at v2.6.32 21 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/dma-mapping.h> 27 28/** 29 * typedef dma_cookie_t - an opaque DMA cookie 30 * 31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 32 */ 33typedef s32 dma_cookie_t; 34 35#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 36 37/** 38 * enum dma_status - DMA transaction status 39 * @DMA_SUCCESS: transaction completed successfully 40 * @DMA_IN_PROGRESS: transaction not yet processed 41 * @DMA_ERROR: transaction failed 42 */ 43enum dma_status { 44 DMA_SUCCESS, 45 DMA_IN_PROGRESS, 46 DMA_ERROR, 47}; 48 49/** 50 * enum dma_transaction_type - DMA transaction types/indexes 51 * 52 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 53 * automatically set as dma devices are registered. 54 */ 55enum dma_transaction_type { 56 DMA_MEMCPY, 57 DMA_XOR, 58 DMA_PQ, 59 DMA_XOR_VAL, 60 DMA_PQ_VAL, 61 DMA_MEMSET, 62 DMA_INTERRUPT, 63 DMA_PRIVATE, 64 DMA_ASYNC_TX, 65 DMA_SLAVE, 66}; 67 68/* last transaction type for creation of the capabilities mask */ 69#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 70 71 72/** 73 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 74 * control completion, and communicate status. 75 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 76 * this transaction 77 * @DMA_CTRL_ACK - the descriptor cannot be reused until the client 78 * acknowledges receipt, i.e. has has a chance to establish any dependency 79 * chains 80 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 81 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 82 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 83 * (if not set, do the source dma-unmapping as page) 84 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 85 * (if not set, do the destination dma-unmapping as page) 86 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 87 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 88 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 89 * sources that were the result of a previous operation, in the case of a PQ 90 * operation it continues the calculation with new sources 91 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 92 * on the result of this operation 93 */ 94enum dma_ctrl_flags { 95 DMA_PREP_INTERRUPT = (1 << 0), 96 DMA_CTRL_ACK = (1 << 1), 97 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 98 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 99 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 100 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 101 DMA_PREP_PQ_DISABLE_P = (1 << 6), 102 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 103 DMA_PREP_CONTINUE = (1 << 8), 104 DMA_PREP_FENCE = (1 << 9), 105}; 106 107/** 108 * enum sum_check_bits - bit position of pq_check_flags 109 */ 110enum sum_check_bits { 111 SUM_CHECK_P = 0, 112 SUM_CHECK_Q = 1, 113}; 114 115/** 116 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 117 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 118 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 119 */ 120enum sum_check_flags { 121 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 122 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 123}; 124 125 126/** 127 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 128 * See linux/cpumask.h 129 */ 130typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 131 132/** 133 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 134 * @memcpy_count: transaction counter 135 * @bytes_transferred: byte counter 136 */ 137 138struct dma_chan_percpu { 139 /* stats */ 140 unsigned long memcpy_count; 141 unsigned long bytes_transferred; 142}; 143 144/** 145 * struct dma_chan - devices supply DMA channels, clients use them 146 * @device: ptr to the dma device who supplies this channel, always !%NULL 147 * @cookie: last cookie value returned to client 148 * @chan_id: channel ID for sysfs 149 * @dev: class device for sysfs 150 * @device_node: used to add this to the device chan list 151 * @local: per-cpu pointer to a struct dma_chan_percpu 152 * @client-count: how many clients are using this channel 153 * @table_count: number of appearances in the mem-to-mem allocation table 154 * @private: private data for certain client-channel associations 155 */ 156struct dma_chan { 157 struct dma_device *device; 158 dma_cookie_t cookie; 159 160 /* sysfs */ 161 int chan_id; 162 struct dma_chan_dev *dev; 163 164 struct list_head device_node; 165 struct dma_chan_percpu *local; 166 int client_count; 167 int table_count; 168 void *private; 169}; 170 171/** 172 * struct dma_chan_dev - relate sysfs device node to backing channel device 173 * @chan - driver channel device 174 * @device - sysfs device 175 * @dev_id - parent dma_device dev_id 176 * @idr_ref - reference count to gate release of dma_device dev_id 177 */ 178struct dma_chan_dev { 179 struct dma_chan *chan; 180 struct device device; 181 int dev_id; 182 atomic_t *idr_ref; 183}; 184 185static inline const char *dma_chan_name(struct dma_chan *chan) 186{ 187 return dev_name(&chan->dev->device); 188} 189 190void dma_chan_cleanup(struct kref *kref); 191 192/** 193 * typedef dma_filter_fn - callback filter for dma_request_channel 194 * @chan: channel to be reviewed 195 * @filter_param: opaque parameter passed through dma_request_channel 196 * 197 * When this optional parameter is specified in a call to dma_request_channel a 198 * suitable channel is passed to this routine for further dispositioning before 199 * being returned. Where 'suitable' indicates a non-busy channel that 200 * satisfies the given capability mask. It returns 'true' to indicate that the 201 * channel is suitable. 202 */ 203typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 204 205typedef void (*dma_async_tx_callback)(void *dma_async_param); 206/** 207 * struct dma_async_tx_descriptor - async transaction descriptor 208 * ---dma generic offload fields--- 209 * @cookie: tracking cookie for this transaction, set to -EBUSY if 210 * this tx is sitting on a dependency list 211 * @flags: flags to augment operation preparation, control completion, and 212 * communicate status 213 * @phys: physical address of the descriptor 214 * @chan: target channel for this operation 215 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 216 * @callback: routine to call after this operation is complete 217 * @callback_param: general parameter to pass to the callback routine 218 * ---async_tx api specific fields--- 219 * @next: at completion submit this descriptor 220 * @parent: pointer to the next level up in the dependency chain 221 * @lock: protect the parent and next pointers 222 */ 223struct dma_async_tx_descriptor { 224 dma_cookie_t cookie; 225 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 226 dma_addr_t phys; 227 struct dma_chan *chan; 228 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 229 dma_async_tx_callback callback; 230 void *callback_param; 231 struct dma_async_tx_descriptor *next; 232 struct dma_async_tx_descriptor *parent; 233 spinlock_t lock; 234}; 235 236/** 237 * struct dma_device - info on the entity supplying DMA services 238 * @chancnt: how many DMA channels are supported 239 * @privatecnt: how many DMA channels are requested by dma_request_channel 240 * @channels: the list of struct dma_chan 241 * @global_node: list_head for global dma_device_list 242 * @cap_mask: one or more dma_capability flags 243 * @max_xor: maximum number of xor sources, 0 if no capability 244 * @max_pq: maximum number of PQ sources and PQ-continue capability 245 * @copy_align: alignment shift for memcpy operations 246 * @xor_align: alignment shift for xor operations 247 * @pq_align: alignment shift for pq operations 248 * @fill_align: alignment shift for memset operations 249 * @dev_id: unique device ID 250 * @dev: struct device reference for dma mapping api 251 * @device_alloc_chan_resources: allocate resources and return the 252 * number of allocated descriptors 253 * @device_free_chan_resources: release DMA channel's resources 254 * @device_prep_dma_memcpy: prepares a memcpy operation 255 * @device_prep_dma_xor: prepares a xor operation 256 * @device_prep_dma_xor_val: prepares a xor validation operation 257 * @device_prep_dma_pq: prepares a pq operation 258 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 259 * @device_prep_dma_memset: prepares a memset operation 260 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 261 * @device_prep_slave_sg: prepares a slave dma operation 262 * @device_terminate_all: terminate all pending operations 263 * @device_is_tx_complete: poll for transaction completion 264 * @device_issue_pending: push pending transactions to hardware 265 */ 266struct dma_device { 267 268 unsigned int chancnt; 269 unsigned int privatecnt; 270 struct list_head channels; 271 struct list_head global_node; 272 dma_cap_mask_t cap_mask; 273 unsigned short max_xor; 274 unsigned short max_pq; 275 u8 copy_align; 276 u8 xor_align; 277 u8 pq_align; 278 u8 fill_align; 279 #define DMA_HAS_PQ_CONTINUE (1 << 15) 280 281 int dev_id; 282 struct device *dev; 283 284 int (*device_alloc_chan_resources)(struct dma_chan *chan); 285 void (*device_free_chan_resources)(struct dma_chan *chan); 286 287 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 288 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 289 size_t len, unsigned long flags); 290 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 291 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 292 unsigned int src_cnt, size_t len, unsigned long flags); 293 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 294 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 295 size_t len, enum sum_check_flags *result, unsigned long flags); 296 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 297 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 298 unsigned int src_cnt, const unsigned char *scf, 299 size_t len, unsigned long flags); 300 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 301 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 302 unsigned int src_cnt, const unsigned char *scf, size_t len, 303 enum sum_check_flags *pqres, unsigned long flags); 304 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 305 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 306 unsigned long flags); 307 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 308 struct dma_chan *chan, unsigned long flags); 309 310 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 311 struct dma_chan *chan, struct scatterlist *sgl, 312 unsigned int sg_len, enum dma_data_direction direction, 313 unsigned long flags); 314 void (*device_terminate_all)(struct dma_chan *chan); 315 316 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, 317 dma_cookie_t cookie, dma_cookie_t *last, 318 dma_cookie_t *used); 319 void (*device_issue_pending)(struct dma_chan *chan); 320}; 321 322static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 323{ 324 size_t mask; 325 326 if (!align) 327 return true; 328 mask = (1 << align) - 1; 329 if (mask & (off1 | off2 | len)) 330 return false; 331 return true; 332} 333 334static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 335 size_t off2, size_t len) 336{ 337 return dmaengine_check_align(dev->copy_align, off1, off2, len); 338} 339 340static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 341 size_t off2, size_t len) 342{ 343 return dmaengine_check_align(dev->xor_align, off1, off2, len); 344} 345 346static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 347 size_t off2, size_t len) 348{ 349 return dmaengine_check_align(dev->pq_align, off1, off2, len); 350} 351 352static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 353 size_t off2, size_t len) 354{ 355 return dmaengine_check_align(dev->fill_align, off1, off2, len); 356} 357 358static inline void 359dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 360{ 361 dma->max_pq = maxpq; 362 if (has_pq_continue) 363 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 364} 365 366static inline bool dmaf_continue(enum dma_ctrl_flags flags) 367{ 368 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 369} 370 371static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 372{ 373 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 374 375 return (flags & mask) == mask; 376} 377 378static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 379{ 380 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 381} 382 383static unsigned short dma_dev_to_maxpq(struct dma_device *dma) 384{ 385 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 386} 387 388/* dma_maxpq - reduce maxpq in the face of continued operations 389 * @dma - dma device with PQ capability 390 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 391 * 392 * When an engine does not support native continuation we need 3 extra 393 * source slots to reuse P and Q with the following coefficients: 394 * 1/ {00} * P : remove P from Q', but use it as a source for P' 395 * 2/ {01} * Q : use Q to continue Q' calculation 396 * 3/ {00} * Q : subtract Q from P' to cancel (2) 397 * 398 * In the case where P is disabled we only need 1 extra source: 399 * 1/ {01} * Q : use Q to continue Q' calculation 400 */ 401static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 402{ 403 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 404 return dma_dev_to_maxpq(dma); 405 else if (dmaf_p_disabled_continue(flags)) 406 return dma_dev_to_maxpq(dma) - 1; 407 else if (dmaf_continue(flags)) 408 return dma_dev_to_maxpq(dma) - 3; 409 BUG(); 410} 411 412/* --- public DMA engine API --- */ 413 414#ifdef CONFIG_DMA_ENGINE 415void dmaengine_get(void); 416void dmaengine_put(void); 417#else 418static inline void dmaengine_get(void) 419{ 420} 421static inline void dmaengine_put(void) 422{ 423} 424#endif 425 426#ifdef CONFIG_NET_DMA 427#define net_dmaengine_get() dmaengine_get() 428#define net_dmaengine_put() dmaengine_put() 429#else 430static inline void net_dmaengine_get(void) 431{ 432} 433static inline void net_dmaengine_put(void) 434{ 435} 436#endif 437 438#ifdef CONFIG_ASYNC_TX_DMA 439#define async_dmaengine_get() dmaengine_get() 440#define async_dmaengine_put() dmaengine_put() 441#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH 442#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 443#else 444#define async_dma_find_channel(type) dma_find_channel(type) 445#endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */ 446#else 447static inline void async_dmaengine_get(void) 448{ 449} 450static inline void async_dmaengine_put(void) 451{ 452} 453static inline struct dma_chan * 454async_dma_find_channel(enum dma_transaction_type type) 455{ 456 return NULL; 457} 458#endif /* CONFIG_ASYNC_TX_DMA */ 459 460dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 461 void *dest, void *src, size_t len); 462dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 463 struct page *page, unsigned int offset, void *kdata, size_t len); 464dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 465 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 466 unsigned int src_off, size_t len); 467void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 468 struct dma_chan *chan); 469 470static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 471{ 472 tx->flags |= DMA_CTRL_ACK; 473} 474 475static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 476{ 477 tx->flags &= ~DMA_CTRL_ACK; 478} 479 480static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 481{ 482 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 483} 484 485#define first_dma_cap(mask) __first_dma_cap(&(mask)) 486static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 487{ 488 return min_t(int, DMA_TX_TYPE_END, 489 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 490} 491 492#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 493static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 494{ 495 return min_t(int, DMA_TX_TYPE_END, 496 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 497} 498 499#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 500static inline void 501__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 502{ 503 set_bit(tx_type, dstp->bits); 504} 505 506#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 507static inline void 508__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 509{ 510 clear_bit(tx_type, dstp->bits); 511} 512 513#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 514static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 515{ 516 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 517} 518 519#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 520static inline int 521__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 522{ 523 return test_bit(tx_type, srcp->bits); 524} 525 526#define for_each_dma_cap_mask(cap, mask) \ 527 for ((cap) = first_dma_cap(mask); \ 528 (cap) < DMA_TX_TYPE_END; \ 529 (cap) = next_dma_cap((cap), (mask))) 530 531/** 532 * dma_async_issue_pending - flush pending transactions to HW 533 * @chan: target DMA channel 534 * 535 * This allows drivers to push copies to HW in batches, 536 * reducing MMIO writes where possible. 537 */ 538static inline void dma_async_issue_pending(struct dma_chan *chan) 539{ 540 chan->device->device_issue_pending(chan); 541} 542 543#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 544 545/** 546 * dma_async_is_tx_complete - poll for transaction completion 547 * @chan: DMA channel 548 * @cookie: transaction identifier to check status of 549 * @last: returns last completed cookie, can be NULL 550 * @used: returns last issued cookie, can be NULL 551 * 552 * If @last and @used are passed in, upon return they reflect the driver 553 * internal state and can be used with dma_async_is_complete() to check 554 * the status of multiple cookies without re-checking hardware state. 555 */ 556static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 557 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 558{ 559 return chan->device->device_is_tx_complete(chan, cookie, last, used); 560} 561 562#define dma_async_memcpy_complete(chan, cookie, last, used)\ 563 dma_async_is_tx_complete(chan, cookie, last, used) 564 565/** 566 * dma_async_is_complete - test a cookie against chan state 567 * @cookie: transaction identifier to test status of 568 * @last_complete: last know completed transaction 569 * @last_used: last cookie value handed out 570 * 571 * dma_async_is_complete() is used in dma_async_memcpy_complete() 572 * the test logic is separated for lightweight testing of multiple cookies 573 */ 574static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 575 dma_cookie_t last_complete, dma_cookie_t last_used) 576{ 577 if (last_complete <= last_used) { 578 if ((cookie <= last_complete) || (cookie > last_used)) 579 return DMA_SUCCESS; 580 } else { 581 if ((cookie <= last_complete) && (cookie > last_used)) 582 return DMA_SUCCESS; 583 } 584 return DMA_IN_PROGRESS; 585} 586 587enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 588#ifdef CONFIG_DMA_ENGINE 589enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 590void dma_issue_pending_all(void); 591#else 592static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 593{ 594 return DMA_SUCCESS; 595} 596static inline void dma_issue_pending_all(void) 597{ 598 do { } while (0); 599} 600#endif 601 602/* --- DMA device --- */ 603 604int dma_async_device_register(struct dma_device *device); 605void dma_async_device_unregister(struct dma_device *device); 606void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 607struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 608#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 609struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 610void dma_release_channel(struct dma_chan *chan); 611 612/* --- Helper iov-locking functions --- */ 613 614struct dma_page_list { 615 char __user *base_address; 616 int nr_pages; 617 struct page **pages; 618}; 619 620struct dma_pinned_list { 621 int nr_iovecs; 622 struct dma_page_list page_list[0]; 623}; 624 625struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 626void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 627 628dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 629 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 630dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 631 struct dma_pinned_list *pinned_list, struct page *page, 632 unsigned int offset, size_t len); 633 634#endif /* DMAENGINE_H */