, RXCV, 0); 355 356 /* set tx fifo information */ 357 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */ 358 359 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */ 360 bmwrite(dev, TXFIFOCSR, TxFIFOEnable ); 361 362 /* set rx fifo information */ 363 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ 364 bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); 365 366 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */ 367 bmread(dev, STATUS); /* read it just to clear it */ 368 369 /* zero out the chip Hash Filter registers */ 370 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; 371 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ 372 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ 373 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ 374 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ 375 376 pWord16 = (unsigned short *)dev->dev_addr; 377 bmwrite(dev, MADD0, *pWord16++); 378 bmwrite(dev, MADD1, *pWord16++); 379 bmwrite(dev, MADD2, *pWord16); 380 381 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets); 382 383 bmwrite(dev, INTDISABLE, EnableNormal); 384 385 return; 386} 387 388#if 0 389static void 390bmac_disable_interrupts(struct net_device *dev) 391{ 392 bmwrite(dev, INTDISABLE, DisableAll); 393} 394 395static void 396bmac_enable_interrupts(struct net_device *dev) 397{ 398 bmwrite(dev, INTDISABLE, EnableNormal); 399} 400#endif 401 402 403static void 404bmac_start_chip(struct net_device *dev) 405{ 406 struct bmac_data *bp = netdev_priv(dev); 407 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 408 unsigned short oldConfig; 409 410 /* enable rx dma channel */ 411 dbdma_continue(rd); 412 413 oldConfig = bmread(dev, TXCFG); 414 bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); 415 416 /* turn on rx plus any other bits already on (promiscuous possibly) */ 417 oldConfig = bmread(dev, RXCFG); 418 bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); 419 udelay(20000); 420} 421 422static void 423bmac_init_phy(struct net_device *dev) 424{ 425 unsigned int addr; 426 struct bmac_data *bp = netdev_priv(dev); 427 428 printk(KERN_DEBUG "phy registers:"); 429 for (addr = 0; addr < 32; ++addr) { 430 if ((addr & 7) == 0) 431 printk(KERN_DEBUG); 432 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr)); 433 } 434 printk(KERN_CONT "\n"); 435 436 if (bp->is_bmac_plus) { 437 unsigned int capable, ctrl; 438 439 ctrl = bmac_mif_read(dev, 0); 440 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1; 441 if (bmac_mif_read(dev, 4) != capable || 442 (ctrl & 0x1000) == 0) { 443 bmac_mif_write(dev, 4, capable); 444 bmac_mif_write(dev, 0, 0x1200); 445 } else 446 bmac_mif_write(dev, 0, 0x1000); 447 } 448} 449 450static void bmac_init_chip(struct net_device *dev) 451{ 452 bmac_init_phy(dev); 453 bmac_init_registers(dev); 454} 455 456#ifdef CONFIG_PM 457static int bmac_suspend(struct macio_dev *mdev, pm_message_t state) 458{ 459 struct net_device* dev = macio_get_drvdata(mdev); 460 struct bmac_data *bp = netdev_priv(dev); 461 unsigned long flags; 462 unsigned short config; 463 int i; 464 465 netif_device_detach(dev); 466 /* prolly should wait for dma to finish & turn off the chip */ 467 spin_lock_irqsave(&bp->lock, flags); 468 if (bp->timeout_active) { 469 del_timer(&bp->tx_timeout); 470 bp->timeout_active = 0; 471 } 472 disable_irq(dev->irq); 473 disable_irq(bp->tx_dma_intr); 474 disable_irq(bp->rx_dma_intr); 475 bp->sleeping = 1; 476 spin_unlock_irqrestore(&bp->lock, flags); 477 if (bp->opened) { 478 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 479 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 480 481 config = bmread(dev, RXCFG); 482 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 483 config = bmread(dev, TXCFG); 484 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 485 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ 486 /* disable rx and tx dma */ 487 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 488 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 489 /* free some skb's */ 490 for (i=0; i<N_RX_RING; i++) { 491 if (bp->rx_bufs[i] != NULL) { 492 dev_kfree_skb(bp->rx_bufs[i]); 493 bp->rx_bufs[i] = NULL; 494 } 495 } 496 for (i = 0; i<N_TX_RING; i++) { 497 if (bp->tx_bufs[i] != NULL) { 498 dev_kfree_skb(bp->tx_bufs[i]); 499 bp->tx_bufs[i] = NULL; 500 } 501 } 502 } 503 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 504 return 0; 505} 506 507static int bmac_resume(struct macio_dev *mdev) 508{ 509 struct net_device* dev = macio_get_drvdata(mdev); 510 struct bmac_data *bp = netdev_priv(dev); 511 512 /* see if this is enough */ 513 if (bp->opened) 514 bmac_reset_and_enable(dev); 515 516 enable_irq(dev->irq); 517 enable_irq(bp->tx_dma_intr); 518 enable_irq(bp->rx_dma_intr); 519 netif_device_attach(dev); 520 521 return 0; 522} 523#endif /* CONFIG_PM */ 524 525static int bmac_set_address(struct net_device *dev, void *addr) 526{ 527 struct bmac_data *bp = netdev_priv(dev); 528 unsigned char *p = addr; 529 unsigned short *pWord16; 530 unsigned long flags; 531 int i; 532 533 XXDEBUG(("bmac: enter set_address\n")); 534 spin_lock_irqsave(&bp->lock, flags); 535 536 for (i = 0; i < 6; ++i) { 537 dev->dev_addr[i] = p[i]; 538 } 539 /* load up the hardware address */ 540 pWord16 = (unsigned short *)dev->dev_addr; 541 bmwrite(dev, MADD0, *pWord16++); 542 bmwrite(dev, MADD1, *pWord16++); 543 bmwrite(dev, MADD2, *pWord16); 544 545 spin_unlock_irqrestore(&bp->lock, flags); 546 XXDEBUG(("bmac: exit set_address\n")); 547 return 0; 548} 549 550static inline void bmac_set_timeout(struct net_device *dev) 551{ 552 struct bmac_data *bp = netdev_priv(dev); 553 unsigned long flags; 554 555 spin_lock_irqsave(&bp->lock, flags); 556 if (bp->timeout_active) 557 del_timer(&bp->tx_timeout); 558 bp->tx_timeout.expires = jiffies + TX_TIMEOUT; 559 bp->tx_timeout.function = bmac_tx_timeout; 560 bp->tx_timeout.data = (unsigned long) dev; 561 add_timer(&bp->tx_timeout); 562 bp->timeout_active = 1; 563 spin_unlock_irqrestore(&bp->lock, flags); 564} 565 566static void 567bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp) 568{ 569 void *vaddr; 570 unsigned long baddr; 571 unsigned long len; 572 573 len = skb->len; 574 vaddr = skb->data; 575 baddr = virt_to_bus(vaddr); 576 577 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0); 578} 579 580static void 581bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp) 582{ 583 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf; 584 585 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN, 586 virt_to_bus(addr), 0); 587} 588 589static void 590bmac_init_tx_ring(struct bmac_data *bp) 591{ 592 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 593 594 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd)); 595 596 bp->tx_empty = 0; 597 bp->tx_fill = 0; 598 bp->tx_fullup = 0; 599 600 /* put a branch at the end of the tx command list */ 601 dbdma_setcmd(&bp->tx_cmds[N_TX_RING], 602 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds)); 603 604 /* reset tx dma */ 605 dbdma_reset(td); 606 out_le32(&td->wait_sel, 0x00200020); 607 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds)); 608} 609 610static int 611bmac_init_rx_ring(struct bmac_data *bp) 612{ 613 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 614 int i; 615 struct sk_buff *skb; 616 617 /* initialize list of sk_buffs for receiving and set up recv dma */ 618 memset((char *)bp->rx_cmds, 0, 619 (N_RX_RING + 1) * sizeof(struct dbdma_cmd)); 620 for (i = 0; i < N_RX_RING; i++) { 621 if ((skb = bp->rx_bufs[i]) == NULL) { 622 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); 623 if (skb != NULL) 624 skb_reserve(skb, 2); 625 } 626 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); 627 } 628 629 bp->rx_empty = 0; 630 bp->rx_fill = i; 631 632 /* Put a branch back to the beginning of the receive command list */ 633 dbdma_setcmd(&bp->rx_cmds[N_RX_RING], 634 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds)); 635 636 /* start rx dma */ 637 dbdma_reset(rd); 638 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds)); 639 640 return 1; 641} 642 643 644static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev) 645{ 646 struct bmac_data *bp = netdev_priv(dev); 647 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 648 int i; 649 650 /* see if there's a free slot in the tx ring */ 651 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */ 652 /* bp->tx_empty, bp->tx_fill)); */ 653 i = bp->tx_fill + 1; 654 if (i >= N_TX_RING) 655 i = 0; 656 if (i == bp->tx_empty) { 657 netif_stop_queue(dev); 658 bp->tx_fullup = 1; 659 XXDEBUG(("bmac_transmit_packet: tx ring full\n")); 660 return -1; /* can't take it at the moment */ 661 } 662 663 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0); 664 665 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]); 666 667 bp->tx_bufs[bp->tx_fill] = skb; 668 bp->tx_fill = i; 669 670 dev->stats.tx_bytes += skb->len; 671 672 dbdma_continue(td); 673 674 return 0; 675} 676 677static int rxintcount; 678 679static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id) 680{ 681 struct net_device *dev = (struct net_device *) dev_id; 682 struct bmac_data *bp = netdev_priv(dev); 683 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 684 volatile struct dbdma_cmd *cp; 685 int i, nb, stat; 686 struct sk_buff *skb; 687 unsigned int residual; 688 int last; 689 unsigned long flags; 690 691 spin_lock_irqsave(&bp->lock, flags); 692 693 if (++rxintcount < 10) { 694 XXDEBUG(("bmac_rxdma_intr\n")); 695 } 696 697 last = -1; 698 i = bp->rx_empty; 699 700 while (1) { 701 cp = &bp->rx_cmds[i]; 702 stat = ld_le16(&cp->xfer_status); 703 residual = ld_le16(&cp->res_count); 704 if ((stat & ACTIVE) == 0) 705 break; 706 nb = RX_BUFLEN - residual - 2; 707 if (nb < (ETHERMINPACKET - ETHERCRC)) { 708 skb = NULL; 709 dev->stats.rx_length_errors++; 710 dev->stats.rx_errors++; 711 } else { 712 skb = bp->rx_bufs[i]; 713 bp->rx_bufs[i] = NULL; 714 } 715 if (skb != NULL) { 716 nb -= ETHERCRC; 717 skb_put(skb, nb); 718 skb->protocol = eth_type_trans(skb, dev); 719 netif_rx(skb); 720 ++dev->stats.rx_packets; 721 dev->stats.rx_bytes += nb; 722 } else { 723 ++dev->stats.rx_dropped; 724 } 725 if ((skb = bp->rx_bufs[i]) == NULL) { 726 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); 727 if (skb != NULL) 728 skb_reserve(bp->rx_bufs[i], 2); 729 } 730 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); 731 st_le16(&cp->res_count, 0); 732 st_le16(&cp->xfer_status, 0); 733 last = i; 734 if (++i >= N_RX_RING) i = 0; 735 } 736 737 if (last != -1) { 738 bp->rx_fill = last; 739 bp->rx_empty = i; 740 } 741 742 dbdma_continue(rd); 743 spin_unlock_irqrestore(&bp->lock, flags); 744 745 if (rxintcount < 10) { 746 XXDEBUG(("bmac_rxdma_intr done\n")); 747 } 748 return IRQ_HANDLED; 749} 750 751static int txintcount; 752 753static irqreturn_t bmac_txdma_intr(int irq, void *dev_id) 754{ 755 struct net_device *dev = (struct net_device *) dev_id; 756 struct bmac_data *bp = netdev_priv(dev); 757 volatile struct dbdma_cmd *cp; 758 int stat; 759 unsigned long flags; 760 761 spin_lock_irqsave(&bp->lock, flags); 762 763 if (txintcount++ < 10) { 764 XXDEBUG(("bmac_txdma_intr\n")); 765 } 766 767 /* del_timer(&bp->tx_timeout); */ 768 /* bp->timeout_active = 0; */ 769 770 while (1) { 771 cp = &bp->tx_cmds[bp->tx_empty]; 772 stat = ld_le16(&cp->xfer_status); 773 if (txintcount < 10) { 774 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat)); 775 } 776 if (!(stat & ACTIVE)) { 777 /* 778 * status field might not have been filled by DBDMA 779 */ 780 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr))) 781 break; 782 } 783 784 if (bp->tx_bufs[bp->tx_empty]) { 785 ++dev->stats.tx_packets; 786 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]); 787 } 788 bp->tx_bufs[bp->tx_empty] = NULL; 789 bp->tx_fullup = 0; 790 netif_wake_queue(dev); 791 if (++bp->tx_empty >= N_TX_RING) 792 bp->tx_empty = 0; 793 if (bp->tx_empty == bp->tx_fill) 794 break; 795 } 796 797 spin_unlock_irqrestore(&bp->lock, flags); 798 799 if (txintcount < 10) { 800 XXDEBUG(("bmac_txdma_intr done->bmac_start\n")); 801 } 802 803 bmac_start(dev); 804 return IRQ_HANDLED; 805} 806 807#ifndef SUNHME_MULTICAST 808/* Real fast bit-reversal algorithm, 6-bit values */ 809static int reverse6[64] = { 810 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38, 811 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c, 812 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a, 813 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e, 814 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39, 815 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d, 816 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b, 817 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f 818}; 819 820static unsigned int 821crc416(unsigned int curval, unsigned short nxtval) 822{ 823 register unsigned int counter, cur = curval, next = nxtval; 824 register int high_crc_set, low_data_set; 825 826 /* Swap bytes */ 827 next = ((next & 0x00FF) << 8) | (next >> 8); 828 829 /* Compute bit-by-bit */ 830 for (counter = 0; counter < 16; ++counter) { 831 /* is high CRC bit set? */ 832 if ((cur & 0x80000000) == 0) high_crc_set = 0; 833 else high_crc_set = 1; 834 835 cur = cur << 1; 836 837 if ((next & 0x0001) == 0) low_data_set = 0; 838 else low_data_set = 1; 839 840 next = next >> 1; 841 842 /* do the XOR */ 843 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY; 844 } 845 return cur; 846} 847 848static unsigned int 849bmac_crc(unsigned short *address) 850{ 851 unsigned int newcrc; 852 853 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2])); 854 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */ 855 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */ 856 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */ 857 858 return(newcrc); 859} 860 861/* 862 * Add requested mcast addr to BMac's hash table filter. 863 * 864 */ 865 866static void 867bmac_addhash(struct bmac_data *bp, unsigned char *addr) 868{ 869 unsigned int crc; 870 unsigned short mask; 871 872 if (!(*addr)) return; 873 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ 874 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ 875 if (bp->hash_use_count[crc]++) return; /* This bit is already set */ 876 mask = crc % 16; 877 mask = (unsigned char)1 << mask; 878 bp->hash_use_count[crc/16] |= mask; 879} 880 881static void 882bmac_removehash(struct bmac_data *bp, unsigned char *addr) 883{ 884 unsigned int crc; 885 unsigned char mask; 886 887 /* Now, delete the address from the filter copy, as indicated */ 888 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ 889 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ 890 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */ 891 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */ 892 mask = crc % 16; 893 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */ 894 bp->hash_table_mask[crc/16] &= mask; 895} 896 897/* 898 * Sync the adapter with the software copy of the multicast mask 899 * (logical address filter). 900 */ 901 902static void 903bmac_rx_off(struct net_device *dev) 904{ 905 unsigned short rx_cfg; 906 907 rx_cfg = bmread(dev, RXCFG); 908 rx_cfg &= ~RxMACEnable; 909 bmwrite(dev, RXCFG, rx_cfg); 910 do { 911 rx_cfg = bmread(dev, RXCFG); 912 } while (rx_cfg & RxMACEnable); 913} 914 915unsigned short 916bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable) 917{ 918 unsigned short rx_cfg; 919 920 rx_cfg = bmread(dev, RXCFG); 921 rx_cfg |= RxMACEnable; 922 if (hash_enable) rx_cfg |= RxHashFilterEnable; 923 else rx_cfg &= ~RxHashFilterEnable; 924 if (promisc_enable) rx_cfg |= RxPromiscEnable; 925 else rx_cfg &= ~RxPromiscEnable; 926 bmwrite(dev, RXRST, RxResetValue); 927 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ 928 bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); 929 bmwrite(dev, RXCFG, rx_cfg ); 930 return rx_cfg; 931} 932 933static void 934bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp) 935{ 936 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ 937 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ 938 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ 939 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ 940} 941 942#if 0 943static void 944bmac_add_multi(struct net_device *dev, 945 struct bmac_data *bp, unsigned char *addr) 946{ 947 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */ 948 bmac_addhash(bp, addr); 949 bmac_rx_off(dev); 950 bmac_update_hash_table_mask(dev, bp); 951 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); 952 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */ 953} 954 955static void 956bmac_remove_multi(struct net_device *dev, 957 struct bmac_data *bp, unsigned char *addr) 958{ 959 bmac_removehash(bp, addr); 960 bmac_rx_off(dev); 961 bmac_update_hash_table_mask(dev, bp); 962 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); 963} 964#endif 965 966/* Set or clear the multicast filter for this adaptor. 967 num_addrs == -1 Promiscuous mode, receive all packets 968 num_addrs == 0 Normal mode, clear multicast list 969 num_addrs > 0 Multicast mode, receive normal and MC packets, and do 970 best-effort filtering. 971 */ 972static void bmac_set_multicast(struct net_device *dev) 973{ 974 struct dev_mc_list *dmi; 975 struct bmac_data *bp = netdev_priv(dev); 976 int num_addrs = dev->mc_count; 977 unsigned short rx_cfg; 978 int i; 979 980 if (bp->sleeping) 981 return; 982 983 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs)); 984 985 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { 986 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff; 987 bmac_update_hash_table_mask(dev, bp); 988 rx_cfg = bmac_rx_on(dev, 1, 0); 989 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n")); 990 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) { 991 rx_cfg = bmread(dev, RXCFG); 992 rx_cfg |= RxPromiscEnable; 993 bmwrite(dev, RXCFG, rx_cfg); 994 rx_cfg = bmac_rx_on(dev, 0, 1); 995 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg)); 996 } else { 997 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; 998 for (i=0; i<64; i++) bp->hash_use_count[i] = 0; 999 if (num_addrs == 0) { 1000 rx_cfg = bmac_rx_on(dev, 0, 0); 1001 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg)); 1002 } else { 1003 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next) 1004 bmac_addhash(bp, dmi->dmi_addr); 1005 bmac_update_hash_table_mask(dev, bp); 1006 rx_cfg = bmac_rx_on(dev, 1, 0); 1007 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg)); 1008 } 1009 } 1010 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */ 1011} 1012#else /* ifdef SUNHME_MULTICAST */ 1013 1014/* The version of set_multicast below was lifted from sunhme.c */ 1015 1016static void bmac_set_multicast(struct net_device *dev) 1017{ 1018 struct dev_mc_list *dmi = dev->mc_list; 1019 char *addrs; 1020 int i; 1021 unsigned short rx_cfg; 1022 u32 crc; 1023 1024 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { 1025 bmwrite(dev, BHASH0, 0xffff); 1026 bmwrite(dev, BHASH1, 0xffff); 1027 bmwrite(dev, BHASH2, 0xffff); 1028 bmwrite(dev, BHASH3, 0xffff); 1029 } else if(dev->flags & IFF_PROMISC) { 1030 rx_cfg = bmread(dev, RXCFG); 1031 rx_cfg |= RxPromiscEnable; 1032 bmwrite(dev, RXCFG, rx_cfg); 1033 } else { 1034 u16 hash_table[4]; 1035 1036 rx_cfg = bmread(dev, RXCFG); 1037 rx_cfg &= ~RxPromiscEnable; 1038 bmwrite(dev, RXCFG, rx_cfg); 1039 1040 for(i = 0; i < 4; i++) hash_table[i] = 0; 1041 1042 for(i = 0; i < dev->mc_count; i++) { 1043 addrs = dmi->dmi_addr; 1044 dmi = dmi->next; 1045 1046 if(!(*addrs & 1)) 1047 continue; 1048 1049 crc = ether_crc_le(6, addrs); 1050 crc >>= 26; 1051 hash_table[crc >> 4] |= 1 << (crc & 0xf); 1052 } 1053 bmwrite(dev, BHASH0, hash_table[0]); 1054 bmwrite(dev, BHASH1, hash_table[1]); 1055 bmwrite(dev, BHASH2, hash_table[2]); 1056 bmwrite(dev, BHASH3, hash_table[3]); 1057 } 1058} 1059#endif /* SUNHME_MULTICAST */ 1060 1061static int miscintcount; 1062 1063static irqreturn_t bmac_misc_intr(int irq, void *dev_id) 1064{ 1065 struct net_device *dev = (struct net_device *) dev_id; 1066 unsigned int status = bmread(dev, STATUS); 1067 if (miscintcount++ < 10) { 1068 XXDEBUG(("bmac_misc_intr\n")); 1069 } 1070 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */ 1071 /* bmac_txdma_intr_inner(irq, dev_id); */ 1072 /* if (status & FrameReceived) dev->stats.rx_dropped++; */ 1073 if (status & RxErrorMask) dev->stats.rx_errors++; 1074 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++; 1075 if (status & RxLenCntExp) dev->stats.rx_length_errors++; 1076 if (status & RxOverFlow) dev->stats.rx_over_errors++; 1077 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++; 1078 1079 /* if (status & FrameSent) dev->stats.tx_dropped++; */ 1080 if (status & TxErrorMask) dev->stats.tx_errors++; 1081 if (status & TxUnderrun) dev->stats.tx_fifo_errors++; 1082 if (status & TxNormalCollExp) dev->stats.collisions++; 1083 return IRQ_HANDLED; 1084} 1085 1086/* 1087 * Procedure for reading EEPROM 1088 */ 1089#define SROMAddressLength 5 1090#define DataInOn 0x0008 1091#define DataInOff 0x0000 1092#define Clk 0x0002 1093#define ChipSelect 0x0001 1094#define SDIShiftCount 3 1095#define SD0ShiftCount 2 1096#define DelayValue 1000 /* number of microseconds */ 1097#define SROMStartOffset 10 /* this is in words */ 1098#define SROMReadCount 3 /* number of words to read from SROM */ 1099#define SROMAddressBits 6 1100#define EnetAddressOffset 20 1101 1102static unsigned char 1103bmac_clock_out_bit(struct net_device *dev) 1104{ 1105 unsigned short data; 1106 unsigned short val; 1107 1108 bmwrite(dev, SROMCSR, ChipSelect | Clk); 1109 udelay(DelayValue); 1110 1111 data = bmread(dev, SROMCSR); 1112 udelay(DelayValue); 1113 val = (data >> SD0ShiftCount) & 1; 1114 1115 bmwrite(dev, SROMCSR, ChipSelect); 1116 udelay(DelayValue); 1117 1118 return val; 1119} 1120 1121static void 1122bmac_clock_in_bit(struct net_device *dev, unsigned int val) 1123{ 1124 unsigned short data; 1125 1126 if (val != 0 && val != 1) return; 1127 1128 data = (val << SDIShiftCount); 1129 bmwrite(dev, SROMCSR, data | ChipSelect ); 1130 udelay(DelayValue); 1131 1132 bmwrite(dev, SROMCSR, data | ChipSelect | Clk ); 1133 udelay(DelayValue); 1134 1135 bmwrite(dev, SROMCSR, data | ChipSelect); 1136 udelay(DelayValue); 1137} 1138 1139static void 1140reset_and_select_srom(struct net_device *dev) 1141{ 1142 /* first reset */ 1143 bmwrite(dev, SROMCSR, 0); 1144 udelay(DelayValue); 1145 1146 /* send it the read command (110) */ 1147 bmac_clock_in_bit(dev, 1); 1148 bmac_clock_in_bit(dev, 1); 1149 bmac_clock_in_bit(dev, 0); 1150} 1151 1152static unsigned short 1153read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len) 1154{ 1155 unsigned short data, val; 1156 int i; 1157 1158 /* send out the address we want to read from */ 1159 for (i = 0; i < addr_len; i++) { 1160 val = addr >> (addr_len-i-1); 1161 bmac_clock_in_bit(dev, val & 1); 1162 } 1163 1164 /* Now read in the 16-bit data */ 1165 data = 0; 1166 for (i = 0; i < 16; i++) { 1167 val = bmac_clock_out_bit(dev); 1168 data <<= 1; 1169 data |= val; 1170 } 1171 bmwrite(dev, SROMCSR, 0); 1172 1173 return data; 1174} 1175 1176/* 1177 * It looks like Cogent and SMC use different methods for calculating 1178 * checksums. What a pain.. 1179 */ 1180 1181static int 1182bmac_verify_checksum(struct net_device *dev) 1183{ 1184 unsigned short data, storedCS; 1185 1186 reset_and_select_srom(dev); 1187 data = read_srom(dev, 3, SROMAddressBits); 1188 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00); 1189 1190 return 0; 1191} 1192 1193 1194static void 1195bmac_get_station_address(struct net_device *dev, unsigned char *ea) 1196{ 1197 int i; 1198 unsigned short data; 1199 1200 for (i = 0; i < 6; i++) 1201 { 1202 reset_and_select_srom(dev); 1203 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits); 1204 ea[2*i] = bitrev8(data & 0x0ff); 1205 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff); 1206 } 1207} 1208 1209static void bmac_reset_and_enable(struct net_device *dev) 1210{ 1211 struct bmac_data *bp = netdev_priv(dev); 1212 unsigned long flags; 1213 struct sk_buff *skb; 1214 unsigned char *data; 1215 1216 spin_lock_irqsave(&bp->lock, flags); 1217 bmac_enable_and_reset_chip(dev); 1218 bmac_init_tx_ring(bp); 1219 bmac_init_rx_ring(bp); 1220 bmac_init_chip(dev); 1221 bmac_start_chip(dev); 1222 bmwrite(dev, INTDISABLE, EnableNormal); 1223 bp->sleeping = 0; 1224 1225 /* 1226 * It seems that the bmac can't receive until it's transmitted 1227 * a packet. So we give it a dummy packet to transmit. 1228 */ 1229 skb = dev_alloc_skb(ETHERMINPACKET); 1230 if (skb != NULL) { 1231 data = skb_put(skb, ETHERMINPACKET); 1232 memset(data, 0, ETHERMINPACKET); 1233 memcpy(data, dev->dev_addr, 6); 1234 memcpy(data+6, dev->dev_addr, 6); 1235 bmac_transmit_packet(skb, dev); 1236 } 1237 spin_unlock_irqrestore(&bp->lock, flags); 1238} 1239static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1240{ 1241 struct bmac_data *bp = netdev_priv(dev); 1242 strcpy(info->driver, "bmac"); 1243 strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev)); 1244} 1245 1246static const struct ethtool_ops bmac_ethtool_ops = { 1247 .get_drvinfo = bmac_get_drvinfo, 1248 .get_link = ethtool_op_get_link, 1249}; 1250 1251static const struct net_device_ops bmac_netdev_ops = { 1252 .ndo_open = bmac_open, 1253 .ndo_stop = bmac_close, 1254 .ndo_start_xmit = bmac_output, 1255 .ndo_set_multicast_list = bmac_set_multicast, 1256 .ndo_set_mac_address = bmac_set_address, 1257 .ndo_change_mtu = eth_change_mtu, 1258 .ndo_validate_addr = eth_validate_addr, 1259}; 1260 1261static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match) 1262{ 1263 int j, rev, ret; 1264 struct bmac_data *bp; 1265 const unsigned char *prop_addr; 1266 unsigned char addr[6]; 1267 struct net_device *dev; 1268 int is_bmac_plus = ((int)match->data) != 0; 1269 1270 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { 1271 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n"); 1272 return -ENODEV; 1273 } 1274 prop_addr = of_get_property(macio_get_of_node(mdev), 1275 "mac-address", NULL); 1276 if (prop_addr == NULL) { 1277 prop_addr = of_get_property(macio_get_of_node(mdev), 1278 "local-mac-address", NULL); 1279 if (prop_addr == NULL) { 1280 printk(KERN_ERR "BMAC: Can't get mac-address\n"); 1281 return -ENODEV; 1282 } 1283 } 1284 memcpy(addr, prop_addr, sizeof(addr)); 1285 1286 dev = alloc_etherdev(PRIV_BYTES); 1287 if (!dev) { 1288 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n"); 1289 return -ENOMEM; 1290 } 1291 1292 bp = netdev_priv(dev); 1293 SET_NETDEV_DEV(dev, &mdev->ofdev.dev); 1294 macio_set_drvdata(mdev, dev); 1295 1296 bp->mdev = mdev; 1297 spin_lock_init(&bp->lock); 1298 1299 if (macio_request_resources(mdev, "bmac")) { 1300 printk(KERN_ERR "BMAC: can't request IO resource !\n"); 1301 goto out_free; 1302 } 1303 1304 dev->base_addr = (unsigned long) 1305 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0)); 1306 if (dev->base_addr == 0) 1307 goto out_release; 1308 1309 dev->irq = macio_irq(mdev, 0); 1310 1311 bmac_enable_and_reset_chip(dev); 1312 bmwrite(dev, INTDISABLE, DisableAll); 1313 1314 rev = addr[0] == 0 && addr[1] == 0xA0; 1315 for (j = 0; j < 6; ++j) 1316 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j]; 1317 1318 /* Enable chip without interrupts for now */ 1319 bmac_enable_and_reset_chip(dev); 1320 bmwrite(dev, INTDISABLE, DisableAll); 1321 1322 dev->netdev_ops = &bmac_netdev_ops; 1323 dev->ethtool_ops = &bmac_ethtool_ops; 1324 1325 bmac_get_station_address(dev, addr); 1326 if (bmac_verify_checksum(dev) != 0) 1327 goto err_out_iounmap; 1328 1329 bp->is_bmac_plus = is_bmac_plus; 1330 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1)); 1331 if (!bp->tx_dma) 1332 goto err_out_iounmap; 1333 bp->tx_dma_intr = macio_irq(mdev, 1); 1334 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2)); 1335 if (!bp->rx_dma) 1336 goto err_out_iounmap_tx; 1337 bp->rx_dma_intr = macio_irq(mdev, 2); 1338 1339 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1); 1340 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1; 1341 1342 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1); 1343 skb_queue_head_init(bp->queue); 1344 1345 init_timer(&bp->tx_timeout); 1346 1347 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev); 1348 if (ret) { 1349 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq); 1350 goto err_out_iounmap_rx; 1351 } 1352 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev); 1353 if (ret) { 1354 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr); 1355 goto err_out_irq0; 1356 } 1357 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev); 1358 if (ret) { 1359 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr); 1360 goto err_out_irq1; 1361 } 1362 1363 /* Mask chip interrupts and disable chip, will be 1364 * re-enabled on open() 1365 */ 1366 disable_irq(dev->irq); 1367 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1368 1369 if (register_netdev(dev) != 0) { 1370 printk(KERN_ERR "BMAC: Ethernet registration failed\n"); 1371 goto err_out_irq2; 1372 } 1373 1374 printk(KERN_INFO "%s: BMAC%s at %pM", 1375 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr); 1376 XXDEBUG((", base_addr=%#0lx", dev->base_addr)); 1377 printk("\n"); 1378 1379 return 0; 1380 1381err_out_irq2: 1382 free_irq(bp->rx_dma_intr, dev); 1383err_out_irq1: 1384 free_irq(bp->tx_dma_intr, dev); 1385err_out_irq0: 1386 free_irq(dev->irq, dev); 1387err_out_iounmap_rx: 1388 iounmap(bp->rx_dma); 1389err_out_iounmap_tx: 1390 iounmap(bp->tx_dma); 1391err_out_iounmap: 1392 iounmap((void __iomem *)dev->base_addr); 1393out_release: 1394 macio_release_resources(mdev); 1395out_free: 1396 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1397 free_netdev(dev); 1398 1399 return -ENODEV; 1400} 1401 1402static int bmac_open(struct net_device *dev) 1403{ 1404 struct bmac_data *bp = netdev_priv(dev); 1405 /* XXDEBUG(("bmac: enter open\n")); */ 1406 /* reset the chip */ 1407 bp->opened = 1; 1408 bmac_reset_and_enable(dev); 1409 enable_irq(dev->irq); 1410 return 0; 1411} 1412 1413static int bmac_close(struct net_device *dev) 1414{ 1415 struct bmac_data *bp = netdev_priv(dev); 1416 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 1417 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 1418 unsigned short config; 1419 int i; 1420 1421 bp->sleeping = 1; 1422 1423 /* disable rx and tx */ 1424 config = bmread(dev, RXCFG); 1425 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 1426 1427 config = bmread(dev, TXCFG); 1428 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 1429 1430 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ 1431 1432 /* disable rx and tx dma */ 1433 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 1434 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 1435 1436 /* free some skb's */ 1437 XXDEBUG(("bmac: free rx bufs\n")); 1438 for (i=0; i<N_RX_RING; i++) { 1439 if (bp->rx_bufs[i] != NULL) { 1440 dev_kfree_skb(bp->rx_bufs[i]); 1441 bp->rx_bufs[i] = NULL; 1442 } 1443 } 1444 XXDEBUG(("bmac: free tx bufs\n")); 1445 for (i = 0; i<N_TX_RING; i++) { 1446 if (bp->tx_bufs[i] != NULL) { 1447 dev_kfree_skb(bp->tx_bufs[i]); 1448 bp->tx_bufs[i] = NULL; 1449 } 1450 } 1451 XXDEBUG(("bmac: all bufs freed\n")); 1452 1453 bp->opened = 0; 1454 disable_irq(dev->irq); 1455 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1456 1457 return 0; 1458} 1459 1460static void 1461bmac_start(struct net_device *dev) 1462{ 1463 struct bmac_data *bp = netdev_priv(dev); 1464 int i; 1465 struct sk_buff *skb; 1466 unsigned long flags; 1467 1468 if (bp->sleeping) 1469 return; 1470 1471 spin_lock_irqsave(&bp->lock, flags); 1472 while (1) { 1473 i = bp->tx_fill + 1; 1474 if (i >= N_TX_RING) 1475 i = 0; 1476 if (i == bp->tx_empty) 1477 break; 1478 skb = skb_dequeue(bp->queue); 1479 if (skb == NULL) 1480 break; 1481 bmac_transmit_packet(skb, dev); 1482 } 1483 spin_unlock_irqrestore(&bp->lock, flags); 1484} 1485 1486static int 1487bmac_output(struct sk_buff *skb, struct net_device *dev) 1488{ 1489 struct bmac_data *bp = netdev_priv(dev); 1490 skb_queue_tail(bp->queue, skb); 1491 bmac_start(dev); 1492 return NETDEV_TX_OK; 1493} 1494 1495static void bmac_tx_timeout(unsigned long data) 1496{ 1497 struct net_device *dev = (struct net_device *) data; 1498 struct bmac_data *bp = netdev_priv(dev); 1499 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 1500 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 1501 volatile struct dbdma_cmd *cp; 1502 unsigned long flags; 1503 unsigned short config, oldConfig; 1504 int i; 1505 1506 XXDEBUG(("bmac: tx_timeout called\n")); 1507 spin_lock_irqsave(&bp->lock, flags); 1508 bp->timeout_active = 0; 1509 1510 /* update various counters */ 1511/* bmac_handle_misc_intrs(bp, 0); */ 1512 1513 cp = &bp->tx_cmds[bp->tx_empty]; 1514/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */ 1515/* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */ 1516/* mb->pr, mb->xmtfs, mb->fifofc)); */ 1517 1518 /* turn off both tx and rx and reset the chip */ 1519 config = bmread(dev, RXCFG); 1520 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 1521 config = bmread(dev, TXCFG); 1522 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 1523 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); 1524 printk(KERN_ERR "bmac: transmit timeout - resetting\n"); 1525 bmac_enable_and_reset_chip(dev); 1526 1527 /* restart rx dma */ 1528 cp = bus_to_virt(ld_le32(&rd->cmdptr)); 1529 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); 1530 out_le16(&cp->xfer_status, 0); 1531 out_le32(&rd->cmdptr, virt_to_bus(cp)); 1532 out_le32(&rd->control, DBDMA_SET(RUN|WAKE)); 1533 1534 /* fix up the transmit side */ 1535 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n", 1536 bp->tx_empty, bp->tx_fill, bp->tx_fullup)); 1537 i = bp->tx_empty; 1538 ++dev->stats.tx_errors; 1539 if (i != bp->tx_fill) { 1540 dev_kfree_skb(bp->tx_bufs[i]); 1541 bp->tx_bufs[i] = NULL; 1542 if (++i >= N_TX_RING) i = 0; 1543 bp->tx_empty = i; 1544 } 1545 bp->tx_fullup = 0; 1546 netif_wake_queue(dev); 1547 if (i != bp->tx_fill) { 1548 cp = &bp->tx_cmds[i]; 1549 out_le16(&cp->xfer_status, 0); 1550 out_le16(&cp->command, OUTPUT_LAST); 1551 out_le32(&td->cmdptr, virt_to_bus(cp)); 1552 out_le32(&td->control, DBDMA_SET(RUN)); 1553 /* bmac_set_timeout(dev); */ 1554 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i)); 1555 } 1556 1557 /* turn it back on */ 1558 oldConfig = bmread(dev, RXCFG); 1559 bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); 1560 oldConfig = bmread(dev, TXCFG); 1561 bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); 1562 1563 spin_unlock_irqrestore(&bp->lock, flags); 1564} 1565 1566#if 0 1567static void dump_dbdma(volatile struct dbdma_cmd *cp,int count) 1568{ 1569 int i,*ip; 1570 1571 for (i=0;i< count;i++) { 1572 ip = (int*)(cp+i); 1573 1574 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n", 1575 ld_le32(ip+0), 1576 ld_le32(ip+1), 1577 ld_le32(ip+2), 1578 ld_le32(ip+3)); 1579 } 1580 1581} 1582#endif 1583 1584#if 0 1585static int 1586bmac_proc_info(char *buffer, char **start, off_t offset, int length) 1587{ 1588 int len = 0; 1589 off_t pos = 0; 1590 off_t begin = 0; 1591 int i; 1592 1593 if (bmac_devs == NULL) 1594 return (-ENOSYS); 1595 1596 len += sprintf(buffer, "BMAC counters & registers\n"); 1597 1598 for (i = 0; i<N_REG_ENTRIES; i++) { 1599 len += sprintf(buffer + len, "%s: %#08x\n", 1600 reg_entries[i].name, 1601 bmread(bmac_devs, reg_entries[i].reg_offset)); 1602 pos = begin + len; 1603 1604 if (pos < offset) { 1605 len = 0; 1606 begin = pos; 1607 } 1608 1609 if (pos > offset+length) break; 1610 } 1611 1612 *start = buffer + (offset - begin); 1613 len -= (offset - begin); 1614 1615 if (len > length) len = length; 1616 1617 return len; 1618} 1619#endif 1620 1621static int __devexit bmac_remove(struct macio_dev *mdev) 1622{ 1623 struct net_device *dev = macio_get_drvdata(mdev); 1624 struct bmac_data *bp = netdev_priv(dev); 1625 1626 unregister_netdev(dev); 1627 1628 free_irq(dev->irq, dev); 1629 free_irq(bp->tx_dma_intr, dev); 1630 free_irq(bp->rx_dma_intr, dev); 1631 1632 iounmap((void __iomem *)dev->base_addr); 1633 iounmap(bp->tx_dma); 1634 iounmap(bp->rx_dma); 1635 1636 macio_release_resources(mdev); 1637 1638 free_netdev(dev); 1639 1640 return 0; 1641} 1642 1643static struct of_device_id bmac_match[] = 1644{ 1645 { 1646 .name = "bmac", 1647 .data = (void *)0, 1648 }, 1649 { 1650 .type = "network", 1651 .compatible = "bmac+", 1652 .data = (void *)1, 1653 }, 1654 {}, 1655}; 1656MODULE_DEVICE_TABLE (of, bmac_match); 1657 1658static struct macio_driver bmac_driver = 1659{ 1660 .name = "bmac", 1661 .match_table = bmac_match, 1662 .probe = bmac_probe, 1663 .remove = bmac_remove, 1664#ifdef CONFIG_PM 1665 .suspend = bmac_suspend, 1666 .resume = bmac_resume, 1667#endif 1668}; 1669 1670 1671static int __init bmac_init(void) 1672{ 1673 if (bmac_emergency_rxbuf == NULL) { 1674 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL); 1675 if (bmac_emergency_rxbuf == NULL) { 1676 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n"); 1677 return -ENOMEM; 1678 } 1679 } 1680 1681 return macio_register_driver(&bmac_driver); 1682} 1683 1684static void __exit bmac_exit(void) 1685{ 1686 macio_unregister_driver(&bmac_driver); 1687 1688 kfree(bmac_emergency_rxbuf); 1689 bmac_emergency_rxbuf = NULL; 1690} 1691 1692MODULE_AUTHOR("Randy Gobbel/Paul Mackerras"); 1693MODULE_DESCRIPTION("PowerMac BMAC ethernet driver."); 1694MODULE_LICENSE("GPL"); 1695 1696module_init(bmac_init); 1697module_exit(bmac_exit);