at v2.6.32 595 lines 14 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/mm.h> 25#include <linux/workqueue.h> 26#include <linux/notifier.h> 27#include <linux/dcookies.h> 28#include <linux/profile.h> 29#include <linux/module.h> 30#include <linux/fs.h> 31#include <linux/oprofile.h> 32#include <linux/sched.h> 33 34#include "oprofile_stats.h" 35#include "event_buffer.h" 36#include "cpu_buffer.h" 37#include "buffer_sync.h" 38 39static LIST_HEAD(dying_tasks); 40static LIST_HEAD(dead_tasks); 41static cpumask_var_t marked_cpus; 42static DEFINE_SPINLOCK(task_mortuary); 43static void process_task_mortuary(void); 44 45/* Take ownership of the task struct and place it on the 46 * list for processing. Only after two full buffer syncs 47 * does the task eventually get freed, because by then 48 * we are sure we will not reference it again. 49 * Can be invoked from softirq via RCU callback due to 50 * call_rcu() of the task struct, hence the _irqsave. 51 */ 52static int 53task_free_notify(struct notifier_block *self, unsigned long val, void *data) 54{ 55 unsigned long flags; 56 struct task_struct *task = data; 57 spin_lock_irqsave(&task_mortuary, flags); 58 list_add(&task->tasks, &dying_tasks); 59 spin_unlock_irqrestore(&task_mortuary, flags); 60 return NOTIFY_OK; 61} 62 63 64/* The task is on its way out. A sync of the buffer means we can catch 65 * any remaining samples for this task. 66 */ 67static int 68task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 69{ 70 /* To avoid latency problems, we only process the current CPU, 71 * hoping that most samples for the task are on this CPU 72 */ 73 sync_buffer(raw_smp_processor_id()); 74 return 0; 75} 76 77 78/* The task is about to try a do_munmap(). We peek at what it's going to 79 * do, and if it's an executable region, process the samples first, so 80 * we don't lose any. This does not have to be exact, it's a QoI issue 81 * only. 82 */ 83static int 84munmap_notify(struct notifier_block *self, unsigned long val, void *data) 85{ 86 unsigned long addr = (unsigned long)data; 87 struct mm_struct *mm = current->mm; 88 struct vm_area_struct *mpnt; 89 90 down_read(&mm->mmap_sem); 91 92 mpnt = find_vma(mm, addr); 93 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 94 up_read(&mm->mmap_sem); 95 /* To avoid latency problems, we only process the current CPU, 96 * hoping that most samples for the task are on this CPU 97 */ 98 sync_buffer(raw_smp_processor_id()); 99 return 0; 100 } 101 102 up_read(&mm->mmap_sem); 103 return 0; 104} 105 106 107/* We need to be told about new modules so we don't attribute to a previously 108 * loaded module, or drop the samples on the floor. 109 */ 110static int 111module_load_notify(struct notifier_block *self, unsigned long val, void *data) 112{ 113#ifdef CONFIG_MODULES 114 if (val != MODULE_STATE_COMING) 115 return 0; 116 117 /* FIXME: should we process all CPU buffers ? */ 118 mutex_lock(&buffer_mutex); 119 add_event_entry(ESCAPE_CODE); 120 add_event_entry(MODULE_LOADED_CODE); 121 mutex_unlock(&buffer_mutex); 122#endif 123 return 0; 124} 125 126 127static struct notifier_block task_free_nb = { 128 .notifier_call = task_free_notify, 129}; 130 131static struct notifier_block task_exit_nb = { 132 .notifier_call = task_exit_notify, 133}; 134 135static struct notifier_block munmap_nb = { 136 .notifier_call = munmap_notify, 137}; 138 139static struct notifier_block module_load_nb = { 140 .notifier_call = module_load_notify, 141}; 142 143 144static void end_sync(void) 145{ 146 end_cpu_work(); 147 /* make sure we don't leak task structs */ 148 process_task_mortuary(); 149 process_task_mortuary(); 150} 151 152 153int sync_start(void) 154{ 155 int err; 156 157 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 158 return -ENOMEM; 159 160 start_cpu_work(); 161 162 err = task_handoff_register(&task_free_nb); 163 if (err) 164 goto out1; 165 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 166 if (err) 167 goto out2; 168 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 169 if (err) 170 goto out3; 171 err = register_module_notifier(&module_load_nb); 172 if (err) 173 goto out4; 174 175out: 176 return err; 177out4: 178 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 179out3: 180 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 181out2: 182 task_handoff_unregister(&task_free_nb); 183out1: 184 end_sync(); 185 free_cpumask_var(marked_cpus); 186 goto out; 187} 188 189 190void sync_stop(void) 191{ 192 unregister_module_notifier(&module_load_nb); 193 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 194 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 195 task_handoff_unregister(&task_free_nb); 196 end_sync(); 197 free_cpumask_var(marked_cpus); 198} 199 200 201/* Optimisation. We can manage without taking the dcookie sem 202 * because we cannot reach this code without at least one 203 * dcookie user still being registered (namely, the reader 204 * of the event buffer). */ 205static inline unsigned long fast_get_dcookie(struct path *path) 206{ 207 unsigned long cookie; 208 209 if (path->dentry->d_flags & DCACHE_COOKIE) 210 return (unsigned long)path->dentry; 211 get_dcookie(path, &cookie); 212 return cookie; 213} 214 215 216/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 217 * which corresponds loosely to "application name". This is 218 * not strictly necessary but allows oprofile to associate 219 * shared-library samples with particular applications 220 */ 221static unsigned long get_exec_dcookie(struct mm_struct *mm) 222{ 223 unsigned long cookie = NO_COOKIE; 224 struct vm_area_struct *vma; 225 226 if (!mm) 227 goto out; 228 229 for (vma = mm->mmap; vma; vma = vma->vm_next) { 230 if (!vma->vm_file) 231 continue; 232 if (!(vma->vm_flags & VM_EXECUTABLE)) 233 continue; 234 cookie = fast_get_dcookie(&vma->vm_file->f_path); 235 break; 236 } 237 238out: 239 return cookie; 240} 241 242 243/* Convert the EIP value of a sample into a persistent dentry/offset 244 * pair that can then be added to the global event buffer. We make 245 * sure to do this lookup before a mm->mmap modification happens so 246 * we don't lose track. 247 */ 248static unsigned long 249lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 250{ 251 unsigned long cookie = NO_COOKIE; 252 struct vm_area_struct *vma; 253 254 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 255 256 if (addr < vma->vm_start || addr >= vma->vm_end) 257 continue; 258 259 if (vma->vm_file) { 260 cookie = fast_get_dcookie(&vma->vm_file->f_path); 261 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 262 vma->vm_start; 263 } else { 264 /* must be an anonymous map */ 265 *offset = addr; 266 } 267 268 break; 269 } 270 271 if (!vma) 272 cookie = INVALID_COOKIE; 273 274 return cookie; 275} 276 277static unsigned long last_cookie = INVALID_COOKIE; 278 279static void add_cpu_switch(int i) 280{ 281 add_event_entry(ESCAPE_CODE); 282 add_event_entry(CPU_SWITCH_CODE); 283 add_event_entry(i); 284 last_cookie = INVALID_COOKIE; 285} 286 287static void add_kernel_ctx_switch(unsigned int in_kernel) 288{ 289 add_event_entry(ESCAPE_CODE); 290 if (in_kernel) 291 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 292 else 293 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 294} 295 296static void 297add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 298{ 299 add_event_entry(ESCAPE_CODE); 300 add_event_entry(CTX_SWITCH_CODE); 301 add_event_entry(task->pid); 302 add_event_entry(cookie); 303 /* Another code for daemon back-compat */ 304 add_event_entry(ESCAPE_CODE); 305 add_event_entry(CTX_TGID_CODE); 306 add_event_entry(task->tgid); 307} 308 309 310static void add_cookie_switch(unsigned long cookie) 311{ 312 add_event_entry(ESCAPE_CODE); 313 add_event_entry(COOKIE_SWITCH_CODE); 314 add_event_entry(cookie); 315} 316 317 318static void add_trace_begin(void) 319{ 320 add_event_entry(ESCAPE_CODE); 321 add_event_entry(TRACE_BEGIN_CODE); 322} 323 324static void add_data(struct op_entry *entry, struct mm_struct *mm) 325{ 326 unsigned long code, pc, val; 327 unsigned long cookie; 328 off_t offset; 329 330 if (!op_cpu_buffer_get_data(entry, &code)) 331 return; 332 if (!op_cpu_buffer_get_data(entry, &pc)) 333 return; 334 if (!op_cpu_buffer_get_size(entry)) 335 return; 336 337 if (mm) { 338 cookie = lookup_dcookie(mm, pc, &offset); 339 340 if (cookie == NO_COOKIE) 341 offset = pc; 342 if (cookie == INVALID_COOKIE) { 343 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 344 offset = pc; 345 } 346 if (cookie != last_cookie) { 347 add_cookie_switch(cookie); 348 last_cookie = cookie; 349 } 350 } else 351 offset = pc; 352 353 add_event_entry(ESCAPE_CODE); 354 add_event_entry(code); 355 add_event_entry(offset); /* Offset from Dcookie */ 356 357 while (op_cpu_buffer_get_data(entry, &val)) 358 add_event_entry(val); 359} 360 361static inline void add_sample_entry(unsigned long offset, unsigned long event) 362{ 363 add_event_entry(offset); 364 add_event_entry(event); 365} 366 367 368/* 369 * Add a sample to the global event buffer. If possible the 370 * sample is converted into a persistent dentry/offset pair 371 * for later lookup from userspace. Return 0 on failure. 372 */ 373static int 374add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 375{ 376 unsigned long cookie; 377 off_t offset; 378 379 if (in_kernel) { 380 add_sample_entry(s->eip, s->event); 381 return 1; 382 } 383 384 /* add userspace sample */ 385 386 if (!mm) { 387 atomic_inc(&oprofile_stats.sample_lost_no_mm); 388 return 0; 389 } 390 391 cookie = lookup_dcookie(mm, s->eip, &offset); 392 393 if (cookie == INVALID_COOKIE) { 394 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 395 return 0; 396 } 397 398 if (cookie != last_cookie) { 399 add_cookie_switch(cookie); 400 last_cookie = cookie; 401 } 402 403 add_sample_entry(offset, s->event); 404 405 return 1; 406} 407 408 409static void release_mm(struct mm_struct *mm) 410{ 411 if (!mm) 412 return; 413 up_read(&mm->mmap_sem); 414 mmput(mm); 415} 416 417 418static struct mm_struct *take_tasks_mm(struct task_struct *task) 419{ 420 struct mm_struct *mm = get_task_mm(task); 421 if (mm) 422 down_read(&mm->mmap_sem); 423 return mm; 424} 425 426 427static inline int is_code(unsigned long val) 428{ 429 return val == ESCAPE_CODE; 430} 431 432 433/* Move tasks along towards death. Any tasks on dead_tasks 434 * will definitely have no remaining references in any 435 * CPU buffers at this point, because we use two lists, 436 * and to have reached the list, it must have gone through 437 * one full sync already. 438 */ 439static void process_task_mortuary(void) 440{ 441 unsigned long flags; 442 LIST_HEAD(local_dead_tasks); 443 struct task_struct *task; 444 struct task_struct *ttask; 445 446 spin_lock_irqsave(&task_mortuary, flags); 447 448 list_splice_init(&dead_tasks, &local_dead_tasks); 449 list_splice_init(&dying_tasks, &dead_tasks); 450 451 spin_unlock_irqrestore(&task_mortuary, flags); 452 453 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 454 list_del(&task->tasks); 455 free_task(task); 456 } 457} 458 459 460static void mark_done(int cpu) 461{ 462 int i; 463 464 cpumask_set_cpu(cpu, marked_cpus); 465 466 for_each_online_cpu(i) { 467 if (!cpumask_test_cpu(i, marked_cpus)) 468 return; 469 } 470 471 /* All CPUs have been processed at least once, 472 * we can process the mortuary once 473 */ 474 process_task_mortuary(); 475 476 cpumask_clear(marked_cpus); 477} 478 479 480/* FIXME: this is not sufficient if we implement syscall barrier backtrace 481 * traversal, the code switch to sb_sample_start at first kernel enter/exit 482 * switch so we need a fifth state and some special handling in sync_buffer() 483 */ 484typedef enum { 485 sb_bt_ignore = -2, 486 sb_buffer_start, 487 sb_bt_start, 488 sb_sample_start, 489} sync_buffer_state; 490 491/* Sync one of the CPU's buffers into the global event buffer. 492 * Here we need to go through each batch of samples punctuated 493 * by context switch notes, taking the task's mmap_sem and doing 494 * lookup in task->mm->mmap to convert EIP into dcookie/offset 495 * value. 496 */ 497void sync_buffer(int cpu) 498{ 499 struct mm_struct *mm = NULL; 500 struct mm_struct *oldmm; 501 unsigned long val; 502 struct task_struct *new; 503 unsigned long cookie = 0; 504 int in_kernel = 1; 505 sync_buffer_state state = sb_buffer_start; 506 unsigned int i; 507 unsigned long available; 508 unsigned long flags; 509 struct op_entry entry; 510 struct op_sample *sample; 511 512 mutex_lock(&buffer_mutex); 513 514 add_cpu_switch(cpu); 515 516 op_cpu_buffer_reset(cpu); 517 available = op_cpu_buffer_entries(cpu); 518 519 for (i = 0; i < available; ++i) { 520 sample = op_cpu_buffer_read_entry(&entry, cpu); 521 if (!sample) 522 break; 523 524 if (is_code(sample->eip)) { 525 flags = sample->event; 526 if (flags & TRACE_BEGIN) { 527 state = sb_bt_start; 528 add_trace_begin(); 529 } 530 if (flags & KERNEL_CTX_SWITCH) { 531 /* kernel/userspace switch */ 532 in_kernel = flags & IS_KERNEL; 533 if (state == sb_buffer_start) 534 state = sb_sample_start; 535 add_kernel_ctx_switch(flags & IS_KERNEL); 536 } 537 if (flags & USER_CTX_SWITCH 538 && op_cpu_buffer_get_data(&entry, &val)) { 539 /* userspace context switch */ 540 new = (struct task_struct *)val; 541 oldmm = mm; 542 release_mm(oldmm); 543 mm = take_tasks_mm(new); 544 if (mm != oldmm) 545 cookie = get_exec_dcookie(mm); 546 add_user_ctx_switch(new, cookie); 547 } 548 if (op_cpu_buffer_get_size(&entry)) 549 add_data(&entry, mm); 550 continue; 551 } 552 553 if (state < sb_bt_start) 554 /* ignore sample */ 555 continue; 556 557 if (add_sample(mm, sample, in_kernel)) 558 continue; 559 560 /* ignore backtraces if failed to add a sample */ 561 if (state == sb_bt_start) { 562 state = sb_bt_ignore; 563 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 564 } 565 } 566 release_mm(mm); 567 568 mark_done(cpu); 569 570 mutex_unlock(&buffer_mutex); 571} 572 573/* The function can be used to add a buffer worth of data directly to 574 * the kernel buffer. The buffer is assumed to be a circular buffer. 575 * Take the entries from index start and end at index end, wrapping 576 * at max_entries. 577 */ 578void oprofile_put_buff(unsigned long *buf, unsigned int start, 579 unsigned int stop, unsigned int max) 580{ 581 int i; 582 583 i = start; 584 585 mutex_lock(&buffer_mutex); 586 while (i != stop) { 587 add_event_entry(buf[i++]); 588 589 if (i >= max) 590 i = 0; 591 } 592 593 mutex_unlock(&buffer_mutex); 594} 595