at v2.6.32 47 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15 16struct mempolicy; 17struct anon_vma; 18struct file_ra_state; 19struct user_struct; 20struct writeback_control; 21struct rlimit; 22 23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24extern unsigned long max_mapnr; 25#endif 26 27extern unsigned long num_physpages; 28extern unsigned long totalram_pages; 29extern void * high_memory; 30extern int page_cluster; 31 32#ifdef CONFIG_SYSCTL 33extern int sysctl_legacy_va_layout; 34#else 35#define sysctl_legacy_va_layout 0 36#endif 37 38#include <asm/page.h> 39#include <asm/pgtable.h> 40#include <asm/processor.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* to align the pointer to the (next) page boundary */ 45#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 46 47/* 48 * Linux kernel virtual memory manager primitives. 49 * The idea being to have a "virtual" mm in the same way 50 * we have a virtual fs - giving a cleaner interface to the 51 * mm details, and allowing different kinds of memory mappings 52 * (from shared memory to executable loading to arbitrary 53 * mmap() functions). 54 */ 55 56extern struct kmem_cache *vm_area_cachep; 57 58#ifndef CONFIG_MMU 59extern struct rb_root nommu_region_tree; 60extern struct rw_semaphore nommu_region_sem; 61 62extern unsigned int kobjsize(const void *objp); 63#endif 64 65/* 66 * vm_flags in vm_area_struct, see mm_types.h. 67 */ 68#define VM_READ 0x00000001 /* currently active flags */ 69#define VM_WRITE 0x00000002 70#define VM_EXEC 0x00000004 71#define VM_SHARED 0x00000008 72 73/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 74#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 75#define VM_MAYWRITE 0x00000020 76#define VM_MAYEXEC 0x00000040 77#define VM_MAYSHARE 0x00000080 78 79#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 80#define VM_GROWSUP 0x00000200 81#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 82#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 83 84#define VM_EXECUTABLE 0x00001000 85#define VM_LOCKED 0x00002000 86#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 87 88 /* Used by sys_madvise() */ 89#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 90#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 91 92#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 93#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 94#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 95#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 96#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 97#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 98#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 99#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 100#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 101#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 102 103#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 104#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 105#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 106#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 107#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 108 109#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 110#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 111#endif 112 113#ifdef CONFIG_STACK_GROWSUP 114#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 115#else 116#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117#endif 118 119#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 120#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 121#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 122#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 123#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 124 125/* 126 * special vmas that are non-mergable, non-mlock()able 127 */ 128#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 129 130/* 131 * mapping from the currently active vm_flags protection bits (the 132 * low four bits) to a page protection mask.. 133 */ 134extern pgprot_t protection_map[16]; 135 136#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 137#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 138#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 139 140/* 141 * This interface is used by x86 PAT code to identify a pfn mapping that is 142 * linear over entire vma. This is to optimize PAT code that deals with 143 * marking the physical region with a particular prot. This is not for generic 144 * mm use. Note also that this check will not work if the pfn mapping is 145 * linear for a vma starting at physical address 0. In which case PAT code 146 * falls back to slow path of reserving physical range page by page. 147 */ 148static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 149{ 150 return (vma->vm_flags & VM_PFN_AT_MMAP); 151} 152 153static inline int is_pfn_mapping(struct vm_area_struct *vma) 154{ 155 return (vma->vm_flags & VM_PFNMAP); 156} 157 158/* 159 * vm_fault is filled by the the pagefault handler and passed to the vma's 160 * ->fault function. The vma's ->fault is responsible for returning a bitmask 161 * of VM_FAULT_xxx flags that give details about how the fault was handled. 162 * 163 * pgoff should be used in favour of virtual_address, if possible. If pgoff 164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 165 * mapping support. 166 */ 167struct vm_fault { 168 unsigned int flags; /* FAULT_FLAG_xxx flags */ 169 pgoff_t pgoff; /* Logical page offset based on vma */ 170 void __user *virtual_address; /* Faulting virtual address */ 171 172 struct page *page; /* ->fault handlers should return a 173 * page here, unless VM_FAULT_NOPAGE 174 * is set (which is also implied by 175 * VM_FAULT_ERROR). 176 */ 177}; 178 179/* 180 * These are the virtual MM functions - opening of an area, closing and 181 * unmapping it (needed to keep files on disk up-to-date etc), pointer 182 * to the functions called when a no-page or a wp-page exception occurs. 183 */ 184struct vm_operations_struct { 185 void (*open)(struct vm_area_struct * area); 186 void (*close)(struct vm_area_struct * area); 187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 188 189 /* notification that a previously read-only page is about to become 190 * writable, if an error is returned it will cause a SIGBUS */ 191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 192 193 /* called by access_process_vm when get_user_pages() fails, typically 194 * for use by special VMAs that can switch between memory and hardware 195 */ 196 int (*access)(struct vm_area_struct *vma, unsigned long addr, 197 void *buf, int len, int write); 198#ifdef CONFIG_NUMA 199 /* 200 * set_policy() op must add a reference to any non-NULL @new mempolicy 201 * to hold the policy upon return. Caller should pass NULL @new to 202 * remove a policy and fall back to surrounding context--i.e. do not 203 * install a MPOL_DEFAULT policy, nor the task or system default 204 * mempolicy. 205 */ 206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 207 208 /* 209 * get_policy() op must add reference [mpol_get()] to any policy at 210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 211 * in mm/mempolicy.c will do this automatically. 212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 215 * must return NULL--i.e., do not "fallback" to task or system default 216 * policy. 217 */ 218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 219 unsigned long addr); 220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 221 const nodemask_t *to, unsigned long flags); 222#endif 223}; 224 225struct mmu_gather; 226struct inode; 227 228#define page_private(page) ((page)->private) 229#define set_page_private(page, v) ((page)->private = (v)) 230 231/* 232 * FIXME: take this include out, include page-flags.h in 233 * files which need it (119 of them) 234 */ 235#include <linux/page-flags.h> 236 237/* 238 * Methods to modify the page usage count. 239 * 240 * What counts for a page usage: 241 * - cache mapping (page->mapping) 242 * - private data (page->private) 243 * - page mapped in a task's page tables, each mapping 244 * is counted separately 245 * 246 * Also, many kernel routines increase the page count before a critical 247 * routine so they can be sure the page doesn't go away from under them. 248 */ 249 250/* 251 * Drop a ref, return true if the refcount fell to zero (the page has no users) 252 */ 253static inline int put_page_testzero(struct page *page) 254{ 255 VM_BUG_ON(atomic_read(&page->_count) == 0); 256 return atomic_dec_and_test(&page->_count); 257} 258 259/* 260 * Try to grab a ref unless the page has a refcount of zero, return false if 261 * that is the case. 262 */ 263static inline int get_page_unless_zero(struct page *page) 264{ 265 return atomic_inc_not_zero(&page->_count); 266} 267 268/* Support for virtually mapped pages */ 269struct page *vmalloc_to_page(const void *addr); 270unsigned long vmalloc_to_pfn(const void *addr); 271 272/* 273 * Determine if an address is within the vmalloc range 274 * 275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 276 * is no special casing required. 277 */ 278static inline int is_vmalloc_addr(const void *x) 279{ 280#ifdef CONFIG_MMU 281 unsigned long addr = (unsigned long)x; 282 283 return addr >= VMALLOC_START && addr < VMALLOC_END; 284#else 285 return 0; 286#endif 287} 288#ifdef CONFIG_MMU 289extern int is_vmalloc_or_module_addr(const void *x); 290#else 291static inline int is_vmalloc_or_module_addr(const void *x) 292{ 293 return 0; 294} 295#endif 296 297static inline struct page *compound_head(struct page *page) 298{ 299 if (unlikely(PageTail(page))) 300 return page->first_page; 301 return page; 302} 303 304static inline int page_count(struct page *page) 305{ 306 return atomic_read(&compound_head(page)->_count); 307} 308 309static inline void get_page(struct page *page) 310{ 311 page = compound_head(page); 312 VM_BUG_ON(atomic_read(&page->_count) == 0); 313 atomic_inc(&page->_count); 314} 315 316static inline struct page *virt_to_head_page(const void *x) 317{ 318 struct page *page = virt_to_page(x); 319 return compound_head(page); 320} 321 322/* 323 * Setup the page count before being freed into the page allocator for 324 * the first time (boot or memory hotplug) 325 */ 326static inline void init_page_count(struct page *page) 327{ 328 atomic_set(&page->_count, 1); 329} 330 331void put_page(struct page *page); 332void put_pages_list(struct list_head *pages); 333 334void split_page(struct page *page, unsigned int order); 335 336/* 337 * Compound pages have a destructor function. Provide a 338 * prototype for that function and accessor functions. 339 * These are _only_ valid on the head of a PG_compound page. 340 */ 341typedef void compound_page_dtor(struct page *); 342 343static inline void set_compound_page_dtor(struct page *page, 344 compound_page_dtor *dtor) 345{ 346 page[1].lru.next = (void *)dtor; 347} 348 349static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 350{ 351 return (compound_page_dtor *)page[1].lru.next; 352} 353 354static inline int compound_order(struct page *page) 355{ 356 if (!PageHead(page)) 357 return 0; 358 return (unsigned long)page[1].lru.prev; 359} 360 361static inline void set_compound_order(struct page *page, unsigned long order) 362{ 363 page[1].lru.prev = (void *)order; 364} 365 366/* 367 * Multiple processes may "see" the same page. E.g. for untouched 368 * mappings of /dev/null, all processes see the same page full of 369 * zeroes, and text pages of executables and shared libraries have 370 * only one copy in memory, at most, normally. 371 * 372 * For the non-reserved pages, page_count(page) denotes a reference count. 373 * page_count() == 0 means the page is free. page->lru is then used for 374 * freelist management in the buddy allocator. 375 * page_count() > 0 means the page has been allocated. 376 * 377 * Pages are allocated by the slab allocator in order to provide memory 378 * to kmalloc and kmem_cache_alloc. In this case, the management of the 379 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 380 * unless a particular usage is carefully commented. (the responsibility of 381 * freeing the kmalloc memory is the caller's, of course). 382 * 383 * A page may be used by anyone else who does a __get_free_page(). 384 * In this case, page_count still tracks the references, and should only 385 * be used through the normal accessor functions. The top bits of page->flags 386 * and page->virtual store page management information, but all other fields 387 * are unused and could be used privately, carefully. The management of this 388 * page is the responsibility of the one who allocated it, and those who have 389 * subsequently been given references to it. 390 * 391 * The other pages (we may call them "pagecache pages") are completely 392 * managed by the Linux memory manager: I/O, buffers, swapping etc. 393 * The following discussion applies only to them. 394 * 395 * A pagecache page contains an opaque `private' member, which belongs to the 396 * page's address_space. Usually, this is the address of a circular list of 397 * the page's disk buffers. PG_private must be set to tell the VM to call 398 * into the filesystem to release these pages. 399 * 400 * A page may belong to an inode's memory mapping. In this case, page->mapping 401 * is the pointer to the inode, and page->index is the file offset of the page, 402 * in units of PAGE_CACHE_SIZE. 403 * 404 * If pagecache pages are not associated with an inode, they are said to be 405 * anonymous pages. These may become associated with the swapcache, and in that 406 * case PG_swapcache is set, and page->private is an offset into the swapcache. 407 * 408 * In either case (swapcache or inode backed), the pagecache itself holds one 409 * reference to the page. Setting PG_private should also increment the 410 * refcount. The each user mapping also has a reference to the page. 411 * 412 * The pagecache pages are stored in a per-mapping radix tree, which is 413 * rooted at mapping->page_tree, and indexed by offset. 414 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 415 * lists, we instead now tag pages as dirty/writeback in the radix tree. 416 * 417 * All pagecache pages may be subject to I/O: 418 * - inode pages may need to be read from disk, 419 * - inode pages which have been modified and are MAP_SHARED may need 420 * to be written back to the inode on disk, 421 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 422 * modified may need to be swapped out to swap space and (later) to be read 423 * back into memory. 424 */ 425 426/* 427 * The zone field is never updated after free_area_init_core() 428 * sets it, so none of the operations on it need to be atomic. 429 */ 430 431 432/* 433 * page->flags layout: 434 * 435 * There are three possibilities for how page->flags get 436 * laid out. The first is for the normal case, without 437 * sparsemem. The second is for sparsemem when there is 438 * plenty of space for node and section. The last is when 439 * we have run out of space and have to fall back to an 440 * alternate (slower) way of determining the node. 441 * 442 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 443 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 444 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 445 */ 446#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 447#define SECTIONS_WIDTH SECTIONS_SHIFT 448#else 449#define SECTIONS_WIDTH 0 450#endif 451 452#define ZONES_WIDTH ZONES_SHIFT 453 454#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 455#define NODES_WIDTH NODES_SHIFT 456#else 457#ifdef CONFIG_SPARSEMEM_VMEMMAP 458#error "Vmemmap: No space for nodes field in page flags" 459#endif 460#define NODES_WIDTH 0 461#endif 462 463/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 464#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 465#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 466#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 467 468/* 469 * We are going to use the flags for the page to node mapping if its in 470 * there. This includes the case where there is no node, so it is implicit. 471 */ 472#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 473#define NODE_NOT_IN_PAGE_FLAGS 474#endif 475 476#ifndef PFN_SECTION_SHIFT 477#define PFN_SECTION_SHIFT 0 478#endif 479 480/* 481 * Define the bit shifts to access each section. For non-existant 482 * sections we define the shift as 0; that plus a 0 mask ensures 483 * the compiler will optimise away reference to them. 484 */ 485#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 486#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 487#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 488 489/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 490#ifdef NODE_NOT_IN_PAGEFLAGS 491#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 492#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 493 SECTIONS_PGOFF : ZONES_PGOFF) 494#else 495#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 496#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 497 NODES_PGOFF : ZONES_PGOFF) 498#endif 499 500#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 501 502#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 503#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 504#endif 505 506#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 507#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 508#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 509#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 510 511static inline enum zone_type page_zonenum(struct page *page) 512{ 513 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 514} 515 516/* 517 * The identification function is only used by the buddy allocator for 518 * determining if two pages could be buddies. We are not really 519 * identifying a zone since we could be using a the section number 520 * id if we have not node id available in page flags. 521 * We guarantee only that it will return the same value for two 522 * combinable pages in a zone. 523 */ 524static inline int page_zone_id(struct page *page) 525{ 526 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 527} 528 529static inline int zone_to_nid(struct zone *zone) 530{ 531#ifdef CONFIG_NUMA 532 return zone->node; 533#else 534 return 0; 535#endif 536} 537 538#ifdef NODE_NOT_IN_PAGE_FLAGS 539extern int page_to_nid(struct page *page); 540#else 541static inline int page_to_nid(struct page *page) 542{ 543 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 544} 545#endif 546 547static inline struct zone *page_zone(struct page *page) 548{ 549 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 550} 551 552#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 553static inline unsigned long page_to_section(struct page *page) 554{ 555 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 556} 557#endif 558 559static inline void set_page_zone(struct page *page, enum zone_type zone) 560{ 561 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 562 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 563} 564 565static inline void set_page_node(struct page *page, unsigned long node) 566{ 567 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 568 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 569} 570 571static inline void set_page_section(struct page *page, unsigned long section) 572{ 573 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 574 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 575} 576 577static inline void set_page_links(struct page *page, enum zone_type zone, 578 unsigned long node, unsigned long pfn) 579{ 580 set_page_zone(page, zone); 581 set_page_node(page, node); 582 set_page_section(page, pfn_to_section_nr(pfn)); 583} 584 585/* 586 * Some inline functions in vmstat.h depend on page_zone() 587 */ 588#include <linux/vmstat.h> 589 590static __always_inline void *lowmem_page_address(struct page *page) 591{ 592 return __va(page_to_pfn(page) << PAGE_SHIFT); 593} 594 595#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 596#define HASHED_PAGE_VIRTUAL 597#endif 598 599#if defined(WANT_PAGE_VIRTUAL) 600#define page_address(page) ((page)->virtual) 601#define set_page_address(page, address) \ 602 do { \ 603 (page)->virtual = (address); \ 604 } while(0) 605#define page_address_init() do { } while(0) 606#endif 607 608#if defined(HASHED_PAGE_VIRTUAL) 609void *page_address(struct page *page); 610void set_page_address(struct page *page, void *virtual); 611void page_address_init(void); 612#endif 613 614#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 615#define page_address(page) lowmem_page_address(page) 616#define set_page_address(page, address) do { } while(0) 617#define page_address_init() do { } while(0) 618#endif 619 620/* 621 * On an anonymous page mapped into a user virtual memory area, 622 * page->mapping points to its anon_vma, not to a struct address_space; 623 * with the PAGE_MAPPING_ANON bit set to distinguish it. 624 * 625 * Please note that, confusingly, "page_mapping" refers to the inode 626 * address_space which maps the page from disk; whereas "page_mapped" 627 * refers to user virtual address space into which the page is mapped. 628 */ 629#define PAGE_MAPPING_ANON 1 630 631extern struct address_space swapper_space; 632static inline struct address_space *page_mapping(struct page *page) 633{ 634 struct address_space *mapping = page->mapping; 635 636 VM_BUG_ON(PageSlab(page)); 637#ifdef CONFIG_SWAP 638 if (unlikely(PageSwapCache(page))) 639 mapping = &swapper_space; 640 else 641#endif 642 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 643 mapping = NULL; 644 return mapping; 645} 646 647static inline int PageAnon(struct page *page) 648{ 649 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 650} 651 652/* 653 * Return the pagecache index of the passed page. Regular pagecache pages 654 * use ->index whereas swapcache pages use ->private 655 */ 656static inline pgoff_t page_index(struct page *page) 657{ 658 if (unlikely(PageSwapCache(page))) 659 return page_private(page); 660 return page->index; 661} 662 663/* 664 * The atomic page->_mapcount, like _count, starts from -1: 665 * so that transitions both from it and to it can be tracked, 666 * using atomic_inc_and_test and atomic_add_negative(-1). 667 */ 668static inline void reset_page_mapcount(struct page *page) 669{ 670 atomic_set(&(page)->_mapcount, -1); 671} 672 673static inline int page_mapcount(struct page *page) 674{ 675 return atomic_read(&(page)->_mapcount) + 1; 676} 677 678/* 679 * Return true if this page is mapped into pagetables. 680 */ 681static inline int page_mapped(struct page *page) 682{ 683 return atomic_read(&(page)->_mapcount) >= 0; 684} 685 686/* 687 * Different kinds of faults, as returned by handle_mm_fault(). 688 * Used to decide whether a process gets delivered SIGBUS or 689 * just gets major/minor fault counters bumped up. 690 */ 691 692#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 693 694#define VM_FAULT_OOM 0x0001 695#define VM_FAULT_SIGBUS 0x0002 696#define VM_FAULT_MAJOR 0x0004 697#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 698#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */ 699 700#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 701#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 702 703#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON) 704 705/* 706 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 707 */ 708extern void pagefault_out_of_memory(void); 709 710#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 711 712extern void show_free_areas(void); 713 714int shmem_lock(struct file *file, int lock, struct user_struct *user); 715struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 716int shmem_zero_setup(struct vm_area_struct *); 717 718#ifndef CONFIG_MMU 719extern unsigned long shmem_get_unmapped_area(struct file *file, 720 unsigned long addr, 721 unsigned long len, 722 unsigned long pgoff, 723 unsigned long flags); 724#endif 725 726extern int can_do_mlock(void); 727extern int user_shm_lock(size_t, struct user_struct *); 728extern void user_shm_unlock(size_t, struct user_struct *); 729 730/* 731 * Parameter block passed down to zap_pte_range in exceptional cases. 732 */ 733struct zap_details { 734 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 735 struct address_space *check_mapping; /* Check page->mapping if set */ 736 pgoff_t first_index; /* Lowest page->index to unmap */ 737 pgoff_t last_index; /* Highest page->index to unmap */ 738 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 739 unsigned long truncate_count; /* Compare vm_truncate_count */ 740}; 741 742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 pte_t pte); 744 745int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 746 unsigned long size); 747unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 748 unsigned long size, struct zap_details *); 749unsigned long unmap_vmas(struct mmu_gather **tlb, 750 struct vm_area_struct *start_vma, unsigned long start_addr, 751 unsigned long end_addr, unsigned long *nr_accounted, 752 struct zap_details *); 753 754/** 755 * mm_walk - callbacks for walk_page_range 756 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 757 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 758 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 759 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 760 * @pte_hole: if set, called for each hole at all levels 761 * 762 * (see walk_page_range for more details) 763 */ 764struct mm_walk { 765 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 766 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 767 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 768 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 769 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 770 struct mm_struct *mm; 771 void *private; 772}; 773 774int walk_page_range(unsigned long addr, unsigned long end, 775 struct mm_walk *walk); 776void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 777 unsigned long end, unsigned long floor, unsigned long ceiling); 778int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 779 struct vm_area_struct *vma); 780void unmap_mapping_range(struct address_space *mapping, 781 loff_t const holebegin, loff_t const holelen, int even_cows); 782int follow_pfn(struct vm_area_struct *vma, unsigned long address, 783 unsigned long *pfn); 784int follow_phys(struct vm_area_struct *vma, unsigned long address, 785 unsigned int flags, unsigned long *prot, resource_size_t *phys); 786int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 787 void *buf, int len, int write); 788 789static inline void unmap_shared_mapping_range(struct address_space *mapping, 790 loff_t const holebegin, loff_t const holelen) 791{ 792 unmap_mapping_range(mapping, holebegin, holelen, 0); 793} 794 795extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 796extern int vmtruncate(struct inode *inode, loff_t offset); 797extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 798 799int truncate_inode_page(struct address_space *mapping, struct page *page); 800int generic_error_remove_page(struct address_space *mapping, struct page *page); 801 802int invalidate_inode_page(struct page *page); 803 804#ifdef CONFIG_MMU 805extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 806 unsigned long address, unsigned int flags); 807#else 808static inline int handle_mm_fault(struct mm_struct *mm, 809 struct vm_area_struct *vma, unsigned long address, 810 unsigned int flags) 811{ 812 /* should never happen if there's no MMU */ 813 BUG(); 814 return VM_FAULT_SIGBUS; 815} 816#endif 817 818extern int make_pages_present(unsigned long addr, unsigned long end); 819extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 820 821int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 822 unsigned long start, int nr_pages, int write, int force, 823 struct page **pages, struct vm_area_struct **vmas); 824int get_user_pages_fast(unsigned long start, int nr_pages, int write, 825 struct page **pages); 826struct page *get_dump_page(unsigned long addr); 827 828extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 829extern void do_invalidatepage(struct page *page, unsigned long offset); 830 831int __set_page_dirty_nobuffers(struct page *page); 832int __set_page_dirty_no_writeback(struct page *page); 833int redirty_page_for_writepage(struct writeback_control *wbc, 834 struct page *page); 835void account_page_dirtied(struct page *page, struct address_space *mapping); 836int set_page_dirty(struct page *page); 837int set_page_dirty_lock(struct page *page); 838int clear_page_dirty_for_io(struct page *page); 839 840extern unsigned long move_page_tables(struct vm_area_struct *vma, 841 unsigned long old_addr, struct vm_area_struct *new_vma, 842 unsigned long new_addr, unsigned long len); 843extern unsigned long do_mremap(unsigned long addr, 844 unsigned long old_len, unsigned long new_len, 845 unsigned long flags, unsigned long new_addr); 846extern int mprotect_fixup(struct vm_area_struct *vma, 847 struct vm_area_struct **pprev, unsigned long start, 848 unsigned long end, unsigned long newflags); 849 850/* 851 * doesn't attempt to fault and will return short. 852 */ 853int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 854 struct page **pages); 855 856/* 857 * A callback you can register to apply pressure to ageable caches. 858 * 859 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 860 * look through the least-recently-used 'nr_to_scan' entries and 861 * attempt to free them up. It should return the number of objects 862 * which remain in the cache. If it returns -1, it means it cannot do 863 * any scanning at this time (eg. there is a risk of deadlock). 864 * 865 * The 'gfpmask' refers to the allocation we are currently trying to 866 * fulfil. 867 * 868 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 869 * querying the cache size, so a fastpath for that case is appropriate. 870 */ 871struct shrinker { 872 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 873 int seeks; /* seeks to recreate an obj */ 874 875 /* These are for internal use */ 876 struct list_head list; 877 long nr; /* objs pending delete */ 878}; 879#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 880extern void register_shrinker(struct shrinker *); 881extern void unregister_shrinker(struct shrinker *); 882 883int vma_wants_writenotify(struct vm_area_struct *vma); 884 885extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 886 887#ifdef __PAGETABLE_PUD_FOLDED 888static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 889 unsigned long address) 890{ 891 return 0; 892} 893#else 894int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 895#endif 896 897#ifdef __PAGETABLE_PMD_FOLDED 898static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 899 unsigned long address) 900{ 901 return 0; 902} 903#else 904int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 905#endif 906 907int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 908int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 909 910/* 911 * The following ifdef needed to get the 4level-fixup.h header to work. 912 * Remove it when 4level-fixup.h has been removed. 913 */ 914#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 915static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 916{ 917 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 918 NULL: pud_offset(pgd, address); 919} 920 921static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 922{ 923 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 924 NULL: pmd_offset(pud, address); 925} 926#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 927 928#if USE_SPLIT_PTLOCKS 929/* 930 * We tuck a spinlock to guard each pagetable page into its struct page, 931 * at page->private, with BUILD_BUG_ON to make sure that this will not 932 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 933 * When freeing, reset page->mapping so free_pages_check won't complain. 934 */ 935#define __pte_lockptr(page) &((page)->ptl) 936#define pte_lock_init(_page) do { \ 937 spin_lock_init(__pte_lockptr(_page)); \ 938} while (0) 939#define pte_lock_deinit(page) ((page)->mapping = NULL) 940#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 941#else /* !USE_SPLIT_PTLOCKS */ 942/* 943 * We use mm->page_table_lock to guard all pagetable pages of the mm. 944 */ 945#define pte_lock_init(page) do {} while (0) 946#define pte_lock_deinit(page) do {} while (0) 947#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 948#endif /* USE_SPLIT_PTLOCKS */ 949 950static inline void pgtable_page_ctor(struct page *page) 951{ 952 pte_lock_init(page); 953 inc_zone_page_state(page, NR_PAGETABLE); 954} 955 956static inline void pgtable_page_dtor(struct page *page) 957{ 958 pte_lock_deinit(page); 959 dec_zone_page_state(page, NR_PAGETABLE); 960} 961 962#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 963({ \ 964 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 965 pte_t *__pte = pte_offset_map(pmd, address); \ 966 *(ptlp) = __ptl; \ 967 spin_lock(__ptl); \ 968 __pte; \ 969}) 970 971#define pte_unmap_unlock(pte, ptl) do { \ 972 spin_unlock(ptl); \ 973 pte_unmap(pte); \ 974} while (0) 975 976#define pte_alloc_map(mm, pmd, address) \ 977 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 978 NULL: pte_offset_map(pmd, address)) 979 980#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 981 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 982 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 983 984#define pte_alloc_kernel(pmd, address) \ 985 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 986 NULL: pte_offset_kernel(pmd, address)) 987 988extern void free_area_init(unsigned long * zones_size); 989extern void free_area_init_node(int nid, unsigned long * zones_size, 990 unsigned long zone_start_pfn, unsigned long *zholes_size); 991#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 992/* 993 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 994 * zones, allocate the backing mem_map and account for memory holes in a more 995 * architecture independent manner. This is a substitute for creating the 996 * zone_sizes[] and zholes_size[] arrays and passing them to 997 * free_area_init_node() 998 * 999 * An architecture is expected to register range of page frames backed by 1000 * physical memory with add_active_range() before calling 1001 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1002 * usage, an architecture is expected to do something like 1003 * 1004 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1005 * max_highmem_pfn}; 1006 * for_each_valid_physical_page_range() 1007 * add_active_range(node_id, start_pfn, end_pfn) 1008 * free_area_init_nodes(max_zone_pfns); 1009 * 1010 * If the architecture guarantees that there are no holes in the ranges 1011 * registered with add_active_range(), free_bootmem_active_regions() 1012 * will call free_bootmem_node() for each registered physical page range. 1013 * Similarly sparse_memory_present_with_active_regions() calls 1014 * memory_present() for each range when SPARSEMEM is enabled. 1015 * 1016 * See mm/page_alloc.c for more information on each function exposed by 1017 * CONFIG_ARCH_POPULATES_NODE_MAP 1018 */ 1019extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1020extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1021 unsigned long end_pfn); 1022extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1023 unsigned long end_pfn); 1024extern void remove_all_active_ranges(void); 1025extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1026 unsigned long end_pfn); 1027extern void get_pfn_range_for_nid(unsigned int nid, 1028 unsigned long *start_pfn, unsigned long *end_pfn); 1029extern unsigned long find_min_pfn_with_active_regions(void); 1030extern void free_bootmem_with_active_regions(int nid, 1031 unsigned long max_low_pfn); 1032typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1033extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1034extern void sparse_memory_present_with_active_regions(int nid); 1035#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1036 1037#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1038 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1039static inline int __early_pfn_to_nid(unsigned long pfn) 1040{ 1041 return 0; 1042} 1043#else 1044/* please see mm/page_alloc.c */ 1045extern int __meminit early_pfn_to_nid(unsigned long pfn); 1046#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1047/* there is a per-arch backend function. */ 1048extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1049#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1050#endif 1051 1052extern void set_dma_reserve(unsigned long new_dma_reserve); 1053extern void memmap_init_zone(unsigned long, int, unsigned long, 1054 unsigned long, enum memmap_context); 1055extern void setup_per_zone_wmarks(void); 1056extern void calculate_zone_inactive_ratio(struct zone *zone); 1057extern void mem_init(void); 1058extern void __init mmap_init(void); 1059extern void show_mem(void); 1060extern void si_meminfo(struct sysinfo * val); 1061extern void si_meminfo_node(struct sysinfo *val, int nid); 1062extern int after_bootmem; 1063 1064#ifdef CONFIG_NUMA 1065extern void setup_per_cpu_pageset(void); 1066#else 1067static inline void setup_per_cpu_pageset(void) {} 1068#endif 1069 1070extern void zone_pcp_update(struct zone *zone); 1071 1072/* nommu.c */ 1073extern atomic_long_t mmap_pages_allocated; 1074 1075/* prio_tree.c */ 1076void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1077void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1078void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1079struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1080 struct prio_tree_iter *iter); 1081 1082#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1083 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1084 (vma = vma_prio_tree_next(vma, iter)); ) 1085 1086static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1087 struct list_head *list) 1088{ 1089 vma->shared.vm_set.parent = NULL; 1090 list_add_tail(&vma->shared.vm_set.list, list); 1091} 1092 1093/* mmap.c */ 1094extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1095extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1096 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1097extern struct vm_area_struct *vma_merge(struct mm_struct *, 1098 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1099 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1100 struct mempolicy *); 1101extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1102extern int split_vma(struct mm_struct *, 1103 struct vm_area_struct *, unsigned long addr, int new_below); 1104extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1105extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1106 struct rb_node **, struct rb_node *); 1107extern void unlink_file_vma(struct vm_area_struct *); 1108extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1109 unsigned long addr, unsigned long len, pgoff_t pgoff); 1110extern void exit_mmap(struct mm_struct *); 1111 1112extern int mm_take_all_locks(struct mm_struct *mm); 1113extern void mm_drop_all_locks(struct mm_struct *mm); 1114 1115#ifdef CONFIG_PROC_FS 1116/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1117extern void added_exe_file_vma(struct mm_struct *mm); 1118extern void removed_exe_file_vma(struct mm_struct *mm); 1119#else 1120static inline void added_exe_file_vma(struct mm_struct *mm) 1121{} 1122 1123static inline void removed_exe_file_vma(struct mm_struct *mm) 1124{} 1125#endif /* CONFIG_PROC_FS */ 1126 1127extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1128extern int install_special_mapping(struct mm_struct *mm, 1129 unsigned long addr, unsigned long len, 1130 unsigned long flags, struct page **pages); 1131 1132extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1133 1134extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1135 unsigned long len, unsigned long prot, 1136 unsigned long flag, unsigned long pgoff); 1137extern unsigned long mmap_region(struct file *file, unsigned long addr, 1138 unsigned long len, unsigned long flags, 1139 unsigned int vm_flags, unsigned long pgoff); 1140 1141static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1142 unsigned long len, unsigned long prot, 1143 unsigned long flag, unsigned long offset) 1144{ 1145 unsigned long ret = -EINVAL; 1146 if ((offset + PAGE_ALIGN(len)) < offset) 1147 goto out; 1148 if (!(offset & ~PAGE_MASK)) 1149 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1150out: 1151 return ret; 1152} 1153 1154extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1155 1156extern unsigned long do_brk(unsigned long, unsigned long); 1157 1158/* filemap.c */ 1159extern unsigned long page_unuse(struct page *); 1160extern void truncate_inode_pages(struct address_space *, loff_t); 1161extern void truncate_inode_pages_range(struct address_space *, 1162 loff_t lstart, loff_t lend); 1163 1164/* generic vm_area_ops exported for stackable file systems */ 1165extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1166 1167/* mm/page-writeback.c */ 1168int write_one_page(struct page *page, int wait); 1169void task_dirty_inc(struct task_struct *tsk); 1170 1171/* readahead.c */ 1172#define VM_MAX_READAHEAD 128 /* kbytes */ 1173#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1174 1175int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1176 pgoff_t offset, unsigned long nr_to_read); 1177 1178void page_cache_sync_readahead(struct address_space *mapping, 1179 struct file_ra_state *ra, 1180 struct file *filp, 1181 pgoff_t offset, 1182 unsigned long size); 1183 1184void page_cache_async_readahead(struct address_space *mapping, 1185 struct file_ra_state *ra, 1186 struct file *filp, 1187 struct page *pg, 1188 pgoff_t offset, 1189 unsigned long size); 1190 1191unsigned long max_sane_readahead(unsigned long nr); 1192unsigned long ra_submit(struct file_ra_state *ra, 1193 struct address_space *mapping, 1194 struct file *filp); 1195 1196/* Do stack extension */ 1197extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1198#ifdef CONFIG_IA64 1199extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1200#endif 1201extern int expand_stack_downwards(struct vm_area_struct *vma, 1202 unsigned long address); 1203 1204/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1205extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1206extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1207 struct vm_area_struct **pprev); 1208 1209/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1210 NULL if none. Assume start_addr < end_addr. */ 1211static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1212{ 1213 struct vm_area_struct * vma = find_vma(mm,start_addr); 1214 1215 if (vma && end_addr <= vma->vm_start) 1216 vma = NULL; 1217 return vma; 1218} 1219 1220static inline unsigned long vma_pages(struct vm_area_struct *vma) 1221{ 1222 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1223} 1224 1225pgprot_t vm_get_page_prot(unsigned long vm_flags); 1226struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1227int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1228 unsigned long pfn, unsigned long size, pgprot_t); 1229int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1230int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1231 unsigned long pfn); 1232int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1233 unsigned long pfn); 1234 1235struct page *follow_page(struct vm_area_struct *, unsigned long address, 1236 unsigned int foll_flags); 1237#define FOLL_WRITE 0x01 /* check pte is writable */ 1238#define FOLL_TOUCH 0x02 /* mark page accessed */ 1239#define FOLL_GET 0x04 /* do get_page on page */ 1240#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1241#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1242 1243typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1244 void *data); 1245extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1246 unsigned long size, pte_fn_t fn, void *data); 1247 1248#ifdef CONFIG_PROC_FS 1249void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1250#else 1251static inline void vm_stat_account(struct mm_struct *mm, 1252 unsigned long flags, struct file *file, long pages) 1253{ 1254} 1255#endif /* CONFIG_PROC_FS */ 1256 1257#ifdef CONFIG_DEBUG_PAGEALLOC 1258extern int debug_pagealloc_enabled; 1259 1260extern void kernel_map_pages(struct page *page, int numpages, int enable); 1261 1262static inline void enable_debug_pagealloc(void) 1263{ 1264 debug_pagealloc_enabled = 1; 1265} 1266#ifdef CONFIG_HIBERNATION 1267extern bool kernel_page_present(struct page *page); 1268#endif /* CONFIG_HIBERNATION */ 1269#else 1270static inline void 1271kernel_map_pages(struct page *page, int numpages, int enable) {} 1272static inline void enable_debug_pagealloc(void) 1273{ 1274} 1275#ifdef CONFIG_HIBERNATION 1276static inline bool kernel_page_present(struct page *page) { return true; } 1277#endif /* CONFIG_HIBERNATION */ 1278#endif 1279 1280extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1281#ifdef __HAVE_ARCH_GATE_AREA 1282int in_gate_area_no_task(unsigned long addr); 1283int in_gate_area(struct task_struct *task, unsigned long addr); 1284#else 1285int in_gate_area_no_task(unsigned long addr); 1286#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1287#endif /* __HAVE_ARCH_GATE_AREA */ 1288 1289int drop_caches_sysctl_handler(struct ctl_table *, int, 1290 void __user *, size_t *, loff_t *); 1291unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1292 unsigned long lru_pages); 1293 1294#ifndef CONFIG_MMU 1295#define randomize_va_space 0 1296#else 1297extern int randomize_va_space; 1298#endif 1299 1300const char * arch_vma_name(struct vm_area_struct *vma); 1301void print_vma_addr(char *prefix, unsigned long rip); 1302 1303struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1304pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1305pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1306pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1307pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1308void *vmemmap_alloc_block(unsigned long size, int node); 1309void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1310int vmemmap_populate_basepages(struct page *start_page, 1311 unsigned long pages, int node); 1312int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1313void vmemmap_populate_print_last(void); 1314 1315extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, 1316 size_t size); 1317extern void refund_locked_memory(struct mm_struct *mm, size_t size); 1318 1319extern void memory_failure(unsigned long pfn, int trapno); 1320extern int __memory_failure(unsigned long pfn, int trapno, int ref); 1321extern int sysctl_memory_failure_early_kill; 1322extern int sysctl_memory_failure_recovery; 1323extern atomic_long_t mce_bad_pages; 1324 1325#endif /* __KERNEL__ */ 1326#endif /* _LINUX_MM_H */