at v2.6.32 2581 lines 76 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42#define SCHED_RESET_ON_FORK 0x40000000 43 44#ifdef __KERNEL__ 45 46struct sched_param { 47 int sched_priority; 48}; 49 50#include <asm/param.h> /* for HZ */ 51 52#include <linux/capability.h> 53#include <linux/threads.h> 54#include <linux/kernel.h> 55#include <linux/types.h> 56#include <linux/timex.h> 57#include <linux/jiffies.h> 58#include <linux/rbtree.h> 59#include <linux/thread_info.h> 60#include <linux/cpumask.h> 61#include <linux/errno.h> 62#include <linux/nodemask.h> 63#include <linux/mm_types.h> 64 65#include <asm/system.h> 66#include <asm/page.h> 67#include <asm/ptrace.h> 68#include <asm/cputime.h> 69 70#include <linux/smp.h> 71#include <linux/sem.h> 72#include <linux/signal.h> 73#include <linux/path.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/kobject.h> 92#include <linux/latencytop.h> 93#include <linux/cred.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio; 101struct fs_struct; 102struct bts_context; 103struct perf_event_context; 104 105/* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111/* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121extern unsigned long avenrun[]; /* Load averages */ 122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124#define FSHIFT 11 /* nr of bits of precision */ 125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128#define EXP_5 2014 /* 1/exp(5sec/5min) */ 129#define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131#define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136extern unsigned long total_forks; 137extern int nr_threads; 138DECLARE_PER_CPU(unsigned long, process_counts); 139extern int nr_processes(void); 140extern unsigned long nr_running(void); 141extern unsigned long nr_uninterruptible(void); 142extern unsigned long nr_iowait(void); 143extern unsigned long nr_iowait_cpu(void); 144extern unsigned long this_cpu_load(void); 145 146 147extern void calc_global_load(void); 148extern u64 cpu_nr_migrations(int cpu); 149 150extern unsigned long get_parent_ip(unsigned long addr); 151 152struct seq_file; 153struct cfs_rq; 154struct task_group; 155#ifdef CONFIG_SCHED_DEBUG 156extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157extern void proc_sched_set_task(struct task_struct *p); 158extern void 159print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160#else 161static inline void 162proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163{ 164} 165static inline void proc_sched_set_task(struct task_struct *p) 166{ 167} 168static inline void 169print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170{ 171} 172#endif 173 174extern unsigned long long time_sync_thresh; 175 176/* 177 * Task state bitmask. NOTE! These bits are also 178 * encoded in fs/proc/array.c: get_task_state(). 179 * 180 * We have two separate sets of flags: task->state 181 * is about runnability, while task->exit_state are 182 * about the task exiting. Confusing, but this way 183 * modifying one set can't modify the other one by 184 * mistake. 185 */ 186#define TASK_RUNNING 0 187#define TASK_INTERRUPTIBLE 1 188#define TASK_UNINTERRUPTIBLE 2 189#define __TASK_STOPPED 4 190#define __TASK_TRACED 8 191/* in tsk->exit_state */ 192#define EXIT_ZOMBIE 16 193#define EXIT_DEAD 32 194/* in tsk->state again */ 195#define TASK_DEAD 64 196#define TASK_WAKEKILL 128 197#define TASK_WAKING 256 198 199/* Convenience macros for the sake of set_task_state */ 200#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 201#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 202#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 203 204/* Convenience macros for the sake of wake_up */ 205#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 206#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 207 208/* get_task_state() */ 209#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 210 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 211 __TASK_TRACED) 212 213#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 214#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 215#define task_is_stopped_or_traced(task) \ 216 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 217#define task_contributes_to_load(task) \ 218 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 219 (task->flags & PF_FREEZING) == 0) 220 221#define __set_task_state(tsk, state_value) \ 222 do { (tsk)->state = (state_value); } while (0) 223#define set_task_state(tsk, state_value) \ 224 set_mb((tsk)->state, (state_value)) 225 226/* 227 * set_current_state() includes a barrier so that the write of current->state 228 * is correctly serialised wrt the caller's subsequent test of whether to 229 * actually sleep: 230 * 231 * set_current_state(TASK_UNINTERRUPTIBLE); 232 * if (do_i_need_to_sleep()) 233 * schedule(); 234 * 235 * If the caller does not need such serialisation then use __set_current_state() 236 */ 237#define __set_current_state(state_value) \ 238 do { current->state = (state_value); } while (0) 239#define set_current_state(state_value) \ 240 set_mb(current->state, (state_value)) 241 242/* Task command name length */ 243#define TASK_COMM_LEN 16 244 245#include <linux/spinlock.h> 246 247/* 248 * This serializes "schedule()" and also protects 249 * the run-queue from deletions/modifications (but 250 * _adding_ to the beginning of the run-queue has 251 * a separate lock). 252 */ 253extern rwlock_t tasklist_lock; 254extern spinlock_t mmlist_lock; 255 256struct task_struct; 257 258extern void sched_init(void); 259extern void sched_init_smp(void); 260extern asmlinkage void schedule_tail(struct task_struct *prev); 261extern void init_idle(struct task_struct *idle, int cpu); 262extern void init_idle_bootup_task(struct task_struct *idle); 263 264extern int runqueue_is_locked(int cpu); 265extern void task_rq_unlock_wait(struct task_struct *p); 266 267extern cpumask_var_t nohz_cpu_mask; 268#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 269extern int select_nohz_load_balancer(int cpu); 270extern int get_nohz_load_balancer(void); 271#else 272static inline int select_nohz_load_balancer(int cpu) 273{ 274 return 0; 275} 276#endif 277 278/* 279 * Only dump TASK_* tasks. (0 for all tasks) 280 */ 281extern void show_state_filter(unsigned long state_filter); 282 283static inline void show_state(void) 284{ 285 show_state_filter(0); 286} 287 288extern void show_regs(struct pt_regs *); 289 290/* 291 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 292 * task), SP is the stack pointer of the first frame that should be shown in the back 293 * trace (or NULL if the entire call-chain of the task should be shown). 294 */ 295extern void show_stack(struct task_struct *task, unsigned long *sp); 296 297void io_schedule(void); 298long io_schedule_timeout(long timeout); 299 300extern void cpu_init (void); 301extern void trap_init(void); 302extern void update_process_times(int user); 303extern void scheduler_tick(void); 304 305extern void sched_show_task(struct task_struct *p); 306 307#ifdef CONFIG_DETECT_SOFTLOCKUP 308extern void softlockup_tick(void); 309extern void touch_softlockup_watchdog(void); 310extern void touch_all_softlockup_watchdogs(void); 311extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 312 void __user *buffer, 313 size_t *lenp, loff_t *ppos); 314extern unsigned int softlockup_panic; 315extern int softlockup_thresh; 316#else 317static inline void softlockup_tick(void) 318{ 319} 320static inline void touch_softlockup_watchdog(void) 321{ 322} 323static inline void touch_all_softlockup_watchdogs(void) 324{ 325} 326#endif 327 328#ifdef CONFIG_DETECT_HUNG_TASK 329extern unsigned int sysctl_hung_task_panic; 330extern unsigned long sysctl_hung_task_check_count; 331extern unsigned long sysctl_hung_task_timeout_secs; 332extern unsigned long sysctl_hung_task_warnings; 333extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 334 void __user *buffer, 335 size_t *lenp, loff_t *ppos); 336#endif 337 338/* Attach to any functions which should be ignored in wchan output. */ 339#define __sched __attribute__((__section__(".sched.text"))) 340 341/* Linker adds these: start and end of __sched functions */ 342extern char __sched_text_start[], __sched_text_end[]; 343 344/* Is this address in the __sched functions? */ 345extern int in_sched_functions(unsigned long addr); 346 347#define MAX_SCHEDULE_TIMEOUT LONG_MAX 348extern signed long schedule_timeout(signed long timeout); 349extern signed long schedule_timeout_interruptible(signed long timeout); 350extern signed long schedule_timeout_killable(signed long timeout); 351extern signed long schedule_timeout_uninterruptible(signed long timeout); 352asmlinkage void __schedule(void); 353asmlinkage void schedule(void); 354extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 355 356struct nsproxy; 357struct user_namespace; 358 359/* 360 * Default maximum number of active map areas, this limits the number of vmas 361 * per mm struct. Users can overwrite this number by sysctl but there is a 362 * problem. 363 * 364 * When a program's coredump is generated as ELF format, a section is created 365 * per a vma. In ELF, the number of sections is represented in unsigned short. 366 * This means the number of sections should be smaller than 65535 at coredump. 367 * Because the kernel adds some informative sections to a image of program at 368 * generating coredump, we need some margin. The number of extra sections is 369 * 1-3 now and depends on arch. We use "5" as safe margin, here. 370 */ 371#define MAPCOUNT_ELF_CORE_MARGIN (5) 372#define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 373 374extern int sysctl_max_map_count; 375 376#include <linux/aio.h> 377 378extern unsigned long 379arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 380 unsigned long, unsigned long); 381extern unsigned long 382arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 383 unsigned long len, unsigned long pgoff, 384 unsigned long flags); 385extern void arch_unmap_area(struct mm_struct *, unsigned long); 386extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 387 388#if USE_SPLIT_PTLOCKS 389/* 390 * The mm counters are not protected by its page_table_lock, 391 * so must be incremented atomically. 392 */ 393#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 394#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 395#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 396#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 397#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 398 399#else /* !USE_SPLIT_PTLOCKS */ 400/* 401 * The mm counters are protected by its page_table_lock, 402 * so can be incremented directly. 403 */ 404#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 405#define get_mm_counter(mm, member) ((mm)->_##member) 406#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 407#define inc_mm_counter(mm, member) (mm)->_##member++ 408#define dec_mm_counter(mm, member) (mm)->_##member-- 409 410#endif /* !USE_SPLIT_PTLOCKS */ 411 412#define get_mm_rss(mm) \ 413 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 414#define update_hiwater_rss(mm) do { \ 415 unsigned long _rss = get_mm_rss(mm); \ 416 if ((mm)->hiwater_rss < _rss) \ 417 (mm)->hiwater_rss = _rss; \ 418} while (0) 419#define update_hiwater_vm(mm) do { \ 420 if ((mm)->hiwater_vm < (mm)->total_vm) \ 421 (mm)->hiwater_vm = (mm)->total_vm; \ 422} while (0) 423 424static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 425{ 426 return max(mm->hiwater_rss, get_mm_rss(mm)); 427} 428 429static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 430 struct mm_struct *mm) 431{ 432 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 433 434 if (*maxrss < hiwater_rss) 435 *maxrss = hiwater_rss; 436} 437 438static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 439{ 440 return max(mm->hiwater_vm, mm->total_vm); 441} 442 443extern void set_dumpable(struct mm_struct *mm, int value); 444extern int get_dumpable(struct mm_struct *mm); 445 446/* mm flags */ 447/* dumpable bits */ 448#define MMF_DUMPABLE 0 /* core dump is permitted */ 449#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 450 451#define MMF_DUMPABLE_BITS 2 452#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 453 454/* coredump filter bits */ 455#define MMF_DUMP_ANON_PRIVATE 2 456#define MMF_DUMP_ANON_SHARED 3 457#define MMF_DUMP_MAPPED_PRIVATE 4 458#define MMF_DUMP_MAPPED_SHARED 5 459#define MMF_DUMP_ELF_HEADERS 6 460#define MMF_DUMP_HUGETLB_PRIVATE 7 461#define MMF_DUMP_HUGETLB_SHARED 8 462 463#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 464#define MMF_DUMP_FILTER_BITS 7 465#define MMF_DUMP_FILTER_MASK \ 466 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 467#define MMF_DUMP_FILTER_DEFAULT \ 468 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 469 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 470 471#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 472# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 473#else 474# define MMF_DUMP_MASK_DEFAULT_ELF 0 475#endif 476 /* leave room for more dump flags */ 477#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 478 479#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 480 481struct sighand_struct { 482 atomic_t count; 483 struct k_sigaction action[_NSIG]; 484 spinlock_t siglock; 485 wait_queue_head_t signalfd_wqh; 486}; 487 488struct pacct_struct { 489 int ac_flag; 490 long ac_exitcode; 491 unsigned long ac_mem; 492 cputime_t ac_utime, ac_stime; 493 unsigned long ac_minflt, ac_majflt; 494}; 495 496struct cpu_itimer { 497 cputime_t expires; 498 cputime_t incr; 499 u32 error; 500 u32 incr_error; 501}; 502 503/** 504 * struct task_cputime - collected CPU time counts 505 * @utime: time spent in user mode, in &cputime_t units 506 * @stime: time spent in kernel mode, in &cputime_t units 507 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 508 * 509 * This structure groups together three kinds of CPU time that are 510 * tracked for threads and thread groups. Most things considering 511 * CPU time want to group these counts together and treat all three 512 * of them in parallel. 513 */ 514struct task_cputime { 515 cputime_t utime; 516 cputime_t stime; 517 unsigned long long sum_exec_runtime; 518}; 519/* Alternate field names when used to cache expirations. */ 520#define prof_exp stime 521#define virt_exp utime 522#define sched_exp sum_exec_runtime 523 524#define INIT_CPUTIME \ 525 (struct task_cputime) { \ 526 .utime = cputime_zero, \ 527 .stime = cputime_zero, \ 528 .sum_exec_runtime = 0, \ 529 } 530 531/* 532 * Disable preemption until the scheduler is running. 533 * Reset by start_kernel()->sched_init()->init_idle(). 534 * 535 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 536 * before the scheduler is active -- see should_resched(). 537 */ 538#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 539 540/** 541 * struct thread_group_cputimer - thread group interval timer counts 542 * @cputime: thread group interval timers. 543 * @running: non-zero when there are timers running and 544 * @cputime receives updates. 545 * @lock: lock for fields in this struct. 546 * 547 * This structure contains the version of task_cputime, above, that is 548 * used for thread group CPU timer calculations. 549 */ 550struct thread_group_cputimer { 551 struct task_cputime cputime; 552 int running; 553 spinlock_t lock; 554}; 555 556/* 557 * NOTE! "signal_struct" does not have it's own 558 * locking, because a shared signal_struct always 559 * implies a shared sighand_struct, so locking 560 * sighand_struct is always a proper superset of 561 * the locking of signal_struct. 562 */ 563struct signal_struct { 564 atomic_t count; 565 atomic_t live; 566 567 wait_queue_head_t wait_chldexit; /* for wait4() */ 568 569 /* current thread group signal load-balancing target: */ 570 struct task_struct *curr_target; 571 572 /* shared signal handling: */ 573 struct sigpending shared_pending; 574 575 /* thread group exit support */ 576 int group_exit_code; 577 /* overloaded: 578 * - notify group_exit_task when ->count is equal to notify_count 579 * - everyone except group_exit_task is stopped during signal delivery 580 * of fatal signals, group_exit_task processes the signal. 581 */ 582 int notify_count; 583 struct task_struct *group_exit_task; 584 585 /* thread group stop support, overloads group_exit_code too */ 586 int group_stop_count; 587 unsigned int flags; /* see SIGNAL_* flags below */ 588 589 /* POSIX.1b Interval Timers */ 590 struct list_head posix_timers; 591 592 /* ITIMER_REAL timer for the process */ 593 struct hrtimer real_timer; 594 struct pid *leader_pid; 595 ktime_t it_real_incr; 596 597 /* 598 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 599 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 600 * values are defined to 0 and 1 respectively 601 */ 602 struct cpu_itimer it[2]; 603 604 /* 605 * Thread group totals for process CPU timers. 606 * See thread_group_cputimer(), et al, for details. 607 */ 608 struct thread_group_cputimer cputimer; 609 610 /* Earliest-expiration cache. */ 611 struct task_cputime cputime_expires; 612 613 struct list_head cpu_timers[3]; 614 615 struct pid *tty_old_pgrp; 616 617 /* boolean value for session group leader */ 618 int leader; 619 620 struct tty_struct *tty; /* NULL if no tty */ 621 622 /* 623 * Cumulative resource counters for dead threads in the group, 624 * and for reaped dead child processes forked by this group. 625 * Live threads maintain their own counters and add to these 626 * in __exit_signal, except for the group leader. 627 */ 628 cputime_t utime, stime, cutime, cstime; 629 cputime_t gtime; 630 cputime_t cgtime; 631 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 632 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 633 unsigned long inblock, oublock, cinblock, coublock; 634 unsigned long maxrss, cmaxrss; 635 struct task_io_accounting ioac; 636 637 /* 638 * Cumulative ns of schedule CPU time fo dead threads in the 639 * group, not including a zombie group leader, (This only differs 640 * from jiffies_to_ns(utime + stime) if sched_clock uses something 641 * other than jiffies.) 642 */ 643 unsigned long long sum_sched_runtime; 644 645 /* 646 * We don't bother to synchronize most readers of this at all, 647 * because there is no reader checking a limit that actually needs 648 * to get both rlim_cur and rlim_max atomically, and either one 649 * alone is a single word that can safely be read normally. 650 * getrlimit/setrlimit use task_lock(current->group_leader) to 651 * protect this instead of the siglock, because they really 652 * have no need to disable irqs. 653 */ 654 struct rlimit rlim[RLIM_NLIMITS]; 655 656#ifdef CONFIG_BSD_PROCESS_ACCT 657 struct pacct_struct pacct; /* per-process accounting information */ 658#endif 659#ifdef CONFIG_TASKSTATS 660 struct taskstats *stats; 661#endif 662#ifdef CONFIG_AUDIT 663 unsigned audit_tty; 664 struct tty_audit_buf *tty_audit_buf; 665#endif 666 667 int oom_adj; /* OOM kill score adjustment (bit shift) */ 668}; 669 670/* Context switch must be unlocked if interrupts are to be enabled */ 671#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 672# define __ARCH_WANT_UNLOCKED_CTXSW 673#endif 674 675/* 676 * Bits in flags field of signal_struct. 677 */ 678#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 679#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 680#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 681#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 682/* 683 * Pending notifications to parent. 684 */ 685#define SIGNAL_CLD_STOPPED 0x00000010 686#define SIGNAL_CLD_CONTINUED 0x00000020 687#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 688 689#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 690 691/* If true, all threads except ->group_exit_task have pending SIGKILL */ 692static inline int signal_group_exit(const struct signal_struct *sig) 693{ 694 return (sig->flags & SIGNAL_GROUP_EXIT) || 695 (sig->group_exit_task != NULL); 696} 697 698/* 699 * Some day this will be a full-fledged user tracking system.. 700 */ 701struct user_struct { 702 atomic_t __count; /* reference count */ 703 atomic_t processes; /* How many processes does this user have? */ 704 atomic_t files; /* How many open files does this user have? */ 705 atomic_t sigpending; /* How many pending signals does this user have? */ 706#ifdef CONFIG_INOTIFY_USER 707 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 708 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 709#endif 710#ifdef CONFIG_EPOLL 711 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 712#endif 713#ifdef CONFIG_POSIX_MQUEUE 714 /* protected by mq_lock */ 715 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 716#endif 717 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 718 719#ifdef CONFIG_KEYS 720 struct key *uid_keyring; /* UID specific keyring */ 721 struct key *session_keyring; /* UID's default session keyring */ 722#endif 723 724 /* Hash table maintenance information */ 725 struct hlist_node uidhash_node; 726 uid_t uid; 727 struct user_namespace *user_ns; 728 729#ifdef CONFIG_USER_SCHED 730 struct task_group *tg; 731#ifdef CONFIG_SYSFS 732 struct kobject kobj; 733 struct delayed_work work; 734#endif 735#endif 736 737#ifdef CONFIG_PERF_EVENTS 738 atomic_long_t locked_vm; 739#endif 740}; 741 742extern int uids_sysfs_init(void); 743 744extern struct user_struct *find_user(uid_t); 745 746extern struct user_struct root_user; 747#define INIT_USER (&root_user) 748 749 750struct backing_dev_info; 751struct reclaim_state; 752 753#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 754struct sched_info { 755 /* cumulative counters */ 756 unsigned long pcount; /* # of times run on this cpu */ 757 unsigned long long run_delay; /* time spent waiting on a runqueue */ 758 759 /* timestamps */ 760 unsigned long long last_arrival,/* when we last ran on a cpu */ 761 last_queued; /* when we were last queued to run */ 762#ifdef CONFIG_SCHEDSTATS 763 /* BKL stats */ 764 unsigned int bkl_count; 765#endif 766}; 767#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 768 769#ifdef CONFIG_TASK_DELAY_ACCT 770struct task_delay_info { 771 spinlock_t lock; 772 unsigned int flags; /* Private per-task flags */ 773 774 /* For each stat XXX, add following, aligned appropriately 775 * 776 * struct timespec XXX_start, XXX_end; 777 * u64 XXX_delay; 778 * u32 XXX_count; 779 * 780 * Atomicity of updates to XXX_delay, XXX_count protected by 781 * single lock above (split into XXX_lock if contention is an issue). 782 */ 783 784 /* 785 * XXX_count is incremented on every XXX operation, the delay 786 * associated with the operation is added to XXX_delay. 787 * XXX_delay contains the accumulated delay time in nanoseconds. 788 */ 789 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 790 u64 blkio_delay; /* wait for sync block io completion */ 791 u64 swapin_delay; /* wait for swapin block io completion */ 792 u32 blkio_count; /* total count of the number of sync block */ 793 /* io operations performed */ 794 u32 swapin_count; /* total count of the number of swapin block */ 795 /* io operations performed */ 796 797 struct timespec freepages_start, freepages_end; 798 u64 freepages_delay; /* wait for memory reclaim */ 799 u32 freepages_count; /* total count of memory reclaim */ 800}; 801#endif /* CONFIG_TASK_DELAY_ACCT */ 802 803static inline int sched_info_on(void) 804{ 805#ifdef CONFIG_SCHEDSTATS 806 return 1; 807#elif defined(CONFIG_TASK_DELAY_ACCT) 808 extern int delayacct_on; 809 return delayacct_on; 810#else 811 return 0; 812#endif 813} 814 815enum cpu_idle_type { 816 CPU_IDLE, 817 CPU_NOT_IDLE, 818 CPU_NEWLY_IDLE, 819 CPU_MAX_IDLE_TYPES 820}; 821 822/* 823 * sched-domains (multiprocessor balancing) declarations: 824 */ 825 826/* 827 * Increase resolution of nice-level calculations: 828 */ 829#define SCHED_LOAD_SHIFT 10 830#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 831 832#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 833 834#ifdef CONFIG_SMP 835#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 836#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 837#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 838#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 839#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 840#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 841#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 842#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 843#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 844#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 845#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 846 847#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 848 849enum powersavings_balance_level { 850 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 851 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 852 * first for long running threads 853 */ 854 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 855 * cpu package for power savings 856 */ 857 MAX_POWERSAVINGS_BALANCE_LEVELS 858}; 859 860extern int sched_mc_power_savings, sched_smt_power_savings; 861 862static inline int sd_balance_for_mc_power(void) 863{ 864 if (sched_smt_power_savings) 865 return SD_POWERSAVINGS_BALANCE; 866 867 return SD_PREFER_SIBLING; 868} 869 870static inline int sd_balance_for_package_power(void) 871{ 872 if (sched_mc_power_savings | sched_smt_power_savings) 873 return SD_POWERSAVINGS_BALANCE; 874 875 return SD_PREFER_SIBLING; 876} 877 878/* 879 * Optimise SD flags for power savings: 880 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 881 * Keep default SD flags if sched_{smt,mc}_power_saving=0 882 */ 883 884static inline int sd_power_saving_flags(void) 885{ 886 if (sched_mc_power_savings | sched_smt_power_savings) 887 return SD_BALANCE_NEWIDLE; 888 889 return 0; 890} 891 892struct sched_group { 893 struct sched_group *next; /* Must be a circular list */ 894 895 /* 896 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 897 * single CPU. 898 */ 899 unsigned int cpu_power; 900 901 /* 902 * The CPUs this group covers. 903 * 904 * NOTE: this field is variable length. (Allocated dynamically 905 * by attaching extra space to the end of the structure, 906 * depending on how many CPUs the kernel has booted up with) 907 * 908 * It is also be embedded into static data structures at build 909 * time. (See 'struct static_sched_group' in kernel/sched.c) 910 */ 911 unsigned long cpumask[0]; 912}; 913 914static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 915{ 916 return to_cpumask(sg->cpumask); 917} 918 919enum sched_domain_level { 920 SD_LV_NONE = 0, 921 SD_LV_SIBLING, 922 SD_LV_MC, 923 SD_LV_CPU, 924 SD_LV_NODE, 925 SD_LV_ALLNODES, 926 SD_LV_MAX 927}; 928 929struct sched_domain_attr { 930 int relax_domain_level; 931}; 932 933#define SD_ATTR_INIT (struct sched_domain_attr) { \ 934 .relax_domain_level = -1, \ 935} 936 937struct sched_domain { 938 /* These fields must be setup */ 939 struct sched_domain *parent; /* top domain must be null terminated */ 940 struct sched_domain *child; /* bottom domain must be null terminated */ 941 struct sched_group *groups; /* the balancing groups of the domain */ 942 unsigned long min_interval; /* Minimum balance interval ms */ 943 unsigned long max_interval; /* Maximum balance interval ms */ 944 unsigned int busy_factor; /* less balancing by factor if busy */ 945 unsigned int imbalance_pct; /* No balance until over watermark */ 946 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 947 unsigned int busy_idx; 948 unsigned int idle_idx; 949 unsigned int newidle_idx; 950 unsigned int wake_idx; 951 unsigned int forkexec_idx; 952 unsigned int smt_gain; 953 int flags; /* See SD_* */ 954 enum sched_domain_level level; 955 956 /* Runtime fields. */ 957 unsigned long last_balance; /* init to jiffies. units in jiffies */ 958 unsigned int balance_interval; /* initialise to 1. units in ms. */ 959 unsigned int nr_balance_failed; /* initialise to 0 */ 960 961 u64 last_update; 962 963#ifdef CONFIG_SCHEDSTATS 964 /* load_balance() stats */ 965 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 970 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 971 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 972 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 973 974 /* Active load balancing */ 975 unsigned int alb_count; 976 unsigned int alb_failed; 977 unsigned int alb_pushed; 978 979 /* SD_BALANCE_EXEC stats */ 980 unsigned int sbe_count; 981 unsigned int sbe_balanced; 982 unsigned int sbe_pushed; 983 984 /* SD_BALANCE_FORK stats */ 985 unsigned int sbf_count; 986 unsigned int sbf_balanced; 987 unsigned int sbf_pushed; 988 989 /* try_to_wake_up() stats */ 990 unsigned int ttwu_wake_remote; 991 unsigned int ttwu_move_affine; 992 unsigned int ttwu_move_balance; 993#endif 994#ifdef CONFIG_SCHED_DEBUG 995 char *name; 996#endif 997 998 /* 999 * Span of all CPUs in this domain. 1000 * 1001 * NOTE: this field is variable length. (Allocated dynamically 1002 * by attaching extra space to the end of the structure, 1003 * depending on how many CPUs the kernel has booted up with) 1004 * 1005 * It is also be embedded into static data structures at build 1006 * time. (See 'struct static_sched_domain' in kernel/sched.c) 1007 */ 1008 unsigned long span[0]; 1009}; 1010 1011static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1012{ 1013 return to_cpumask(sd->span); 1014} 1015 1016extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 1017 struct sched_domain_attr *dattr_new); 1018 1019/* Test a flag in parent sched domain */ 1020static inline int test_sd_parent(struct sched_domain *sd, int flag) 1021{ 1022 if (sd->parent && (sd->parent->flags & flag)) 1023 return 1; 1024 1025 return 0; 1026} 1027 1028unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1029unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1030 1031#else /* CONFIG_SMP */ 1032 1033struct sched_domain_attr; 1034 1035static inline void 1036partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 1037 struct sched_domain_attr *dattr_new) 1038{ 1039} 1040#endif /* !CONFIG_SMP */ 1041 1042 1043struct io_context; /* See blkdev.h */ 1044 1045 1046#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1047extern void prefetch_stack(struct task_struct *t); 1048#else 1049static inline void prefetch_stack(struct task_struct *t) { } 1050#endif 1051 1052struct audit_context; /* See audit.c */ 1053struct mempolicy; 1054struct pipe_inode_info; 1055struct uts_namespace; 1056 1057struct rq; 1058struct sched_domain; 1059 1060/* 1061 * wake flags 1062 */ 1063#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1064#define WF_FORK 0x02 /* child wakeup after fork */ 1065 1066struct sched_class { 1067 const struct sched_class *next; 1068 1069 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 1070 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 1071 void (*yield_task) (struct rq *rq); 1072 1073 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1074 1075 struct task_struct * (*pick_next_task) (struct rq *rq); 1076 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1077 1078#ifdef CONFIG_SMP 1079 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1080 1081 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 1082 struct rq *busiest, unsigned long max_load_move, 1083 struct sched_domain *sd, enum cpu_idle_type idle, 1084 int *all_pinned, int *this_best_prio); 1085 1086 int (*move_one_task) (struct rq *this_rq, int this_cpu, 1087 struct rq *busiest, struct sched_domain *sd, 1088 enum cpu_idle_type idle); 1089 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1090 void (*post_schedule) (struct rq *this_rq); 1091 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 1092 1093 void (*set_cpus_allowed)(struct task_struct *p, 1094 const struct cpumask *newmask); 1095 1096 void (*rq_online)(struct rq *rq); 1097 void (*rq_offline)(struct rq *rq); 1098#endif 1099 1100 void (*set_curr_task) (struct rq *rq); 1101 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1102 void (*task_new) (struct rq *rq, struct task_struct *p); 1103 1104 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1105 int running); 1106 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1107 int running); 1108 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1109 int oldprio, int running); 1110 1111 unsigned int (*get_rr_interval) (struct task_struct *task); 1112 1113#ifdef CONFIG_FAIR_GROUP_SCHED 1114 void (*moved_group) (struct task_struct *p); 1115#endif 1116}; 1117 1118struct load_weight { 1119 unsigned long weight, inv_weight; 1120}; 1121 1122/* 1123 * CFS stats for a schedulable entity (task, task-group etc) 1124 * 1125 * Current field usage histogram: 1126 * 1127 * 4 se->block_start 1128 * 4 se->run_node 1129 * 4 se->sleep_start 1130 * 6 se->load.weight 1131 */ 1132struct sched_entity { 1133 struct load_weight load; /* for load-balancing */ 1134 struct rb_node run_node; 1135 struct list_head group_node; 1136 unsigned int on_rq; 1137 1138 u64 exec_start; 1139 u64 sum_exec_runtime; 1140 u64 vruntime; 1141 u64 prev_sum_exec_runtime; 1142 1143 u64 last_wakeup; 1144 u64 avg_overlap; 1145 1146 u64 nr_migrations; 1147 1148 u64 start_runtime; 1149 u64 avg_wakeup; 1150 1151 u64 avg_running; 1152 1153#ifdef CONFIG_SCHEDSTATS 1154 u64 wait_start; 1155 u64 wait_max; 1156 u64 wait_count; 1157 u64 wait_sum; 1158 u64 iowait_count; 1159 u64 iowait_sum; 1160 1161 u64 sleep_start; 1162 u64 sleep_max; 1163 s64 sum_sleep_runtime; 1164 1165 u64 block_start; 1166 u64 block_max; 1167 u64 exec_max; 1168 u64 slice_max; 1169 1170 u64 nr_migrations_cold; 1171 u64 nr_failed_migrations_affine; 1172 u64 nr_failed_migrations_running; 1173 u64 nr_failed_migrations_hot; 1174 u64 nr_forced_migrations; 1175 u64 nr_forced2_migrations; 1176 1177 u64 nr_wakeups; 1178 u64 nr_wakeups_sync; 1179 u64 nr_wakeups_migrate; 1180 u64 nr_wakeups_local; 1181 u64 nr_wakeups_remote; 1182 u64 nr_wakeups_affine; 1183 u64 nr_wakeups_affine_attempts; 1184 u64 nr_wakeups_passive; 1185 u64 nr_wakeups_idle; 1186#endif 1187 1188#ifdef CONFIG_FAIR_GROUP_SCHED 1189 struct sched_entity *parent; 1190 /* rq on which this entity is (to be) queued: */ 1191 struct cfs_rq *cfs_rq; 1192 /* rq "owned" by this entity/group: */ 1193 struct cfs_rq *my_q; 1194#endif 1195}; 1196 1197struct sched_rt_entity { 1198 struct list_head run_list; 1199 unsigned long timeout; 1200 unsigned int time_slice; 1201 int nr_cpus_allowed; 1202 1203 struct sched_rt_entity *back; 1204#ifdef CONFIG_RT_GROUP_SCHED 1205 struct sched_rt_entity *parent; 1206 /* rq on which this entity is (to be) queued: */ 1207 struct rt_rq *rt_rq; 1208 /* rq "owned" by this entity/group: */ 1209 struct rt_rq *my_q; 1210#endif 1211}; 1212 1213struct rcu_node; 1214 1215struct task_struct { 1216 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1217 void *stack; 1218 atomic_t usage; 1219 unsigned int flags; /* per process flags, defined below */ 1220 unsigned int ptrace; 1221 1222 int lock_depth; /* BKL lock depth */ 1223 1224#ifdef CONFIG_SMP 1225#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1226 int oncpu; 1227#endif 1228#endif 1229 1230 int prio, static_prio, normal_prio; 1231 unsigned int rt_priority; 1232 const struct sched_class *sched_class; 1233 struct sched_entity se; 1234 struct sched_rt_entity rt; 1235 1236#ifdef CONFIG_PREEMPT_NOTIFIERS 1237 /* list of struct preempt_notifier: */ 1238 struct hlist_head preempt_notifiers; 1239#endif 1240 1241 /* 1242 * fpu_counter contains the number of consecutive context switches 1243 * that the FPU is used. If this is over a threshold, the lazy fpu 1244 * saving becomes unlazy to save the trap. This is an unsigned char 1245 * so that after 256 times the counter wraps and the behavior turns 1246 * lazy again; this to deal with bursty apps that only use FPU for 1247 * a short time 1248 */ 1249 unsigned char fpu_counter; 1250#ifdef CONFIG_BLK_DEV_IO_TRACE 1251 unsigned int btrace_seq; 1252#endif 1253 1254 unsigned int policy; 1255 cpumask_t cpus_allowed; 1256 1257#ifdef CONFIG_TREE_PREEMPT_RCU 1258 int rcu_read_lock_nesting; 1259 char rcu_read_unlock_special; 1260 struct rcu_node *rcu_blocked_node; 1261 struct list_head rcu_node_entry; 1262#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1263 1264#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1265 struct sched_info sched_info; 1266#endif 1267 1268 struct list_head tasks; 1269 struct plist_node pushable_tasks; 1270 1271 struct mm_struct *mm, *active_mm; 1272 1273/* task state */ 1274 int exit_state; 1275 int exit_code, exit_signal; 1276 int pdeath_signal; /* The signal sent when the parent dies */ 1277 /* ??? */ 1278 unsigned int personality; 1279 unsigned did_exec:1; 1280 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1281 * execve */ 1282 unsigned in_iowait:1; 1283 1284 1285 /* Revert to default priority/policy when forking */ 1286 unsigned sched_reset_on_fork:1; 1287 1288 pid_t pid; 1289 pid_t tgid; 1290 1291#ifdef CONFIG_CC_STACKPROTECTOR 1292 /* Canary value for the -fstack-protector gcc feature */ 1293 unsigned long stack_canary; 1294#endif 1295 1296 /* 1297 * pointers to (original) parent process, youngest child, younger sibling, 1298 * older sibling, respectively. (p->father can be replaced with 1299 * p->real_parent->pid) 1300 */ 1301 struct task_struct *real_parent; /* real parent process */ 1302 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1303 /* 1304 * children/sibling forms the list of my natural children 1305 */ 1306 struct list_head children; /* list of my children */ 1307 struct list_head sibling; /* linkage in my parent's children list */ 1308 struct task_struct *group_leader; /* threadgroup leader */ 1309 1310 /* 1311 * ptraced is the list of tasks this task is using ptrace on. 1312 * This includes both natural children and PTRACE_ATTACH targets. 1313 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1314 */ 1315 struct list_head ptraced; 1316 struct list_head ptrace_entry; 1317 1318 /* 1319 * This is the tracer handle for the ptrace BTS extension. 1320 * This field actually belongs to the ptracer task. 1321 */ 1322 struct bts_context *bts; 1323 1324 /* PID/PID hash table linkage. */ 1325 struct pid_link pids[PIDTYPE_MAX]; 1326 struct list_head thread_group; 1327 1328 struct completion *vfork_done; /* for vfork() */ 1329 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1330 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1331 1332 cputime_t utime, stime, utimescaled, stimescaled; 1333 cputime_t gtime; 1334 cputime_t prev_utime, prev_stime; 1335 unsigned long nvcsw, nivcsw; /* context switch counts */ 1336 struct timespec start_time; /* monotonic time */ 1337 struct timespec real_start_time; /* boot based time */ 1338/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1339 unsigned long min_flt, maj_flt; 1340 1341 struct task_cputime cputime_expires; 1342 struct list_head cpu_timers[3]; 1343 1344/* process credentials */ 1345 const struct cred *real_cred; /* objective and real subjective task 1346 * credentials (COW) */ 1347 const struct cred *cred; /* effective (overridable) subjective task 1348 * credentials (COW) */ 1349 struct mutex cred_guard_mutex; /* guard against foreign influences on 1350 * credential calculations 1351 * (notably. ptrace) */ 1352 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1353 1354 char comm[TASK_COMM_LEN]; /* executable name excluding path 1355 - access with [gs]et_task_comm (which lock 1356 it with task_lock()) 1357 - initialized normally by flush_old_exec */ 1358/* file system info */ 1359 int link_count, total_link_count; 1360#ifdef CONFIG_SYSVIPC 1361/* ipc stuff */ 1362 struct sysv_sem sysvsem; 1363#endif 1364#ifdef CONFIG_DETECT_HUNG_TASK 1365/* hung task detection */ 1366 unsigned long last_switch_count; 1367#endif 1368/* CPU-specific state of this task */ 1369 struct thread_struct thread; 1370/* filesystem information */ 1371 struct fs_struct *fs; 1372/* open file information */ 1373 struct files_struct *files; 1374/* namespaces */ 1375 struct nsproxy *nsproxy; 1376/* signal handlers */ 1377 struct signal_struct *signal; 1378 struct sighand_struct *sighand; 1379 1380 sigset_t blocked, real_blocked; 1381 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1382 struct sigpending pending; 1383 1384 unsigned long sas_ss_sp; 1385 size_t sas_ss_size; 1386 int (*notifier)(void *priv); 1387 void *notifier_data; 1388 sigset_t *notifier_mask; 1389 struct audit_context *audit_context; 1390#ifdef CONFIG_AUDITSYSCALL 1391 uid_t loginuid; 1392 unsigned int sessionid; 1393#endif 1394 seccomp_t seccomp; 1395 1396/* Thread group tracking */ 1397 u32 parent_exec_id; 1398 u32 self_exec_id; 1399/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1400 * mempolicy */ 1401 spinlock_t alloc_lock; 1402 1403#ifdef CONFIG_GENERIC_HARDIRQS 1404 /* IRQ handler threads */ 1405 struct irqaction *irqaction; 1406#endif 1407 1408 /* Protection of the PI data structures: */ 1409 spinlock_t pi_lock; 1410 1411#ifdef CONFIG_RT_MUTEXES 1412 /* PI waiters blocked on a rt_mutex held by this task */ 1413 struct plist_head pi_waiters; 1414 /* Deadlock detection and priority inheritance handling */ 1415 struct rt_mutex_waiter *pi_blocked_on; 1416#endif 1417 1418#ifdef CONFIG_DEBUG_MUTEXES 1419 /* mutex deadlock detection */ 1420 struct mutex_waiter *blocked_on; 1421#endif 1422#ifdef CONFIG_TRACE_IRQFLAGS 1423 unsigned int irq_events; 1424 int hardirqs_enabled; 1425 unsigned long hardirq_enable_ip; 1426 unsigned int hardirq_enable_event; 1427 unsigned long hardirq_disable_ip; 1428 unsigned int hardirq_disable_event; 1429 int softirqs_enabled; 1430 unsigned long softirq_disable_ip; 1431 unsigned int softirq_disable_event; 1432 unsigned long softirq_enable_ip; 1433 unsigned int softirq_enable_event; 1434 int hardirq_context; 1435 int softirq_context; 1436#endif 1437#ifdef CONFIG_LOCKDEP 1438# define MAX_LOCK_DEPTH 48UL 1439 u64 curr_chain_key; 1440 int lockdep_depth; 1441 unsigned int lockdep_recursion; 1442 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1443 gfp_t lockdep_reclaim_gfp; 1444#endif 1445 1446/* journalling filesystem info */ 1447 void *journal_info; 1448 1449/* stacked block device info */ 1450 struct bio *bio_list, **bio_tail; 1451 1452/* VM state */ 1453 struct reclaim_state *reclaim_state; 1454 1455 struct backing_dev_info *backing_dev_info; 1456 1457 struct io_context *io_context; 1458 1459 unsigned long ptrace_message; 1460 siginfo_t *last_siginfo; /* For ptrace use. */ 1461 struct task_io_accounting ioac; 1462#if defined(CONFIG_TASK_XACCT) 1463 u64 acct_rss_mem1; /* accumulated rss usage */ 1464 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1465 cputime_t acct_timexpd; /* stime + utime since last update */ 1466#endif 1467#ifdef CONFIG_CPUSETS 1468 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1469 int cpuset_mem_spread_rotor; 1470#endif 1471#ifdef CONFIG_CGROUPS 1472 /* Control Group info protected by css_set_lock */ 1473 struct css_set *cgroups; 1474 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1475 struct list_head cg_list; 1476#endif 1477#ifdef CONFIG_FUTEX 1478 struct robust_list_head __user *robust_list; 1479#ifdef CONFIG_COMPAT 1480 struct compat_robust_list_head __user *compat_robust_list; 1481#endif 1482 struct list_head pi_state_list; 1483 struct futex_pi_state *pi_state_cache; 1484#endif 1485#ifdef CONFIG_PERF_EVENTS 1486 struct perf_event_context *perf_event_ctxp; 1487 struct mutex perf_event_mutex; 1488 struct list_head perf_event_list; 1489#endif 1490#ifdef CONFIG_NUMA 1491 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1492 short il_next; 1493#endif 1494 atomic_t fs_excl; /* holding fs exclusive resources */ 1495 struct rcu_head rcu; 1496 1497 /* 1498 * cache last used pipe for splice 1499 */ 1500 struct pipe_inode_info *splice_pipe; 1501#ifdef CONFIG_TASK_DELAY_ACCT 1502 struct task_delay_info *delays; 1503#endif 1504#ifdef CONFIG_FAULT_INJECTION 1505 int make_it_fail; 1506#endif 1507 struct prop_local_single dirties; 1508#ifdef CONFIG_LATENCYTOP 1509 int latency_record_count; 1510 struct latency_record latency_record[LT_SAVECOUNT]; 1511#endif 1512 /* 1513 * time slack values; these are used to round up poll() and 1514 * select() etc timeout values. These are in nanoseconds. 1515 */ 1516 unsigned long timer_slack_ns; 1517 unsigned long default_timer_slack_ns; 1518 1519 struct list_head *scm_work_list; 1520#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1521 /* Index of current stored adress in ret_stack */ 1522 int curr_ret_stack; 1523 /* Stack of return addresses for return function tracing */ 1524 struct ftrace_ret_stack *ret_stack; 1525 /* time stamp for last schedule */ 1526 unsigned long long ftrace_timestamp; 1527 /* 1528 * Number of functions that haven't been traced 1529 * because of depth overrun. 1530 */ 1531 atomic_t trace_overrun; 1532 /* Pause for the tracing */ 1533 atomic_t tracing_graph_pause; 1534#endif 1535#ifdef CONFIG_TRACING 1536 /* state flags for use by tracers */ 1537 unsigned long trace; 1538 /* bitmask of trace recursion */ 1539 unsigned long trace_recursion; 1540#endif /* CONFIG_TRACING */ 1541 unsigned long stack_start; 1542}; 1543 1544/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1545#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed) 1546 1547/* 1548 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1549 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1550 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1551 * values are inverted: lower p->prio value means higher priority. 1552 * 1553 * The MAX_USER_RT_PRIO value allows the actual maximum 1554 * RT priority to be separate from the value exported to 1555 * user-space. This allows kernel threads to set their 1556 * priority to a value higher than any user task. Note: 1557 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1558 */ 1559 1560#define MAX_USER_RT_PRIO 100 1561#define MAX_RT_PRIO MAX_USER_RT_PRIO 1562 1563#define MAX_PRIO (MAX_RT_PRIO + 40) 1564#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1565 1566static inline int rt_prio(int prio) 1567{ 1568 if (unlikely(prio < MAX_RT_PRIO)) 1569 return 1; 1570 return 0; 1571} 1572 1573static inline int rt_task(struct task_struct *p) 1574{ 1575 return rt_prio(p->prio); 1576} 1577 1578static inline struct pid *task_pid(struct task_struct *task) 1579{ 1580 return task->pids[PIDTYPE_PID].pid; 1581} 1582 1583static inline struct pid *task_tgid(struct task_struct *task) 1584{ 1585 return task->group_leader->pids[PIDTYPE_PID].pid; 1586} 1587 1588/* 1589 * Without tasklist or rcu lock it is not safe to dereference 1590 * the result of task_pgrp/task_session even if task == current, 1591 * we can race with another thread doing sys_setsid/sys_setpgid. 1592 */ 1593static inline struct pid *task_pgrp(struct task_struct *task) 1594{ 1595 return task->group_leader->pids[PIDTYPE_PGID].pid; 1596} 1597 1598static inline struct pid *task_session(struct task_struct *task) 1599{ 1600 return task->group_leader->pids[PIDTYPE_SID].pid; 1601} 1602 1603struct pid_namespace; 1604 1605/* 1606 * the helpers to get the task's different pids as they are seen 1607 * from various namespaces 1608 * 1609 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1610 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1611 * current. 1612 * task_xid_nr_ns() : id seen from the ns specified; 1613 * 1614 * set_task_vxid() : assigns a virtual id to a task; 1615 * 1616 * see also pid_nr() etc in include/linux/pid.h 1617 */ 1618pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1619 struct pid_namespace *ns); 1620 1621static inline pid_t task_pid_nr(struct task_struct *tsk) 1622{ 1623 return tsk->pid; 1624} 1625 1626static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1627 struct pid_namespace *ns) 1628{ 1629 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1630} 1631 1632static inline pid_t task_pid_vnr(struct task_struct *tsk) 1633{ 1634 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1635} 1636 1637 1638static inline pid_t task_tgid_nr(struct task_struct *tsk) 1639{ 1640 return tsk->tgid; 1641} 1642 1643pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1644 1645static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1646{ 1647 return pid_vnr(task_tgid(tsk)); 1648} 1649 1650 1651static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1652 struct pid_namespace *ns) 1653{ 1654 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1655} 1656 1657static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1658{ 1659 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1660} 1661 1662 1663static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1664 struct pid_namespace *ns) 1665{ 1666 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1667} 1668 1669static inline pid_t task_session_vnr(struct task_struct *tsk) 1670{ 1671 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1672} 1673 1674/* obsolete, do not use */ 1675static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1676{ 1677 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1678} 1679 1680/** 1681 * pid_alive - check that a task structure is not stale 1682 * @p: Task structure to be checked. 1683 * 1684 * Test if a process is not yet dead (at most zombie state) 1685 * If pid_alive fails, then pointers within the task structure 1686 * can be stale and must not be dereferenced. 1687 */ 1688static inline int pid_alive(struct task_struct *p) 1689{ 1690 return p->pids[PIDTYPE_PID].pid != NULL; 1691} 1692 1693/** 1694 * is_global_init - check if a task structure is init 1695 * @tsk: Task structure to be checked. 1696 * 1697 * Check if a task structure is the first user space task the kernel created. 1698 */ 1699static inline int is_global_init(struct task_struct *tsk) 1700{ 1701 return tsk->pid == 1; 1702} 1703 1704/* 1705 * is_container_init: 1706 * check whether in the task is init in its own pid namespace. 1707 */ 1708extern int is_container_init(struct task_struct *tsk); 1709 1710extern struct pid *cad_pid; 1711 1712extern void free_task(struct task_struct *tsk); 1713#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1714 1715extern void __put_task_struct(struct task_struct *t); 1716 1717static inline void put_task_struct(struct task_struct *t) 1718{ 1719 if (atomic_dec_and_test(&t->usage)) 1720 __put_task_struct(t); 1721} 1722 1723extern cputime_t task_utime(struct task_struct *p); 1724extern cputime_t task_stime(struct task_struct *p); 1725extern cputime_t task_gtime(struct task_struct *p); 1726 1727/* 1728 * Per process flags 1729 */ 1730#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1731 /* Not implemented yet, only for 486*/ 1732#define PF_STARTING 0x00000002 /* being created */ 1733#define PF_EXITING 0x00000004 /* getting shut down */ 1734#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1735#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1736#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1737#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1738#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1739#define PF_DUMPCORE 0x00000200 /* dumped core */ 1740#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1741#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1742#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1743#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1744#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1745#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1746#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1747#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1748#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1749#define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1750#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1751#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1752#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1753#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1754#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1755#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1756#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1757#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1758#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1759#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1760#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1761#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1762 1763/* 1764 * Only the _current_ task can read/write to tsk->flags, but other 1765 * tasks can access tsk->flags in readonly mode for example 1766 * with tsk_used_math (like during threaded core dumping). 1767 * There is however an exception to this rule during ptrace 1768 * or during fork: the ptracer task is allowed to write to the 1769 * child->flags of its traced child (same goes for fork, the parent 1770 * can write to the child->flags), because we're guaranteed the 1771 * child is not running and in turn not changing child->flags 1772 * at the same time the parent does it. 1773 */ 1774#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1775#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1776#define clear_used_math() clear_stopped_child_used_math(current) 1777#define set_used_math() set_stopped_child_used_math(current) 1778#define conditional_stopped_child_used_math(condition, child) \ 1779 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1780#define conditional_used_math(condition) \ 1781 conditional_stopped_child_used_math(condition, current) 1782#define copy_to_stopped_child_used_math(child) \ 1783 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1784/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1785#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1786#define used_math() tsk_used_math(current) 1787 1788#ifdef CONFIG_TREE_PREEMPT_RCU 1789 1790#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1791#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1792 1793static inline void rcu_copy_process(struct task_struct *p) 1794{ 1795 p->rcu_read_lock_nesting = 0; 1796 p->rcu_read_unlock_special = 0; 1797 p->rcu_blocked_node = NULL; 1798 INIT_LIST_HEAD(&p->rcu_node_entry); 1799} 1800 1801#else 1802 1803static inline void rcu_copy_process(struct task_struct *p) 1804{ 1805} 1806 1807#endif 1808 1809#ifdef CONFIG_SMP 1810extern int set_cpus_allowed_ptr(struct task_struct *p, 1811 const struct cpumask *new_mask); 1812#else 1813static inline int set_cpus_allowed_ptr(struct task_struct *p, 1814 const struct cpumask *new_mask) 1815{ 1816 if (!cpumask_test_cpu(0, new_mask)) 1817 return -EINVAL; 1818 return 0; 1819} 1820#endif 1821 1822#ifndef CONFIG_CPUMASK_OFFSTACK 1823static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1824{ 1825 return set_cpus_allowed_ptr(p, &new_mask); 1826} 1827#endif 1828 1829/* 1830 * Architectures can set this to 1 if they have specified 1831 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1832 * but then during bootup it turns out that sched_clock() 1833 * is reliable after all: 1834 */ 1835#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1836extern int sched_clock_stable; 1837#endif 1838 1839extern unsigned long long sched_clock(void); 1840 1841extern void sched_clock_init(void); 1842extern u64 sched_clock_cpu(int cpu); 1843 1844#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1845static inline void sched_clock_tick(void) 1846{ 1847} 1848 1849static inline void sched_clock_idle_sleep_event(void) 1850{ 1851} 1852 1853static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1854{ 1855} 1856#else 1857extern void sched_clock_tick(void); 1858extern void sched_clock_idle_sleep_event(void); 1859extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1860#endif 1861 1862/* 1863 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1864 * clock constructed from sched_clock(): 1865 */ 1866extern unsigned long long cpu_clock(int cpu); 1867 1868extern unsigned long long 1869task_sched_runtime(struct task_struct *task); 1870extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1871 1872/* sched_exec is called by processes performing an exec */ 1873#ifdef CONFIG_SMP 1874extern void sched_exec(void); 1875#else 1876#define sched_exec() {} 1877#endif 1878 1879extern void sched_clock_idle_sleep_event(void); 1880extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1881 1882#ifdef CONFIG_HOTPLUG_CPU 1883extern void idle_task_exit(void); 1884#else 1885static inline void idle_task_exit(void) {} 1886#endif 1887 1888extern void sched_idle_next(void); 1889 1890#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1891extern void wake_up_idle_cpu(int cpu); 1892#else 1893static inline void wake_up_idle_cpu(int cpu) { } 1894#endif 1895 1896extern unsigned int sysctl_sched_latency; 1897extern unsigned int sysctl_sched_min_granularity; 1898extern unsigned int sysctl_sched_wakeup_granularity; 1899extern unsigned int sysctl_sched_shares_ratelimit; 1900extern unsigned int sysctl_sched_shares_thresh; 1901extern unsigned int sysctl_sched_child_runs_first; 1902#ifdef CONFIG_SCHED_DEBUG 1903extern unsigned int sysctl_sched_features; 1904extern unsigned int sysctl_sched_migration_cost; 1905extern unsigned int sysctl_sched_nr_migrate; 1906extern unsigned int sysctl_sched_time_avg; 1907extern unsigned int sysctl_timer_migration; 1908 1909int sched_nr_latency_handler(struct ctl_table *table, int write, 1910 void __user *buffer, size_t *length, 1911 loff_t *ppos); 1912#endif 1913#ifdef CONFIG_SCHED_DEBUG 1914static inline unsigned int get_sysctl_timer_migration(void) 1915{ 1916 return sysctl_timer_migration; 1917} 1918#else 1919static inline unsigned int get_sysctl_timer_migration(void) 1920{ 1921 return 1; 1922} 1923#endif 1924extern unsigned int sysctl_sched_rt_period; 1925extern int sysctl_sched_rt_runtime; 1926 1927int sched_rt_handler(struct ctl_table *table, int write, 1928 void __user *buffer, size_t *lenp, 1929 loff_t *ppos); 1930 1931extern unsigned int sysctl_sched_compat_yield; 1932 1933#ifdef CONFIG_RT_MUTEXES 1934extern int rt_mutex_getprio(struct task_struct *p); 1935extern void rt_mutex_setprio(struct task_struct *p, int prio); 1936extern void rt_mutex_adjust_pi(struct task_struct *p); 1937#else 1938static inline int rt_mutex_getprio(struct task_struct *p) 1939{ 1940 return p->normal_prio; 1941} 1942# define rt_mutex_adjust_pi(p) do { } while (0) 1943#endif 1944 1945extern void set_user_nice(struct task_struct *p, long nice); 1946extern int task_prio(const struct task_struct *p); 1947extern int task_nice(const struct task_struct *p); 1948extern int can_nice(const struct task_struct *p, const int nice); 1949extern int task_curr(const struct task_struct *p); 1950extern int idle_cpu(int cpu); 1951extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1952extern int sched_setscheduler_nocheck(struct task_struct *, int, 1953 struct sched_param *); 1954extern struct task_struct *idle_task(int cpu); 1955extern struct task_struct *curr_task(int cpu); 1956extern void set_curr_task(int cpu, struct task_struct *p); 1957 1958void yield(void); 1959 1960/* 1961 * The default (Linux) execution domain. 1962 */ 1963extern struct exec_domain default_exec_domain; 1964 1965union thread_union { 1966 struct thread_info thread_info; 1967 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1968}; 1969 1970#ifndef __HAVE_ARCH_KSTACK_END 1971static inline int kstack_end(void *addr) 1972{ 1973 /* Reliable end of stack detection: 1974 * Some APM bios versions misalign the stack 1975 */ 1976 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1977} 1978#endif 1979 1980extern union thread_union init_thread_union; 1981extern struct task_struct init_task; 1982 1983extern struct mm_struct init_mm; 1984 1985extern struct pid_namespace init_pid_ns; 1986 1987/* 1988 * find a task by one of its numerical ids 1989 * 1990 * find_task_by_pid_ns(): 1991 * finds a task by its pid in the specified namespace 1992 * find_task_by_vpid(): 1993 * finds a task by its virtual pid 1994 * 1995 * see also find_vpid() etc in include/linux/pid.h 1996 */ 1997 1998extern struct task_struct *find_task_by_vpid(pid_t nr); 1999extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2000 struct pid_namespace *ns); 2001 2002extern void __set_special_pids(struct pid *pid); 2003 2004/* per-UID process charging. */ 2005extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2006static inline struct user_struct *get_uid(struct user_struct *u) 2007{ 2008 atomic_inc(&u->__count); 2009 return u; 2010} 2011extern void free_uid(struct user_struct *); 2012extern void release_uids(struct user_namespace *ns); 2013 2014#include <asm/current.h> 2015 2016extern void do_timer(unsigned long ticks); 2017 2018extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2019extern int wake_up_process(struct task_struct *tsk); 2020extern void wake_up_new_task(struct task_struct *tsk, 2021 unsigned long clone_flags); 2022#ifdef CONFIG_SMP 2023 extern void kick_process(struct task_struct *tsk); 2024#else 2025 static inline void kick_process(struct task_struct *tsk) { } 2026#endif 2027extern void sched_fork(struct task_struct *p, int clone_flags); 2028extern void sched_dead(struct task_struct *p); 2029 2030extern void proc_caches_init(void); 2031extern void flush_signals(struct task_struct *); 2032extern void __flush_signals(struct task_struct *); 2033extern void ignore_signals(struct task_struct *); 2034extern void flush_signal_handlers(struct task_struct *, int force_default); 2035extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2036 2037static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2038{ 2039 unsigned long flags; 2040 int ret; 2041 2042 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2043 ret = dequeue_signal(tsk, mask, info); 2044 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2045 2046 return ret; 2047} 2048 2049extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2050 sigset_t *mask); 2051extern void unblock_all_signals(void); 2052extern void release_task(struct task_struct * p); 2053extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2054extern int force_sigsegv(int, struct task_struct *); 2055extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2056extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2057extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2058extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2059extern int kill_pgrp(struct pid *pid, int sig, int priv); 2060extern int kill_pid(struct pid *pid, int sig, int priv); 2061extern int kill_proc_info(int, struct siginfo *, pid_t); 2062extern int do_notify_parent(struct task_struct *, int); 2063extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2064extern void force_sig(int, struct task_struct *); 2065extern void force_sig_specific(int, struct task_struct *); 2066extern int send_sig(int, struct task_struct *, int); 2067extern void zap_other_threads(struct task_struct *p); 2068extern struct sigqueue *sigqueue_alloc(void); 2069extern void sigqueue_free(struct sigqueue *); 2070extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2071extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2072extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2073 2074static inline int kill_cad_pid(int sig, int priv) 2075{ 2076 return kill_pid(cad_pid, sig, priv); 2077} 2078 2079/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2080#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2081#define SEND_SIG_PRIV ((struct siginfo *) 1) 2082#define SEND_SIG_FORCED ((struct siginfo *) 2) 2083 2084static inline int is_si_special(const struct siginfo *info) 2085{ 2086 return info <= SEND_SIG_FORCED; 2087} 2088 2089/* True if we are on the alternate signal stack. */ 2090 2091static inline int on_sig_stack(unsigned long sp) 2092{ 2093 return (sp - current->sas_ss_sp < current->sas_ss_size); 2094} 2095 2096static inline int sas_ss_flags(unsigned long sp) 2097{ 2098 return (current->sas_ss_size == 0 ? SS_DISABLE 2099 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2100} 2101 2102/* 2103 * Routines for handling mm_structs 2104 */ 2105extern struct mm_struct * mm_alloc(void); 2106 2107/* mmdrop drops the mm and the page tables */ 2108extern void __mmdrop(struct mm_struct *); 2109static inline void mmdrop(struct mm_struct * mm) 2110{ 2111 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2112 __mmdrop(mm); 2113} 2114 2115/* mmput gets rid of the mappings and all user-space */ 2116extern void mmput(struct mm_struct *); 2117/* Grab a reference to a task's mm, if it is not already going away */ 2118extern struct mm_struct *get_task_mm(struct task_struct *task); 2119/* Remove the current tasks stale references to the old mm_struct */ 2120extern void mm_release(struct task_struct *, struct mm_struct *); 2121/* Allocate a new mm structure and copy contents from tsk->mm */ 2122extern struct mm_struct *dup_mm(struct task_struct *tsk); 2123 2124extern int copy_thread(unsigned long, unsigned long, unsigned long, 2125 struct task_struct *, struct pt_regs *); 2126extern void flush_thread(void); 2127extern void exit_thread(void); 2128 2129extern void exit_files(struct task_struct *); 2130extern void __cleanup_signal(struct signal_struct *); 2131extern void __cleanup_sighand(struct sighand_struct *); 2132 2133extern void exit_itimers(struct signal_struct *); 2134extern void flush_itimer_signals(void); 2135 2136extern NORET_TYPE void do_group_exit(int); 2137 2138extern void daemonize(const char *, ...); 2139extern int allow_signal(int); 2140extern int disallow_signal(int); 2141 2142extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2143extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2144struct task_struct *fork_idle(int); 2145 2146extern void set_task_comm(struct task_struct *tsk, char *from); 2147extern char *get_task_comm(char *to, struct task_struct *tsk); 2148 2149#ifdef CONFIG_SMP 2150extern void wait_task_context_switch(struct task_struct *p); 2151extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2152#else 2153static inline void wait_task_context_switch(struct task_struct *p) {} 2154static inline unsigned long wait_task_inactive(struct task_struct *p, 2155 long match_state) 2156{ 2157 return 1; 2158} 2159#endif 2160 2161#define next_task(p) \ 2162 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2163 2164#define for_each_process(p) \ 2165 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2166 2167extern bool current_is_single_threaded(void); 2168 2169/* 2170 * Careful: do_each_thread/while_each_thread is a double loop so 2171 * 'break' will not work as expected - use goto instead. 2172 */ 2173#define do_each_thread(g, t) \ 2174 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2175 2176#define while_each_thread(g, t) \ 2177 while ((t = next_thread(t)) != g) 2178 2179/* de_thread depends on thread_group_leader not being a pid based check */ 2180#define thread_group_leader(p) (p == p->group_leader) 2181 2182/* Do to the insanities of de_thread it is possible for a process 2183 * to have the pid of the thread group leader without actually being 2184 * the thread group leader. For iteration through the pids in proc 2185 * all we care about is that we have a task with the appropriate 2186 * pid, we don't actually care if we have the right task. 2187 */ 2188static inline int has_group_leader_pid(struct task_struct *p) 2189{ 2190 return p->pid == p->tgid; 2191} 2192 2193static inline 2194int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2195{ 2196 return p1->tgid == p2->tgid; 2197} 2198 2199static inline struct task_struct *next_thread(const struct task_struct *p) 2200{ 2201 return list_entry_rcu(p->thread_group.next, 2202 struct task_struct, thread_group); 2203} 2204 2205static inline int thread_group_empty(struct task_struct *p) 2206{ 2207 return list_empty(&p->thread_group); 2208} 2209 2210#define delay_group_leader(p) \ 2211 (thread_group_leader(p) && !thread_group_empty(p)) 2212 2213static inline int task_detached(struct task_struct *p) 2214{ 2215 return p->exit_signal == -1; 2216} 2217 2218/* 2219 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2220 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2221 * pins the final release of task.io_context. Also protects ->cpuset and 2222 * ->cgroup.subsys[]. 2223 * 2224 * Nests both inside and outside of read_lock(&tasklist_lock). 2225 * It must not be nested with write_lock_irq(&tasklist_lock), 2226 * neither inside nor outside. 2227 */ 2228static inline void task_lock(struct task_struct *p) 2229{ 2230 spin_lock(&p->alloc_lock); 2231} 2232 2233static inline void task_unlock(struct task_struct *p) 2234{ 2235 spin_unlock(&p->alloc_lock); 2236} 2237 2238extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2239 unsigned long *flags); 2240 2241static inline void unlock_task_sighand(struct task_struct *tsk, 2242 unsigned long *flags) 2243{ 2244 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2245} 2246 2247#ifndef __HAVE_THREAD_FUNCTIONS 2248 2249#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2250#define task_stack_page(task) ((task)->stack) 2251 2252static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2253{ 2254 *task_thread_info(p) = *task_thread_info(org); 2255 task_thread_info(p)->task = p; 2256} 2257 2258static inline unsigned long *end_of_stack(struct task_struct *p) 2259{ 2260 return (unsigned long *)(task_thread_info(p) + 1); 2261} 2262 2263#endif 2264 2265static inline int object_is_on_stack(void *obj) 2266{ 2267 void *stack = task_stack_page(current); 2268 2269 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2270} 2271 2272extern void thread_info_cache_init(void); 2273 2274#ifdef CONFIG_DEBUG_STACK_USAGE 2275static inline unsigned long stack_not_used(struct task_struct *p) 2276{ 2277 unsigned long *n = end_of_stack(p); 2278 2279 do { /* Skip over canary */ 2280 n++; 2281 } while (!*n); 2282 2283 return (unsigned long)n - (unsigned long)end_of_stack(p); 2284} 2285#endif 2286 2287/* set thread flags in other task's structures 2288 * - see asm/thread_info.h for TIF_xxxx flags available 2289 */ 2290static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2291{ 2292 set_ti_thread_flag(task_thread_info(tsk), flag); 2293} 2294 2295static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2296{ 2297 clear_ti_thread_flag(task_thread_info(tsk), flag); 2298} 2299 2300static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2301{ 2302 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2303} 2304 2305static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2306{ 2307 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2308} 2309 2310static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2311{ 2312 return test_ti_thread_flag(task_thread_info(tsk), flag); 2313} 2314 2315static inline void set_tsk_need_resched(struct task_struct *tsk) 2316{ 2317 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2318} 2319 2320static inline void clear_tsk_need_resched(struct task_struct *tsk) 2321{ 2322 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2323} 2324 2325static inline int test_tsk_need_resched(struct task_struct *tsk) 2326{ 2327 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2328} 2329 2330static inline int restart_syscall(void) 2331{ 2332 set_tsk_thread_flag(current, TIF_SIGPENDING); 2333 return -ERESTARTNOINTR; 2334} 2335 2336static inline int signal_pending(struct task_struct *p) 2337{ 2338 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2339} 2340 2341static inline int __fatal_signal_pending(struct task_struct *p) 2342{ 2343 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2344} 2345 2346static inline int fatal_signal_pending(struct task_struct *p) 2347{ 2348 return signal_pending(p) && __fatal_signal_pending(p); 2349} 2350 2351static inline int signal_pending_state(long state, struct task_struct *p) 2352{ 2353 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2354 return 0; 2355 if (!signal_pending(p)) 2356 return 0; 2357 2358 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2359} 2360 2361static inline int need_resched(void) 2362{ 2363 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2364} 2365 2366/* 2367 * cond_resched() and cond_resched_lock(): latency reduction via 2368 * explicit rescheduling in places that are safe. The return 2369 * value indicates whether a reschedule was done in fact. 2370 * cond_resched_lock() will drop the spinlock before scheduling, 2371 * cond_resched_softirq() will enable bhs before scheduling. 2372 */ 2373extern int _cond_resched(void); 2374 2375#define cond_resched() ({ \ 2376 __might_sleep(__FILE__, __LINE__, 0); \ 2377 _cond_resched(); \ 2378}) 2379 2380extern int __cond_resched_lock(spinlock_t *lock); 2381 2382#ifdef CONFIG_PREEMPT 2383#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2384#else 2385#define PREEMPT_LOCK_OFFSET 0 2386#endif 2387 2388#define cond_resched_lock(lock) ({ \ 2389 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2390 __cond_resched_lock(lock); \ 2391}) 2392 2393extern int __cond_resched_softirq(void); 2394 2395#define cond_resched_softirq() ({ \ 2396 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2397 __cond_resched_softirq(); \ 2398}) 2399 2400/* 2401 * Does a critical section need to be broken due to another 2402 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2403 * but a general need for low latency) 2404 */ 2405static inline int spin_needbreak(spinlock_t *lock) 2406{ 2407#ifdef CONFIG_PREEMPT 2408 return spin_is_contended(lock); 2409#else 2410 return 0; 2411#endif 2412} 2413 2414/* 2415 * Thread group CPU time accounting. 2416 */ 2417void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2418void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2419 2420static inline void thread_group_cputime_init(struct signal_struct *sig) 2421{ 2422 sig->cputimer.cputime = INIT_CPUTIME; 2423 spin_lock_init(&sig->cputimer.lock); 2424 sig->cputimer.running = 0; 2425} 2426 2427static inline void thread_group_cputime_free(struct signal_struct *sig) 2428{ 2429} 2430 2431/* 2432 * Reevaluate whether the task has signals pending delivery. 2433 * Wake the task if so. 2434 * This is required every time the blocked sigset_t changes. 2435 * callers must hold sighand->siglock. 2436 */ 2437extern void recalc_sigpending_and_wake(struct task_struct *t); 2438extern void recalc_sigpending(void); 2439 2440extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2441 2442/* 2443 * Wrappers for p->thread_info->cpu access. No-op on UP. 2444 */ 2445#ifdef CONFIG_SMP 2446 2447static inline unsigned int task_cpu(const struct task_struct *p) 2448{ 2449 return task_thread_info(p)->cpu; 2450} 2451 2452extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2453 2454#else 2455 2456static inline unsigned int task_cpu(const struct task_struct *p) 2457{ 2458 return 0; 2459} 2460 2461static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2462{ 2463} 2464 2465#endif /* CONFIG_SMP */ 2466 2467extern void arch_pick_mmap_layout(struct mm_struct *mm); 2468 2469#ifdef CONFIG_TRACING 2470extern void 2471__trace_special(void *__tr, void *__data, 2472 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2473#else 2474static inline void 2475__trace_special(void *__tr, void *__data, 2476 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2477{ 2478} 2479#endif 2480 2481extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2482extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2483 2484extern void normalize_rt_tasks(void); 2485 2486#ifdef CONFIG_GROUP_SCHED 2487 2488extern struct task_group init_task_group; 2489#ifdef CONFIG_USER_SCHED 2490extern struct task_group root_task_group; 2491extern void set_tg_uid(struct user_struct *user); 2492#endif 2493 2494extern struct task_group *sched_create_group(struct task_group *parent); 2495extern void sched_destroy_group(struct task_group *tg); 2496extern void sched_move_task(struct task_struct *tsk); 2497#ifdef CONFIG_FAIR_GROUP_SCHED 2498extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2499extern unsigned long sched_group_shares(struct task_group *tg); 2500#endif 2501#ifdef CONFIG_RT_GROUP_SCHED 2502extern int sched_group_set_rt_runtime(struct task_group *tg, 2503 long rt_runtime_us); 2504extern long sched_group_rt_runtime(struct task_group *tg); 2505extern int sched_group_set_rt_period(struct task_group *tg, 2506 long rt_period_us); 2507extern long sched_group_rt_period(struct task_group *tg); 2508extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2509#endif 2510#endif 2511 2512extern int task_can_switch_user(struct user_struct *up, 2513 struct task_struct *tsk); 2514 2515#ifdef CONFIG_TASK_XACCT 2516static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2517{ 2518 tsk->ioac.rchar += amt; 2519} 2520 2521static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2522{ 2523 tsk->ioac.wchar += amt; 2524} 2525 2526static inline void inc_syscr(struct task_struct *tsk) 2527{ 2528 tsk->ioac.syscr++; 2529} 2530 2531static inline void inc_syscw(struct task_struct *tsk) 2532{ 2533 tsk->ioac.syscw++; 2534} 2535#else 2536static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2537{ 2538} 2539 2540static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2541{ 2542} 2543 2544static inline void inc_syscr(struct task_struct *tsk) 2545{ 2546} 2547 2548static inline void inc_syscw(struct task_struct *tsk) 2549{ 2550} 2551#endif 2552 2553#ifndef TASK_SIZE_OF 2554#define TASK_SIZE_OF(tsk) TASK_SIZE 2555#endif 2556 2557/* 2558 * Call the function if the target task is executing on a CPU right now: 2559 */ 2560extern void task_oncpu_function_call(struct task_struct *p, 2561 void (*func) (void *info), void *info); 2562 2563 2564#ifdef CONFIG_MM_OWNER 2565extern void mm_update_next_owner(struct mm_struct *mm); 2566extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2567#else 2568static inline void mm_update_next_owner(struct mm_struct *mm) 2569{ 2570} 2571 2572static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2573{ 2574} 2575#endif /* CONFIG_MM_OWNER */ 2576 2577#define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2578 2579#endif /* __KERNEL__ */ 2580 2581#endif