at v2.6.32 486 lines 12 kB view raw
1/** 2 * @file cpu_buffer.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf <barry.kasindorf@amd.com> 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * Each CPU has a local buffer that stores PC value/event 12 * pairs. We also log context switches when we notice them. 13 * Eventually each CPU's buffer is processed into the global 14 * event buffer by sync_buffer(). 15 * 16 * We use a local buffer for two reasons: an NMI or similar 17 * interrupt cannot synchronise, and high sampling rates 18 * would lead to catastrophic global synchronisation if 19 * a global buffer was used. 20 */ 21 22#include <linux/sched.h> 23#include <linux/oprofile.h> 24#include <linux/errno.h> 25 26#include "event_buffer.h" 27#include "cpu_buffer.h" 28#include "buffer_sync.h" 29#include "oprof.h" 30 31#define OP_BUFFER_FLAGS 0 32 33/* 34 * Read and write access is using spin locking. Thus, writing to the 35 * buffer by NMI handler (x86) could occur also during critical 36 * sections when reading the buffer. To avoid this, there are 2 37 * buffers for independent read and write access. Read access is in 38 * process context only, write access only in the NMI handler. If the 39 * read buffer runs empty, both buffers are swapped atomically. There 40 * is potentially a small window during swapping where the buffers are 41 * disabled and samples could be lost. 42 * 43 * Using 2 buffers is a little bit overhead, but the solution is clear 44 * and does not require changes in the ring buffer implementation. It 45 * can be changed to a single buffer solution when the ring buffer 46 * access is implemented as non-locking atomic code. 47 */ 48static struct ring_buffer *op_ring_buffer_read; 49static struct ring_buffer *op_ring_buffer_write; 50DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); 51 52static void wq_sync_buffer(struct work_struct *work); 53 54#define DEFAULT_TIMER_EXPIRE (HZ / 10) 55static int work_enabled; 56 57unsigned long oprofile_get_cpu_buffer_size(void) 58{ 59 return oprofile_cpu_buffer_size; 60} 61 62void oprofile_cpu_buffer_inc_smpl_lost(void) 63{ 64 struct oprofile_cpu_buffer *cpu_buf 65 = &__get_cpu_var(cpu_buffer); 66 67 cpu_buf->sample_lost_overflow++; 68} 69 70void free_cpu_buffers(void) 71{ 72 if (op_ring_buffer_read) 73 ring_buffer_free(op_ring_buffer_read); 74 op_ring_buffer_read = NULL; 75 if (op_ring_buffer_write) 76 ring_buffer_free(op_ring_buffer_write); 77 op_ring_buffer_write = NULL; 78} 79 80#define RB_EVENT_HDR_SIZE 4 81 82int alloc_cpu_buffers(void) 83{ 84 int i; 85 86 unsigned long buffer_size = oprofile_cpu_buffer_size; 87 unsigned long byte_size = buffer_size * (sizeof(struct op_sample) + 88 RB_EVENT_HDR_SIZE); 89 90 op_ring_buffer_read = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS); 91 if (!op_ring_buffer_read) 92 goto fail; 93 op_ring_buffer_write = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS); 94 if (!op_ring_buffer_write) 95 goto fail; 96 97 for_each_possible_cpu(i) { 98 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 99 100 b->last_task = NULL; 101 b->last_is_kernel = -1; 102 b->tracing = 0; 103 b->buffer_size = buffer_size; 104 b->sample_received = 0; 105 b->sample_lost_overflow = 0; 106 b->backtrace_aborted = 0; 107 b->sample_invalid_eip = 0; 108 b->cpu = i; 109 INIT_DELAYED_WORK(&b->work, wq_sync_buffer); 110 } 111 return 0; 112 113fail: 114 free_cpu_buffers(); 115 return -ENOMEM; 116} 117 118void start_cpu_work(void) 119{ 120 int i; 121 122 work_enabled = 1; 123 124 for_each_online_cpu(i) { 125 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 126 127 /* 128 * Spread the work by 1 jiffy per cpu so they dont all 129 * fire at once. 130 */ 131 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i); 132 } 133} 134 135void end_cpu_work(void) 136{ 137 int i; 138 139 work_enabled = 0; 140 141 for_each_online_cpu(i) { 142 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 143 144 cancel_delayed_work(&b->work); 145 } 146 147 flush_scheduled_work(); 148} 149 150/* 151 * This function prepares the cpu buffer to write a sample. 152 * 153 * Struct op_entry is used during operations on the ring buffer while 154 * struct op_sample contains the data that is stored in the ring 155 * buffer. Struct entry can be uninitialized. The function reserves a 156 * data array that is specified by size. Use 157 * op_cpu_buffer_write_commit() after preparing the sample. In case of 158 * errors a null pointer is returned, otherwise the pointer to the 159 * sample. 160 * 161 */ 162struct op_sample 163*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size) 164{ 165 entry->event = ring_buffer_lock_reserve 166 (op_ring_buffer_write, sizeof(struct op_sample) + 167 size * sizeof(entry->sample->data[0])); 168 if (entry->event) 169 entry->sample = ring_buffer_event_data(entry->event); 170 else 171 entry->sample = NULL; 172 173 if (!entry->sample) 174 return NULL; 175 176 entry->size = size; 177 entry->data = entry->sample->data; 178 179 return entry->sample; 180} 181 182int op_cpu_buffer_write_commit(struct op_entry *entry) 183{ 184 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event); 185} 186 187struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu) 188{ 189 struct ring_buffer_event *e; 190 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 191 if (e) 192 goto event; 193 if (ring_buffer_swap_cpu(op_ring_buffer_read, 194 op_ring_buffer_write, 195 cpu)) 196 return NULL; 197 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 198 if (e) 199 goto event; 200 return NULL; 201 202event: 203 entry->event = e; 204 entry->sample = ring_buffer_event_data(e); 205 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample)) 206 / sizeof(entry->sample->data[0]); 207 entry->data = entry->sample->data; 208 return entry->sample; 209} 210 211unsigned long op_cpu_buffer_entries(int cpu) 212{ 213 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu) 214 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu); 215} 216 217static int 218op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace, 219 int is_kernel, struct task_struct *task) 220{ 221 struct op_entry entry; 222 struct op_sample *sample; 223 unsigned long flags; 224 int size; 225 226 flags = 0; 227 228 if (backtrace) 229 flags |= TRACE_BEGIN; 230 231 /* notice a switch from user->kernel or vice versa */ 232 is_kernel = !!is_kernel; 233 if (cpu_buf->last_is_kernel != is_kernel) { 234 cpu_buf->last_is_kernel = is_kernel; 235 flags |= KERNEL_CTX_SWITCH; 236 if (is_kernel) 237 flags |= IS_KERNEL; 238 } 239 240 /* notice a task switch */ 241 if (cpu_buf->last_task != task) { 242 cpu_buf->last_task = task; 243 flags |= USER_CTX_SWITCH; 244 } 245 246 if (!flags) 247 /* nothing to do */ 248 return 0; 249 250 if (flags & USER_CTX_SWITCH) 251 size = 1; 252 else 253 size = 0; 254 255 sample = op_cpu_buffer_write_reserve(&entry, size); 256 if (!sample) 257 return -ENOMEM; 258 259 sample->eip = ESCAPE_CODE; 260 sample->event = flags; 261 262 if (size) 263 op_cpu_buffer_add_data(&entry, (unsigned long)task); 264 265 op_cpu_buffer_write_commit(&entry); 266 267 return 0; 268} 269 270static inline int 271op_add_sample(struct oprofile_cpu_buffer *cpu_buf, 272 unsigned long pc, unsigned long event) 273{ 274 struct op_entry entry; 275 struct op_sample *sample; 276 277 sample = op_cpu_buffer_write_reserve(&entry, 0); 278 if (!sample) 279 return -ENOMEM; 280 281 sample->eip = pc; 282 sample->event = event; 283 284 return op_cpu_buffer_write_commit(&entry); 285} 286 287/* 288 * This must be safe from any context. 289 * 290 * is_kernel is needed because on some architectures you cannot 291 * tell if you are in kernel or user space simply by looking at 292 * pc. We tag this in the buffer by generating kernel enter/exit 293 * events whenever is_kernel changes 294 */ 295static int 296log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc, 297 unsigned long backtrace, int is_kernel, unsigned long event) 298{ 299 cpu_buf->sample_received++; 300 301 if (pc == ESCAPE_CODE) { 302 cpu_buf->sample_invalid_eip++; 303 return 0; 304 } 305 306 if (op_add_code(cpu_buf, backtrace, is_kernel, current)) 307 goto fail; 308 309 if (op_add_sample(cpu_buf, pc, event)) 310 goto fail; 311 312 return 1; 313 314fail: 315 cpu_buf->sample_lost_overflow++; 316 return 0; 317} 318 319static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf) 320{ 321 cpu_buf->tracing = 1; 322} 323 324static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf) 325{ 326 cpu_buf->tracing = 0; 327} 328 329static inline void 330__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 331 unsigned long event, int is_kernel) 332{ 333 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 334 unsigned long backtrace = oprofile_backtrace_depth; 335 336 /* 337 * if log_sample() fail we can't backtrace since we lost the 338 * source of this event 339 */ 340 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event)) 341 /* failed */ 342 return; 343 344 if (!backtrace) 345 return; 346 347 oprofile_begin_trace(cpu_buf); 348 oprofile_ops.backtrace(regs, backtrace); 349 oprofile_end_trace(cpu_buf); 350} 351 352void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 353 unsigned long event, int is_kernel) 354{ 355 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 356} 357 358void oprofile_add_sample(struct pt_regs * const regs, unsigned long event) 359{ 360 int is_kernel = !user_mode(regs); 361 unsigned long pc = profile_pc(regs); 362 363 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 364} 365 366/* 367 * Add samples with data to the ring buffer. 368 * 369 * Use oprofile_add_data(&entry, val) to add data and 370 * oprofile_write_commit(&entry) to commit the sample. 371 */ 372void 373oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs, 374 unsigned long pc, int code, int size) 375{ 376 struct op_sample *sample; 377 int is_kernel = !user_mode(regs); 378 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 379 380 cpu_buf->sample_received++; 381 382 /* no backtraces for samples with data */ 383 if (op_add_code(cpu_buf, 0, is_kernel, current)) 384 goto fail; 385 386 sample = op_cpu_buffer_write_reserve(entry, size + 2); 387 if (!sample) 388 goto fail; 389 sample->eip = ESCAPE_CODE; 390 sample->event = 0; /* no flags */ 391 392 op_cpu_buffer_add_data(entry, code); 393 op_cpu_buffer_add_data(entry, pc); 394 395 return; 396 397fail: 398 entry->event = NULL; 399 cpu_buf->sample_lost_overflow++; 400} 401 402int oprofile_add_data(struct op_entry *entry, unsigned long val) 403{ 404 if (!entry->event) 405 return 0; 406 return op_cpu_buffer_add_data(entry, val); 407} 408 409int oprofile_add_data64(struct op_entry *entry, u64 val) 410{ 411 if (!entry->event) 412 return 0; 413 if (op_cpu_buffer_get_size(entry) < 2) 414 /* 415 * the function returns 0 to indicate a too small 416 * buffer, even if there is some space left 417 */ 418 return 0; 419 if (!op_cpu_buffer_add_data(entry, (u32)val)) 420 return 0; 421 return op_cpu_buffer_add_data(entry, (u32)(val >> 32)); 422} 423 424int oprofile_write_commit(struct op_entry *entry) 425{ 426 if (!entry->event) 427 return -EINVAL; 428 return op_cpu_buffer_write_commit(entry); 429} 430 431void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event) 432{ 433 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 434 log_sample(cpu_buf, pc, 0, is_kernel, event); 435} 436 437void oprofile_add_trace(unsigned long pc) 438{ 439 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 440 441 if (!cpu_buf->tracing) 442 return; 443 444 /* 445 * broken frame can give an eip with the same value as an 446 * escape code, abort the trace if we get it 447 */ 448 if (pc == ESCAPE_CODE) 449 goto fail; 450 451 if (op_add_sample(cpu_buf, pc, 0)) 452 goto fail; 453 454 return; 455fail: 456 cpu_buf->tracing = 0; 457 cpu_buf->backtrace_aborted++; 458 return; 459} 460 461/* 462 * This serves to avoid cpu buffer overflow, and makes sure 463 * the task mortuary progresses 464 * 465 * By using schedule_delayed_work_on and then schedule_delayed_work 466 * we guarantee this will stay on the correct cpu 467 */ 468static void wq_sync_buffer(struct work_struct *work) 469{ 470 struct oprofile_cpu_buffer *b = 471 container_of(work, struct oprofile_cpu_buffer, work.work); 472 if (b->cpu != smp_processor_id()) { 473 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n", 474 smp_processor_id(), b->cpu); 475 476 if (!cpu_online(b->cpu)) { 477 cancel_delayed_work(&b->work); 478 return; 479 } 480 } 481 sync_buffer(b->cpu); 482 483 /* don't re-add the work if we're shutting down */ 484 if (work_enabled) 485 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE); 486}