at v2.6.32 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107#ifdef CONFIG_NUMA 108 NUMA_HIT, /* allocated in intended node */ 109 NUMA_MISS, /* allocated in non intended node */ 110 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 112 NUMA_LOCAL, /* allocation from local node */ 113 NUMA_OTHER, /* allocation from other node */ 114#endif 115 NR_VM_ZONE_STAT_ITEMS }; 116 117/* 118 * We do arithmetic on the LRU lists in various places in the code, 119 * so it is important to keep the active lists LRU_ACTIVE higher in 120 * the array than the corresponding inactive lists, and to keep 121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 122 * 123 * This has to be kept in sync with the statistics in zone_stat_item 124 * above and the descriptions in vmstat_text in mm/vmstat.c 125 */ 126#define LRU_BASE 0 127#define LRU_ACTIVE 1 128#define LRU_FILE 2 129 130enum lru_list { 131 LRU_INACTIVE_ANON = LRU_BASE, 132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 135 LRU_UNEVICTABLE, 136 NR_LRU_LISTS 137}; 138 139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 140 141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 142 143static inline int is_file_lru(enum lru_list l) 144{ 145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 146} 147 148static inline int is_active_lru(enum lru_list l) 149{ 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 151} 152 153static inline int is_unevictable_lru(enum lru_list l) 154{ 155 return (l == LRU_UNEVICTABLE); 156} 157 158enum zone_watermarks { 159 WMARK_MIN, 160 WMARK_LOW, 161 WMARK_HIGH, 162 NR_WMARK 163}; 164 165#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 166#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 168 169struct per_cpu_pages { 170 int count; /* number of pages in the list */ 171 int high; /* high watermark, emptying needed */ 172 int batch; /* chunk size for buddy add/remove */ 173 174 /* Lists of pages, one per migrate type stored on the pcp-lists */ 175 struct list_head lists[MIGRATE_PCPTYPES]; 176}; 177 178struct per_cpu_pageset { 179 struct per_cpu_pages pcp; 180#ifdef CONFIG_NUMA 181 s8 expire; 182#endif 183#ifdef CONFIG_SMP 184 s8 stat_threshold; 185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 186#endif 187} ____cacheline_aligned_in_smp; 188 189#ifdef CONFIG_NUMA 190#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 191#else 192#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 193#endif 194 195#endif /* !__GENERATING_BOUNDS.H */ 196 197enum zone_type { 198#ifdef CONFIG_ZONE_DMA 199 /* 200 * ZONE_DMA is used when there are devices that are not able 201 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 202 * carve out the portion of memory that is needed for these devices. 203 * The range is arch specific. 204 * 205 * Some examples 206 * 207 * Architecture Limit 208 * --------------------------- 209 * parisc, ia64, sparc <4G 210 * s390 <2G 211 * arm Various 212 * alpha Unlimited or 0-16MB. 213 * 214 * i386, x86_64 and multiple other arches 215 * <16M. 216 */ 217 ZONE_DMA, 218#endif 219#ifdef CONFIG_ZONE_DMA32 220 /* 221 * x86_64 needs two ZONE_DMAs because it supports devices that are 222 * only able to do DMA to the lower 16M but also 32 bit devices that 223 * can only do DMA areas below 4G. 224 */ 225 ZONE_DMA32, 226#endif 227 /* 228 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 229 * performed on pages in ZONE_NORMAL if the DMA devices support 230 * transfers to all addressable memory. 231 */ 232 ZONE_NORMAL, 233#ifdef CONFIG_HIGHMEM 234 /* 235 * A memory area that is only addressable by the kernel through 236 * mapping portions into its own address space. This is for example 237 * used by i386 to allow the kernel to address the memory beyond 238 * 900MB. The kernel will set up special mappings (page 239 * table entries on i386) for each page that the kernel needs to 240 * access. 241 */ 242 ZONE_HIGHMEM, 243#endif 244 ZONE_MOVABLE, 245 __MAX_NR_ZONES 246}; 247 248#ifndef __GENERATING_BOUNDS_H 249 250/* 251 * When a memory allocation must conform to specific limitations (such 252 * as being suitable for DMA) the caller will pass in hints to the 253 * allocator in the gfp_mask, in the zone modifier bits. These bits 254 * are used to select a priority ordered list of memory zones which 255 * match the requested limits. See gfp_zone() in include/linux/gfp.h 256 */ 257 258#if MAX_NR_ZONES < 2 259#define ZONES_SHIFT 0 260#elif MAX_NR_ZONES <= 2 261#define ZONES_SHIFT 1 262#elif MAX_NR_ZONES <= 4 263#define ZONES_SHIFT 2 264#else 265#error ZONES_SHIFT -- too many zones configured adjust calculation 266#endif 267 268struct zone_reclaim_stat { 269 /* 270 * The pageout code in vmscan.c keeps track of how many of the 271 * mem/swap backed and file backed pages are refeferenced. 272 * The higher the rotated/scanned ratio, the more valuable 273 * that cache is. 274 * 275 * The anon LRU stats live in [0], file LRU stats in [1] 276 */ 277 unsigned long recent_rotated[2]; 278 unsigned long recent_scanned[2]; 279 280 /* 281 * accumulated for batching 282 */ 283 unsigned long nr_saved_scan[NR_LRU_LISTS]; 284}; 285 286struct zone { 287 /* Fields commonly accessed by the page allocator */ 288 289 /* zone watermarks, access with *_wmark_pages(zone) macros */ 290 unsigned long watermark[NR_WMARK]; 291 292 /* 293 * We don't know if the memory that we're going to allocate will be freeable 294 * or/and it will be released eventually, so to avoid totally wasting several 295 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 296 * to run OOM on the lower zones despite there's tons of freeable ram 297 * on the higher zones). This array is recalculated at runtime if the 298 * sysctl_lowmem_reserve_ratio sysctl changes. 299 */ 300 unsigned long lowmem_reserve[MAX_NR_ZONES]; 301 302#ifdef CONFIG_NUMA 303 int node; 304 /* 305 * zone reclaim becomes active if more unmapped pages exist. 306 */ 307 unsigned long min_unmapped_pages; 308 unsigned long min_slab_pages; 309 struct per_cpu_pageset *pageset[NR_CPUS]; 310#else 311 struct per_cpu_pageset pageset[NR_CPUS]; 312#endif 313 /* 314 * free areas of different sizes 315 */ 316 spinlock_t lock; 317#ifdef CONFIG_MEMORY_HOTPLUG 318 /* see spanned/present_pages for more description */ 319 seqlock_t span_seqlock; 320#endif 321 struct free_area free_area[MAX_ORDER]; 322 323#ifndef CONFIG_SPARSEMEM 324 /* 325 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 326 * In SPARSEMEM, this map is stored in struct mem_section 327 */ 328 unsigned long *pageblock_flags; 329#endif /* CONFIG_SPARSEMEM */ 330 331 332 ZONE_PADDING(_pad1_) 333 334 /* Fields commonly accessed by the page reclaim scanner */ 335 spinlock_t lru_lock; 336 struct zone_lru { 337 struct list_head list; 338 } lru[NR_LRU_LISTS]; 339 340 struct zone_reclaim_stat reclaim_stat; 341 342 unsigned long pages_scanned; /* since last reclaim */ 343 unsigned long flags; /* zone flags, see below */ 344 345 /* Zone statistics */ 346 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 347 348 /* 349 * prev_priority holds the scanning priority for this zone. It is 350 * defined as the scanning priority at which we achieved our reclaim 351 * target at the previous try_to_free_pages() or balance_pgdat() 352 * invokation. 353 * 354 * We use prev_priority as a measure of how much stress page reclaim is 355 * under - it drives the swappiness decision: whether to unmap mapped 356 * pages. 357 * 358 * Access to both this field is quite racy even on uniprocessor. But 359 * it is expected to average out OK. 360 */ 361 int prev_priority; 362 363 /* 364 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 365 * this zone's LRU. Maintained by the pageout code. 366 */ 367 unsigned int inactive_ratio; 368 369 370 ZONE_PADDING(_pad2_) 371 /* Rarely used or read-mostly fields */ 372 373 /* 374 * wait_table -- the array holding the hash table 375 * wait_table_hash_nr_entries -- the size of the hash table array 376 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 377 * 378 * The purpose of all these is to keep track of the people 379 * waiting for a page to become available and make them 380 * runnable again when possible. The trouble is that this 381 * consumes a lot of space, especially when so few things 382 * wait on pages at a given time. So instead of using 383 * per-page waitqueues, we use a waitqueue hash table. 384 * 385 * The bucket discipline is to sleep on the same queue when 386 * colliding and wake all in that wait queue when removing. 387 * When something wakes, it must check to be sure its page is 388 * truly available, a la thundering herd. The cost of a 389 * collision is great, but given the expected load of the 390 * table, they should be so rare as to be outweighed by the 391 * benefits from the saved space. 392 * 393 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 394 * primary users of these fields, and in mm/page_alloc.c 395 * free_area_init_core() performs the initialization of them. 396 */ 397 wait_queue_head_t * wait_table; 398 unsigned long wait_table_hash_nr_entries; 399 unsigned long wait_table_bits; 400 401 /* 402 * Discontig memory support fields. 403 */ 404 struct pglist_data *zone_pgdat; 405 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 406 unsigned long zone_start_pfn; 407 408 /* 409 * zone_start_pfn, spanned_pages and present_pages are all 410 * protected by span_seqlock. It is a seqlock because it has 411 * to be read outside of zone->lock, and it is done in the main 412 * allocator path. But, it is written quite infrequently. 413 * 414 * The lock is declared along with zone->lock because it is 415 * frequently read in proximity to zone->lock. It's good to 416 * give them a chance of being in the same cacheline. 417 */ 418 unsigned long spanned_pages; /* total size, including holes */ 419 unsigned long present_pages; /* amount of memory (excluding holes) */ 420 421 /* 422 * rarely used fields: 423 */ 424 const char *name; 425} ____cacheline_internodealigned_in_smp; 426 427typedef enum { 428 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 429 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 430 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 431} zone_flags_t; 432 433static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 434{ 435 set_bit(flag, &zone->flags); 436} 437 438static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 439{ 440 return test_and_set_bit(flag, &zone->flags); 441} 442 443static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 444{ 445 clear_bit(flag, &zone->flags); 446} 447 448static inline int zone_is_all_unreclaimable(const struct zone *zone) 449{ 450 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 451} 452 453static inline int zone_is_reclaim_locked(const struct zone *zone) 454{ 455 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 456} 457 458static inline int zone_is_oom_locked(const struct zone *zone) 459{ 460 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 461} 462 463/* 464 * The "priority" of VM scanning is how much of the queues we will scan in one 465 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 466 * queues ("queue_length >> 12") during an aging round. 467 */ 468#define DEF_PRIORITY 12 469 470/* Maximum number of zones on a zonelist */ 471#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 472 473#ifdef CONFIG_NUMA 474 475/* 476 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 477 * allocations to a single node for GFP_THISNODE. 478 * 479 * [0] : Zonelist with fallback 480 * [1] : No fallback (GFP_THISNODE) 481 */ 482#define MAX_ZONELISTS 2 483 484 485/* 486 * We cache key information from each zonelist for smaller cache 487 * footprint when scanning for free pages in get_page_from_freelist(). 488 * 489 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 490 * up short of free memory since the last time (last_fullzone_zap) 491 * we zero'd fullzones. 492 * 2) The array z_to_n[] maps each zone in the zonelist to its node 493 * id, so that we can efficiently evaluate whether that node is 494 * set in the current tasks mems_allowed. 495 * 496 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 497 * indexed by a zones offset in the zonelist zones[] array. 498 * 499 * The get_page_from_freelist() routine does two scans. During the 500 * first scan, we skip zones whose corresponding bit in 'fullzones' 501 * is set or whose corresponding node in current->mems_allowed (which 502 * comes from cpusets) is not set. During the second scan, we bypass 503 * this zonelist_cache, to ensure we look methodically at each zone. 504 * 505 * Once per second, we zero out (zap) fullzones, forcing us to 506 * reconsider nodes that might have regained more free memory. 507 * The field last_full_zap is the time we last zapped fullzones. 508 * 509 * This mechanism reduces the amount of time we waste repeatedly 510 * reexaming zones for free memory when they just came up low on 511 * memory momentarilly ago. 512 * 513 * The zonelist_cache struct members logically belong in struct 514 * zonelist. However, the mempolicy zonelists constructed for 515 * MPOL_BIND are intentionally variable length (and usually much 516 * shorter). A general purpose mechanism for handling structs with 517 * multiple variable length members is more mechanism than we want 518 * here. We resort to some special case hackery instead. 519 * 520 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 521 * part because they are shorter), so we put the fixed length stuff 522 * at the front of the zonelist struct, ending in a variable length 523 * zones[], as is needed by MPOL_BIND. 524 * 525 * Then we put the optional zonelist cache on the end of the zonelist 526 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 527 * the fixed length portion at the front of the struct. This pointer 528 * both enables us to find the zonelist cache, and in the case of 529 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 530 * to know that the zonelist cache is not there. 531 * 532 * The end result is that struct zonelists come in two flavors: 533 * 1) The full, fixed length version, shown below, and 534 * 2) The custom zonelists for MPOL_BIND. 535 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 536 * 537 * Even though there may be multiple CPU cores on a node modifying 538 * fullzones or last_full_zap in the same zonelist_cache at the same 539 * time, we don't lock it. This is just hint data - if it is wrong now 540 * and then, the allocator will still function, perhaps a bit slower. 541 */ 542 543 544struct zonelist_cache { 545 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 546 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 547 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 548}; 549#else 550#define MAX_ZONELISTS 1 551struct zonelist_cache; 552#endif 553 554/* 555 * This struct contains information about a zone in a zonelist. It is stored 556 * here to avoid dereferences into large structures and lookups of tables 557 */ 558struct zoneref { 559 struct zone *zone; /* Pointer to actual zone */ 560 int zone_idx; /* zone_idx(zoneref->zone) */ 561}; 562 563/* 564 * One allocation request operates on a zonelist. A zonelist 565 * is a list of zones, the first one is the 'goal' of the 566 * allocation, the other zones are fallback zones, in decreasing 567 * priority. 568 * 569 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 570 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 571 * * 572 * To speed the reading of the zonelist, the zonerefs contain the zone index 573 * of the entry being read. Helper functions to access information given 574 * a struct zoneref are 575 * 576 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 577 * zonelist_zone_idx() - Return the index of the zone for an entry 578 * zonelist_node_idx() - Return the index of the node for an entry 579 */ 580struct zonelist { 581 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 582 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 583#ifdef CONFIG_NUMA 584 struct zonelist_cache zlcache; // optional ... 585#endif 586}; 587 588#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 589struct node_active_region { 590 unsigned long start_pfn; 591 unsigned long end_pfn; 592 int nid; 593}; 594#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 595 596#ifndef CONFIG_DISCONTIGMEM 597/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 598extern struct page *mem_map; 599#endif 600 601/* 602 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 603 * (mostly NUMA machines?) to denote a higher-level memory zone than the 604 * zone denotes. 605 * 606 * On NUMA machines, each NUMA node would have a pg_data_t to describe 607 * it's memory layout. 608 * 609 * Memory statistics and page replacement data structures are maintained on a 610 * per-zone basis. 611 */ 612struct bootmem_data; 613typedef struct pglist_data { 614 struct zone node_zones[MAX_NR_ZONES]; 615 struct zonelist node_zonelists[MAX_ZONELISTS]; 616 int nr_zones; 617#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 618 struct page *node_mem_map; 619#ifdef CONFIG_CGROUP_MEM_RES_CTLR 620 struct page_cgroup *node_page_cgroup; 621#endif 622#endif 623 struct bootmem_data *bdata; 624#ifdef CONFIG_MEMORY_HOTPLUG 625 /* 626 * Must be held any time you expect node_start_pfn, node_present_pages 627 * or node_spanned_pages stay constant. Holding this will also 628 * guarantee that any pfn_valid() stays that way. 629 * 630 * Nests above zone->lock and zone->size_seqlock. 631 */ 632 spinlock_t node_size_lock; 633#endif 634 unsigned long node_start_pfn; 635 unsigned long node_present_pages; /* total number of physical pages */ 636 unsigned long node_spanned_pages; /* total size of physical page 637 range, including holes */ 638 int node_id; 639 wait_queue_head_t kswapd_wait; 640 struct task_struct *kswapd; 641 int kswapd_max_order; 642} pg_data_t; 643 644#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 645#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 646#ifdef CONFIG_FLAT_NODE_MEM_MAP 647#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 648#else 649#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 650#endif 651#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 652 653#include <linux/memory_hotplug.h> 654 655void get_zone_counts(unsigned long *active, unsigned long *inactive, 656 unsigned long *free); 657void build_all_zonelists(void); 658void wakeup_kswapd(struct zone *zone, int order); 659int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 660 int classzone_idx, int alloc_flags); 661enum memmap_context { 662 MEMMAP_EARLY, 663 MEMMAP_HOTPLUG, 664}; 665extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 666 unsigned long size, 667 enum memmap_context context); 668 669#ifdef CONFIG_HAVE_MEMORY_PRESENT 670void memory_present(int nid, unsigned long start, unsigned long end); 671#else 672static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 673#endif 674 675#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 676unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 677#endif 678 679/* 680 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 681 */ 682#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 683 684static inline int populated_zone(struct zone *zone) 685{ 686 return (!!zone->present_pages); 687} 688 689extern int movable_zone; 690 691static inline int zone_movable_is_highmem(void) 692{ 693#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 694 return movable_zone == ZONE_HIGHMEM; 695#else 696 return 0; 697#endif 698} 699 700static inline int is_highmem_idx(enum zone_type idx) 701{ 702#ifdef CONFIG_HIGHMEM 703 return (idx == ZONE_HIGHMEM || 704 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 705#else 706 return 0; 707#endif 708} 709 710static inline int is_normal_idx(enum zone_type idx) 711{ 712 return (idx == ZONE_NORMAL); 713} 714 715/** 716 * is_highmem - helper function to quickly check if a struct zone is a 717 * highmem zone or not. This is an attempt to keep references 718 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 719 * @zone - pointer to struct zone variable 720 */ 721static inline int is_highmem(struct zone *zone) 722{ 723#ifdef CONFIG_HIGHMEM 724 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 725 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 726 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 727 zone_movable_is_highmem()); 728#else 729 return 0; 730#endif 731} 732 733static inline int is_normal(struct zone *zone) 734{ 735 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 736} 737 738static inline int is_dma32(struct zone *zone) 739{ 740#ifdef CONFIG_ZONE_DMA32 741 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 742#else 743 return 0; 744#endif 745} 746 747static inline int is_dma(struct zone *zone) 748{ 749#ifdef CONFIG_ZONE_DMA 750 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 751#else 752 return 0; 753#endif 754} 755 756/* These two functions are used to setup the per zone pages min values */ 757struct ctl_table; 758int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 759 void __user *, size_t *, loff_t *); 760extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 761int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 762 void __user *, size_t *, loff_t *); 763int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 764 void __user *, size_t *, loff_t *); 765int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 766 void __user *, size_t *, loff_t *); 767int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 768 void __user *, size_t *, loff_t *); 769 770extern int numa_zonelist_order_handler(struct ctl_table *, int, 771 void __user *, size_t *, loff_t *); 772extern char numa_zonelist_order[]; 773#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 774 775#ifndef CONFIG_NEED_MULTIPLE_NODES 776 777extern struct pglist_data contig_page_data; 778#define NODE_DATA(nid) (&contig_page_data) 779#define NODE_MEM_MAP(nid) mem_map 780 781#else /* CONFIG_NEED_MULTIPLE_NODES */ 782 783#include <asm/mmzone.h> 784 785#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 786 787extern struct pglist_data *first_online_pgdat(void); 788extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 789extern struct zone *next_zone(struct zone *zone); 790 791/** 792 * for_each_online_pgdat - helper macro to iterate over all online nodes 793 * @pgdat - pointer to a pg_data_t variable 794 */ 795#define for_each_online_pgdat(pgdat) \ 796 for (pgdat = first_online_pgdat(); \ 797 pgdat; \ 798 pgdat = next_online_pgdat(pgdat)) 799/** 800 * for_each_zone - helper macro to iterate over all memory zones 801 * @zone - pointer to struct zone variable 802 * 803 * The user only needs to declare the zone variable, for_each_zone 804 * fills it in. 805 */ 806#define for_each_zone(zone) \ 807 for (zone = (first_online_pgdat())->node_zones; \ 808 zone; \ 809 zone = next_zone(zone)) 810 811#define for_each_populated_zone(zone) \ 812 for (zone = (first_online_pgdat())->node_zones; \ 813 zone; \ 814 zone = next_zone(zone)) \ 815 if (!populated_zone(zone)) \ 816 ; /* do nothing */ \ 817 else 818 819static inline struct zone *zonelist_zone(struct zoneref *zoneref) 820{ 821 return zoneref->zone; 822} 823 824static inline int zonelist_zone_idx(struct zoneref *zoneref) 825{ 826 return zoneref->zone_idx; 827} 828 829static inline int zonelist_node_idx(struct zoneref *zoneref) 830{ 831#ifdef CONFIG_NUMA 832 /* zone_to_nid not available in this context */ 833 return zoneref->zone->node; 834#else 835 return 0; 836#endif /* CONFIG_NUMA */ 837} 838 839/** 840 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 841 * @z - The cursor used as a starting point for the search 842 * @highest_zoneidx - The zone index of the highest zone to return 843 * @nodes - An optional nodemask to filter the zonelist with 844 * @zone - The first suitable zone found is returned via this parameter 845 * 846 * This function returns the next zone at or below a given zone index that is 847 * within the allowed nodemask using a cursor as the starting point for the 848 * search. The zoneref returned is a cursor that represents the current zone 849 * being examined. It should be advanced by one before calling 850 * next_zones_zonelist again. 851 */ 852struct zoneref *next_zones_zonelist(struct zoneref *z, 853 enum zone_type highest_zoneidx, 854 nodemask_t *nodes, 855 struct zone **zone); 856 857/** 858 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 859 * @zonelist - The zonelist to search for a suitable zone 860 * @highest_zoneidx - The zone index of the highest zone to return 861 * @nodes - An optional nodemask to filter the zonelist with 862 * @zone - The first suitable zone found is returned via this parameter 863 * 864 * This function returns the first zone at or below a given zone index that is 865 * within the allowed nodemask. The zoneref returned is a cursor that can be 866 * used to iterate the zonelist with next_zones_zonelist by advancing it by 867 * one before calling. 868 */ 869static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 870 enum zone_type highest_zoneidx, 871 nodemask_t *nodes, 872 struct zone **zone) 873{ 874 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 875 zone); 876} 877 878/** 879 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 880 * @zone - The current zone in the iterator 881 * @z - The current pointer within zonelist->zones being iterated 882 * @zlist - The zonelist being iterated 883 * @highidx - The zone index of the highest zone to return 884 * @nodemask - Nodemask allowed by the allocator 885 * 886 * This iterator iterates though all zones at or below a given zone index and 887 * within a given nodemask 888 */ 889#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 890 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 891 zone; \ 892 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 893 894/** 895 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 896 * @zone - The current zone in the iterator 897 * @z - The current pointer within zonelist->zones being iterated 898 * @zlist - The zonelist being iterated 899 * @highidx - The zone index of the highest zone to return 900 * 901 * This iterator iterates though all zones at or below a given zone index. 902 */ 903#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 904 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 905 906#ifdef CONFIG_SPARSEMEM 907#include <asm/sparsemem.h> 908#endif 909 910#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 911 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 912static inline unsigned long early_pfn_to_nid(unsigned long pfn) 913{ 914 return 0; 915} 916#endif 917 918#ifdef CONFIG_FLATMEM 919#define pfn_to_nid(pfn) (0) 920#endif 921 922#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 923#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 924 925#ifdef CONFIG_SPARSEMEM 926 927/* 928 * SECTION_SHIFT #bits space required to store a section # 929 * 930 * PA_SECTION_SHIFT physical address to/from section number 931 * PFN_SECTION_SHIFT pfn to/from section number 932 */ 933#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 934 935#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 936#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 937 938#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 939 940#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 941#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 942 943#define SECTION_BLOCKFLAGS_BITS \ 944 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 945 946#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 947#error Allocator MAX_ORDER exceeds SECTION_SIZE 948#endif 949 950struct page; 951struct page_cgroup; 952struct mem_section { 953 /* 954 * This is, logically, a pointer to an array of struct 955 * pages. However, it is stored with some other magic. 956 * (see sparse.c::sparse_init_one_section()) 957 * 958 * Additionally during early boot we encode node id of 959 * the location of the section here to guide allocation. 960 * (see sparse.c::memory_present()) 961 * 962 * Making it a UL at least makes someone do a cast 963 * before using it wrong. 964 */ 965 unsigned long section_mem_map; 966 967 /* See declaration of similar field in struct zone */ 968 unsigned long *pageblock_flags; 969#ifdef CONFIG_CGROUP_MEM_RES_CTLR 970 /* 971 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 972 * section. (see memcontrol.h/page_cgroup.h about this.) 973 */ 974 struct page_cgroup *page_cgroup; 975 unsigned long pad; 976#endif 977}; 978 979#ifdef CONFIG_SPARSEMEM_EXTREME 980#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 981#else 982#define SECTIONS_PER_ROOT 1 983#endif 984 985#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 986#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 987#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 988 989#ifdef CONFIG_SPARSEMEM_EXTREME 990extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 991#else 992extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 993#endif 994 995static inline struct mem_section *__nr_to_section(unsigned long nr) 996{ 997 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 998 return NULL; 999 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1000} 1001extern int __section_nr(struct mem_section* ms); 1002extern unsigned long usemap_size(void); 1003 1004/* 1005 * We use the lower bits of the mem_map pointer to store 1006 * a little bit of information. There should be at least 1007 * 3 bits here due to 32-bit alignment. 1008 */ 1009#define SECTION_MARKED_PRESENT (1UL<<0) 1010#define SECTION_HAS_MEM_MAP (1UL<<1) 1011#define SECTION_MAP_LAST_BIT (1UL<<2) 1012#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1013#define SECTION_NID_SHIFT 2 1014 1015static inline struct page *__section_mem_map_addr(struct mem_section *section) 1016{ 1017 unsigned long map = section->section_mem_map; 1018 map &= SECTION_MAP_MASK; 1019 return (struct page *)map; 1020} 1021 1022static inline int present_section(struct mem_section *section) 1023{ 1024 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1025} 1026 1027static inline int present_section_nr(unsigned long nr) 1028{ 1029 return present_section(__nr_to_section(nr)); 1030} 1031 1032static inline int valid_section(struct mem_section *section) 1033{ 1034 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1035} 1036 1037static inline int valid_section_nr(unsigned long nr) 1038{ 1039 return valid_section(__nr_to_section(nr)); 1040} 1041 1042static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1043{ 1044 return __nr_to_section(pfn_to_section_nr(pfn)); 1045} 1046 1047static inline int pfn_valid(unsigned long pfn) 1048{ 1049 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1050 return 0; 1051 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1052} 1053 1054static inline int pfn_present(unsigned long pfn) 1055{ 1056 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1057 return 0; 1058 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1059} 1060 1061/* 1062 * These are _only_ used during initialisation, therefore they 1063 * can use __initdata ... They could have names to indicate 1064 * this restriction. 1065 */ 1066#ifdef CONFIG_NUMA 1067#define pfn_to_nid(pfn) \ 1068({ \ 1069 unsigned long __pfn_to_nid_pfn = (pfn); \ 1070 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1071}) 1072#else 1073#define pfn_to_nid(pfn) (0) 1074#endif 1075 1076#define early_pfn_valid(pfn) pfn_valid(pfn) 1077void sparse_init(void); 1078#else 1079#define sparse_init() do {} while (0) 1080#define sparse_index_init(_sec, _nid) do {} while (0) 1081#endif /* CONFIG_SPARSEMEM */ 1082 1083#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1084bool early_pfn_in_nid(unsigned long pfn, int nid); 1085#else 1086#define early_pfn_in_nid(pfn, nid) (1) 1087#endif 1088 1089#ifndef early_pfn_valid 1090#define early_pfn_valid(pfn) (1) 1091#endif 1092 1093void memory_present(int nid, unsigned long start, unsigned long end); 1094unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1095 1096/* 1097 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1098 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1099 * pfn_valid_within() should be used in this case; we optimise this away 1100 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1101 */ 1102#ifdef CONFIG_HOLES_IN_ZONE 1103#define pfn_valid_within(pfn) pfn_valid(pfn) 1104#else 1105#define pfn_valid_within(pfn) (1) 1106#endif 1107 1108#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1109/* 1110 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1111 * associated with it or not. In FLATMEM, it is expected that holes always 1112 * have valid memmap as long as there is valid PFNs either side of the hole. 1113 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1114 * entire section. 1115 * 1116 * However, an ARM, and maybe other embedded architectures in the future 1117 * free memmap backing holes to save memory on the assumption the memmap is 1118 * never used. The page_zone linkages are then broken even though pfn_valid() 1119 * returns true. A walker of the full memmap must then do this additional 1120 * check to ensure the memmap they are looking at is sane by making sure 1121 * the zone and PFN linkages are still valid. This is expensive, but walkers 1122 * of the full memmap are extremely rare. 1123 */ 1124int memmap_valid_within(unsigned long pfn, 1125 struct page *page, struct zone *zone); 1126#else 1127static inline int memmap_valid_within(unsigned long pfn, 1128 struct page *page, struct zone *zone) 1129{ 1130 return 1; 1131} 1132#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1133 1134#endif /* !__GENERATING_BOUNDS.H */ 1135#endif /* !__ASSEMBLY__ */ 1136#endif /* _LINUX_MMZONE_H */