at v2.6.32 62 lines 1.5 kB view raw
1/* 2 * rational fractions 3 * 4 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> 5 * 6 * helper functions when coping with rational numbers 7 */ 8 9#include <linux/rational.h> 10 11/* 12 * calculate best rational approximation for a given fraction 13 * taking into account restricted register size, e.g. to find 14 * appropriate values for a pll with 5 bit denominator and 15 * 8 bit numerator register fields, trying to set up with a 16 * frequency ratio of 3.1415, one would say: 17 * 18 * rational_best_approximation(31415, 10000, 19 * (1 << 8) - 1, (1 << 5) - 1, &n, &d); 20 * 21 * you may look at given_numerator as a fixed point number, 22 * with the fractional part size described in given_denominator. 23 * 24 * for theoretical background, see: 25 * http://en.wikipedia.org/wiki/Continued_fraction 26 */ 27 28void rational_best_approximation( 29 unsigned long given_numerator, unsigned long given_denominator, 30 unsigned long max_numerator, unsigned long max_denominator, 31 unsigned long *best_numerator, unsigned long *best_denominator) 32{ 33 unsigned long n, d, n0, d0, n1, d1; 34 n = given_numerator; 35 d = given_denominator; 36 n0 = d1 = 0; 37 n1 = d0 = 1; 38 for (;;) { 39 unsigned long t, a; 40 if ((n1 > max_numerator) || (d1 > max_denominator)) { 41 n1 = n0; 42 d1 = d0; 43 break; 44 } 45 if (d == 0) 46 break; 47 t = d; 48 a = n / d; 49 d = n % d; 50 n = t; 51 t = n0 + a * n1; 52 n0 = n1; 53 n1 = t; 54 t = d0 + a * d1; 55 d0 = d1; 56 d1 = t; 57 } 58 *best_numerator = n1; 59 *best_denominator = d1; 60} 61 62EXPORT_SYMBOL(rational_best_approximation);