at v2.6.33-rc2 2487 lines 63 kB view raw
1/* 2 * The low performance USB storage driver (ub). 3 * 4 * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com) 6 * 7 * This work is a part of Linux kernel, is derived from it, 8 * and is not licensed separately. See file COPYING for details. 9 * 10 * TODO (sorted by decreasing priority) 11 * -- Return sense now that rq allows it (we always auto-sense anyway). 12 * -- set readonly flag for CDs, set removable flag for CF readers 13 * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch) 14 * -- verify the 13 conditions and do bulk resets 15 * -- highmem 16 * -- move top_sense and work_bcs into separate allocations (if they survive) 17 * for cache purists and esoteric architectures. 18 * -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ? 19 * -- prune comments, they are too volumnous 20 * -- Resove XXX's 21 * -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring. 22 */ 23#include <linux/kernel.h> 24#include <linux/module.h> 25#include <linux/usb.h> 26#include <linux/usb_usual.h> 27#include <linux/blkdev.h> 28#include <linux/timer.h> 29#include <linux/scatterlist.h> 30#include <scsi/scsi.h> 31 32#define DRV_NAME "ub" 33 34#define UB_MAJOR 180 35 36/* 37 * The command state machine is the key model for understanding of this driver. 38 * 39 * The general rule is that all transitions are done towards the bottom 40 * of the diagram, thus preventing any loops. 41 * 42 * An exception to that is how the STAT state is handled. A counter allows it 43 * to be re-entered along the path marked with [C]. 44 * 45 * +--------+ 46 * ! INIT ! 47 * +--------+ 48 * ! 49 * ub_scsi_cmd_start fails ->--------------------------------------\ 50 * ! ! 51 * V ! 52 * +--------+ ! 53 * ! CMD ! ! 54 * +--------+ ! 55 * ! +--------+ ! 56 * was -EPIPE -->-------------------------------->! CLEAR ! ! 57 * ! +--------+ ! 58 * ! ! ! 59 * was error -->------------------------------------- ! --------->\ 60 * ! ! ! 61 * /--<-- cmd->dir == NONE ? ! ! 62 * ! ! ! ! 63 * ! V ! ! 64 * ! +--------+ ! ! 65 * ! ! DATA ! ! ! 66 * ! +--------+ ! ! 67 * ! ! +---------+ ! ! 68 * ! was -EPIPE -->--------------->! CLR2STS ! ! ! 69 * ! ! +---------+ ! ! 70 * ! ! ! ! ! 71 * ! ! was error -->---- ! --------->\ 72 * ! was error -->--------------------- ! ------------- ! --------->\ 73 * ! ! ! ! ! 74 * ! V ! ! ! 75 * \--->+--------+ ! ! ! 76 * ! STAT !<--------------------------/ ! ! 77 * /--->+--------+ ! ! 78 * ! ! ! ! 79 * [C] was -EPIPE -->-----------\ ! ! 80 * ! ! ! ! ! 81 * +<---- len == 0 ! ! ! 82 * ! ! ! ! ! 83 * ! was error -->--------------------------------------!---------->\ 84 * ! ! ! ! ! 85 * +<---- bad CSW ! ! ! 86 * +<---- bad tag ! ! ! 87 * ! ! V ! ! 88 * ! ! +--------+ ! ! 89 * ! ! ! CLRRS ! ! ! 90 * ! ! +--------+ ! ! 91 * ! ! ! ! ! 92 * \------- ! --------------------[C]--------\ ! ! 93 * ! ! ! ! 94 * cmd->error---\ +--------+ ! ! 95 * ! +--------------->! SENSE !<----------/ ! 96 * STAT_FAIL----/ +--------+ ! 97 * ! ! V 98 * ! V +--------+ 99 * \--------------------------------\--------------------->! DONE ! 100 * +--------+ 101 */ 102 103/* 104 * This many LUNs per USB device. 105 * Every one of them takes a host, see UB_MAX_HOSTS. 106 */ 107#define UB_MAX_LUNS 9 108 109/* 110 */ 111 112#define UB_PARTS_PER_LUN 8 113 114#define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */ 115 116#define UB_SENSE_SIZE 18 117 118/* 119 */ 120 121/* command block wrapper */ 122struct bulk_cb_wrap { 123 __le32 Signature; /* contains 'USBC' */ 124 u32 Tag; /* unique per command id */ 125 __le32 DataTransferLength; /* size of data */ 126 u8 Flags; /* direction in bit 0 */ 127 u8 Lun; /* LUN */ 128 u8 Length; /* of of the CDB */ 129 u8 CDB[UB_MAX_CDB_SIZE]; /* max command */ 130}; 131 132#define US_BULK_CB_WRAP_LEN 31 133#define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */ 134#define US_BULK_FLAG_IN 1 135#define US_BULK_FLAG_OUT 0 136 137/* command status wrapper */ 138struct bulk_cs_wrap { 139 __le32 Signature; /* should = 'USBS' */ 140 u32 Tag; /* same as original command */ 141 __le32 Residue; /* amount not transferred */ 142 u8 Status; /* see below */ 143}; 144 145#define US_BULK_CS_WRAP_LEN 13 146#define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */ 147#define US_BULK_STAT_OK 0 148#define US_BULK_STAT_FAIL 1 149#define US_BULK_STAT_PHASE 2 150 151/* bulk-only class specific requests */ 152#define US_BULK_RESET_REQUEST 0xff 153#define US_BULK_GET_MAX_LUN 0xfe 154 155/* 156 */ 157struct ub_dev; 158 159#define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */ 160#define UB_MAX_SECTORS 64 161 162/* 163 * A second is more than enough for a 32K transfer (UB_MAX_SECTORS) 164 * even if a webcam hogs the bus, but some devices need time to spin up. 165 */ 166#define UB_URB_TIMEOUT (HZ*2) 167#define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */ 168#define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */ 169#define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */ 170 171/* 172 * An instance of a SCSI command in transit. 173 */ 174#define UB_DIR_NONE 0 175#define UB_DIR_READ 1 176#define UB_DIR_ILLEGAL2 2 177#define UB_DIR_WRITE 3 178 179#define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \ 180 (((c)==UB_DIR_READ)? 'r': 'n')) 181 182enum ub_scsi_cmd_state { 183 UB_CMDST_INIT, /* Initial state */ 184 UB_CMDST_CMD, /* Command submitted */ 185 UB_CMDST_DATA, /* Data phase */ 186 UB_CMDST_CLR2STS, /* Clearing before requesting status */ 187 UB_CMDST_STAT, /* Status phase */ 188 UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */ 189 UB_CMDST_CLRRS, /* Clearing before retrying status */ 190 UB_CMDST_SENSE, /* Sending Request Sense */ 191 UB_CMDST_DONE /* Final state */ 192}; 193 194struct ub_scsi_cmd { 195 unsigned char cdb[UB_MAX_CDB_SIZE]; 196 unsigned char cdb_len; 197 198 unsigned char dir; /* 0 - none, 1 - read, 3 - write. */ 199 enum ub_scsi_cmd_state state; 200 unsigned int tag; 201 struct ub_scsi_cmd *next; 202 203 int error; /* Return code - valid upon done */ 204 unsigned int act_len; /* Return size */ 205 unsigned char key, asc, ascq; /* May be valid if error==-EIO */ 206 207 int stat_count; /* Retries getting status. */ 208 unsigned int timeo; /* jiffies until rq->timeout changes */ 209 210 unsigned int len; /* Requested length */ 211 unsigned int current_sg; 212 unsigned int nsg; /* sgv[nsg] */ 213 struct scatterlist sgv[UB_MAX_REQ_SG]; 214 215 struct ub_lun *lun; 216 void (*done)(struct ub_dev *, struct ub_scsi_cmd *); 217 void *back; 218}; 219 220struct ub_request { 221 struct request *rq; 222 unsigned int current_try; 223 unsigned int nsg; /* sgv[nsg] */ 224 struct scatterlist sgv[UB_MAX_REQ_SG]; 225}; 226 227/* 228 */ 229struct ub_capacity { 230 unsigned long nsec; /* Linux size - 512 byte sectors */ 231 unsigned int bsize; /* Linux hardsect_size */ 232 unsigned int bshift; /* Shift between 512 and hard sects */ 233}; 234 235/* 236 * This is a direct take-off from linux/include/completion.h 237 * The difference is that I do not wait on this thing, just poll. 238 * When I want to wait (ub_probe), I just use the stock completion. 239 * 240 * Note that INIT_COMPLETION takes no lock. It is correct. But why 241 * in the bloody hell that thing takes struct instead of pointer to struct 242 * is quite beyond me. I just copied it from the stock completion. 243 */ 244struct ub_completion { 245 unsigned int done; 246 spinlock_t lock; 247}; 248 249static inline void ub_init_completion(struct ub_completion *x) 250{ 251 x->done = 0; 252 spin_lock_init(&x->lock); 253} 254 255#define UB_INIT_COMPLETION(x) ((x).done = 0) 256 257static void ub_complete(struct ub_completion *x) 258{ 259 unsigned long flags; 260 261 spin_lock_irqsave(&x->lock, flags); 262 x->done++; 263 spin_unlock_irqrestore(&x->lock, flags); 264} 265 266static int ub_is_completed(struct ub_completion *x) 267{ 268 unsigned long flags; 269 int ret; 270 271 spin_lock_irqsave(&x->lock, flags); 272 ret = x->done; 273 spin_unlock_irqrestore(&x->lock, flags); 274 return ret; 275} 276 277/* 278 */ 279struct ub_scsi_cmd_queue { 280 int qlen, qmax; 281 struct ub_scsi_cmd *head, *tail; 282}; 283 284/* 285 * The block device instance (one per LUN). 286 */ 287struct ub_lun { 288 struct ub_dev *udev; 289 struct list_head link; 290 struct gendisk *disk; 291 int id; /* Host index */ 292 int num; /* LUN number */ 293 char name[16]; 294 295 int changed; /* Media was changed */ 296 int removable; 297 int readonly; 298 299 struct ub_request urq; 300 301 /* Use Ingo's mempool if or when we have more than one command. */ 302 /* 303 * Currently we never need more than one command for the whole device. 304 * However, giving every LUN a command is a cheap and automatic way 305 * to enforce fairness between them. 306 */ 307 int cmda[1]; 308 struct ub_scsi_cmd cmdv[1]; 309 310 struct ub_capacity capacity; 311}; 312 313/* 314 * The USB device instance. 315 */ 316struct ub_dev { 317 spinlock_t *lock; 318 atomic_t poison; /* The USB device is disconnected */ 319 int openc; /* protected by ub_lock! */ 320 /* kref is too implicit for our taste */ 321 int reset; /* Reset is running */ 322 int bad_resid; 323 unsigned int tagcnt; 324 char name[12]; 325 struct usb_device *dev; 326 struct usb_interface *intf; 327 328 struct list_head luns; 329 330 unsigned int send_bulk_pipe; /* cached pipe values */ 331 unsigned int recv_bulk_pipe; 332 unsigned int send_ctrl_pipe; 333 unsigned int recv_ctrl_pipe; 334 335 struct tasklet_struct tasklet; 336 337 struct ub_scsi_cmd_queue cmd_queue; 338 struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */ 339 unsigned char top_sense[UB_SENSE_SIZE]; 340 341 struct ub_completion work_done; 342 struct urb work_urb; 343 struct timer_list work_timer; 344 int last_pipe; /* What might need clearing */ 345 __le32 signature; /* Learned signature */ 346 struct bulk_cb_wrap work_bcb; 347 struct bulk_cs_wrap work_bcs; 348 struct usb_ctrlrequest work_cr; 349 350 struct work_struct reset_work; 351 wait_queue_head_t reset_wait; 352}; 353 354/* 355 */ 356static void ub_cleanup(struct ub_dev *sc); 357static int ub_request_fn_1(struct ub_lun *lun, struct request *rq); 358static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 359 struct ub_scsi_cmd *cmd, struct ub_request *urq); 360static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 361 struct ub_scsi_cmd *cmd, struct ub_request *urq); 362static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 363static void ub_end_rq(struct request *rq, unsigned int status); 364static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 365 struct ub_request *urq, struct ub_scsi_cmd *cmd); 366static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 367static void ub_urb_complete(struct urb *urb); 368static void ub_scsi_action(unsigned long _dev); 369static void ub_scsi_dispatch(struct ub_dev *sc); 370static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 371static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 372static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc); 373static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 374static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 375static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 376static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 377static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 378 int stalled_pipe); 379static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd); 380static void ub_reset_enter(struct ub_dev *sc, int try); 381static void ub_reset_task(struct work_struct *work); 382static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun); 383static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 384 struct ub_capacity *ret); 385static int ub_sync_reset(struct ub_dev *sc); 386static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe); 387static int ub_probe_lun(struct ub_dev *sc, int lnum); 388 389/* 390 */ 391#ifdef CONFIG_USB_LIBUSUAL 392 393#define ub_usb_ids usb_storage_usb_ids 394#else 395 396static struct usb_device_id ub_usb_ids[] = { 397 { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, US_SC_SCSI, US_PR_BULK) }, 398 { } 399}; 400 401MODULE_DEVICE_TABLE(usb, ub_usb_ids); 402#endif /* CONFIG_USB_LIBUSUAL */ 403 404/* 405 * Find me a way to identify "next free minor" for add_disk(), 406 * and the array disappears the next day. However, the number of 407 * hosts has something to do with the naming and /proc/partitions. 408 * This has to be thought out in detail before changing. 409 * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure. 410 */ 411#define UB_MAX_HOSTS 26 412static char ub_hostv[UB_MAX_HOSTS]; 413 414#define UB_QLOCK_NUM 5 415static spinlock_t ub_qlockv[UB_QLOCK_NUM]; 416static int ub_qlock_next = 0; 417 418static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */ 419 420/* 421 * The id allocator. 422 * 423 * This also stores the host for indexing by minor, which is somewhat dirty. 424 */ 425static int ub_id_get(void) 426{ 427 unsigned long flags; 428 int i; 429 430 spin_lock_irqsave(&ub_lock, flags); 431 for (i = 0; i < UB_MAX_HOSTS; i++) { 432 if (ub_hostv[i] == 0) { 433 ub_hostv[i] = 1; 434 spin_unlock_irqrestore(&ub_lock, flags); 435 return i; 436 } 437 } 438 spin_unlock_irqrestore(&ub_lock, flags); 439 return -1; 440} 441 442static void ub_id_put(int id) 443{ 444 unsigned long flags; 445 446 if (id < 0 || id >= UB_MAX_HOSTS) { 447 printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id); 448 return; 449 } 450 451 spin_lock_irqsave(&ub_lock, flags); 452 if (ub_hostv[id] == 0) { 453 spin_unlock_irqrestore(&ub_lock, flags); 454 printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id); 455 return; 456 } 457 ub_hostv[id] = 0; 458 spin_unlock_irqrestore(&ub_lock, flags); 459} 460 461/* 462 * This is necessitated by the fact that blk_cleanup_queue does not 463 * necesserily destroy the queue. Instead, it may merely decrease q->refcnt. 464 * Since our blk_init_queue() passes a spinlock common with ub_dev, 465 * we have life time issues when ub_cleanup frees ub_dev. 466 */ 467static spinlock_t *ub_next_lock(void) 468{ 469 unsigned long flags; 470 spinlock_t *ret; 471 472 spin_lock_irqsave(&ub_lock, flags); 473 ret = &ub_qlockv[ub_qlock_next]; 474 ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM; 475 spin_unlock_irqrestore(&ub_lock, flags); 476 return ret; 477} 478 479/* 480 * Downcount for deallocation. This rides on two assumptions: 481 * - once something is poisoned, its refcount cannot grow 482 * - opens cannot happen at this time (del_gendisk was done) 483 * If the above is true, we can drop the lock, which we need for 484 * blk_cleanup_queue(): the silly thing may attempt to sleep. 485 * [Actually, it never needs to sleep for us, but it calls might_sleep()] 486 */ 487static void ub_put(struct ub_dev *sc) 488{ 489 unsigned long flags; 490 491 spin_lock_irqsave(&ub_lock, flags); 492 --sc->openc; 493 if (sc->openc == 0 && atomic_read(&sc->poison)) { 494 spin_unlock_irqrestore(&ub_lock, flags); 495 ub_cleanup(sc); 496 } else { 497 spin_unlock_irqrestore(&ub_lock, flags); 498 } 499} 500 501/* 502 * Final cleanup and deallocation. 503 */ 504static void ub_cleanup(struct ub_dev *sc) 505{ 506 struct list_head *p; 507 struct ub_lun *lun; 508 struct request_queue *q; 509 510 while (!list_empty(&sc->luns)) { 511 p = sc->luns.next; 512 lun = list_entry(p, struct ub_lun, link); 513 list_del(p); 514 515 /* I don't think queue can be NULL. But... Stolen from sx8.c */ 516 if ((q = lun->disk->queue) != NULL) 517 blk_cleanup_queue(q); 518 /* 519 * If we zero disk->private_data BEFORE put_disk, we have 520 * to check for NULL all over the place in open, release, 521 * check_media and revalidate, because the block level 522 * semaphore is well inside the put_disk. 523 * But we cannot zero after the call, because *disk is gone. 524 * The sd.c is blatantly racy in this area. 525 */ 526 /* disk->private_data = NULL; */ 527 put_disk(lun->disk); 528 lun->disk = NULL; 529 530 ub_id_put(lun->id); 531 kfree(lun); 532 } 533 534 usb_set_intfdata(sc->intf, NULL); 535 usb_put_intf(sc->intf); 536 usb_put_dev(sc->dev); 537 kfree(sc); 538} 539 540/* 541 * The "command allocator". 542 */ 543static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun) 544{ 545 struct ub_scsi_cmd *ret; 546 547 if (lun->cmda[0]) 548 return NULL; 549 ret = &lun->cmdv[0]; 550 lun->cmda[0] = 1; 551 return ret; 552} 553 554static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd) 555{ 556 if (cmd != &lun->cmdv[0]) { 557 printk(KERN_WARNING "%s: releasing a foreign cmd %p\n", 558 lun->name, cmd); 559 return; 560 } 561 if (!lun->cmda[0]) { 562 printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name); 563 return; 564 } 565 lun->cmda[0] = 0; 566} 567 568/* 569 * The command queue. 570 */ 571static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 572{ 573 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 574 575 if (t->qlen++ == 0) { 576 t->head = cmd; 577 t->tail = cmd; 578 } else { 579 t->tail->next = cmd; 580 t->tail = cmd; 581 } 582 583 if (t->qlen > t->qmax) 584 t->qmax = t->qlen; 585} 586 587static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 588{ 589 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 590 591 if (t->qlen++ == 0) { 592 t->head = cmd; 593 t->tail = cmd; 594 } else { 595 cmd->next = t->head; 596 t->head = cmd; 597 } 598 599 if (t->qlen > t->qmax) 600 t->qmax = t->qlen; 601} 602 603static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc) 604{ 605 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 606 struct ub_scsi_cmd *cmd; 607 608 if (t->qlen == 0) 609 return NULL; 610 if (--t->qlen == 0) 611 t->tail = NULL; 612 cmd = t->head; 613 t->head = cmd->next; 614 cmd->next = NULL; 615 return cmd; 616} 617 618#define ub_cmdq_peek(sc) ((sc)->cmd_queue.head) 619 620/* 621 * The request function is our main entry point 622 */ 623 624static void ub_request_fn(struct request_queue *q) 625{ 626 struct ub_lun *lun = q->queuedata; 627 struct request *rq; 628 629 while ((rq = blk_peek_request(q)) != NULL) { 630 if (ub_request_fn_1(lun, rq) != 0) { 631 blk_stop_queue(q); 632 break; 633 } 634 } 635} 636 637static int ub_request_fn_1(struct ub_lun *lun, struct request *rq) 638{ 639 struct ub_dev *sc = lun->udev; 640 struct ub_scsi_cmd *cmd; 641 struct ub_request *urq; 642 int n_elem; 643 644 if (atomic_read(&sc->poison)) { 645 blk_start_request(rq); 646 ub_end_rq(rq, DID_NO_CONNECT << 16); 647 return 0; 648 } 649 650 if (lun->changed && !blk_pc_request(rq)) { 651 blk_start_request(rq); 652 ub_end_rq(rq, SAM_STAT_CHECK_CONDITION); 653 return 0; 654 } 655 656 if (lun->urq.rq != NULL) 657 return -1; 658 if ((cmd = ub_get_cmd(lun)) == NULL) 659 return -1; 660 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 661 662 blk_start_request(rq); 663 664 urq = &lun->urq; 665 memset(urq, 0, sizeof(struct ub_request)); 666 urq->rq = rq; 667 668 /* 669 * get scatterlist from block layer 670 */ 671 sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG); 672 n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]); 673 if (n_elem < 0) { 674 /* Impossible, because blk_rq_map_sg should not hit ENOMEM. */ 675 printk(KERN_INFO "%s: failed request map (%d)\n", 676 lun->name, n_elem); 677 goto drop; 678 } 679 if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */ 680 printk(KERN_WARNING "%s: request with %d segments\n", 681 lun->name, n_elem); 682 goto drop; 683 } 684 urq->nsg = n_elem; 685 686 if (blk_pc_request(rq)) { 687 ub_cmd_build_packet(sc, lun, cmd, urq); 688 } else { 689 ub_cmd_build_block(sc, lun, cmd, urq); 690 } 691 cmd->state = UB_CMDST_INIT; 692 cmd->lun = lun; 693 cmd->done = ub_rw_cmd_done; 694 cmd->back = urq; 695 696 cmd->tag = sc->tagcnt++; 697 if (ub_submit_scsi(sc, cmd) != 0) 698 goto drop; 699 700 return 0; 701 702drop: 703 ub_put_cmd(lun, cmd); 704 ub_end_rq(rq, DID_ERROR << 16); 705 return 0; 706} 707 708static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 709 struct ub_scsi_cmd *cmd, struct ub_request *urq) 710{ 711 struct request *rq = urq->rq; 712 unsigned int block, nblks; 713 714 if (rq_data_dir(rq) == WRITE) 715 cmd->dir = UB_DIR_WRITE; 716 else 717 cmd->dir = UB_DIR_READ; 718 719 cmd->nsg = urq->nsg; 720 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 721 722 /* 723 * build the command 724 * 725 * The call to blk_queue_logical_block_size() guarantees that request 726 * is aligned, but it is given in terms of 512 byte units, always. 727 */ 728 block = blk_rq_pos(rq) >> lun->capacity.bshift; 729 nblks = blk_rq_sectors(rq) >> lun->capacity.bshift; 730 731 cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10; 732 /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */ 733 cmd->cdb[2] = block >> 24; 734 cmd->cdb[3] = block >> 16; 735 cmd->cdb[4] = block >> 8; 736 cmd->cdb[5] = block; 737 cmd->cdb[7] = nblks >> 8; 738 cmd->cdb[8] = nblks; 739 cmd->cdb_len = 10; 740 741 cmd->len = blk_rq_bytes(rq); 742} 743 744static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 745 struct ub_scsi_cmd *cmd, struct ub_request *urq) 746{ 747 struct request *rq = urq->rq; 748 749 if (blk_rq_bytes(rq) == 0) { 750 cmd->dir = UB_DIR_NONE; 751 } else { 752 if (rq_data_dir(rq) == WRITE) 753 cmd->dir = UB_DIR_WRITE; 754 else 755 cmd->dir = UB_DIR_READ; 756 } 757 758 cmd->nsg = urq->nsg; 759 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 760 761 memcpy(&cmd->cdb, rq->cmd, rq->cmd_len); 762 cmd->cdb_len = rq->cmd_len; 763 764 cmd->len = blk_rq_bytes(rq); 765 766 /* 767 * To reapply this to every URB is not as incorrect as it looks. 768 * In return, we avoid any complicated tracking calculations. 769 */ 770 cmd->timeo = rq->timeout; 771} 772 773static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 774{ 775 struct ub_lun *lun = cmd->lun; 776 struct ub_request *urq = cmd->back; 777 struct request *rq; 778 unsigned int scsi_status; 779 780 rq = urq->rq; 781 782 if (cmd->error == 0) { 783 if (blk_pc_request(rq)) { 784 if (cmd->act_len >= rq->resid_len) 785 rq->resid_len = 0; 786 else 787 rq->resid_len -= cmd->act_len; 788 scsi_status = 0; 789 } else { 790 if (cmd->act_len != cmd->len) { 791 scsi_status = SAM_STAT_CHECK_CONDITION; 792 } else { 793 scsi_status = 0; 794 } 795 } 796 } else { 797 if (blk_pc_request(rq)) { 798 /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */ 799 memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE); 800 rq->sense_len = UB_SENSE_SIZE; 801 if (sc->top_sense[0] != 0) 802 scsi_status = SAM_STAT_CHECK_CONDITION; 803 else 804 scsi_status = DID_ERROR << 16; 805 } else { 806 if (cmd->error == -EIO && 807 (cmd->key == 0 || 808 cmd->key == MEDIUM_ERROR || 809 cmd->key == UNIT_ATTENTION)) { 810 if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0) 811 return; 812 } 813 scsi_status = SAM_STAT_CHECK_CONDITION; 814 } 815 } 816 817 urq->rq = NULL; 818 819 ub_put_cmd(lun, cmd); 820 ub_end_rq(rq, scsi_status); 821 blk_start_queue(lun->disk->queue); 822} 823 824static void ub_end_rq(struct request *rq, unsigned int scsi_status) 825{ 826 int error; 827 828 if (scsi_status == 0) { 829 error = 0; 830 } else { 831 error = -EIO; 832 rq->errors = scsi_status; 833 } 834 __blk_end_request_all(rq, error); 835} 836 837static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 838 struct ub_request *urq, struct ub_scsi_cmd *cmd) 839{ 840 841 if (atomic_read(&sc->poison)) 842 return -ENXIO; 843 844 ub_reset_enter(sc, urq->current_try); 845 846 if (urq->current_try >= 3) 847 return -EIO; 848 urq->current_try++; 849 850 /* Remove this if anyone complains of flooding. */ 851 printk(KERN_DEBUG "%s: dir %c len/act %d/%d " 852 "[sense %x %02x %02x] retry %d\n", 853 sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len, 854 cmd->key, cmd->asc, cmd->ascq, urq->current_try); 855 856 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 857 ub_cmd_build_block(sc, lun, cmd, urq); 858 859 cmd->state = UB_CMDST_INIT; 860 cmd->lun = lun; 861 cmd->done = ub_rw_cmd_done; 862 cmd->back = urq; 863 864 cmd->tag = sc->tagcnt++; 865 866#if 0 /* Wasteful */ 867 return ub_submit_scsi(sc, cmd); 868#else 869 ub_cmdq_add(sc, cmd); 870 return 0; 871#endif 872} 873 874/* 875 * Submit a regular SCSI operation (not an auto-sense). 876 * 877 * The Iron Law of Good Submit Routine is: 878 * Zero return - callback is done, Nonzero return - callback is not done. 879 * No exceptions. 880 * 881 * Host is assumed locked. 882 */ 883static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 884{ 885 886 if (cmd->state != UB_CMDST_INIT || 887 (cmd->dir != UB_DIR_NONE && cmd->len == 0)) { 888 return -EINVAL; 889 } 890 891 ub_cmdq_add(sc, cmd); 892 /* 893 * We can call ub_scsi_dispatch(sc) right away here, but it's a little 894 * safer to jump to a tasklet, in case upper layers do something silly. 895 */ 896 tasklet_schedule(&sc->tasklet); 897 return 0; 898} 899 900/* 901 * Submit the first URB for the queued command. 902 * This function does not deal with queueing in any way. 903 */ 904static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 905{ 906 struct bulk_cb_wrap *bcb; 907 int rc; 908 909 bcb = &sc->work_bcb; 910 911 /* 912 * ``If the allocation length is eighteen or greater, and a device 913 * server returns less than eithteen bytes of data, the application 914 * client should assume that the bytes not transferred would have been 915 * zeroes had the device server returned those bytes.'' 916 * 917 * We zero sense for all commands so that when a packet request 918 * fails it does not return a stale sense. 919 */ 920 memset(&sc->top_sense, 0, UB_SENSE_SIZE); 921 922 /* set up the command wrapper */ 923 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 924 bcb->Tag = cmd->tag; /* Endianness is not important */ 925 bcb->DataTransferLength = cpu_to_le32(cmd->len); 926 bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0; 927 bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0; 928 bcb->Length = cmd->cdb_len; 929 930 /* copy the command payload */ 931 memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE); 932 933 UB_INIT_COMPLETION(sc->work_done); 934 935 sc->last_pipe = sc->send_bulk_pipe; 936 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe, 937 bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc); 938 939 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 940 /* XXX Clear stalls */ 941 ub_complete(&sc->work_done); 942 return rc; 943 } 944 945 sc->work_timer.expires = jiffies + UB_URB_TIMEOUT; 946 add_timer(&sc->work_timer); 947 948 cmd->state = UB_CMDST_CMD; 949 return 0; 950} 951 952/* 953 * Timeout handler. 954 */ 955static void ub_urb_timeout(unsigned long arg) 956{ 957 struct ub_dev *sc = (struct ub_dev *) arg; 958 unsigned long flags; 959 960 spin_lock_irqsave(sc->lock, flags); 961 if (!ub_is_completed(&sc->work_done)) 962 usb_unlink_urb(&sc->work_urb); 963 spin_unlock_irqrestore(sc->lock, flags); 964} 965 966/* 967 * Completion routine for the work URB. 968 * 969 * This can be called directly from usb_submit_urb (while we have 970 * the sc->lock taken) and from an interrupt (while we do NOT have 971 * the sc->lock taken). Therefore, bounce this off to a tasklet. 972 */ 973static void ub_urb_complete(struct urb *urb) 974{ 975 struct ub_dev *sc = urb->context; 976 977 ub_complete(&sc->work_done); 978 tasklet_schedule(&sc->tasklet); 979} 980 981static void ub_scsi_action(unsigned long _dev) 982{ 983 struct ub_dev *sc = (struct ub_dev *) _dev; 984 unsigned long flags; 985 986 spin_lock_irqsave(sc->lock, flags); 987 ub_scsi_dispatch(sc); 988 spin_unlock_irqrestore(sc->lock, flags); 989} 990 991static void ub_scsi_dispatch(struct ub_dev *sc) 992{ 993 struct ub_scsi_cmd *cmd; 994 int rc; 995 996 while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) { 997 if (cmd->state == UB_CMDST_DONE) { 998 ub_cmdq_pop(sc); 999 (*cmd->done)(sc, cmd); 1000 } else if (cmd->state == UB_CMDST_INIT) { 1001 if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0) 1002 break; 1003 cmd->error = rc; 1004 cmd->state = UB_CMDST_DONE; 1005 } else { 1006 if (!ub_is_completed(&sc->work_done)) 1007 break; 1008 del_timer(&sc->work_timer); 1009 ub_scsi_urb_compl(sc, cmd); 1010 } 1011 } 1012} 1013 1014static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1015{ 1016 struct urb *urb = &sc->work_urb; 1017 struct bulk_cs_wrap *bcs; 1018 int endp; 1019 int len; 1020 int rc; 1021 1022 if (atomic_read(&sc->poison)) { 1023 ub_state_done(sc, cmd, -ENODEV); 1024 return; 1025 } 1026 1027 endp = usb_pipeendpoint(sc->last_pipe); 1028 if (usb_pipein(sc->last_pipe)) 1029 endp |= USB_DIR_IN; 1030 1031 if (cmd->state == UB_CMDST_CLEAR) { 1032 if (urb->status == -EPIPE) { 1033 /* 1034 * STALL while clearning STALL. 1035 * The control pipe clears itself - nothing to do. 1036 */ 1037 printk(KERN_NOTICE "%s: stall on control pipe\n", 1038 sc->name); 1039 goto Bad_End; 1040 } 1041 1042 /* 1043 * We ignore the result for the halt clear. 1044 */ 1045 1046 usb_reset_endpoint(sc->dev, endp); 1047 1048 ub_state_sense(sc, cmd); 1049 1050 } else if (cmd->state == UB_CMDST_CLR2STS) { 1051 if (urb->status == -EPIPE) { 1052 printk(KERN_NOTICE "%s: stall on control pipe\n", 1053 sc->name); 1054 goto Bad_End; 1055 } 1056 1057 /* 1058 * We ignore the result for the halt clear. 1059 */ 1060 1061 usb_reset_endpoint(sc->dev, endp); 1062 1063 ub_state_stat(sc, cmd); 1064 1065 } else if (cmd->state == UB_CMDST_CLRRS) { 1066 if (urb->status == -EPIPE) { 1067 printk(KERN_NOTICE "%s: stall on control pipe\n", 1068 sc->name); 1069 goto Bad_End; 1070 } 1071 1072 /* 1073 * We ignore the result for the halt clear. 1074 */ 1075 1076 usb_reset_endpoint(sc->dev, endp); 1077 1078 ub_state_stat_counted(sc, cmd); 1079 1080 } else if (cmd->state == UB_CMDST_CMD) { 1081 switch (urb->status) { 1082 case 0: 1083 break; 1084 case -EOVERFLOW: 1085 goto Bad_End; 1086 case -EPIPE: 1087 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1088 if (rc != 0) { 1089 printk(KERN_NOTICE "%s: " 1090 "unable to submit clear (%d)\n", 1091 sc->name, rc); 1092 /* 1093 * This is typically ENOMEM or some other such shit. 1094 * Retrying is pointless. Just do Bad End on it... 1095 */ 1096 ub_state_done(sc, cmd, rc); 1097 return; 1098 } 1099 cmd->state = UB_CMDST_CLEAR; 1100 return; 1101 case -ESHUTDOWN: /* unplug */ 1102 case -EILSEQ: /* unplug timeout on uhci */ 1103 ub_state_done(sc, cmd, -ENODEV); 1104 return; 1105 default: 1106 goto Bad_End; 1107 } 1108 if (urb->actual_length != US_BULK_CB_WRAP_LEN) { 1109 goto Bad_End; 1110 } 1111 1112 if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) { 1113 ub_state_stat(sc, cmd); 1114 return; 1115 } 1116 1117 // udelay(125); // usb-storage has this 1118 ub_data_start(sc, cmd); 1119 1120 } else if (cmd->state == UB_CMDST_DATA) { 1121 if (urb->status == -EPIPE) { 1122 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1123 if (rc != 0) { 1124 printk(KERN_NOTICE "%s: " 1125 "unable to submit clear (%d)\n", 1126 sc->name, rc); 1127 ub_state_done(sc, cmd, rc); 1128 return; 1129 } 1130 cmd->state = UB_CMDST_CLR2STS; 1131 return; 1132 } 1133 if (urb->status == -EOVERFLOW) { 1134 /* 1135 * A babble? Failure, but we must transfer CSW now. 1136 */ 1137 cmd->error = -EOVERFLOW; /* A cheap trick... */ 1138 ub_state_stat(sc, cmd); 1139 return; 1140 } 1141 1142 if (cmd->dir == UB_DIR_WRITE) { 1143 /* 1144 * Do not continue writes in case of a failure. 1145 * Doing so would cause sectors to be mixed up, 1146 * which is worse than sectors lost. 1147 * 1148 * We must try to read the CSW, or many devices 1149 * get confused. 1150 */ 1151 len = urb->actual_length; 1152 if (urb->status != 0 || 1153 len != cmd->sgv[cmd->current_sg].length) { 1154 cmd->act_len += len; 1155 1156 cmd->error = -EIO; 1157 ub_state_stat(sc, cmd); 1158 return; 1159 } 1160 1161 } else { 1162 /* 1163 * If an error occurs on read, we record it, and 1164 * continue to fetch data in order to avoid bubble. 1165 * 1166 * As a small shortcut, we stop if we detect that 1167 * a CSW mixed into data. 1168 */ 1169 if (urb->status != 0) 1170 cmd->error = -EIO; 1171 1172 len = urb->actual_length; 1173 if (urb->status != 0 || 1174 len != cmd->sgv[cmd->current_sg].length) { 1175 if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN) 1176 goto Bad_End; 1177 } 1178 } 1179 1180 cmd->act_len += urb->actual_length; 1181 1182 if (++cmd->current_sg < cmd->nsg) { 1183 ub_data_start(sc, cmd); 1184 return; 1185 } 1186 ub_state_stat(sc, cmd); 1187 1188 } else if (cmd->state == UB_CMDST_STAT) { 1189 if (urb->status == -EPIPE) { 1190 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1191 if (rc != 0) { 1192 printk(KERN_NOTICE "%s: " 1193 "unable to submit clear (%d)\n", 1194 sc->name, rc); 1195 ub_state_done(sc, cmd, rc); 1196 return; 1197 } 1198 1199 /* 1200 * Having a stall when getting CSW is an error, so 1201 * make sure uppper levels are not oblivious to it. 1202 */ 1203 cmd->error = -EIO; /* A cheap trick... */ 1204 1205 cmd->state = UB_CMDST_CLRRS; 1206 return; 1207 } 1208 1209 /* Catch everything, including -EOVERFLOW and other nasties. */ 1210 if (urb->status != 0) 1211 goto Bad_End; 1212 1213 if (urb->actual_length == 0) { 1214 ub_state_stat_counted(sc, cmd); 1215 return; 1216 } 1217 1218 /* 1219 * Check the returned Bulk protocol status. 1220 * The status block has to be validated first. 1221 */ 1222 1223 bcs = &sc->work_bcs; 1224 1225 if (sc->signature == cpu_to_le32(0)) { 1226 /* 1227 * This is the first reply, so do not perform the check. 1228 * Instead, remember the signature the device uses 1229 * for future checks. But do not allow a nul. 1230 */ 1231 sc->signature = bcs->Signature; 1232 if (sc->signature == cpu_to_le32(0)) { 1233 ub_state_stat_counted(sc, cmd); 1234 return; 1235 } 1236 } else { 1237 if (bcs->Signature != sc->signature) { 1238 ub_state_stat_counted(sc, cmd); 1239 return; 1240 } 1241 } 1242 1243 if (bcs->Tag != cmd->tag) { 1244 /* 1245 * This usually happens when we disagree with the 1246 * device's microcode about something. For instance, 1247 * a few of them throw this after timeouts. They buffer 1248 * commands and reply at commands we timed out before. 1249 * Without flushing these replies we loop forever. 1250 */ 1251 ub_state_stat_counted(sc, cmd); 1252 return; 1253 } 1254 1255 if (!sc->bad_resid) { 1256 len = le32_to_cpu(bcs->Residue); 1257 if (len != cmd->len - cmd->act_len) { 1258 /* 1259 * Only start ignoring if this cmd ended well. 1260 */ 1261 if (cmd->len == cmd->act_len) { 1262 printk(KERN_NOTICE "%s: " 1263 "bad residual %d of %d, ignoring\n", 1264 sc->name, len, cmd->len); 1265 sc->bad_resid = 1; 1266 } 1267 } 1268 } 1269 1270 switch (bcs->Status) { 1271 case US_BULK_STAT_OK: 1272 break; 1273 case US_BULK_STAT_FAIL: 1274 ub_state_sense(sc, cmd); 1275 return; 1276 case US_BULK_STAT_PHASE: 1277 goto Bad_End; 1278 default: 1279 printk(KERN_INFO "%s: unknown CSW status 0x%x\n", 1280 sc->name, bcs->Status); 1281 ub_state_done(sc, cmd, -EINVAL); 1282 return; 1283 } 1284 1285 /* Not zeroing error to preserve a babble indicator */ 1286 if (cmd->error != 0) { 1287 ub_state_sense(sc, cmd); 1288 return; 1289 } 1290 cmd->state = UB_CMDST_DONE; 1291 ub_cmdq_pop(sc); 1292 (*cmd->done)(sc, cmd); 1293 1294 } else if (cmd->state == UB_CMDST_SENSE) { 1295 ub_state_done(sc, cmd, -EIO); 1296 1297 } else { 1298 printk(KERN_WARNING "%s: wrong command state %d\n", 1299 sc->name, cmd->state); 1300 ub_state_done(sc, cmd, -EINVAL); 1301 return; 1302 } 1303 return; 1304 1305Bad_End: /* Little Excel is dead */ 1306 ub_state_done(sc, cmd, -EIO); 1307} 1308 1309/* 1310 * Factorization helper for the command state machine: 1311 * Initiate a data segment transfer. 1312 */ 1313static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1314{ 1315 struct scatterlist *sg = &cmd->sgv[cmd->current_sg]; 1316 int pipe; 1317 int rc; 1318 1319 UB_INIT_COMPLETION(sc->work_done); 1320 1321 if (cmd->dir == UB_DIR_READ) 1322 pipe = sc->recv_bulk_pipe; 1323 else 1324 pipe = sc->send_bulk_pipe; 1325 sc->last_pipe = pipe; 1326 usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg), 1327 sg->length, ub_urb_complete, sc); 1328 1329 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1330 /* XXX Clear stalls */ 1331 ub_complete(&sc->work_done); 1332 ub_state_done(sc, cmd, rc); 1333 return; 1334 } 1335 1336 if (cmd->timeo) 1337 sc->work_timer.expires = jiffies + cmd->timeo; 1338 else 1339 sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT; 1340 add_timer(&sc->work_timer); 1341 1342 cmd->state = UB_CMDST_DATA; 1343} 1344 1345/* 1346 * Factorization helper for the command state machine: 1347 * Finish the command. 1348 */ 1349static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc) 1350{ 1351 1352 cmd->error = rc; 1353 cmd->state = UB_CMDST_DONE; 1354 ub_cmdq_pop(sc); 1355 (*cmd->done)(sc, cmd); 1356} 1357 1358/* 1359 * Factorization helper for the command state machine: 1360 * Submit a CSW read. 1361 */ 1362static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1363{ 1364 int rc; 1365 1366 UB_INIT_COMPLETION(sc->work_done); 1367 1368 sc->last_pipe = sc->recv_bulk_pipe; 1369 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe, 1370 &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc); 1371 1372 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1373 /* XXX Clear stalls */ 1374 ub_complete(&sc->work_done); 1375 ub_state_done(sc, cmd, rc); 1376 return -1; 1377 } 1378 1379 if (cmd->timeo) 1380 sc->work_timer.expires = jiffies + cmd->timeo; 1381 else 1382 sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT; 1383 add_timer(&sc->work_timer); 1384 return 0; 1385} 1386 1387/* 1388 * Factorization helper for the command state machine: 1389 * Submit a CSW read and go to STAT state. 1390 */ 1391static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1392{ 1393 1394 if (__ub_state_stat(sc, cmd) != 0) 1395 return; 1396 1397 cmd->stat_count = 0; 1398 cmd->state = UB_CMDST_STAT; 1399} 1400 1401/* 1402 * Factorization helper for the command state machine: 1403 * Submit a CSW read and go to STAT state with counter (along [C] path). 1404 */ 1405static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1406{ 1407 1408 if (++cmd->stat_count >= 4) { 1409 ub_state_sense(sc, cmd); 1410 return; 1411 } 1412 1413 if (__ub_state_stat(sc, cmd) != 0) 1414 return; 1415 1416 cmd->state = UB_CMDST_STAT; 1417} 1418 1419/* 1420 * Factorization helper for the command state machine: 1421 * Submit a REQUEST SENSE and go to SENSE state. 1422 */ 1423static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1424{ 1425 struct ub_scsi_cmd *scmd; 1426 struct scatterlist *sg; 1427 int rc; 1428 1429 if (cmd->cdb[0] == REQUEST_SENSE) { 1430 rc = -EPIPE; 1431 goto error; 1432 } 1433 1434 scmd = &sc->top_rqs_cmd; 1435 memset(scmd, 0, sizeof(struct ub_scsi_cmd)); 1436 scmd->cdb[0] = REQUEST_SENSE; 1437 scmd->cdb[4] = UB_SENSE_SIZE; 1438 scmd->cdb_len = 6; 1439 scmd->dir = UB_DIR_READ; 1440 scmd->state = UB_CMDST_INIT; 1441 scmd->nsg = 1; 1442 sg = &scmd->sgv[0]; 1443 sg_init_table(sg, UB_MAX_REQ_SG); 1444 sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE, 1445 (unsigned long)sc->top_sense & (PAGE_SIZE-1)); 1446 scmd->len = UB_SENSE_SIZE; 1447 scmd->lun = cmd->lun; 1448 scmd->done = ub_top_sense_done; 1449 scmd->back = cmd; 1450 1451 scmd->tag = sc->tagcnt++; 1452 1453 cmd->state = UB_CMDST_SENSE; 1454 1455 ub_cmdq_insert(sc, scmd); 1456 return; 1457 1458error: 1459 ub_state_done(sc, cmd, rc); 1460} 1461 1462/* 1463 * A helper for the command's state machine: 1464 * Submit a stall clear. 1465 */ 1466static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 1467 int stalled_pipe) 1468{ 1469 int endp; 1470 struct usb_ctrlrequest *cr; 1471 int rc; 1472 1473 endp = usb_pipeendpoint(stalled_pipe); 1474 if (usb_pipein (stalled_pipe)) 1475 endp |= USB_DIR_IN; 1476 1477 cr = &sc->work_cr; 1478 cr->bRequestType = USB_RECIP_ENDPOINT; 1479 cr->bRequest = USB_REQ_CLEAR_FEATURE; 1480 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 1481 cr->wIndex = cpu_to_le16(endp); 1482 cr->wLength = cpu_to_le16(0); 1483 1484 UB_INIT_COMPLETION(sc->work_done); 1485 1486 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1487 (unsigned char*) cr, NULL, 0, ub_urb_complete, sc); 1488 1489 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1490 ub_complete(&sc->work_done); 1491 return rc; 1492 } 1493 1494 sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT; 1495 add_timer(&sc->work_timer); 1496 return 0; 1497} 1498 1499/* 1500 */ 1501static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd) 1502{ 1503 unsigned char *sense = sc->top_sense; 1504 struct ub_scsi_cmd *cmd; 1505 1506 /* 1507 * Find the command which triggered the unit attention or a check, 1508 * save the sense into it, and advance its state machine. 1509 */ 1510 if ((cmd = ub_cmdq_peek(sc)) == NULL) { 1511 printk(KERN_WARNING "%s: sense done while idle\n", sc->name); 1512 return; 1513 } 1514 if (cmd != scmd->back) { 1515 printk(KERN_WARNING "%s: " 1516 "sense done for wrong command 0x%x\n", 1517 sc->name, cmd->tag); 1518 return; 1519 } 1520 if (cmd->state != UB_CMDST_SENSE) { 1521 printk(KERN_WARNING "%s: sense done with bad cmd state %d\n", 1522 sc->name, cmd->state); 1523 return; 1524 } 1525 1526 /* 1527 * Ignoring scmd->act_len, because the buffer was pre-zeroed. 1528 */ 1529 cmd->key = sense[2] & 0x0F; 1530 cmd->asc = sense[12]; 1531 cmd->ascq = sense[13]; 1532 1533 ub_scsi_urb_compl(sc, cmd); 1534} 1535 1536/* 1537 * Reset management 1538 */ 1539 1540static void ub_reset_enter(struct ub_dev *sc, int try) 1541{ 1542 1543 if (sc->reset) { 1544 /* This happens often on multi-LUN devices. */ 1545 return; 1546 } 1547 sc->reset = try + 1; 1548 1549#if 0 /* Not needed because the disconnect waits for us. */ 1550 unsigned long flags; 1551 spin_lock_irqsave(&ub_lock, flags); 1552 sc->openc++; 1553 spin_unlock_irqrestore(&ub_lock, flags); 1554#endif 1555 1556#if 0 /* We let them stop themselves. */ 1557 struct ub_lun *lun; 1558 list_for_each_entry(lun, &sc->luns, link) { 1559 blk_stop_queue(lun->disk->queue); 1560 } 1561#endif 1562 1563 schedule_work(&sc->reset_work); 1564} 1565 1566static void ub_reset_task(struct work_struct *work) 1567{ 1568 struct ub_dev *sc = container_of(work, struct ub_dev, reset_work); 1569 unsigned long flags; 1570 struct ub_lun *lun; 1571 int rc; 1572 1573 if (!sc->reset) { 1574 printk(KERN_WARNING "%s: Running reset unrequested\n", 1575 sc->name); 1576 return; 1577 } 1578 1579 if (atomic_read(&sc->poison)) { 1580 ; 1581 } else if ((sc->reset & 1) == 0) { 1582 ub_sync_reset(sc); 1583 msleep(700); /* usb-storage sleeps 6s (!) */ 1584 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 1585 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 1586 } else if (sc->dev->actconfig->desc.bNumInterfaces != 1) { 1587 ; 1588 } else { 1589 rc = usb_lock_device_for_reset(sc->dev, sc->intf); 1590 if (rc < 0) { 1591 printk(KERN_NOTICE 1592 "%s: usb_lock_device_for_reset failed (%d)\n", 1593 sc->name, rc); 1594 } else { 1595 rc = usb_reset_device(sc->dev); 1596 if (rc < 0) { 1597 printk(KERN_NOTICE "%s: " 1598 "usb_lock_device_for_reset failed (%d)\n", 1599 sc->name, rc); 1600 } 1601 usb_unlock_device(sc->dev); 1602 } 1603 } 1604 1605 /* 1606 * In theory, no commands can be running while reset is active, 1607 * so nobody can ask for another reset, and so we do not need any 1608 * queues of resets or anything. We do need a spinlock though, 1609 * to interact with block layer. 1610 */ 1611 spin_lock_irqsave(sc->lock, flags); 1612 sc->reset = 0; 1613 tasklet_schedule(&sc->tasklet); 1614 list_for_each_entry(lun, &sc->luns, link) { 1615 blk_start_queue(lun->disk->queue); 1616 } 1617 wake_up(&sc->reset_wait); 1618 spin_unlock_irqrestore(sc->lock, flags); 1619} 1620 1621/* 1622 * XXX Reset brackets are too much hassle to implement, so just stub them 1623 * in order to prevent forced unbinding (which deadlocks solid when our 1624 * ->disconnect method waits for the reset to complete and this kills keventd). 1625 * 1626 * XXX Tell Alan to move usb_unlock_device inside of usb_reset_device, 1627 * or else the post_reset is invoked, and restats I/O on a locked device. 1628 */ 1629static int ub_pre_reset(struct usb_interface *iface) { 1630 return 0; 1631} 1632 1633static int ub_post_reset(struct usb_interface *iface) { 1634 return 0; 1635} 1636 1637/* 1638 * This is called from a process context. 1639 */ 1640static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun) 1641{ 1642 1643 lun->readonly = 0; /* XXX Query this from the device */ 1644 1645 lun->capacity.nsec = 0; 1646 lun->capacity.bsize = 512; 1647 lun->capacity.bshift = 0; 1648 1649 if (ub_sync_tur(sc, lun) != 0) 1650 return; /* Not ready */ 1651 lun->changed = 0; 1652 1653 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1654 /* 1655 * The retry here means something is wrong, either with the 1656 * device, with the transport, or with our code. 1657 * We keep this because sd.c has retries for capacity. 1658 */ 1659 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1660 lun->capacity.nsec = 0; 1661 lun->capacity.bsize = 512; 1662 lun->capacity.bshift = 0; 1663 } 1664 } 1665} 1666 1667/* 1668 * The open funcion. 1669 * This is mostly needed to keep refcounting, but also to support 1670 * media checks on removable media drives. 1671 */ 1672static int ub_bd_open(struct block_device *bdev, fmode_t mode) 1673{ 1674 struct ub_lun *lun = bdev->bd_disk->private_data; 1675 struct ub_dev *sc = lun->udev; 1676 unsigned long flags; 1677 int rc; 1678 1679 spin_lock_irqsave(&ub_lock, flags); 1680 if (atomic_read(&sc->poison)) { 1681 spin_unlock_irqrestore(&ub_lock, flags); 1682 return -ENXIO; 1683 } 1684 sc->openc++; 1685 spin_unlock_irqrestore(&ub_lock, flags); 1686 1687 if (lun->removable || lun->readonly) 1688 check_disk_change(bdev); 1689 1690 /* 1691 * The sd.c considers ->media_present and ->changed not equivalent, 1692 * under some pretty murky conditions (a failure of READ CAPACITY). 1693 * We may need it one day. 1694 */ 1695 if (lun->removable && lun->changed && !(mode & FMODE_NDELAY)) { 1696 rc = -ENOMEDIUM; 1697 goto err_open; 1698 } 1699 1700 if (lun->readonly && (mode & FMODE_WRITE)) { 1701 rc = -EROFS; 1702 goto err_open; 1703 } 1704 1705 return 0; 1706 1707err_open: 1708 ub_put(sc); 1709 return rc; 1710} 1711 1712/* 1713 */ 1714static int ub_bd_release(struct gendisk *disk, fmode_t mode) 1715{ 1716 struct ub_lun *lun = disk->private_data; 1717 struct ub_dev *sc = lun->udev; 1718 1719 ub_put(sc); 1720 return 0; 1721} 1722 1723/* 1724 * The ioctl interface. 1725 */ 1726static int ub_bd_ioctl(struct block_device *bdev, fmode_t mode, 1727 unsigned int cmd, unsigned long arg) 1728{ 1729 struct gendisk *disk = bdev->bd_disk; 1730 void __user *usermem = (void __user *) arg; 1731 1732 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, usermem); 1733} 1734 1735/* 1736 * This is called by check_disk_change if we reported a media change. 1737 * The main onjective here is to discover the features of the media such as 1738 * the capacity, read-only status, etc. USB storage generally does not 1739 * need to be spun up, but if we needed it, this would be the place. 1740 * 1741 * This call can sleep. 1742 * 1743 * The return code is not used. 1744 */ 1745static int ub_bd_revalidate(struct gendisk *disk) 1746{ 1747 struct ub_lun *lun = disk->private_data; 1748 1749 ub_revalidate(lun->udev, lun); 1750 1751 /* XXX Support sector size switching like in sr.c */ 1752 blk_queue_logical_block_size(disk->queue, lun->capacity.bsize); 1753 set_capacity(disk, lun->capacity.nsec); 1754 // set_disk_ro(sdkp->disk, lun->readonly); 1755 1756 return 0; 1757} 1758 1759/* 1760 * The check is called by the block layer to verify if the media 1761 * is still available. It is supposed to be harmless, lightweight and 1762 * non-intrusive in case the media was not changed. 1763 * 1764 * This call can sleep. 1765 * 1766 * The return code is bool! 1767 */ 1768static int ub_bd_media_changed(struct gendisk *disk) 1769{ 1770 struct ub_lun *lun = disk->private_data; 1771 1772 if (!lun->removable) 1773 return 0; 1774 1775 /* 1776 * We clean checks always after every command, so this is not 1777 * as dangerous as it looks. If the TEST_UNIT_READY fails here, 1778 * the device is actually not ready with operator or software 1779 * intervention required. One dangerous item might be a drive which 1780 * spins itself down, and come the time to write dirty pages, this 1781 * will fail, then block layer discards the data. Since we never 1782 * spin drives up, such devices simply cannot be used with ub anyway. 1783 */ 1784 if (ub_sync_tur(lun->udev, lun) != 0) { 1785 lun->changed = 1; 1786 return 1; 1787 } 1788 1789 return lun->changed; 1790} 1791 1792static const struct block_device_operations ub_bd_fops = { 1793 .owner = THIS_MODULE, 1794 .open = ub_bd_open, 1795 .release = ub_bd_release, 1796 .locked_ioctl = ub_bd_ioctl, 1797 .media_changed = ub_bd_media_changed, 1798 .revalidate_disk = ub_bd_revalidate, 1799}; 1800 1801/* 1802 * Common ->done routine for commands executed synchronously. 1803 */ 1804static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1805{ 1806 struct completion *cop = cmd->back; 1807 complete(cop); 1808} 1809 1810/* 1811 * Test if the device has a check condition on it, synchronously. 1812 */ 1813static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun) 1814{ 1815 struct ub_scsi_cmd *cmd; 1816 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) }; 1817 unsigned long flags; 1818 struct completion compl; 1819 int rc; 1820 1821 init_completion(&compl); 1822 1823 rc = -ENOMEM; 1824 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1825 goto err_alloc; 1826 1827 cmd->cdb[0] = TEST_UNIT_READY; 1828 cmd->cdb_len = 6; 1829 cmd->dir = UB_DIR_NONE; 1830 cmd->state = UB_CMDST_INIT; 1831 cmd->lun = lun; /* This may be NULL, but that's ok */ 1832 cmd->done = ub_probe_done; 1833 cmd->back = &compl; 1834 1835 spin_lock_irqsave(sc->lock, flags); 1836 cmd->tag = sc->tagcnt++; 1837 1838 rc = ub_submit_scsi(sc, cmd); 1839 spin_unlock_irqrestore(sc->lock, flags); 1840 1841 if (rc != 0) 1842 goto err_submit; 1843 1844 wait_for_completion(&compl); 1845 1846 rc = cmd->error; 1847 1848 if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */ 1849 rc = cmd->key; 1850 1851err_submit: 1852 kfree(cmd); 1853err_alloc: 1854 return rc; 1855} 1856 1857/* 1858 * Read the SCSI capacity synchronously (for probing). 1859 */ 1860static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 1861 struct ub_capacity *ret) 1862{ 1863 struct ub_scsi_cmd *cmd; 1864 struct scatterlist *sg; 1865 char *p; 1866 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 }; 1867 unsigned long flags; 1868 unsigned int bsize, shift; 1869 unsigned long nsec; 1870 struct completion compl; 1871 int rc; 1872 1873 init_completion(&compl); 1874 1875 rc = -ENOMEM; 1876 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1877 goto err_alloc; 1878 p = (char *)cmd + sizeof(struct ub_scsi_cmd); 1879 1880 cmd->cdb[0] = 0x25; 1881 cmd->cdb_len = 10; 1882 cmd->dir = UB_DIR_READ; 1883 cmd->state = UB_CMDST_INIT; 1884 cmd->nsg = 1; 1885 sg = &cmd->sgv[0]; 1886 sg_init_table(sg, UB_MAX_REQ_SG); 1887 sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1)); 1888 cmd->len = 8; 1889 cmd->lun = lun; 1890 cmd->done = ub_probe_done; 1891 cmd->back = &compl; 1892 1893 spin_lock_irqsave(sc->lock, flags); 1894 cmd->tag = sc->tagcnt++; 1895 1896 rc = ub_submit_scsi(sc, cmd); 1897 spin_unlock_irqrestore(sc->lock, flags); 1898 1899 if (rc != 0) 1900 goto err_submit; 1901 1902 wait_for_completion(&compl); 1903 1904 if (cmd->error != 0) { 1905 rc = -EIO; 1906 goto err_read; 1907 } 1908 if (cmd->act_len != 8) { 1909 rc = -EIO; 1910 goto err_read; 1911 } 1912 1913 /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */ 1914 nsec = be32_to_cpu(*(__be32 *)p) + 1; 1915 bsize = be32_to_cpu(*(__be32 *)(p + 4)); 1916 switch (bsize) { 1917 case 512: shift = 0; break; 1918 case 1024: shift = 1; break; 1919 case 2048: shift = 2; break; 1920 case 4096: shift = 3; break; 1921 default: 1922 rc = -EDOM; 1923 goto err_inv_bsize; 1924 } 1925 1926 ret->bsize = bsize; 1927 ret->bshift = shift; 1928 ret->nsec = nsec << shift; 1929 rc = 0; 1930 1931err_inv_bsize: 1932err_read: 1933err_submit: 1934 kfree(cmd); 1935err_alloc: 1936 return rc; 1937} 1938 1939/* 1940 */ 1941static void ub_probe_urb_complete(struct urb *urb) 1942{ 1943 struct completion *cop = urb->context; 1944 complete(cop); 1945} 1946 1947static void ub_probe_timeout(unsigned long arg) 1948{ 1949 struct completion *cop = (struct completion *) arg; 1950 complete(cop); 1951} 1952 1953/* 1954 * Reset with a Bulk reset. 1955 */ 1956static int ub_sync_reset(struct ub_dev *sc) 1957{ 1958 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 1959 struct usb_ctrlrequest *cr; 1960 struct completion compl; 1961 struct timer_list timer; 1962 int rc; 1963 1964 init_completion(&compl); 1965 1966 cr = &sc->work_cr; 1967 cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 1968 cr->bRequest = US_BULK_RESET_REQUEST; 1969 cr->wValue = cpu_to_le16(0); 1970 cr->wIndex = cpu_to_le16(ifnum); 1971 cr->wLength = cpu_to_le16(0); 1972 1973 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1974 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 1975 1976 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 1977 printk(KERN_WARNING 1978 "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc); 1979 return rc; 1980 } 1981 1982 init_timer(&timer); 1983 timer.function = ub_probe_timeout; 1984 timer.data = (unsigned long) &compl; 1985 timer.expires = jiffies + UB_CTRL_TIMEOUT; 1986 add_timer(&timer); 1987 1988 wait_for_completion(&compl); 1989 1990 del_timer_sync(&timer); 1991 usb_kill_urb(&sc->work_urb); 1992 1993 return sc->work_urb.status; 1994} 1995 1996/* 1997 * Get number of LUNs by the way of Bulk GetMaxLUN command. 1998 */ 1999static int ub_sync_getmaxlun(struct ub_dev *sc) 2000{ 2001 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 2002 unsigned char *p; 2003 enum { ALLOC_SIZE = 1 }; 2004 struct usb_ctrlrequest *cr; 2005 struct completion compl; 2006 struct timer_list timer; 2007 int nluns; 2008 int rc; 2009 2010 init_completion(&compl); 2011 2012 rc = -ENOMEM; 2013 if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 2014 goto err_alloc; 2015 *p = 55; 2016 2017 cr = &sc->work_cr; 2018 cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; 2019 cr->bRequest = US_BULK_GET_MAX_LUN; 2020 cr->wValue = cpu_to_le16(0); 2021 cr->wIndex = cpu_to_le16(ifnum); 2022 cr->wLength = cpu_to_le16(1); 2023 2024 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe, 2025 (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl); 2026 2027 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) 2028 goto err_submit; 2029 2030 init_timer(&timer); 2031 timer.function = ub_probe_timeout; 2032 timer.data = (unsigned long) &compl; 2033 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2034 add_timer(&timer); 2035 2036 wait_for_completion(&compl); 2037 2038 del_timer_sync(&timer); 2039 usb_kill_urb(&sc->work_urb); 2040 2041 if ((rc = sc->work_urb.status) < 0) 2042 goto err_io; 2043 2044 if (sc->work_urb.actual_length != 1) { 2045 nluns = 0; 2046 } else { 2047 if ((nluns = *p) == 55) { 2048 nluns = 0; 2049 } else { 2050 /* GetMaxLUN returns the maximum LUN number */ 2051 nluns += 1; 2052 if (nluns > UB_MAX_LUNS) 2053 nluns = UB_MAX_LUNS; 2054 } 2055 } 2056 2057 kfree(p); 2058 return nluns; 2059 2060err_io: 2061err_submit: 2062 kfree(p); 2063err_alloc: 2064 return rc; 2065} 2066 2067/* 2068 * Clear initial stalls. 2069 */ 2070static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe) 2071{ 2072 int endp; 2073 struct usb_ctrlrequest *cr; 2074 struct completion compl; 2075 struct timer_list timer; 2076 int rc; 2077 2078 init_completion(&compl); 2079 2080 endp = usb_pipeendpoint(stalled_pipe); 2081 if (usb_pipein (stalled_pipe)) 2082 endp |= USB_DIR_IN; 2083 2084 cr = &sc->work_cr; 2085 cr->bRequestType = USB_RECIP_ENDPOINT; 2086 cr->bRequest = USB_REQ_CLEAR_FEATURE; 2087 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 2088 cr->wIndex = cpu_to_le16(endp); 2089 cr->wLength = cpu_to_le16(0); 2090 2091 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 2092 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 2093 2094 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 2095 printk(KERN_WARNING 2096 "%s: Unable to submit a probe clear (%d)\n", sc->name, rc); 2097 return rc; 2098 } 2099 2100 init_timer(&timer); 2101 timer.function = ub_probe_timeout; 2102 timer.data = (unsigned long) &compl; 2103 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2104 add_timer(&timer); 2105 2106 wait_for_completion(&compl); 2107 2108 del_timer_sync(&timer); 2109 usb_kill_urb(&sc->work_urb); 2110 2111 usb_reset_endpoint(sc->dev, endp); 2112 2113 return 0; 2114} 2115 2116/* 2117 * Get the pipe settings. 2118 */ 2119static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev, 2120 struct usb_interface *intf) 2121{ 2122 struct usb_host_interface *altsetting = intf->cur_altsetting; 2123 struct usb_endpoint_descriptor *ep_in = NULL; 2124 struct usb_endpoint_descriptor *ep_out = NULL; 2125 struct usb_endpoint_descriptor *ep; 2126 int i; 2127 2128 /* 2129 * Find the endpoints we need. 2130 * We are expecting a minimum of 2 endpoints - in and out (bulk). 2131 * We will ignore any others. 2132 */ 2133 for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { 2134 ep = &altsetting->endpoint[i].desc; 2135 2136 /* Is it a BULK endpoint? */ 2137 if (usb_endpoint_xfer_bulk(ep)) { 2138 /* BULK in or out? */ 2139 if (usb_endpoint_dir_in(ep)) { 2140 if (ep_in == NULL) 2141 ep_in = ep; 2142 } else { 2143 if (ep_out == NULL) 2144 ep_out = ep; 2145 } 2146 } 2147 } 2148 2149 if (ep_in == NULL || ep_out == NULL) { 2150 printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name); 2151 return -ENODEV; 2152 } 2153 2154 /* Calculate and store the pipe values */ 2155 sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0); 2156 sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0); 2157 sc->send_bulk_pipe = usb_sndbulkpipe(dev, 2158 usb_endpoint_num(ep_out)); 2159 sc->recv_bulk_pipe = usb_rcvbulkpipe(dev, 2160 usb_endpoint_num(ep_in)); 2161 2162 return 0; 2163} 2164 2165/* 2166 * Probing is done in the process context, which allows us to cheat 2167 * and not to build a state machine for the discovery. 2168 */ 2169static int ub_probe(struct usb_interface *intf, 2170 const struct usb_device_id *dev_id) 2171{ 2172 struct ub_dev *sc; 2173 int nluns; 2174 int rc; 2175 int i; 2176 2177 if (usb_usual_check_type(dev_id, USB_US_TYPE_UB)) 2178 return -ENXIO; 2179 2180 rc = -ENOMEM; 2181 if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL) 2182 goto err_core; 2183 sc->lock = ub_next_lock(); 2184 INIT_LIST_HEAD(&sc->luns); 2185 usb_init_urb(&sc->work_urb); 2186 tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc); 2187 atomic_set(&sc->poison, 0); 2188 INIT_WORK(&sc->reset_work, ub_reset_task); 2189 init_waitqueue_head(&sc->reset_wait); 2190 2191 init_timer(&sc->work_timer); 2192 sc->work_timer.data = (unsigned long) sc; 2193 sc->work_timer.function = ub_urb_timeout; 2194 2195 ub_init_completion(&sc->work_done); 2196 sc->work_done.done = 1; /* A little yuk, but oh well... */ 2197 2198 sc->dev = interface_to_usbdev(intf); 2199 sc->intf = intf; 2200 // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber; 2201 usb_set_intfdata(intf, sc); 2202 usb_get_dev(sc->dev); 2203 /* 2204 * Since we give the interface struct to the block level through 2205 * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent 2206 * oopses on close after a disconnect (kernels 2.6.16 and up). 2207 */ 2208 usb_get_intf(sc->intf); 2209 2210 snprintf(sc->name, 12, DRV_NAME "(%d.%d)", 2211 sc->dev->bus->busnum, sc->dev->devnum); 2212 2213 /* XXX Verify that we can handle the device (from descriptors) */ 2214 2215 if (ub_get_pipes(sc, sc->dev, intf) != 0) 2216 goto err_dev_desc; 2217 2218 /* 2219 * At this point, all USB initialization is done, do upper layer. 2220 * We really hate halfway initialized structures, so from the 2221 * invariants perspective, this ub_dev is fully constructed at 2222 * this point. 2223 */ 2224 2225 /* 2226 * This is needed to clear toggles. It is a problem only if we do 2227 * `rmmod ub && modprobe ub` without disconnects, but we like that. 2228 */ 2229#if 0 /* iPod Mini fails if we do this (big white iPod works) */ 2230 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 2231 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 2232#endif 2233 2234 /* 2235 * The way this is used by the startup code is a little specific. 2236 * A SCSI check causes a USB stall. Our common case code sees it 2237 * and clears the check, after which the device is ready for use. 2238 * But if a check was not present, any command other than 2239 * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE). 2240 * 2241 * If we neglect to clear the SCSI check, the first real command fails 2242 * (which is the capacity readout). We clear that and retry, but why 2243 * causing spurious retries for no reason. 2244 * 2245 * Revalidation may start with its own TEST_UNIT_READY, but that one 2246 * has to succeed, so we clear checks with an additional one here. 2247 * In any case it's not our business how revaliadation is implemented. 2248 */ 2249 for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */ 2250 if ((rc = ub_sync_tur(sc, NULL)) <= 0) break; 2251 if (rc != 0x6) break; 2252 msleep(10); 2253 } 2254 2255 nluns = 1; 2256 for (i = 0; i < 3; i++) { 2257 if ((rc = ub_sync_getmaxlun(sc)) < 0) 2258 break; 2259 if (rc != 0) { 2260 nluns = rc; 2261 break; 2262 } 2263 msleep(100); 2264 } 2265 2266 for (i = 0; i < nluns; i++) { 2267 ub_probe_lun(sc, i); 2268 } 2269 return 0; 2270 2271err_dev_desc: 2272 usb_set_intfdata(intf, NULL); 2273 usb_put_intf(sc->intf); 2274 usb_put_dev(sc->dev); 2275 kfree(sc); 2276err_core: 2277 return rc; 2278} 2279 2280static int ub_probe_lun(struct ub_dev *sc, int lnum) 2281{ 2282 struct ub_lun *lun; 2283 struct request_queue *q; 2284 struct gendisk *disk; 2285 int rc; 2286 2287 rc = -ENOMEM; 2288 if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL) 2289 goto err_alloc; 2290 lun->num = lnum; 2291 2292 rc = -ENOSR; 2293 if ((lun->id = ub_id_get()) == -1) 2294 goto err_id; 2295 2296 lun->udev = sc; 2297 2298 snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)", 2299 lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num); 2300 2301 lun->removable = 1; /* XXX Query this from the device */ 2302 lun->changed = 1; /* ub_revalidate clears only */ 2303 ub_revalidate(sc, lun); 2304 2305 rc = -ENOMEM; 2306 if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL) 2307 goto err_diskalloc; 2308 2309 sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a'); 2310 disk->major = UB_MAJOR; 2311 disk->first_minor = lun->id * UB_PARTS_PER_LUN; 2312 disk->fops = &ub_bd_fops; 2313 disk->private_data = lun; 2314 disk->driverfs_dev = &sc->intf->dev; 2315 2316 rc = -ENOMEM; 2317 if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL) 2318 goto err_blkqinit; 2319 2320 disk->queue = q; 2321 2322 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 2323 blk_queue_max_hw_segments(q, UB_MAX_REQ_SG); 2324 blk_queue_max_phys_segments(q, UB_MAX_REQ_SG); 2325 blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */ 2326 blk_queue_max_sectors(q, UB_MAX_SECTORS); 2327 blk_queue_logical_block_size(q, lun->capacity.bsize); 2328 2329 lun->disk = disk; 2330 q->queuedata = lun; 2331 list_add(&lun->link, &sc->luns); 2332 2333 set_capacity(disk, lun->capacity.nsec); 2334 if (lun->removable) 2335 disk->flags |= GENHD_FL_REMOVABLE; 2336 2337 add_disk(disk); 2338 2339 return 0; 2340 2341err_blkqinit: 2342 put_disk(disk); 2343err_diskalloc: 2344 ub_id_put(lun->id); 2345err_id: 2346 kfree(lun); 2347err_alloc: 2348 return rc; 2349} 2350 2351static void ub_disconnect(struct usb_interface *intf) 2352{ 2353 struct ub_dev *sc = usb_get_intfdata(intf); 2354 struct ub_lun *lun; 2355 unsigned long flags; 2356 2357 /* 2358 * Prevent ub_bd_release from pulling the rug from under us. 2359 * XXX This is starting to look like a kref. 2360 * XXX Why not to take this ref at probe time? 2361 */ 2362 spin_lock_irqsave(&ub_lock, flags); 2363 sc->openc++; 2364 spin_unlock_irqrestore(&ub_lock, flags); 2365 2366 /* 2367 * Fence stall clearings, operations triggered by unlinkings and so on. 2368 * We do not attempt to unlink any URBs, because we do not trust the 2369 * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway. 2370 */ 2371 atomic_set(&sc->poison, 1); 2372 2373 /* 2374 * Wait for reset to end, if any. 2375 */ 2376 wait_event(sc->reset_wait, !sc->reset); 2377 2378 /* 2379 * Blow away queued commands. 2380 * 2381 * Actually, this never works, because before we get here 2382 * the HCD terminates outstanding URB(s). It causes our 2383 * SCSI command queue to advance, commands fail to submit, 2384 * and the whole queue drains. So, we just use this code to 2385 * print warnings. 2386 */ 2387 spin_lock_irqsave(sc->lock, flags); 2388 { 2389 struct ub_scsi_cmd *cmd; 2390 int cnt = 0; 2391 while ((cmd = ub_cmdq_peek(sc)) != NULL) { 2392 cmd->error = -ENOTCONN; 2393 cmd->state = UB_CMDST_DONE; 2394 ub_cmdq_pop(sc); 2395 (*cmd->done)(sc, cmd); 2396 cnt++; 2397 } 2398 if (cnt != 0) { 2399 printk(KERN_WARNING "%s: " 2400 "%d was queued after shutdown\n", sc->name, cnt); 2401 } 2402 } 2403 spin_unlock_irqrestore(sc->lock, flags); 2404 2405 /* 2406 * Unregister the upper layer. 2407 */ 2408 list_for_each_entry(lun, &sc->luns, link) { 2409 del_gendisk(lun->disk); 2410 /* 2411 * I wish I could do: 2412 * queue_flag_set(QUEUE_FLAG_DEAD, q); 2413 * As it is, we rely on our internal poisoning and let 2414 * the upper levels to spin furiously failing all the I/O. 2415 */ 2416 } 2417 2418 /* 2419 * Testing for -EINPROGRESS is always a bug, so we are bending 2420 * the rules a little. 2421 */ 2422 spin_lock_irqsave(sc->lock, flags); 2423 if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */ 2424 printk(KERN_WARNING "%s: " 2425 "URB is active after disconnect\n", sc->name); 2426 } 2427 spin_unlock_irqrestore(sc->lock, flags); 2428 2429 /* 2430 * There is virtually no chance that other CPU runs a timeout so long 2431 * after ub_urb_complete should have called del_timer, but only if HCD 2432 * didn't forget to deliver a callback on unlink. 2433 */ 2434 del_timer_sync(&sc->work_timer); 2435 2436 /* 2437 * At this point there must be no commands coming from anyone 2438 * and no URBs left in transit. 2439 */ 2440 2441 ub_put(sc); 2442} 2443 2444static struct usb_driver ub_driver = { 2445 .name = "ub", 2446 .probe = ub_probe, 2447 .disconnect = ub_disconnect, 2448 .id_table = ub_usb_ids, 2449 .pre_reset = ub_pre_reset, 2450 .post_reset = ub_post_reset, 2451}; 2452 2453static int __init ub_init(void) 2454{ 2455 int rc; 2456 int i; 2457 2458 for (i = 0; i < UB_QLOCK_NUM; i++) 2459 spin_lock_init(&ub_qlockv[i]); 2460 2461 if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0) 2462 goto err_regblkdev; 2463 2464 if ((rc = usb_register(&ub_driver)) != 0) 2465 goto err_register; 2466 2467 usb_usual_set_present(USB_US_TYPE_UB); 2468 return 0; 2469 2470err_register: 2471 unregister_blkdev(UB_MAJOR, DRV_NAME); 2472err_regblkdev: 2473 return rc; 2474} 2475 2476static void __exit ub_exit(void) 2477{ 2478 usb_deregister(&ub_driver); 2479 2480 unregister_blkdev(UB_MAJOR, DRV_NAME); 2481 usb_usual_clear_present(USB_US_TYPE_UB); 2482} 2483 2484module_init(ub_init); 2485module_exit(ub_exit); 2486 2487MODULE_LICENSE("GPL");