at v2.6.32 59 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134}; 135 136#define HAVE_HW_TIME_STAMP 137 138/** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164}; 165 166/** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 atomic_t dataref; 191 unsigned short nr_frags; 192 unsigned short gso_size; 193#ifdef CONFIG_HAS_DMA 194 dma_addr_t dma_head; 195#endif 196 /* Warning: this field is not always filled in (UFO)! */ 197 unsigned short gso_segs; 198 unsigned short gso_type; 199 __be32 ip6_frag_id; 200 union skb_shared_tx tx_flags; 201 struct sk_buff *frag_list; 202 struct skb_shared_hwtstamps hwtstamps; 203 skb_frag_t frags[MAX_SKB_FRAGS]; 204#ifdef CONFIG_HAS_DMA 205 dma_addr_t dma_maps[MAX_SKB_FRAGS]; 206#endif 207 /* Intermediate layers must ensure that destructor_arg 208 * remains valid until skb destructor */ 209 void * destructor_arg; 210}; 211 212/* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223#define SKB_DATAREF_SHIFT 16 224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231}; 232 233enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246}; 247 248#if BITS_PER_LONG > 32 249#define NET_SKBUFF_DATA_USES_OFFSET 1 250#endif 251 252#ifdef NET_SKBUFF_DATA_USES_OFFSET 253typedef unsigned int sk_buff_data_t; 254#else 255typedef unsigned char *sk_buff_data_t; 256#endif 257 258/** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_dst: destination entry 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @iif: ifindex of device we arrived on 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @dma_cookie: a cookie to one of several possible DMA operations 308 * done by skb DMA functions 309 * @secmark: security marking 310 * @vlan_tci: vlan tag control information 311 */ 312 313struct sk_buff { 314 /* These two members must be first. */ 315 struct sk_buff *next; 316 struct sk_buff *prev; 317 318 struct sock *sk; 319 ktime_t tstamp; 320 struct net_device *dev; 321 322 unsigned long _skb_dst; 323#ifdef CONFIG_XFRM 324 struct sec_path *sp; 325#endif 326 /* 327 * This is the control buffer. It is free to use for every 328 * layer. Please put your private variables there. If you 329 * want to keep them across layers you have to do a skb_clone() 330 * first. This is owned by whoever has the skb queued ATM. 331 */ 332 char cb[48]; 333 334 unsigned int len, 335 data_len; 336 __u16 mac_len, 337 hdr_len; 338 union { 339 __wsum csum; 340 struct { 341 __u16 csum_start; 342 __u16 csum_offset; 343 }; 344 }; 345 __u32 priority; 346 kmemcheck_bitfield_begin(flags1); 347 __u8 local_df:1, 348 cloned:1, 349 ip_summed:2, 350 nohdr:1, 351 nfctinfo:3; 352 __u8 pkt_type:3, 353 fclone:2, 354 ipvs_property:1, 355 peeked:1, 356 nf_trace:1; 357 __be16 protocol:16; 358 kmemcheck_bitfield_end(flags1); 359 360 void (*destructor)(struct sk_buff *skb); 361#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 362 struct nf_conntrack *nfct; 363 struct sk_buff *nfct_reasm; 364#endif 365#ifdef CONFIG_BRIDGE_NETFILTER 366 struct nf_bridge_info *nf_bridge; 367#endif 368 369 int iif; 370#ifdef CONFIG_NET_SCHED 371 __u16 tc_index; /* traffic control index */ 372#ifdef CONFIG_NET_CLS_ACT 373 __u16 tc_verd; /* traffic control verdict */ 374#endif 375#endif 376 377 kmemcheck_bitfield_begin(flags2); 378 __u16 queue_mapping:16; 379#ifdef CONFIG_IPV6_NDISC_NODETYPE 380 __u8 ndisc_nodetype:2; 381#endif 382 kmemcheck_bitfield_end(flags2); 383 384 /* 0/14 bit hole */ 385 386#ifdef CONFIG_NET_DMA 387 dma_cookie_t dma_cookie; 388#endif 389#ifdef CONFIG_NETWORK_SECMARK 390 __u32 secmark; 391#endif 392 393 __u32 mark; 394 395 __u16 vlan_tci; 396 397 sk_buff_data_t transport_header; 398 sk_buff_data_t network_header; 399 sk_buff_data_t mac_header; 400 /* These elements must be at the end, see alloc_skb() for details. */ 401 sk_buff_data_t tail; 402 sk_buff_data_t end; 403 unsigned char *head, 404 *data; 405 unsigned int truesize; 406 atomic_t users; 407}; 408 409#ifdef __KERNEL__ 410/* 411 * Handling routines are only of interest to the kernel 412 */ 413#include <linux/slab.h> 414 415#include <asm/system.h> 416 417#ifdef CONFIG_HAS_DMA 418#include <linux/dma-mapping.h> 419extern int skb_dma_map(struct device *dev, struct sk_buff *skb, 420 enum dma_data_direction dir); 421extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb, 422 enum dma_data_direction dir); 423#endif 424 425static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 426{ 427 return (struct dst_entry *)skb->_skb_dst; 428} 429 430static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 431{ 432 skb->_skb_dst = (unsigned long)dst; 433} 434 435static inline struct rtable *skb_rtable(const struct sk_buff *skb) 436{ 437 return (struct rtable *)skb_dst(skb); 438} 439 440extern void kfree_skb(struct sk_buff *skb); 441extern void consume_skb(struct sk_buff *skb); 442extern void __kfree_skb(struct sk_buff *skb); 443extern struct sk_buff *__alloc_skb(unsigned int size, 444 gfp_t priority, int fclone, int node); 445static inline struct sk_buff *alloc_skb(unsigned int size, 446 gfp_t priority) 447{ 448 return __alloc_skb(size, priority, 0, -1); 449} 450 451static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 452 gfp_t priority) 453{ 454 return __alloc_skb(size, priority, 1, -1); 455} 456 457extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 458 459extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 460extern struct sk_buff *skb_clone(struct sk_buff *skb, 461 gfp_t priority); 462extern struct sk_buff *skb_copy(const struct sk_buff *skb, 463 gfp_t priority); 464extern struct sk_buff *pskb_copy(struct sk_buff *skb, 465 gfp_t gfp_mask); 466extern int pskb_expand_head(struct sk_buff *skb, 467 int nhead, int ntail, 468 gfp_t gfp_mask); 469extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 470 unsigned int headroom); 471extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 472 int newheadroom, int newtailroom, 473 gfp_t priority); 474extern int skb_to_sgvec(struct sk_buff *skb, 475 struct scatterlist *sg, int offset, 476 int len); 477extern int skb_cow_data(struct sk_buff *skb, int tailbits, 478 struct sk_buff **trailer); 479extern int skb_pad(struct sk_buff *skb, int pad); 480#define dev_kfree_skb(a) consume_skb(a) 481#define dev_consume_skb(a) kfree_skb_clean(a) 482extern void skb_over_panic(struct sk_buff *skb, int len, 483 void *here); 484extern void skb_under_panic(struct sk_buff *skb, int len, 485 void *here); 486 487extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 488 int getfrag(void *from, char *to, int offset, 489 int len,int odd, struct sk_buff *skb), 490 void *from, int length); 491 492struct skb_seq_state 493{ 494 __u32 lower_offset; 495 __u32 upper_offset; 496 __u32 frag_idx; 497 __u32 stepped_offset; 498 struct sk_buff *root_skb; 499 struct sk_buff *cur_skb; 500 __u8 *frag_data; 501}; 502 503extern void skb_prepare_seq_read(struct sk_buff *skb, 504 unsigned int from, unsigned int to, 505 struct skb_seq_state *st); 506extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 507 struct skb_seq_state *st); 508extern void skb_abort_seq_read(struct skb_seq_state *st); 509 510extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 511 unsigned int to, struct ts_config *config, 512 struct ts_state *state); 513 514#ifdef NET_SKBUFF_DATA_USES_OFFSET 515static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 516{ 517 return skb->head + skb->end; 518} 519#else 520static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 521{ 522 return skb->end; 523} 524#endif 525 526/* Internal */ 527#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 528 529static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 530{ 531 return &skb_shinfo(skb)->hwtstamps; 532} 533 534static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 535{ 536 return &skb_shinfo(skb)->tx_flags; 537} 538 539/** 540 * skb_queue_empty - check if a queue is empty 541 * @list: queue head 542 * 543 * Returns true if the queue is empty, false otherwise. 544 */ 545static inline int skb_queue_empty(const struct sk_buff_head *list) 546{ 547 return list->next == (struct sk_buff *)list; 548} 549 550/** 551 * skb_queue_is_last - check if skb is the last entry in the queue 552 * @list: queue head 553 * @skb: buffer 554 * 555 * Returns true if @skb is the last buffer on the list. 556 */ 557static inline bool skb_queue_is_last(const struct sk_buff_head *list, 558 const struct sk_buff *skb) 559{ 560 return (skb->next == (struct sk_buff *) list); 561} 562 563/** 564 * skb_queue_is_first - check if skb is the first entry in the queue 565 * @list: queue head 566 * @skb: buffer 567 * 568 * Returns true if @skb is the first buffer on the list. 569 */ 570static inline bool skb_queue_is_first(const struct sk_buff_head *list, 571 const struct sk_buff *skb) 572{ 573 return (skb->prev == (struct sk_buff *) list); 574} 575 576/** 577 * skb_queue_next - return the next packet in the queue 578 * @list: queue head 579 * @skb: current buffer 580 * 581 * Return the next packet in @list after @skb. It is only valid to 582 * call this if skb_queue_is_last() evaluates to false. 583 */ 584static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 585 const struct sk_buff *skb) 586{ 587 /* This BUG_ON may seem severe, but if we just return then we 588 * are going to dereference garbage. 589 */ 590 BUG_ON(skb_queue_is_last(list, skb)); 591 return skb->next; 592} 593 594/** 595 * skb_queue_prev - return the prev packet in the queue 596 * @list: queue head 597 * @skb: current buffer 598 * 599 * Return the prev packet in @list before @skb. It is only valid to 600 * call this if skb_queue_is_first() evaluates to false. 601 */ 602static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 603 const struct sk_buff *skb) 604{ 605 /* This BUG_ON may seem severe, but if we just return then we 606 * are going to dereference garbage. 607 */ 608 BUG_ON(skb_queue_is_first(list, skb)); 609 return skb->prev; 610} 611 612/** 613 * skb_get - reference buffer 614 * @skb: buffer to reference 615 * 616 * Makes another reference to a socket buffer and returns a pointer 617 * to the buffer. 618 */ 619static inline struct sk_buff *skb_get(struct sk_buff *skb) 620{ 621 atomic_inc(&skb->users); 622 return skb; 623} 624 625/* 626 * If users == 1, we are the only owner and are can avoid redundant 627 * atomic change. 628 */ 629 630/** 631 * skb_cloned - is the buffer a clone 632 * @skb: buffer to check 633 * 634 * Returns true if the buffer was generated with skb_clone() and is 635 * one of multiple shared copies of the buffer. Cloned buffers are 636 * shared data so must not be written to under normal circumstances. 637 */ 638static inline int skb_cloned(const struct sk_buff *skb) 639{ 640 return skb->cloned && 641 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 642} 643 644/** 645 * skb_header_cloned - is the header a clone 646 * @skb: buffer to check 647 * 648 * Returns true if modifying the header part of the buffer requires 649 * the data to be copied. 650 */ 651static inline int skb_header_cloned(const struct sk_buff *skb) 652{ 653 int dataref; 654 655 if (!skb->cloned) 656 return 0; 657 658 dataref = atomic_read(&skb_shinfo(skb)->dataref); 659 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 660 return dataref != 1; 661} 662 663/** 664 * skb_header_release - release reference to header 665 * @skb: buffer to operate on 666 * 667 * Drop a reference to the header part of the buffer. This is done 668 * by acquiring a payload reference. You must not read from the header 669 * part of skb->data after this. 670 */ 671static inline void skb_header_release(struct sk_buff *skb) 672{ 673 BUG_ON(skb->nohdr); 674 skb->nohdr = 1; 675 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 676} 677 678/** 679 * skb_shared - is the buffer shared 680 * @skb: buffer to check 681 * 682 * Returns true if more than one person has a reference to this 683 * buffer. 684 */ 685static inline int skb_shared(const struct sk_buff *skb) 686{ 687 return atomic_read(&skb->users) != 1; 688} 689 690/** 691 * skb_share_check - check if buffer is shared and if so clone it 692 * @skb: buffer to check 693 * @pri: priority for memory allocation 694 * 695 * If the buffer is shared the buffer is cloned and the old copy 696 * drops a reference. A new clone with a single reference is returned. 697 * If the buffer is not shared the original buffer is returned. When 698 * being called from interrupt status or with spinlocks held pri must 699 * be GFP_ATOMIC. 700 * 701 * NULL is returned on a memory allocation failure. 702 */ 703static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 704 gfp_t pri) 705{ 706 might_sleep_if(pri & __GFP_WAIT); 707 if (skb_shared(skb)) { 708 struct sk_buff *nskb = skb_clone(skb, pri); 709 kfree_skb(skb); 710 skb = nskb; 711 } 712 return skb; 713} 714 715/* 716 * Copy shared buffers into a new sk_buff. We effectively do COW on 717 * packets to handle cases where we have a local reader and forward 718 * and a couple of other messy ones. The normal one is tcpdumping 719 * a packet thats being forwarded. 720 */ 721 722/** 723 * skb_unshare - make a copy of a shared buffer 724 * @skb: buffer to check 725 * @pri: priority for memory allocation 726 * 727 * If the socket buffer is a clone then this function creates a new 728 * copy of the data, drops a reference count on the old copy and returns 729 * the new copy with the reference count at 1. If the buffer is not a clone 730 * the original buffer is returned. When called with a spinlock held or 731 * from interrupt state @pri must be %GFP_ATOMIC 732 * 733 * %NULL is returned on a memory allocation failure. 734 */ 735static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 736 gfp_t pri) 737{ 738 might_sleep_if(pri & __GFP_WAIT); 739 if (skb_cloned(skb)) { 740 struct sk_buff *nskb = skb_copy(skb, pri); 741 kfree_skb(skb); /* Free our shared copy */ 742 skb = nskb; 743 } 744 return skb; 745} 746 747/** 748 * skb_peek 749 * @list_: list to peek at 750 * 751 * Peek an &sk_buff. Unlike most other operations you _MUST_ 752 * be careful with this one. A peek leaves the buffer on the 753 * list and someone else may run off with it. You must hold 754 * the appropriate locks or have a private queue to do this. 755 * 756 * Returns %NULL for an empty list or a pointer to the head element. 757 * The reference count is not incremented and the reference is therefore 758 * volatile. Use with caution. 759 */ 760static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 761{ 762 struct sk_buff *list = ((struct sk_buff *)list_)->next; 763 if (list == (struct sk_buff *)list_) 764 list = NULL; 765 return list; 766} 767 768/** 769 * skb_peek_tail 770 * @list_: list to peek at 771 * 772 * Peek an &sk_buff. Unlike most other operations you _MUST_ 773 * be careful with this one. A peek leaves the buffer on the 774 * list and someone else may run off with it. You must hold 775 * the appropriate locks or have a private queue to do this. 776 * 777 * Returns %NULL for an empty list or a pointer to the tail element. 778 * The reference count is not incremented and the reference is therefore 779 * volatile. Use with caution. 780 */ 781static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 782{ 783 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 784 if (list == (struct sk_buff *)list_) 785 list = NULL; 786 return list; 787} 788 789/** 790 * skb_queue_len - get queue length 791 * @list_: list to measure 792 * 793 * Return the length of an &sk_buff queue. 794 */ 795static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 796{ 797 return list_->qlen; 798} 799 800/** 801 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 802 * @list: queue to initialize 803 * 804 * This initializes only the list and queue length aspects of 805 * an sk_buff_head object. This allows to initialize the list 806 * aspects of an sk_buff_head without reinitializing things like 807 * the spinlock. It can also be used for on-stack sk_buff_head 808 * objects where the spinlock is known to not be used. 809 */ 810static inline void __skb_queue_head_init(struct sk_buff_head *list) 811{ 812 list->prev = list->next = (struct sk_buff *)list; 813 list->qlen = 0; 814} 815 816/* 817 * This function creates a split out lock class for each invocation; 818 * this is needed for now since a whole lot of users of the skb-queue 819 * infrastructure in drivers have different locking usage (in hardirq) 820 * than the networking core (in softirq only). In the long run either the 821 * network layer or drivers should need annotation to consolidate the 822 * main types of usage into 3 classes. 823 */ 824static inline void skb_queue_head_init(struct sk_buff_head *list) 825{ 826 spin_lock_init(&list->lock); 827 __skb_queue_head_init(list); 828} 829 830static inline void skb_queue_head_init_class(struct sk_buff_head *list, 831 struct lock_class_key *class) 832{ 833 skb_queue_head_init(list); 834 lockdep_set_class(&list->lock, class); 835} 836 837/* 838 * Insert an sk_buff on a list. 839 * 840 * The "__skb_xxxx()" functions are the non-atomic ones that 841 * can only be called with interrupts disabled. 842 */ 843extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 844static inline void __skb_insert(struct sk_buff *newsk, 845 struct sk_buff *prev, struct sk_buff *next, 846 struct sk_buff_head *list) 847{ 848 newsk->next = next; 849 newsk->prev = prev; 850 next->prev = prev->next = newsk; 851 list->qlen++; 852} 853 854static inline void __skb_queue_splice(const struct sk_buff_head *list, 855 struct sk_buff *prev, 856 struct sk_buff *next) 857{ 858 struct sk_buff *first = list->next; 859 struct sk_buff *last = list->prev; 860 861 first->prev = prev; 862 prev->next = first; 863 864 last->next = next; 865 next->prev = last; 866} 867 868/** 869 * skb_queue_splice - join two skb lists, this is designed for stacks 870 * @list: the new list to add 871 * @head: the place to add it in the first list 872 */ 873static inline void skb_queue_splice(const struct sk_buff_head *list, 874 struct sk_buff_head *head) 875{ 876 if (!skb_queue_empty(list)) { 877 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 878 head->qlen += list->qlen; 879 } 880} 881 882/** 883 * skb_queue_splice - join two skb lists and reinitialise the emptied list 884 * @list: the new list to add 885 * @head: the place to add it in the first list 886 * 887 * The list at @list is reinitialised 888 */ 889static inline void skb_queue_splice_init(struct sk_buff_head *list, 890 struct sk_buff_head *head) 891{ 892 if (!skb_queue_empty(list)) { 893 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 894 head->qlen += list->qlen; 895 __skb_queue_head_init(list); 896 } 897} 898 899/** 900 * skb_queue_splice_tail - join two skb lists, each list being a queue 901 * @list: the new list to add 902 * @head: the place to add it in the first list 903 */ 904static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 905 struct sk_buff_head *head) 906{ 907 if (!skb_queue_empty(list)) { 908 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 909 head->qlen += list->qlen; 910 } 911} 912 913/** 914 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 915 * @list: the new list to add 916 * @head: the place to add it in the first list 917 * 918 * Each of the lists is a queue. 919 * The list at @list is reinitialised 920 */ 921static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 922 struct sk_buff_head *head) 923{ 924 if (!skb_queue_empty(list)) { 925 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 926 head->qlen += list->qlen; 927 __skb_queue_head_init(list); 928 } 929} 930 931/** 932 * __skb_queue_after - queue a buffer at the list head 933 * @list: list to use 934 * @prev: place after this buffer 935 * @newsk: buffer to queue 936 * 937 * Queue a buffer int the middle of a list. This function takes no locks 938 * and you must therefore hold required locks before calling it. 939 * 940 * A buffer cannot be placed on two lists at the same time. 941 */ 942static inline void __skb_queue_after(struct sk_buff_head *list, 943 struct sk_buff *prev, 944 struct sk_buff *newsk) 945{ 946 __skb_insert(newsk, prev, prev->next, list); 947} 948 949extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 950 struct sk_buff_head *list); 951 952static inline void __skb_queue_before(struct sk_buff_head *list, 953 struct sk_buff *next, 954 struct sk_buff *newsk) 955{ 956 __skb_insert(newsk, next->prev, next, list); 957} 958 959/** 960 * __skb_queue_head - queue a buffer at the list head 961 * @list: list to use 962 * @newsk: buffer to queue 963 * 964 * Queue a buffer at the start of a list. This function takes no locks 965 * and you must therefore hold required locks before calling it. 966 * 967 * A buffer cannot be placed on two lists at the same time. 968 */ 969extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 970static inline void __skb_queue_head(struct sk_buff_head *list, 971 struct sk_buff *newsk) 972{ 973 __skb_queue_after(list, (struct sk_buff *)list, newsk); 974} 975 976/** 977 * __skb_queue_tail - queue a buffer at the list tail 978 * @list: list to use 979 * @newsk: buffer to queue 980 * 981 * Queue a buffer at the end of a list. This function takes no locks 982 * and you must therefore hold required locks before calling it. 983 * 984 * A buffer cannot be placed on two lists at the same time. 985 */ 986extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 987static inline void __skb_queue_tail(struct sk_buff_head *list, 988 struct sk_buff *newsk) 989{ 990 __skb_queue_before(list, (struct sk_buff *)list, newsk); 991} 992 993/* 994 * remove sk_buff from list. _Must_ be called atomically, and with 995 * the list known.. 996 */ 997extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 998static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 999{ 1000 struct sk_buff *next, *prev; 1001 1002 list->qlen--; 1003 next = skb->next; 1004 prev = skb->prev; 1005 skb->next = skb->prev = NULL; 1006 next->prev = prev; 1007 prev->next = next; 1008} 1009 1010/** 1011 * __skb_dequeue - remove from the head of the queue 1012 * @list: list to dequeue from 1013 * 1014 * Remove the head of the list. This function does not take any locks 1015 * so must be used with appropriate locks held only. The head item is 1016 * returned or %NULL if the list is empty. 1017 */ 1018extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1019static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1020{ 1021 struct sk_buff *skb = skb_peek(list); 1022 if (skb) 1023 __skb_unlink(skb, list); 1024 return skb; 1025} 1026 1027/** 1028 * __skb_dequeue_tail - remove from the tail of the queue 1029 * @list: list to dequeue from 1030 * 1031 * Remove the tail of the list. This function does not take any locks 1032 * so must be used with appropriate locks held only. The tail item is 1033 * returned or %NULL if the list is empty. 1034 */ 1035extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1036static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1037{ 1038 struct sk_buff *skb = skb_peek_tail(list); 1039 if (skb) 1040 __skb_unlink(skb, list); 1041 return skb; 1042} 1043 1044 1045static inline int skb_is_nonlinear(const struct sk_buff *skb) 1046{ 1047 return skb->data_len; 1048} 1049 1050static inline unsigned int skb_headlen(const struct sk_buff *skb) 1051{ 1052 return skb->len - skb->data_len; 1053} 1054 1055static inline int skb_pagelen(const struct sk_buff *skb) 1056{ 1057 int i, len = 0; 1058 1059 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1060 len += skb_shinfo(skb)->frags[i].size; 1061 return len + skb_headlen(skb); 1062} 1063 1064static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1065 struct page *page, int off, int size) 1066{ 1067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1068 1069 frag->page = page; 1070 frag->page_offset = off; 1071 frag->size = size; 1072 skb_shinfo(skb)->nr_frags = i + 1; 1073} 1074 1075extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1076 int off, int size); 1077 1078#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1079#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1080#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1081 1082#ifdef NET_SKBUFF_DATA_USES_OFFSET 1083static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1084{ 1085 return skb->head + skb->tail; 1086} 1087 1088static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1089{ 1090 skb->tail = skb->data - skb->head; 1091} 1092 1093static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1094{ 1095 skb_reset_tail_pointer(skb); 1096 skb->tail += offset; 1097} 1098#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1099static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1100{ 1101 return skb->tail; 1102} 1103 1104static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1105{ 1106 skb->tail = skb->data; 1107} 1108 1109static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1110{ 1111 skb->tail = skb->data + offset; 1112} 1113 1114#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1115 1116/* 1117 * Add data to an sk_buff 1118 */ 1119extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1120static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1121{ 1122 unsigned char *tmp = skb_tail_pointer(skb); 1123 SKB_LINEAR_ASSERT(skb); 1124 skb->tail += len; 1125 skb->len += len; 1126 return tmp; 1127} 1128 1129extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1130static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1131{ 1132 skb->data -= len; 1133 skb->len += len; 1134 return skb->data; 1135} 1136 1137extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1138static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1139{ 1140 skb->len -= len; 1141 BUG_ON(skb->len < skb->data_len); 1142 return skb->data += len; 1143} 1144 1145extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1146 1147static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1148{ 1149 if (len > skb_headlen(skb) && 1150 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1151 return NULL; 1152 skb->len -= len; 1153 return skb->data += len; 1154} 1155 1156static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1157{ 1158 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1159} 1160 1161static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1162{ 1163 if (likely(len <= skb_headlen(skb))) 1164 return 1; 1165 if (unlikely(len > skb->len)) 1166 return 0; 1167 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1168} 1169 1170/** 1171 * skb_headroom - bytes at buffer head 1172 * @skb: buffer to check 1173 * 1174 * Return the number of bytes of free space at the head of an &sk_buff. 1175 */ 1176static inline unsigned int skb_headroom(const struct sk_buff *skb) 1177{ 1178 return skb->data - skb->head; 1179} 1180 1181/** 1182 * skb_tailroom - bytes at buffer end 1183 * @skb: buffer to check 1184 * 1185 * Return the number of bytes of free space at the tail of an sk_buff 1186 */ 1187static inline int skb_tailroom(const struct sk_buff *skb) 1188{ 1189 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1190} 1191 1192/** 1193 * skb_reserve - adjust headroom 1194 * @skb: buffer to alter 1195 * @len: bytes to move 1196 * 1197 * Increase the headroom of an empty &sk_buff by reducing the tail 1198 * room. This is only allowed for an empty buffer. 1199 */ 1200static inline void skb_reserve(struct sk_buff *skb, int len) 1201{ 1202 skb->data += len; 1203 skb->tail += len; 1204} 1205 1206#ifdef NET_SKBUFF_DATA_USES_OFFSET 1207static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1208{ 1209 return skb->head + skb->transport_header; 1210} 1211 1212static inline void skb_reset_transport_header(struct sk_buff *skb) 1213{ 1214 skb->transport_header = skb->data - skb->head; 1215} 1216 1217static inline void skb_set_transport_header(struct sk_buff *skb, 1218 const int offset) 1219{ 1220 skb_reset_transport_header(skb); 1221 skb->transport_header += offset; 1222} 1223 1224static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1225{ 1226 return skb->head + skb->network_header; 1227} 1228 1229static inline void skb_reset_network_header(struct sk_buff *skb) 1230{ 1231 skb->network_header = skb->data - skb->head; 1232} 1233 1234static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1235{ 1236 skb_reset_network_header(skb); 1237 skb->network_header += offset; 1238} 1239 1240static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1241{ 1242 return skb->head + skb->mac_header; 1243} 1244 1245static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1246{ 1247 return skb->mac_header != ~0U; 1248} 1249 1250static inline void skb_reset_mac_header(struct sk_buff *skb) 1251{ 1252 skb->mac_header = skb->data - skb->head; 1253} 1254 1255static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1256{ 1257 skb_reset_mac_header(skb); 1258 skb->mac_header += offset; 1259} 1260 1261#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1262 1263static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1264{ 1265 return skb->transport_header; 1266} 1267 1268static inline void skb_reset_transport_header(struct sk_buff *skb) 1269{ 1270 skb->transport_header = skb->data; 1271} 1272 1273static inline void skb_set_transport_header(struct sk_buff *skb, 1274 const int offset) 1275{ 1276 skb->transport_header = skb->data + offset; 1277} 1278 1279static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1280{ 1281 return skb->network_header; 1282} 1283 1284static inline void skb_reset_network_header(struct sk_buff *skb) 1285{ 1286 skb->network_header = skb->data; 1287} 1288 1289static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1290{ 1291 skb->network_header = skb->data + offset; 1292} 1293 1294static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1295{ 1296 return skb->mac_header; 1297} 1298 1299static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1300{ 1301 return skb->mac_header != NULL; 1302} 1303 1304static inline void skb_reset_mac_header(struct sk_buff *skb) 1305{ 1306 skb->mac_header = skb->data; 1307} 1308 1309static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1310{ 1311 skb->mac_header = skb->data + offset; 1312} 1313#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1314 1315static inline int skb_transport_offset(const struct sk_buff *skb) 1316{ 1317 return skb_transport_header(skb) - skb->data; 1318} 1319 1320static inline u32 skb_network_header_len(const struct sk_buff *skb) 1321{ 1322 return skb->transport_header - skb->network_header; 1323} 1324 1325static inline int skb_network_offset(const struct sk_buff *skb) 1326{ 1327 return skb_network_header(skb) - skb->data; 1328} 1329 1330/* 1331 * CPUs often take a performance hit when accessing unaligned memory 1332 * locations. The actual performance hit varies, it can be small if the 1333 * hardware handles it or large if we have to take an exception and fix it 1334 * in software. 1335 * 1336 * Since an ethernet header is 14 bytes network drivers often end up with 1337 * the IP header at an unaligned offset. The IP header can be aligned by 1338 * shifting the start of the packet by 2 bytes. Drivers should do this 1339 * with: 1340 * 1341 * skb_reserve(skb, NET_IP_ALIGN); 1342 * 1343 * The downside to this alignment of the IP header is that the DMA is now 1344 * unaligned. On some architectures the cost of an unaligned DMA is high 1345 * and this cost outweighs the gains made by aligning the IP header. 1346 * 1347 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1348 * to be overridden. 1349 */ 1350#ifndef NET_IP_ALIGN 1351#define NET_IP_ALIGN 2 1352#endif 1353 1354/* 1355 * The networking layer reserves some headroom in skb data (via 1356 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1357 * the header has to grow. In the default case, if the header has to grow 1358 * 32 bytes or less we avoid the reallocation. 1359 * 1360 * Unfortunately this headroom changes the DMA alignment of the resulting 1361 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1362 * on some architectures. An architecture can override this value, 1363 * perhaps setting it to a cacheline in size (since that will maintain 1364 * cacheline alignment of the DMA). It must be a power of 2. 1365 * 1366 * Various parts of the networking layer expect at least 32 bytes of 1367 * headroom, you should not reduce this. 1368 */ 1369#ifndef NET_SKB_PAD 1370#define NET_SKB_PAD 32 1371#endif 1372 1373extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1374 1375static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1376{ 1377 if (unlikely(skb->data_len)) { 1378 WARN_ON(1); 1379 return; 1380 } 1381 skb->len = len; 1382 skb_set_tail_pointer(skb, len); 1383} 1384 1385extern void skb_trim(struct sk_buff *skb, unsigned int len); 1386 1387static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1388{ 1389 if (skb->data_len) 1390 return ___pskb_trim(skb, len); 1391 __skb_trim(skb, len); 1392 return 0; 1393} 1394 1395static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1396{ 1397 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1398} 1399 1400/** 1401 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1402 * @skb: buffer to alter 1403 * @len: new length 1404 * 1405 * This is identical to pskb_trim except that the caller knows that 1406 * the skb is not cloned so we should never get an error due to out- 1407 * of-memory. 1408 */ 1409static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1410{ 1411 int err = pskb_trim(skb, len); 1412 BUG_ON(err); 1413} 1414 1415/** 1416 * skb_orphan - orphan a buffer 1417 * @skb: buffer to orphan 1418 * 1419 * If a buffer currently has an owner then we call the owner's 1420 * destructor function and make the @skb unowned. The buffer continues 1421 * to exist but is no longer charged to its former owner. 1422 */ 1423static inline void skb_orphan(struct sk_buff *skb) 1424{ 1425 if (skb->destructor) 1426 skb->destructor(skb); 1427 skb->destructor = NULL; 1428 skb->sk = NULL; 1429} 1430 1431/** 1432 * __skb_queue_purge - empty a list 1433 * @list: list to empty 1434 * 1435 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1436 * the list and one reference dropped. This function does not take the 1437 * list lock and the caller must hold the relevant locks to use it. 1438 */ 1439extern void skb_queue_purge(struct sk_buff_head *list); 1440static inline void __skb_queue_purge(struct sk_buff_head *list) 1441{ 1442 struct sk_buff *skb; 1443 while ((skb = __skb_dequeue(list)) != NULL) 1444 kfree_skb(skb); 1445} 1446 1447/** 1448 * __dev_alloc_skb - allocate an skbuff for receiving 1449 * @length: length to allocate 1450 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1451 * 1452 * Allocate a new &sk_buff and assign it a usage count of one. The 1453 * buffer has unspecified headroom built in. Users should allocate 1454 * the headroom they think they need without accounting for the 1455 * built in space. The built in space is used for optimisations. 1456 * 1457 * %NULL is returned if there is no free memory. 1458 */ 1459static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1460 gfp_t gfp_mask) 1461{ 1462 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1463 if (likely(skb)) 1464 skb_reserve(skb, NET_SKB_PAD); 1465 return skb; 1466} 1467 1468extern struct sk_buff *dev_alloc_skb(unsigned int length); 1469 1470extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1471 unsigned int length, gfp_t gfp_mask); 1472 1473/** 1474 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1475 * @dev: network device to receive on 1476 * @length: length to allocate 1477 * 1478 * Allocate a new &sk_buff and assign it a usage count of one. The 1479 * buffer has unspecified headroom built in. Users should allocate 1480 * the headroom they think they need without accounting for the 1481 * built in space. The built in space is used for optimisations. 1482 * 1483 * %NULL is returned if there is no free memory. Although this function 1484 * allocates memory it can be called from an interrupt. 1485 */ 1486static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1487 unsigned int length) 1488{ 1489 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1490} 1491 1492extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1493 1494/** 1495 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1496 * @dev: network device to receive on 1497 * 1498 * Allocate a new page node local to the specified device. 1499 * 1500 * %NULL is returned if there is no free memory. 1501 */ 1502static inline struct page *netdev_alloc_page(struct net_device *dev) 1503{ 1504 return __netdev_alloc_page(dev, GFP_ATOMIC); 1505} 1506 1507static inline void netdev_free_page(struct net_device *dev, struct page *page) 1508{ 1509 __free_page(page); 1510} 1511 1512/** 1513 * skb_clone_writable - is the header of a clone writable 1514 * @skb: buffer to check 1515 * @len: length up to which to write 1516 * 1517 * Returns true if modifying the header part of the cloned buffer 1518 * does not requires the data to be copied. 1519 */ 1520static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1521{ 1522 return !skb_header_cloned(skb) && 1523 skb_headroom(skb) + len <= skb->hdr_len; 1524} 1525 1526static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1527 int cloned) 1528{ 1529 int delta = 0; 1530 1531 if (headroom < NET_SKB_PAD) 1532 headroom = NET_SKB_PAD; 1533 if (headroom > skb_headroom(skb)) 1534 delta = headroom - skb_headroom(skb); 1535 1536 if (delta || cloned) 1537 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1538 GFP_ATOMIC); 1539 return 0; 1540} 1541 1542/** 1543 * skb_cow - copy header of skb when it is required 1544 * @skb: buffer to cow 1545 * @headroom: needed headroom 1546 * 1547 * If the skb passed lacks sufficient headroom or its data part 1548 * is shared, data is reallocated. If reallocation fails, an error 1549 * is returned and original skb is not changed. 1550 * 1551 * The result is skb with writable area skb->head...skb->tail 1552 * and at least @headroom of space at head. 1553 */ 1554static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1555{ 1556 return __skb_cow(skb, headroom, skb_cloned(skb)); 1557} 1558 1559/** 1560 * skb_cow_head - skb_cow but only making the head writable 1561 * @skb: buffer to cow 1562 * @headroom: needed headroom 1563 * 1564 * This function is identical to skb_cow except that we replace the 1565 * skb_cloned check by skb_header_cloned. It should be used when 1566 * you only need to push on some header and do not need to modify 1567 * the data. 1568 */ 1569static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1570{ 1571 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1572} 1573 1574/** 1575 * skb_padto - pad an skbuff up to a minimal size 1576 * @skb: buffer to pad 1577 * @len: minimal length 1578 * 1579 * Pads up a buffer to ensure the trailing bytes exist and are 1580 * blanked. If the buffer already contains sufficient data it 1581 * is untouched. Otherwise it is extended. Returns zero on 1582 * success. The skb is freed on error. 1583 */ 1584 1585static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1586{ 1587 unsigned int size = skb->len; 1588 if (likely(size >= len)) 1589 return 0; 1590 return skb_pad(skb, len - size); 1591} 1592 1593static inline int skb_add_data(struct sk_buff *skb, 1594 char __user *from, int copy) 1595{ 1596 const int off = skb->len; 1597 1598 if (skb->ip_summed == CHECKSUM_NONE) { 1599 int err = 0; 1600 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1601 copy, 0, &err); 1602 if (!err) { 1603 skb->csum = csum_block_add(skb->csum, csum, off); 1604 return 0; 1605 } 1606 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1607 return 0; 1608 1609 __skb_trim(skb, off); 1610 return -EFAULT; 1611} 1612 1613static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1614 struct page *page, int off) 1615{ 1616 if (i) { 1617 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1618 1619 return page == frag->page && 1620 off == frag->page_offset + frag->size; 1621 } 1622 return 0; 1623} 1624 1625static inline int __skb_linearize(struct sk_buff *skb) 1626{ 1627 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1628} 1629 1630/** 1631 * skb_linearize - convert paged skb to linear one 1632 * @skb: buffer to linarize 1633 * 1634 * If there is no free memory -ENOMEM is returned, otherwise zero 1635 * is returned and the old skb data released. 1636 */ 1637static inline int skb_linearize(struct sk_buff *skb) 1638{ 1639 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1640} 1641 1642/** 1643 * skb_linearize_cow - make sure skb is linear and writable 1644 * @skb: buffer to process 1645 * 1646 * If there is no free memory -ENOMEM is returned, otherwise zero 1647 * is returned and the old skb data released. 1648 */ 1649static inline int skb_linearize_cow(struct sk_buff *skb) 1650{ 1651 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1652 __skb_linearize(skb) : 0; 1653} 1654 1655/** 1656 * skb_postpull_rcsum - update checksum for received skb after pull 1657 * @skb: buffer to update 1658 * @start: start of data before pull 1659 * @len: length of data pulled 1660 * 1661 * After doing a pull on a received packet, you need to call this to 1662 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1663 * CHECKSUM_NONE so that it can be recomputed from scratch. 1664 */ 1665 1666static inline void skb_postpull_rcsum(struct sk_buff *skb, 1667 const void *start, unsigned int len) 1668{ 1669 if (skb->ip_summed == CHECKSUM_COMPLETE) 1670 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1671} 1672 1673unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1674 1675/** 1676 * pskb_trim_rcsum - trim received skb and update checksum 1677 * @skb: buffer to trim 1678 * @len: new length 1679 * 1680 * This is exactly the same as pskb_trim except that it ensures the 1681 * checksum of received packets are still valid after the operation. 1682 */ 1683 1684static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1685{ 1686 if (likely(len >= skb->len)) 1687 return 0; 1688 if (skb->ip_summed == CHECKSUM_COMPLETE) 1689 skb->ip_summed = CHECKSUM_NONE; 1690 return __pskb_trim(skb, len); 1691} 1692 1693#define skb_queue_walk(queue, skb) \ 1694 for (skb = (queue)->next; \ 1695 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1696 skb = skb->next) 1697 1698#define skb_queue_walk_safe(queue, skb, tmp) \ 1699 for (skb = (queue)->next, tmp = skb->next; \ 1700 skb != (struct sk_buff *)(queue); \ 1701 skb = tmp, tmp = skb->next) 1702 1703#define skb_queue_walk_from(queue, skb) \ 1704 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1705 skb = skb->next) 1706 1707#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1708 for (tmp = skb->next; \ 1709 skb != (struct sk_buff *)(queue); \ 1710 skb = tmp, tmp = skb->next) 1711 1712#define skb_queue_reverse_walk(queue, skb) \ 1713 for (skb = (queue)->prev; \ 1714 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1715 skb = skb->prev) 1716 1717 1718static inline bool skb_has_frags(const struct sk_buff *skb) 1719{ 1720 return skb_shinfo(skb)->frag_list != NULL; 1721} 1722 1723static inline void skb_frag_list_init(struct sk_buff *skb) 1724{ 1725 skb_shinfo(skb)->frag_list = NULL; 1726} 1727 1728static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1729{ 1730 frag->next = skb_shinfo(skb)->frag_list; 1731 skb_shinfo(skb)->frag_list = frag; 1732} 1733 1734#define skb_walk_frags(skb, iter) \ 1735 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1736 1737extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1738 int *peeked, int *err); 1739extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1740 int noblock, int *err); 1741extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1742 struct poll_table_struct *wait); 1743extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1744 int offset, struct iovec *to, 1745 int size); 1746extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1747 int hlen, 1748 struct iovec *iov); 1749extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1750 int offset, 1751 const struct iovec *from, 1752 int from_offset, 1753 int len); 1754extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1755 int offset, 1756 const struct iovec *to, 1757 int to_offset, 1758 int size); 1759extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1760extern void skb_free_datagram_locked(struct sock *sk, 1761 struct sk_buff *skb); 1762extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1763 unsigned int flags); 1764extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1765 int len, __wsum csum); 1766extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1767 void *to, int len); 1768extern int skb_store_bits(struct sk_buff *skb, int offset, 1769 const void *from, int len); 1770extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1771 int offset, u8 *to, int len, 1772 __wsum csum); 1773extern int skb_splice_bits(struct sk_buff *skb, 1774 unsigned int offset, 1775 struct pipe_inode_info *pipe, 1776 unsigned int len, 1777 unsigned int flags); 1778extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1779extern void skb_split(struct sk_buff *skb, 1780 struct sk_buff *skb1, const u32 len); 1781extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1782 int shiftlen); 1783 1784extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1785 1786static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1787 int len, void *buffer) 1788{ 1789 int hlen = skb_headlen(skb); 1790 1791 if (hlen - offset >= len) 1792 return skb->data + offset; 1793 1794 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1795 return NULL; 1796 1797 return buffer; 1798} 1799 1800static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1801 void *to, 1802 const unsigned int len) 1803{ 1804 memcpy(to, skb->data, len); 1805} 1806 1807static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1808 const int offset, void *to, 1809 const unsigned int len) 1810{ 1811 memcpy(to, skb->data + offset, len); 1812} 1813 1814static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1815 const void *from, 1816 const unsigned int len) 1817{ 1818 memcpy(skb->data, from, len); 1819} 1820 1821static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1822 const int offset, 1823 const void *from, 1824 const unsigned int len) 1825{ 1826 memcpy(skb->data + offset, from, len); 1827} 1828 1829extern void skb_init(void); 1830 1831static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1832{ 1833 return skb->tstamp; 1834} 1835 1836/** 1837 * skb_get_timestamp - get timestamp from a skb 1838 * @skb: skb to get stamp from 1839 * @stamp: pointer to struct timeval to store stamp in 1840 * 1841 * Timestamps are stored in the skb as offsets to a base timestamp. 1842 * This function converts the offset back to a struct timeval and stores 1843 * it in stamp. 1844 */ 1845static inline void skb_get_timestamp(const struct sk_buff *skb, 1846 struct timeval *stamp) 1847{ 1848 *stamp = ktime_to_timeval(skb->tstamp); 1849} 1850 1851static inline void skb_get_timestampns(const struct sk_buff *skb, 1852 struct timespec *stamp) 1853{ 1854 *stamp = ktime_to_timespec(skb->tstamp); 1855} 1856 1857static inline void __net_timestamp(struct sk_buff *skb) 1858{ 1859 skb->tstamp = ktime_get_real(); 1860} 1861 1862static inline ktime_t net_timedelta(ktime_t t) 1863{ 1864 return ktime_sub(ktime_get_real(), t); 1865} 1866 1867static inline ktime_t net_invalid_timestamp(void) 1868{ 1869 return ktime_set(0, 0); 1870} 1871 1872/** 1873 * skb_tstamp_tx - queue clone of skb with send time stamps 1874 * @orig_skb: the original outgoing packet 1875 * @hwtstamps: hardware time stamps, may be NULL if not available 1876 * 1877 * If the skb has a socket associated, then this function clones the 1878 * skb (thus sharing the actual data and optional structures), stores 1879 * the optional hardware time stamping information (if non NULL) or 1880 * generates a software time stamp (otherwise), then queues the clone 1881 * to the error queue of the socket. Errors are silently ignored. 1882 */ 1883extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1884 struct skb_shared_hwtstamps *hwtstamps); 1885 1886extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1887extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1888 1889static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1890{ 1891 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1892} 1893 1894/** 1895 * skb_checksum_complete - Calculate checksum of an entire packet 1896 * @skb: packet to process 1897 * 1898 * This function calculates the checksum over the entire packet plus 1899 * the value of skb->csum. The latter can be used to supply the 1900 * checksum of a pseudo header as used by TCP/UDP. It returns the 1901 * checksum. 1902 * 1903 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1904 * this function can be used to verify that checksum on received 1905 * packets. In that case the function should return zero if the 1906 * checksum is correct. In particular, this function will return zero 1907 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1908 * hardware has already verified the correctness of the checksum. 1909 */ 1910static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1911{ 1912 return skb_csum_unnecessary(skb) ? 1913 0 : __skb_checksum_complete(skb); 1914} 1915 1916#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1917extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1918static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1919{ 1920 if (nfct && atomic_dec_and_test(&nfct->use)) 1921 nf_conntrack_destroy(nfct); 1922} 1923static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1924{ 1925 if (nfct) 1926 atomic_inc(&nfct->use); 1927} 1928static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1929{ 1930 if (skb) 1931 atomic_inc(&skb->users); 1932} 1933static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1934{ 1935 if (skb) 1936 kfree_skb(skb); 1937} 1938#endif 1939#ifdef CONFIG_BRIDGE_NETFILTER 1940static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1941{ 1942 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1943 kfree(nf_bridge); 1944} 1945static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1946{ 1947 if (nf_bridge) 1948 atomic_inc(&nf_bridge->use); 1949} 1950#endif /* CONFIG_BRIDGE_NETFILTER */ 1951static inline void nf_reset(struct sk_buff *skb) 1952{ 1953#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1954 nf_conntrack_put(skb->nfct); 1955 skb->nfct = NULL; 1956 nf_conntrack_put_reasm(skb->nfct_reasm); 1957 skb->nfct_reasm = NULL; 1958#endif 1959#ifdef CONFIG_BRIDGE_NETFILTER 1960 nf_bridge_put(skb->nf_bridge); 1961 skb->nf_bridge = NULL; 1962#endif 1963} 1964 1965/* Note: This doesn't put any conntrack and bridge info in dst. */ 1966static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1967{ 1968#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1969 dst->nfct = src->nfct; 1970 nf_conntrack_get(src->nfct); 1971 dst->nfctinfo = src->nfctinfo; 1972 dst->nfct_reasm = src->nfct_reasm; 1973 nf_conntrack_get_reasm(src->nfct_reasm); 1974#endif 1975#ifdef CONFIG_BRIDGE_NETFILTER 1976 dst->nf_bridge = src->nf_bridge; 1977 nf_bridge_get(src->nf_bridge); 1978#endif 1979} 1980 1981static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1982{ 1983#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1984 nf_conntrack_put(dst->nfct); 1985 nf_conntrack_put_reasm(dst->nfct_reasm); 1986#endif 1987#ifdef CONFIG_BRIDGE_NETFILTER 1988 nf_bridge_put(dst->nf_bridge); 1989#endif 1990 __nf_copy(dst, src); 1991} 1992 1993#ifdef CONFIG_NETWORK_SECMARK 1994static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1995{ 1996 to->secmark = from->secmark; 1997} 1998 1999static inline void skb_init_secmark(struct sk_buff *skb) 2000{ 2001 skb->secmark = 0; 2002} 2003#else 2004static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2005{ } 2006 2007static inline void skb_init_secmark(struct sk_buff *skb) 2008{ } 2009#endif 2010 2011static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2012{ 2013 skb->queue_mapping = queue_mapping; 2014} 2015 2016static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2017{ 2018 return skb->queue_mapping; 2019} 2020 2021static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2022{ 2023 to->queue_mapping = from->queue_mapping; 2024} 2025 2026static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2027{ 2028 skb->queue_mapping = rx_queue + 1; 2029} 2030 2031static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2032{ 2033 return skb->queue_mapping - 1; 2034} 2035 2036static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2037{ 2038 return (skb->queue_mapping != 0); 2039} 2040 2041extern u16 skb_tx_hash(const struct net_device *dev, 2042 const struct sk_buff *skb); 2043 2044#ifdef CONFIG_XFRM 2045static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2046{ 2047 return skb->sp; 2048} 2049#else 2050static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2051{ 2052 return NULL; 2053} 2054#endif 2055 2056static inline int skb_is_gso(const struct sk_buff *skb) 2057{ 2058 return skb_shinfo(skb)->gso_size; 2059} 2060 2061static inline int skb_is_gso_v6(const struct sk_buff *skb) 2062{ 2063 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2064} 2065 2066extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2067 2068static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2069{ 2070 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2071 * wanted then gso_type will be set. */ 2072 struct skb_shared_info *shinfo = skb_shinfo(skb); 2073 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2074 __skb_warn_lro_forwarding(skb); 2075 return true; 2076 } 2077 return false; 2078} 2079 2080static inline void skb_forward_csum(struct sk_buff *skb) 2081{ 2082 /* Unfortunately we don't support this one. Any brave souls? */ 2083 if (skb->ip_summed == CHECKSUM_COMPLETE) 2084 skb->ip_summed = CHECKSUM_NONE; 2085} 2086 2087bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2088#endif /* __KERNEL__ */ 2089#endif /* _LINUX_SKBUFF_H */