at v2.6.32 863 lines 22 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 35 PERF_TYPE_MAX, /* non-ABI */ 36}; 37 38/* 39 * Generalized performance event event_id types, used by the 40 * attr.event_id parameter of the sys_perf_event_open() 41 * syscall: 42 */ 43enum perf_hw_id { 44 /* 45 * Common hardware events, generalized by the kernel: 46 */ 47 PERF_COUNT_HW_CPU_CYCLES = 0, 48 PERF_COUNT_HW_INSTRUCTIONS = 1, 49 PERF_COUNT_HW_CACHE_REFERENCES = 2, 50 PERF_COUNT_HW_CACHE_MISSES = 3, 51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 52 PERF_COUNT_HW_BRANCH_MISSES = 5, 53 PERF_COUNT_HW_BUS_CYCLES = 6, 54 55 PERF_COUNT_HW_MAX, /* non-ABI */ 56}; 57 58/* 59 * Generalized hardware cache events: 60 * 61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 62 * { read, write, prefetch } x 63 * { accesses, misses } 64 */ 65enum perf_hw_cache_id { 66 PERF_COUNT_HW_CACHE_L1D = 0, 67 PERF_COUNT_HW_CACHE_L1I = 1, 68 PERF_COUNT_HW_CACHE_LL = 2, 69 PERF_COUNT_HW_CACHE_DTLB = 3, 70 PERF_COUNT_HW_CACHE_ITLB = 4, 71 PERF_COUNT_HW_CACHE_BPU = 5, 72 73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 74}; 75 76enum perf_hw_cache_op_id { 77 PERF_COUNT_HW_CACHE_OP_READ = 0, 78 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 80 81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 82}; 83 84enum perf_hw_cache_op_result_id { 85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 87 88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 89}; 90 91/* 92 * Special "software" events provided by the kernel, even if the hardware 93 * does not support performance events. These events measure various 94 * physical and sw events of the kernel (and allow the profiling of them as 95 * well): 96 */ 97enum perf_sw_ids { 98 PERF_COUNT_SW_CPU_CLOCK = 0, 99 PERF_COUNT_SW_TASK_CLOCK = 1, 100 PERF_COUNT_SW_PAGE_FAULTS = 2, 101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 102 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 105 106 PERF_COUNT_SW_MAX, /* non-ABI */ 107}; 108 109/* 110 * Bits that can be set in attr.sample_type to request information 111 * in the overflow packets. 112 */ 113enum perf_event_sample_format { 114 PERF_SAMPLE_IP = 1U << 0, 115 PERF_SAMPLE_TID = 1U << 1, 116 PERF_SAMPLE_TIME = 1U << 2, 117 PERF_SAMPLE_ADDR = 1U << 3, 118 PERF_SAMPLE_READ = 1U << 4, 119 PERF_SAMPLE_CALLCHAIN = 1U << 5, 120 PERF_SAMPLE_ID = 1U << 6, 121 PERF_SAMPLE_CPU = 1U << 7, 122 PERF_SAMPLE_PERIOD = 1U << 8, 123 PERF_SAMPLE_STREAM_ID = 1U << 9, 124 PERF_SAMPLE_RAW = 1U << 10, 125 126 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 127}; 128 129/* 130 * The format of the data returned by read() on a perf event fd, 131 * as specified by attr.read_format: 132 * 133 * struct read_format { 134 * { u64 value; 135 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 136 * { u64 time_running; } && PERF_FORMAT_RUNNING 137 * { u64 id; } && PERF_FORMAT_ID 138 * } && !PERF_FORMAT_GROUP 139 * 140 * { u64 nr; 141 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 142 * { u64 time_running; } && PERF_FORMAT_RUNNING 143 * { u64 value; 144 * { u64 id; } && PERF_FORMAT_ID 145 * } cntr[nr]; 146 * } && PERF_FORMAT_GROUP 147 * }; 148 */ 149enum perf_event_read_format { 150 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 151 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 152 PERF_FORMAT_ID = 1U << 2, 153 PERF_FORMAT_GROUP = 1U << 3, 154 155 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 156}; 157 158#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 159 160/* 161 * Hardware event_id to monitor via a performance monitoring event: 162 */ 163struct perf_event_attr { 164 165 /* 166 * Major type: hardware/software/tracepoint/etc. 167 */ 168 __u32 type; 169 170 /* 171 * Size of the attr structure, for fwd/bwd compat. 172 */ 173 __u32 size; 174 175 /* 176 * Type specific configuration information. 177 */ 178 __u64 config; 179 180 union { 181 __u64 sample_period; 182 __u64 sample_freq; 183 }; 184 185 __u64 sample_type; 186 __u64 read_format; 187 188 __u64 disabled : 1, /* off by default */ 189 inherit : 1, /* children inherit it */ 190 pinned : 1, /* must always be on PMU */ 191 exclusive : 1, /* only group on PMU */ 192 exclude_user : 1, /* don't count user */ 193 exclude_kernel : 1, /* ditto kernel */ 194 exclude_hv : 1, /* ditto hypervisor */ 195 exclude_idle : 1, /* don't count when idle */ 196 mmap : 1, /* include mmap data */ 197 comm : 1, /* include comm data */ 198 freq : 1, /* use freq, not period */ 199 inherit_stat : 1, /* per task counts */ 200 enable_on_exec : 1, /* next exec enables */ 201 task : 1, /* trace fork/exit */ 202 watermark : 1, /* wakeup_watermark */ 203 204 __reserved_1 : 49; 205 206 union { 207 __u32 wakeup_events; /* wakeup every n events */ 208 __u32 wakeup_watermark; /* bytes before wakeup */ 209 }; 210 __u32 __reserved_2; 211 212 __u64 __reserved_3; 213}; 214 215/* 216 * Ioctls that can be done on a perf event fd: 217 */ 218#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 219#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 220#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 221#define PERF_EVENT_IOC_RESET _IO ('$', 3) 222#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, u64) 223#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 224 225enum perf_event_ioc_flags { 226 PERF_IOC_FLAG_GROUP = 1U << 0, 227}; 228 229/* 230 * Structure of the page that can be mapped via mmap 231 */ 232struct perf_event_mmap_page { 233 __u32 version; /* version number of this structure */ 234 __u32 compat_version; /* lowest version this is compat with */ 235 236 /* 237 * Bits needed to read the hw events in user-space. 238 * 239 * u32 seq; 240 * s64 count; 241 * 242 * do { 243 * seq = pc->lock; 244 * 245 * barrier() 246 * if (pc->index) { 247 * count = pmc_read(pc->index - 1); 248 * count += pc->offset; 249 * } else 250 * goto regular_read; 251 * 252 * barrier(); 253 * } while (pc->lock != seq); 254 * 255 * NOTE: for obvious reason this only works on self-monitoring 256 * processes. 257 */ 258 __u32 lock; /* seqlock for synchronization */ 259 __u32 index; /* hardware event identifier */ 260 __s64 offset; /* add to hardware event value */ 261 __u64 time_enabled; /* time event active */ 262 __u64 time_running; /* time event on cpu */ 263 264 /* 265 * Hole for extension of the self monitor capabilities 266 */ 267 268 __u64 __reserved[123]; /* align to 1k */ 269 270 /* 271 * Control data for the mmap() data buffer. 272 * 273 * User-space reading the @data_head value should issue an rmb(), on 274 * SMP capable platforms, after reading this value -- see 275 * perf_event_wakeup(). 276 * 277 * When the mapping is PROT_WRITE the @data_tail value should be 278 * written by userspace to reflect the last read data. In this case 279 * the kernel will not over-write unread data. 280 */ 281 __u64 data_head; /* head in the data section */ 282 __u64 data_tail; /* user-space written tail */ 283}; 284 285#define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0) 286#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 287#define PERF_RECORD_MISC_KERNEL (1 << 0) 288#define PERF_RECORD_MISC_USER (2 << 0) 289#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 290 291struct perf_event_header { 292 __u32 type; 293 __u16 misc; 294 __u16 size; 295}; 296 297enum perf_event_type { 298 299 /* 300 * The MMAP events record the PROT_EXEC mappings so that we can 301 * correlate userspace IPs to code. They have the following structure: 302 * 303 * struct { 304 * struct perf_event_header header; 305 * 306 * u32 pid, tid; 307 * u64 addr; 308 * u64 len; 309 * u64 pgoff; 310 * char filename[]; 311 * }; 312 */ 313 PERF_RECORD_MMAP = 1, 314 315 /* 316 * struct { 317 * struct perf_event_header header; 318 * u64 id; 319 * u64 lost; 320 * }; 321 */ 322 PERF_RECORD_LOST = 2, 323 324 /* 325 * struct { 326 * struct perf_event_header header; 327 * 328 * u32 pid, tid; 329 * char comm[]; 330 * }; 331 */ 332 PERF_RECORD_COMM = 3, 333 334 /* 335 * struct { 336 * struct perf_event_header header; 337 * u32 pid, ppid; 338 * u32 tid, ptid; 339 * u64 time; 340 * }; 341 */ 342 PERF_RECORD_EXIT = 4, 343 344 /* 345 * struct { 346 * struct perf_event_header header; 347 * u64 time; 348 * u64 id; 349 * u64 stream_id; 350 * }; 351 */ 352 PERF_RECORD_THROTTLE = 5, 353 PERF_RECORD_UNTHROTTLE = 6, 354 355 /* 356 * struct { 357 * struct perf_event_header header; 358 * u32 pid, ppid; 359 * u32 tid, ptid; 360 * u64 time; 361 * }; 362 */ 363 PERF_RECORD_FORK = 7, 364 365 /* 366 * struct { 367 * struct perf_event_header header; 368 * u32 pid, tid; 369 * 370 * struct read_format values; 371 * }; 372 */ 373 PERF_RECORD_READ = 8, 374 375 /* 376 * struct { 377 * struct perf_event_header header; 378 * 379 * { u64 ip; } && PERF_SAMPLE_IP 380 * { u32 pid, tid; } && PERF_SAMPLE_TID 381 * { u64 time; } && PERF_SAMPLE_TIME 382 * { u64 addr; } && PERF_SAMPLE_ADDR 383 * { u64 id; } && PERF_SAMPLE_ID 384 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 385 * { u32 cpu, res; } && PERF_SAMPLE_CPU 386 * { u64 period; } && PERF_SAMPLE_PERIOD 387 * 388 * { struct read_format values; } && PERF_SAMPLE_READ 389 * 390 * { u64 nr, 391 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 392 * 393 * # 394 * # The RAW record below is opaque data wrt the ABI 395 * # 396 * # That is, the ABI doesn't make any promises wrt to 397 * # the stability of its content, it may vary depending 398 * # on event, hardware, kernel version and phase of 399 * # the moon. 400 * # 401 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 402 * # 403 * 404 * { u32 size; 405 * char data[size];}&& PERF_SAMPLE_RAW 406 * }; 407 */ 408 PERF_RECORD_SAMPLE = 9, 409 410 PERF_RECORD_MAX, /* non-ABI */ 411}; 412 413enum perf_callchain_context { 414 PERF_CONTEXT_HV = (__u64)-32, 415 PERF_CONTEXT_KERNEL = (__u64)-128, 416 PERF_CONTEXT_USER = (__u64)-512, 417 418 PERF_CONTEXT_GUEST = (__u64)-2048, 419 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 420 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 421 422 PERF_CONTEXT_MAX = (__u64)-4095, 423}; 424 425#define PERF_FLAG_FD_NO_GROUP (1U << 0) 426#define PERF_FLAG_FD_OUTPUT (1U << 1) 427 428#ifdef __KERNEL__ 429/* 430 * Kernel-internal data types and definitions: 431 */ 432 433#ifdef CONFIG_PERF_EVENTS 434# include <asm/perf_event.h> 435#endif 436 437#include <linux/list.h> 438#include <linux/mutex.h> 439#include <linux/rculist.h> 440#include <linux/rcupdate.h> 441#include <linux/spinlock.h> 442#include <linux/hrtimer.h> 443#include <linux/fs.h> 444#include <linux/pid_namespace.h> 445#include <linux/workqueue.h> 446#include <asm/atomic.h> 447 448#define PERF_MAX_STACK_DEPTH 255 449 450struct perf_callchain_entry { 451 __u64 nr; 452 __u64 ip[PERF_MAX_STACK_DEPTH]; 453}; 454 455struct perf_raw_record { 456 u32 size; 457 void *data; 458}; 459 460struct task_struct; 461 462/** 463 * struct hw_perf_event - performance event hardware details: 464 */ 465struct hw_perf_event { 466#ifdef CONFIG_PERF_EVENTS 467 union { 468 struct { /* hardware */ 469 u64 config; 470 unsigned long config_base; 471 unsigned long event_base; 472 int idx; 473 }; 474 struct { /* software */ 475 s64 remaining; 476 struct hrtimer hrtimer; 477 }; 478 }; 479 atomic64_t prev_count; 480 u64 sample_period; 481 u64 last_period; 482 atomic64_t period_left; 483 u64 interrupts; 484 485 u64 freq_count; 486 u64 freq_interrupts; 487 u64 freq_stamp; 488#endif 489}; 490 491struct perf_event; 492 493/** 494 * struct pmu - generic performance monitoring unit 495 */ 496struct pmu { 497 int (*enable) (struct perf_event *event); 498 void (*disable) (struct perf_event *event); 499 void (*read) (struct perf_event *event); 500 void (*unthrottle) (struct perf_event *event); 501}; 502 503/** 504 * enum perf_event_active_state - the states of a event 505 */ 506enum perf_event_active_state { 507 PERF_EVENT_STATE_ERROR = -2, 508 PERF_EVENT_STATE_OFF = -1, 509 PERF_EVENT_STATE_INACTIVE = 0, 510 PERF_EVENT_STATE_ACTIVE = 1, 511}; 512 513struct file; 514 515struct perf_mmap_data { 516 struct rcu_head rcu_head; 517#ifdef CONFIG_PERF_USE_VMALLOC 518 struct work_struct work; 519#endif 520 int data_order; 521 int nr_pages; /* nr of data pages */ 522 int writable; /* are we writable */ 523 int nr_locked; /* nr pages mlocked */ 524 525 atomic_t poll; /* POLL_ for wakeups */ 526 atomic_t events; /* event_id limit */ 527 528 atomic_long_t head; /* write position */ 529 atomic_long_t done_head; /* completed head */ 530 531 atomic_t lock; /* concurrent writes */ 532 atomic_t wakeup; /* needs a wakeup */ 533 atomic_t lost; /* nr records lost */ 534 535 long watermark; /* wakeup watermark */ 536 537 struct perf_event_mmap_page *user_page; 538 void *data_pages[0]; 539}; 540 541struct perf_pending_entry { 542 struct perf_pending_entry *next; 543 void (*func)(struct perf_pending_entry *); 544}; 545 546/** 547 * struct perf_event - performance event kernel representation: 548 */ 549struct perf_event { 550#ifdef CONFIG_PERF_EVENTS 551 struct list_head group_entry; 552 struct list_head event_entry; 553 struct list_head sibling_list; 554 int nr_siblings; 555 struct perf_event *group_leader; 556 struct perf_event *output; 557 const struct pmu *pmu; 558 559 enum perf_event_active_state state; 560 atomic64_t count; 561 562 /* 563 * These are the total time in nanoseconds that the event 564 * has been enabled (i.e. eligible to run, and the task has 565 * been scheduled in, if this is a per-task event) 566 * and running (scheduled onto the CPU), respectively. 567 * 568 * They are computed from tstamp_enabled, tstamp_running and 569 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 570 */ 571 u64 total_time_enabled; 572 u64 total_time_running; 573 574 /* 575 * These are timestamps used for computing total_time_enabled 576 * and total_time_running when the event is in INACTIVE or 577 * ACTIVE state, measured in nanoseconds from an arbitrary point 578 * in time. 579 * tstamp_enabled: the notional time when the event was enabled 580 * tstamp_running: the notional time when the event was scheduled on 581 * tstamp_stopped: in INACTIVE state, the notional time when the 582 * event was scheduled off. 583 */ 584 u64 tstamp_enabled; 585 u64 tstamp_running; 586 u64 tstamp_stopped; 587 588 struct perf_event_attr attr; 589 struct hw_perf_event hw; 590 591 struct perf_event_context *ctx; 592 struct file *filp; 593 594 /* 595 * These accumulate total time (in nanoseconds) that children 596 * events have been enabled and running, respectively. 597 */ 598 atomic64_t child_total_time_enabled; 599 atomic64_t child_total_time_running; 600 601 /* 602 * Protect attach/detach and child_list: 603 */ 604 struct mutex child_mutex; 605 struct list_head child_list; 606 struct perf_event *parent; 607 608 int oncpu; 609 int cpu; 610 611 struct list_head owner_entry; 612 struct task_struct *owner; 613 614 /* mmap bits */ 615 struct mutex mmap_mutex; 616 atomic_t mmap_count; 617 struct perf_mmap_data *data; 618 619 /* poll related */ 620 wait_queue_head_t waitq; 621 struct fasync_struct *fasync; 622 623 /* delayed work for NMIs and such */ 624 int pending_wakeup; 625 int pending_kill; 626 int pending_disable; 627 struct perf_pending_entry pending; 628 629 atomic_t event_limit; 630 631 void (*destroy)(struct perf_event *); 632 struct rcu_head rcu_head; 633 634 struct pid_namespace *ns; 635 u64 id; 636#endif 637}; 638 639/** 640 * struct perf_event_context - event context structure 641 * 642 * Used as a container for task events and CPU events as well: 643 */ 644struct perf_event_context { 645 /* 646 * Protect the states of the events in the list, 647 * nr_active, and the list: 648 */ 649 spinlock_t lock; 650 /* 651 * Protect the list of events. Locking either mutex or lock 652 * is sufficient to ensure the list doesn't change; to change 653 * the list you need to lock both the mutex and the spinlock. 654 */ 655 struct mutex mutex; 656 657 struct list_head group_list; 658 struct list_head event_list; 659 int nr_events; 660 int nr_active; 661 int is_active; 662 int nr_stat; 663 atomic_t refcount; 664 struct task_struct *task; 665 666 /* 667 * Context clock, runs when context enabled. 668 */ 669 u64 time; 670 u64 timestamp; 671 672 /* 673 * These fields let us detect when two contexts have both 674 * been cloned (inherited) from a common ancestor. 675 */ 676 struct perf_event_context *parent_ctx; 677 u64 parent_gen; 678 u64 generation; 679 int pin_count; 680 struct rcu_head rcu_head; 681}; 682 683/** 684 * struct perf_event_cpu_context - per cpu event context structure 685 */ 686struct perf_cpu_context { 687 struct perf_event_context ctx; 688 struct perf_event_context *task_ctx; 689 int active_oncpu; 690 int max_pertask; 691 int exclusive; 692 693 /* 694 * Recursion avoidance: 695 * 696 * task, softirq, irq, nmi context 697 */ 698 int recursion[4]; 699}; 700 701struct perf_output_handle { 702 struct perf_event *event; 703 struct perf_mmap_data *data; 704 unsigned long head; 705 unsigned long offset; 706 int nmi; 707 int sample; 708 int locked; 709 unsigned long flags; 710}; 711 712#ifdef CONFIG_PERF_EVENTS 713 714/* 715 * Set by architecture code: 716 */ 717extern int perf_max_events; 718 719extern const struct pmu *hw_perf_event_init(struct perf_event *event); 720 721extern void perf_event_task_sched_in(struct task_struct *task, int cpu); 722extern void perf_event_task_sched_out(struct task_struct *task, 723 struct task_struct *next, int cpu); 724extern void perf_event_task_tick(struct task_struct *task, int cpu); 725extern int perf_event_init_task(struct task_struct *child); 726extern void perf_event_exit_task(struct task_struct *child); 727extern void perf_event_free_task(struct task_struct *task); 728extern void set_perf_event_pending(void); 729extern void perf_event_do_pending(void); 730extern void perf_event_print_debug(void); 731extern void __perf_disable(void); 732extern bool __perf_enable(void); 733extern void perf_disable(void); 734extern void perf_enable(void); 735extern int perf_event_task_disable(void); 736extern int perf_event_task_enable(void); 737extern int hw_perf_group_sched_in(struct perf_event *group_leader, 738 struct perf_cpu_context *cpuctx, 739 struct perf_event_context *ctx, int cpu); 740extern void perf_event_update_userpage(struct perf_event *event); 741 742struct perf_sample_data { 743 u64 type; 744 745 u64 ip; 746 struct { 747 u32 pid; 748 u32 tid; 749 } tid_entry; 750 u64 time; 751 u64 addr; 752 u64 id; 753 u64 stream_id; 754 struct { 755 u32 cpu; 756 u32 reserved; 757 } cpu_entry; 758 u64 period; 759 struct perf_callchain_entry *callchain; 760 struct perf_raw_record *raw; 761}; 762 763extern void perf_output_sample(struct perf_output_handle *handle, 764 struct perf_event_header *header, 765 struct perf_sample_data *data, 766 struct perf_event *event); 767extern void perf_prepare_sample(struct perf_event_header *header, 768 struct perf_sample_data *data, 769 struct perf_event *event, 770 struct pt_regs *regs); 771 772extern int perf_event_overflow(struct perf_event *event, int nmi, 773 struct perf_sample_data *data, 774 struct pt_regs *regs); 775 776/* 777 * Return 1 for a software event, 0 for a hardware event 778 */ 779static inline int is_software_event(struct perf_event *event) 780{ 781 return (event->attr.type != PERF_TYPE_RAW) && 782 (event->attr.type != PERF_TYPE_HARDWARE) && 783 (event->attr.type != PERF_TYPE_HW_CACHE); 784} 785 786extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 787 788extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 789 790static inline void 791perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 792{ 793 if (atomic_read(&perf_swevent_enabled[event_id])) 794 __perf_sw_event(event_id, nr, nmi, regs, addr); 795} 796 797extern void __perf_event_mmap(struct vm_area_struct *vma); 798 799static inline void perf_event_mmap(struct vm_area_struct *vma) 800{ 801 if (vma->vm_flags & VM_EXEC) 802 __perf_event_mmap(vma); 803} 804 805extern void perf_event_comm(struct task_struct *tsk); 806extern void perf_event_fork(struct task_struct *tsk); 807 808extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 809 810extern int sysctl_perf_event_paranoid; 811extern int sysctl_perf_event_mlock; 812extern int sysctl_perf_event_sample_rate; 813 814extern void perf_event_init(void); 815extern void perf_tp_event(int event_id, u64 addr, u64 count, 816 void *record, int entry_size); 817 818#ifndef perf_misc_flags 819#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 820 PERF_RECORD_MISC_KERNEL) 821#define perf_instruction_pointer(regs) instruction_pointer(regs) 822#endif 823 824extern int perf_output_begin(struct perf_output_handle *handle, 825 struct perf_event *event, unsigned int size, 826 int nmi, int sample); 827extern void perf_output_end(struct perf_output_handle *handle); 828extern void perf_output_copy(struct perf_output_handle *handle, 829 const void *buf, unsigned int len); 830#else 831static inline void 832perf_event_task_sched_in(struct task_struct *task, int cpu) { } 833static inline void 834perf_event_task_sched_out(struct task_struct *task, 835 struct task_struct *next, int cpu) { } 836static inline void 837perf_event_task_tick(struct task_struct *task, int cpu) { } 838static inline int perf_event_init_task(struct task_struct *child) { return 0; } 839static inline void perf_event_exit_task(struct task_struct *child) { } 840static inline void perf_event_free_task(struct task_struct *task) { } 841static inline void perf_event_do_pending(void) { } 842static inline void perf_event_print_debug(void) { } 843static inline void perf_disable(void) { } 844static inline void perf_enable(void) { } 845static inline int perf_event_task_disable(void) { return -EINVAL; } 846static inline int perf_event_task_enable(void) { return -EINVAL; } 847 848static inline void 849perf_sw_event(u32 event_id, u64 nr, int nmi, 850 struct pt_regs *regs, u64 addr) { } 851 852static inline void perf_event_mmap(struct vm_area_struct *vma) { } 853static inline void perf_event_comm(struct task_struct *tsk) { } 854static inline void perf_event_fork(struct task_struct *tsk) { } 855static inline void perf_event_init(void) { } 856 857#endif 858 859#define perf_output_put(handle, x) \ 860 perf_output_copy((handle), &(x), sizeof(x)) 861 862#endif /* __KERNEL__ */ 863#endif /* _LINUX_PERF_EVENT_H */