at v2.6.32 1352 lines 35 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning sub-system. 23 * 24 * This sub-system is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 */ 42 43#include <linux/err.h> 44#include <linux/crc32.h> 45#include <linux/math64.h> 46#include "ubi.h" 47 48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 50#else 51#define paranoid_check_si(ubi, si) 0 52#endif 53 54/* Temporary variables used during scanning */ 55static struct ubi_ec_hdr *ech; 56static struct ubi_vid_hdr *vidh; 57 58/** 59 * add_to_list - add physical eraseblock to a list. 60 * @si: scanning information 61 * @pnum: physical eraseblock number to add 62 * @ec: erase counter of the physical eraseblock 63 * @list: the list to add to 64 * 65 * This function adds physical eraseblock @pnum to free, erase, corrupted or 66 * alien lists. Returns zero in case of success and a negative error code in 67 * case of failure. 68 */ 69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, 70 struct list_head *list) 71{ 72 struct ubi_scan_leb *seb; 73 74 if (list == &si->free) 75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 76 else if (list == &si->erase) 77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 78 else if (list == &si->corr) { 79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 80 si->corr_count += 1; 81 } else if (list == &si->alien) 82 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 83 else 84 BUG(); 85 86 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 87 if (!seb) 88 return -ENOMEM; 89 90 seb->pnum = pnum; 91 seb->ec = ec; 92 list_add_tail(&seb->u.list, list); 93 return 0; 94} 95 96/** 97 * validate_vid_hdr - check volume identifier header. 98 * @vid_hdr: the volume identifier header to check 99 * @sv: information about the volume this logical eraseblock belongs to 100 * @pnum: physical eraseblock number the VID header came from 101 * 102 * This function checks that data stored in @vid_hdr is consistent. Returns 103 * non-zero if an inconsistency was found and zero if not. 104 * 105 * Note, UBI does sanity check of everything it reads from the flash media. 106 * Most of the checks are done in the I/O sub-system. Here we check that the 107 * information in the VID header is consistent to the information in other VID 108 * headers of the same volume. 109 */ 110static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 111 const struct ubi_scan_volume *sv, int pnum) 112{ 113 int vol_type = vid_hdr->vol_type; 114 int vol_id = be32_to_cpu(vid_hdr->vol_id); 115 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 116 int data_pad = be32_to_cpu(vid_hdr->data_pad); 117 118 if (sv->leb_count != 0) { 119 int sv_vol_type; 120 121 /* 122 * This is not the first logical eraseblock belonging to this 123 * volume. Ensure that the data in its VID header is consistent 124 * to the data in previous logical eraseblock headers. 125 */ 126 127 if (vol_id != sv->vol_id) { 128 dbg_err("inconsistent vol_id"); 129 goto bad; 130 } 131 132 if (sv->vol_type == UBI_STATIC_VOLUME) 133 sv_vol_type = UBI_VID_STATIC; 134 else 135 sv_vol_type = UBI_VID_DYNAMIC; 136 137 if (vol_type != sv_vol_type) { 138 dbg_err("inconsistent vol_type"); 139 goto bad; 140 } 141 142 if (used_ebs != sv->used_ebs) { 143 dbg_err("inconsistent used_ebs"); 144 goto bad; 145 } 146 147 if (data_pad != sv->data_pad) { 148 dbg_err("inconsistent data_pad"); 149 goto bad; 150 } 151 } 152 153 return 0; 154 155bad: 156 ubi_err("inconsistent VID header at PEB %d", pnum); 157 ubi_dbg_dump_vid_hdr(vid_hdr); 158 ubi_dbg_dump_sv(sv); 159 return -EINVAL; 160} 161 162/** 163 * add_volume - add volume to the scanning information. 164 * @si: scanning information 165 * @vol_id: ID of the volume to add 166 * @pnum: physical eraseblock number 167 * @vid_hdr: volume identifier header 168 * 169 * If the volume corresponding to the @vid_hdr logical eraseblock is already 170 * present in the scanning information, this function does nothing. Otherwise 171 * it adds corresponding volume to the scanning information. Returns a pointer 172 * to the scanning volume object in case of success and a negative error code 173 * in case of failure. 174 */ 175static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 176 int pnum, 177 const struct ubi_vid_hdr *vid_hdr) 178{ 179 struct ubi_scan_volume *sv; 180 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 181 182 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 183 184 /* Walk the volume RB-tree to look if this volume is already present */ 185 while (*p) { 186 parent = *p; 187 sv = rb_entry(parent, struct ubi_scan_volume, rb); 188 189 if (vol_id == sv->vol_id) 190 return sv; 191 192 if (vol_id > sv->vol_id) 193 p = &(*p)->rb_left; 194 else 195 p = &(*p)->rb_right; 196 } 197 198 /* The volume is absent - add it */ 199 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 200 if (!sv) 201 return ERR_PTR(-ENOMEM); 202 203 sv->highest_lnum = sv->leb_count = 0; 204 sv->vol_id = vol_id; 205 sv->root = RB_ROOT; 206 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 207 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 208 sv->compat = vid_hdr->compat; 209 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 210 : UBI_STATIC_VOLUME; 211 if (vol_id > si->highest_vol_id) 212 si->highest_vol_id = vol_id; 213 214 rb_link_node(&sv->rb, parent, p); 215 rb_insert_color(&sv->rb, &si->volumes); 216 si->vols_found += 1; 217 dbg_bld("added volume %d", vol_id); 218 return sv; 219} 220 221/** 222 * compare_lebs - find out which logical eraseblock is newer. 223 * @ubi: UBI device description object 224 * @seb: first logical eraseblock to compare 225 * @pnum: physical eraseblock number of the second logical eraseblock to 226 * compare 227 * @vid_hdr: volume identifier header of the second logical eraseblock 228 * 229 * This function compares 2 copies of a LEB and informs which one is newer. In 230 * case of success this function returns a positive value, in case of failure, a 231 * negative error code is returned. The success return codes use the following 232 * bits: 233 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the 234 * second PEB (described by @pnum and @vid_hdr); 235 * o bit 0 is set: the second PEB is newer; 236 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 237 * o bit 1 is set: bit-flips were detected in the newer LEB; 238 * o bit 2 is cleared: the older LEB is not corrupted; 239 * o bit 2 is set: the older LEB is corrupted. 240 */ 241static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 242 int pnum, const struct ubi_vid_hdr *vid_hdr) 243{ 244 void *buf; 245 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 246 uint32_t data_crc, crc; 247 struct ubi_vid_hdr *vh = NULL; 248 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 249 250 if (sqnum2 == seb->sqnum) { 251 /* 252 * This must be a really ancient UBI image which has been 253 * created before sequence numbers support has been added. At 254 * that times we used 32-bit LEB versions stored in logical 255 * eraseblocks. That was before UBI got into mainline. We do not 256 * support these images anymore. Well, those images will work 257 * still work, but only if no unclean reboots happened. 258 */ 259 ubi_err("unsupported on-flash UBI format\n"); 260 return -EINVAL; 261 } 262 263 /* Obviously the LEB with lower sequence counter is older */ 264 second_is_newer = !!(sqnum2 > seb->sqnum); 265 266 /* 267 * Now we know which copy is newer. If the copy flag of the PEB with 268 * newer version is not set, then we just return, otherwise we have to 269 * check data CRC. For the second PEB we already have the VID header, 270 * for the first one - we'll need to re-read it from flash. 271 * 272 * Note: this may be optimized so that we wouldn't read twice. 273 */ 274 275 if (second_is_newer) { 276 if (!vid_hdr->copy_flag) { 277 /* It is not a copy, so it is newer */ 278 dbg_bld("second PEB %d is newer, copy_flag is unset", 279 pnum); 280 return 1; 281 } 282 } else { 283 pnum = seb->pnum; 284 285 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 286 if (!vh) 287 return -ENOMEM; 288 289 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 290 if (err) { 291 if (err == UBI_IO_BITFLIPS) 292 bitflips = 1; 293 else { 294 dbg_err("VID of PEB %d header is bad, but it " 295 "was OK earlier", pnum); 296 if (err > 0) 297 err = -EIO; 298 299 goto out_free_vidh; 300 } 301 } 302 303 if (!vh->copy_flag) { 304 /* It is not a copy, so it is newer */ 305 dbg_bld("first PEB %d is newer, copy_flag is unset", 306 pnum); 307 err = bitflips << 1; 308 goto out_free_vidh; 309 } 310 311 vid_hdr = vh; 312 } 313 314 /* Read the data of the copy and check the CRC */ 315 316 len = be32_to_cpu(vid_hdr->data_size); 317 buf = vmalloc(len); 318 if (!buf) { 319 err = -ENOMEM; 320 goto out_free_vidh; 321 } 322 323 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 324 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 325 goto out_free_buf; 326 327 data_crc = be32_to_cpu(vid_hdr->data_crc); 328 crc = crc32(UBI_CRC32_INIT, buf, len); 329 if (crc != data_crc) { 330 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 331 pnum, crc, data_crc); 332 corrupted = 1; 333 bitflips = 0; 334 second_is_newer = !second_is_newer; 335 } else { 336 dbg_bld("PEB %d CRC is OK", pnum); 337 bitflips = !!err; 338 } 339 340 vfree(buf); 341 ubi_free_vid_hdr(ubi, vh); 342 343 if (second_is_newer) 344 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 345 else 346 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 347 348 return second_is_newer | (bitflips << 1) | (corrupted << 2); 349 350out_free_buf: 351 vfree(buf); 352out_free_vidh: 353 ubi_free_vid_hdr(ubi, vh); 354 return err; 355} 356 357/** 358 * ubi_scan_add_used - add physical eraseblock to the scanning information. 359 * @ubi: UBI device description object 360 * @si: scanning information 361 * @pnum: the physical eraseblock number 362 * @ec: erase counter 363 * @vid_hdr: the volume identifier header 364 * @bitflips: if bit-flips were detected when this physical eraseblock was read 365 * 366 * This function adds information about a used physical eraseblock to the 367 * 'used' tree of the corresponding volume. The function is rather complex 368 * because it has to handle cases when this is not the first physical 369 * eraseblock belonging to the same logical eraseblock, and the newer one has 370 * to be picked, while the older one has to be dropped. This function returns 371 * zero in case of success and a negative error code in case of failure. 372 */ 373int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 374 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 375 int bitflips) 376{ 377 int err, vol_id, lnum; 378 unsigned long long sqnum; 379 struct ubi_scan_volume *sv; 380 struct ubi_scan_leb *seb; 381 struct rb_node **p, *parent = NULL; 382 383 vol_id = be32_to_cpu(vid_hdr->vol_id); 384 lnum = be32_to_cpu(vid_hdr->lnum); 385 sqnum = be64_to_cpu(vid_hdr->sqnum); 386 387 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 388 pnum, vol_id, lnum, ec, sqnum, bitflips); 389 390 sv = add_volume(si, vol_id, pnum, vid_hdr); 391 if (IS_ERR(sv)) 392 return PTR_ERR(sv); 393 394 if (si->max_sqnum < sqnum) 395 si->max_sqnum = sqnum; 396 397 /* 398 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 399 * if this is the first instance of this logical eraseblock or not. 400 */ 401 p = &sv->root.rb_node; 402 while (*p) { 403 int cmp_res; 404 405 parent = *p; 406 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 407 if (lnum != seb->lnum) { 408 if (lnum < seb->lnum) 409 p = &(*p)->rb_left; 410 else 411 p = &(*p)->rb_right; 412 continue; 413 } 414 415 /* 416 * There is already a physical eraseblock describing the same 417 * logical eraseblock present. 418 */ 419 420 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 421 "EC %d", seb->pnum, seb->sqnum, seb->ec); 422 423 /* 424 * Make sure that the logical eraseblocks have different 425 * sequence numbers. Otherwise the image is bad. 426 * 427 * However, if the sequence number is zero, we assume it must 428 * be an ancient UBI image from the era when UBI did not have 429 * sequence numbers. We still can attach these images, unless 430 * there is a need to distinguish between old and new 431 * eraseblocks, in which case we'll refuse the image in 432 * 'compare_lebs()'. In other words, we attach old clean 433 * images, but refuse attaching old images with duplicated 434 * logical eraseblocks because there was an unclean reboot. 435 */ 436 if (seb->sqnum == sqnum && sqnum != 0) { 437 ubi_err("two LEBs with same sequence number %llu", 438 sqnum); 439 ubi_dbg_dump_seb(seb, 0); 440 ubi_dbg_dump_vid_hdr(vid_hdr); 441 return -EINVAL; 442 } 443 444 /* 445 * Now we have to drop the older one and preserve the newer 446 * one. 447 */ 448 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 449 if (cmp_res < 0) 450 return cmp_res; 451 452 if (cmp_res & 1) { 453 /* 454 * This logical eraseblock is newer then the one 455 * found earlier. 456 */ 457 err = validate_vid_hdr(vid_hdr, sv, pnum); 458 if (err) 459 return err; 460 461 if (cmp_res & 4) 462 err = add_to_list(si, seb->pnum, seb->ec, 463 &si->corr); 464 else 465 err = add_to_list(si, seb->pnum, seb->ec, 466 &si->erase); 467 if (err) 468 return err; 469 470 seb->ec = ec; 471 seb->pnum = pnum; 472 seb->scrub = ((cmp_res & 2) || bitflips); 473 seb->sqnum = sqnum; 474 475 if (sv->highest_lnum == lnum) 476 sv->last_data_size = 477 be32_to_cpu(vid_hdr->data_size); 478 479 return 0; 480 } else { 481 /* 482 * This logical eraseblock is older than the one found 483 * previously. 484 */ 485 if (cmp_res & 4) 486 return add_to_list(si, pnum, ec, &si->corr); 487 else 488 return add_to_list(si, pnum, ec, &si->erase); 489 } 490 } 491 492 /* 493 * We've met this logical eraseblock for the first time, add it to the 494 * scanning information. 495 */ 496 497 err = validate_vid_hdr(vid_hdr, sv, pnum); 498 if (err) 499 return err; 500 501 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 502 if (!seb) 503 return -ENOMEM; 504 505 seb->ec = ec; 506 seb->pnum = pnum; 507 seb->lnum = lnum; 508 seb->sqnum = sqnum; 509 seb->scrub = bitflips; 510 511 if (sv->highest_lnum <= lnum) { 512 sv->highest_lnum = lnum; 513 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 514 } 515 516 sv->leb_count += 1; 517 rb_link_node(&seb->u.rb, parent, p); 518 rb_insert_color(&seb->u.rb, &sv->root); 519 return 0; 520} 521 522/** 523 * ubi_scan_find_sv - find volume in the scanning information. 524 * @si: scanning information 525 * @vol_id: the requested volume ID 526 * 527 * This function returns a pointer to the volume description or %NULL if there 528 * are no data about this volume in the scanning information. 529 */ 530struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 531 int vol_id) 532{ 533 struct ubi_scan_volume *sv; 534 struct rb_node *p = si->volumes.rb_node; 535 536 while (p) { 537 sv = rb_entry(p, struct ubi_scan_volume, rb); 538 539 if (vol_id == sv->vol_id) 540 return sv; 541 542 if (vol_id > sv->vol_id) 543 p = p->rb_left; 544 else 545 p = p->rb_right; 546 } 547 548 return NULL; 549} 550 551/** 552 * ubi_scan_find_seb - find LEB in the volume scanning information. 553 * @sv: a pointer to the volume scanning information 554 * @lnum: the requested logical eraseblock 555 * 556 * This function returns a pointer to the scanning logical eraseblock or %NULL 557 * if there are no data about it in the scanning volume information. 558 */ 559struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 560 int lnum) 561{ 562 struct ubi_scan_leb *seb; 563 struct rb_node *p = sv->root.rb_node; 564 565 while (p) { 566 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 567 568 if (lnum == seb->lnum) 569 return seb; 570 571 if (lnum > seb->lnum) 572 p = p->rb_left; 573 else 574 p = p->rb_right; 575 } 576 577 return NULL; 578} 579 580/** 581 * ubi_scan_rm_volume - delete scanning information about a volume. 582 * @si: scanning information 583 * @sv: the volume scanning information to delete 584 */ 585void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 586{ 587 struct rb_node *rb; 588 struct ubi_scan_leb *seb; 589 590 dbg_bld("remove scanning information about volume %d", sv->vol_id); 591 592 while ((rb = rb_first(&sv->root))) { 593 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 594 rb_erase(&seb->u.rb, &sv->root); 595 list_add_tail(&seb->u.list, &si->erase); 596 } 597 598 rb_erase(&sv->rb, &si->volumes); 599 kfree(sv); 600 si->vols_found -= 1; 601} 602 603/** 604 * ubi_scan_erase_peb - erase a physical eraseblock. 605 * @ubi: UBI device description object 606 * @si: scanning information 607 * @pnum: physical eraseblock number to erase; 608 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 609 * 610 * This function erases physical eraseblock 'pnum', and writes the erase 611 * counter header to it. This function should only be used on UBI device 612 * initialization stages, when the EBA sub-system had not been yet initialized. 613 * This function returns zero in case of success and a negative error code in 614 * case of failure. 615 */ 616int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 617 int pnum, int ec) 618{ 619 int err; 620 struct ubi_ec_hdr *ec_hdr; 621 622 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 623 /* 624 * Erase counter overflow. Upgrade UBI and use 64-bit 625 * erase counters internally. 626 */ 627 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 628 return -EINVAL; 629 } 630 631 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 632 if (!ec_hdr) 633 return -ENOMEM; 634 635 ec_hdr->ec = cpu_to_be64(ec); 636 637 err = ubi_io_sync_erase(ubi, pnum, 0); 638 if (err < 0) 639 goto out_free; 640 641 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 642 643out_free: 644 kfree(ec_hdr); 645 return err; 646} 647 648/** 649 * ubi_scan_get_free_peb - get a free physical eraseblock. 650 * @ubi: UBI device description object 651 * @si: scanning information 652 * 653 * This function returns a free physical eraseblock. It is supposed to be 654 * called on the UBI initialization stages when the wear-leveling sub-system is 655 * not initialized yet. This function picks a physical eraseblocks from one of 656 * the lists, writes the EC header if it is needed, and removes it from the 657 * list. 658 * 659 * This function returns scanning physical eraseblock information in case of 660 * success and an error code in case of failure. 661 */ 662struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 663 struct ubi_scan_info *si) 664{ 665 int err = 0, i; 666 struct ubi_scan_leb *seb; 667 668 if (!list_empty(&si->free)) { 669 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 670 list_del(&seb->u.list); 671 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 672 return seb; 673 } 674 675 for (i = 0; i < 2; i++) { 676 struct list_head *head; 677 struct ubi_scan_leb *tmp_seb; 678 679 if (i == 0) 680 head = &si->erase; 681 else 682 head = &si->corr; 683 684 /* 685 * We try to erase the first physical eraseblock from the @head 686 * list and pick it if we succeed, or try to erase the 687 * next one if not. And so forth. We don't want to take care 688 * about bad eraseblocks here - they'll be handled later. 689 */ 690 list_for_each_entry_safe(seb, tmp_seb, head, u.list) { 691 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 692 seb->ec = si->mean_ec; 693 694 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 695 if (err) 696 continue; 697 698 seb->ec += 1; 699 list_del(&seb->u.list); 700 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 701 return seb; 702 } 703 } 704 705 ubi_err("no eraseblocks found"); 706 return ERR_PTR(-ENOSPC); 707} 708 709/** 710 * process_eb - read, check UBI headers, and add them to scanning information. 711 * @ubi: UBI device description object 712 * @si: scanning information 713 * @pnum: the physical eraseblock number 714 * 715 * This function returns a zero if the physical eraseblock was successfully 716 * handled and a negative error code in case of failure. 717 */ 718static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, 719 int pnum) 720{ 721 long long uninitialized_var(ec); 722 int err, bitflips = 0, vol_id, ec_corr = 0; 723 724 dbg_bld("scan PEB %d", pnum); 725 726 /* Skip bad physical eraseblocks */ 727 err = ubi_io_is_bad(ubi, pnum); 728 if (err < 0) 729 return err; 730 else if (err) { 731 /* 732 * FIXME: this is actually duty of the I/O sub-system to 733 * initialize this, but MTD does not provide enough 734 * information. 735 */ 736 si->bad_peb_count += 1; 737 return 0; 738 } 739 740 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 741 if (err < 0) 742 return err; 743 else if (err == UBI_IO_BITFLIPS) 744 bitflips = 1; 745 else if (err == UBI_IO_PEB_EMPTY) 746 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); 747 else if (err == UBI_IO_BAD_EC_HDR) { 748 /* 749 * We have to also look at the VID header, possibly it is not 750 * corrupted. Set %bitflips flag in order to make this PEB be 751 * moved and EC be re-created. 752 */ 753 ec_corr = 1; 754 ec = UBI_SCAN_UNKNOWN_EC; 755 bitflips = 1; 756 } 757 758 si->is_empty = 0; 759 760 if (!ec_corr) { 761 int image_seq; 762 763 /* Make sure UBI version is OK */ 764 if (ech->version != UBI_VERSION) { 765 ubi_err("this UBI version is %d, image version is %d", 766 UBI_VERSION, (int)ech->version); 767 return -EINVAL; 768 } 769 770 ec = be64_to_cpu(ech->ec); 771 if (ec > UBI_MAX_ERASECOUNTER) { 772 /* 773 * Erase counter overflow. The EC headers have 64 bits 774 * reserved, but we anyway make use of only 31 bit 775 * values, as this seems to be enough for any existing 776 * flash. Upgrade UBI and use 64-bit erase counters 777 * internally. 778 */ 779 ubi_err("erase counter overflow, max is %d", 780 UBI_MAX_ERASECOUNTER); 781 ubi_dbg_dump_ec_hdr(ech); 782 return -EINVAL; 783 } 784 785 /* 786 * Make sure that all PEBs have the same image sequence number. 787 * This allows us to detect situations when users flash UBI 788 * images incorrectly, so that the flash has the new UBI image 789 * and leftovers from the old one. This feature was added 790 * relatively recently, and the sequence number was always 791 * zero, because old UBI implementations always set it to zero. 792 * For this reasons, we do not panic if some PEBs have zero 793 * sequence number, while other PEBs have non-zero sequence 794 * number. 795 */ 796 image_seq = be32_to_cpu(ech->image_seq); 797 if (!ubi->image_seq && image_seq) 798 ubi->image_seq = image_seq; 799 if (ubi->image_seq && image_seq && 800 ubi->image_seq != image_seq) { 801 ubi_err("bad image sequence number %d in PEB %d, " 802 "expected %d", image_seq, pnum, ubi->image_seq); 803 ubi_dbg_dump_ec_hdr(ech); 804 return -EINVAL; 805 } 806 } 807 808 /* OK, we've done with the EC header, let's look at the VID header */ 809 810 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 811 if (err < 0) 812 return err; 813 else if (err == UBI_IO_BITFLIPS) 814 bitflips = 1; 815 else if (err == UBI_IO_BAD_VID_HDR || 816 (err == UBI_IO_PEB_FREE && ec_corr)) { 817 /* VID header is corrupted */ 818 err = add_to_list(si, pnum, ec, &si->corr); 819 if (err) 820 return err; 821 goto adjust_mean_ec; 822 } else if (err == UBI_IO_PEB_FREE) { 823 /* No VID header - the physical eraseblock is free */ 824 err = add_to_list(si, pnum, ec, &si->free); 825 if (err) 826 return err; 827 goto adjust_mean_ec; 828 } 829 830 vol_id = be32_to_cpu(vidh->vol_id); 831 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 832 int lnum = be32_to_cpu(vidh->lnum); 833 834 /* Unsupported internal volume */ 835 switch (vidh->compat) { 836 case UBI_COMPAT_DELETE: 837 ubi_msg("\"delete\" compatible internal volume %d:%d" 838 " found, remove it", vol_id, lnum); 839 err = add_to_list(si, pnum, ec, &si->corr); 840 if (err) 841 return err; 842 break; 843 844 case UBI_COMPAT_RO: 845 ubi_msg("read-only compatible internal volume %d:%d" 846 " found, switch to read-only mode", 847 vol_id, lnum); 848 ubi->ro_mode = 1; 849 break; 850 851 case UBI_COMPAT_PRESERVE: 852 ubi_msg("\"preserve\" compatible internal volume %d:%d" 853 " found", vol_id, lnum); 854 err = add_to_list(si, pnum, ec, &si->alien); 855 if (err) 856 return err; 857 si->alien_peb_count += 1; 858 return 0; 859 860 case UBI_COMPAT_REJECT: 861 ubi_err("incompatible internal volume %d:%d found", 862 vol_id, lnum); 863 return -EINVAL; 864 } 865 } 866 867 if (ec_corr) 868 ubi_warn("valid VID header but corrupted EC header at PEB %d", 869 pnum); 870 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 871 if (err) 872 return err; 873 874adjust_mean_ec: 875 if (!ec_corr) { 876 si->ec_sum += ec; 877 si->ec_count += 1; 878 if (ec > si->max_ec) 879 si->max_ec = ec; 880 if (ec < si->min_ec) 881 si->min_ec = ec; 882 } 883 884 return 0; 885} 886 887/** 888 * ubi_scan - scan an MTD device. 889 * @ubi: UBI device description object 890 * 891 * This function does full scanning of an MTD device and returns complete 892 * information about it. In case of failure, an error code is returned. 893 */ 894struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 895{ 896 int err, pnum; 897 struct rb_node *rb1, *rb2; 898 struct ubi_scan_volume *sv; 899 struct ubi_scan_leb *seb; 900 struct ubi_scan_info *si; 901 902 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 903 if (!si) 904 return ERR_PTR(-ENOMEM); 905 906 INIT_LIST_HEAD(&si->corr); 907 INIT_LIST_HEAD(&si->free); 908 INIT_LIST_HEAD(&si->erase); 909 INIT_LIST_HEAD(&si->alien); 910 si->volumes = RB_ROOT; 911 si->is_empty = 1; 912 913 err = -ENOMEM; 914 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 915 if (!ech) 916 goto out_si; 917 918 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 919 if (!vidh) 920 goto out_ech; 921 922 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 923 cond_resched(); 924 925 dbg_gen("process PEB %d", pnum); 926 err = process_eb(ubi, si, pnum); 927 if (err < 0) 928 goto out_vidh; 929 } 930 931 dbg_msg("scanning is finished"); 932 933 /* Calculate mean erase counter */ 934 if (si->ec_count) 935 si->mean_ec = div_u64(si->ec_sum, si->ec_count); 936 937 if (si->is_empty) 938 ubi_msg("empty MTD device detected"); 939 940 /* 941 * Few corrupted PEBs are not a problem and may be just a result of 942 * unclean reboots. However, many of them may indicate some problems 943 * with the flash HW or driver. Print a warning in this case. 944 */ 945 if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) { 946 ubi_warn("%d PEBs are corrupted", si->corr_count); 947 printk(KERN_WARNING "corrupted PEBs are:"); 948 list_for_each_entry(seb, &si->corr, u.list) 949 printk(KERN_CONT " %d", seb->pnum); 950 printk(KERN_CONT "\n"); 951 } 952 953 /* 954 * In case of unknown erase counter we use the mean erase counter 955 * value. 956 */ 957 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 958 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 959 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 960 seb->ec = si->mean_ec; 961 } 962 963 list_for_each_entry(seb, &si->free, u.list) { 964 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 965 seb->ec = si->mean_ec; 966 } 967 968 list_for_each_entry(seb, &si->corr, u.list) 969 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 970 seb->ec = si->mean_ec; 971 972 list_for_each_entry(seb, &si->erase, u.list) 973 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 974 seb->ec = si->mean_ec; 975 976 err = paranoid_check_si(ubi, si); 977 if (err) { 978 if (err > 0) 979 err = -EINVAL; 980 goto out_vidh; 981 } 982 983 ubi_free_vid_hdr(ubi, vidh); 984 kfree(ech); 985 986 return si; 987 988out_vidh: 989 ubi_free_vid_hdr(ubi, vidh); 990out_ech: 991 kfree(ech); 992out_si: 993 ubi_scan_destroy_si(si); 994 return ERR_PTR(err); 995} 996 997/** 998 * destroy_sv - free the scanning volume information 999 * @sv: scanning volume information 1000 * 1001 * This function destroys the volume RB-tree (@sv->root) and the scanning 1002 * volume information. 1003 */ 1004static void destroy_sv(struct ubi_scan_volume *sv) 1005{ 1006 struct ubi_scan_leb *seb; 1007 struct rb_node *this = sv->root.rb_node; 1008 1009 while (this) { 1010 if (this->rb_left) 1011 this = this->rb_left; 1012 else if (this->rb_right) 1013 this = this->rb_right; 1014 else { 1015 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 1016 this = rb_parent(this); 1017 if (this) { 1018 if (this->rb_left == &seb->u.rb) 1019 this->rb_left = NULL; 1020 else 1021 this->rb_right = NULL; 1022 } 1023 1024 kfree(seb); 1025 } 1026 } 1027 kfree(sv); 1028} 1029 1030/** 1031 * ubi_scan_destroy_si - destroy scanning information. 1032 * @si: scanning information 1033 */ 1034void ubi_scan_destroy_si(struct ubi_scan_info *si) 1035{ 1036 struct ubi_scan_leb *seb, *seb_tmp; 1037 struct ubi_scan_volume *sv; 1038 struct rb_node *rb; 1039 1040 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1041 list_del(&seb->u.list); 1042 kfree(seb); 1043 } 1044 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1045 list_del(&seb->u.list); 1046 kfree(seb); 1047 } 1048 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1049 list_del(&seb->u.list); 1050 kfree(seb); 1051 } 1052 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1053 list_del(&seb->u.list); 1054 kfree(seb); 1055 } 1056 1057 /* Destroy the volume RB-tree */ 1058 rb = si->volumes.rb_node; 1059 while (rb) { 1060 if (rb->rb_left) 1061 rb = rb->rb_left; 1062 else if (rb->rb_right) 1063 rb = rb->rb_right; 1064 else { 1065 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1066 1067 rb = rb_parent(rb); 1068 if (rb) { 1069 if (rb->rb_left == &sv->rb) 1070 rb->rb_left = NULL; 1071 else 1072 rb->rb_right = NULL; 1073 } 1074 1075 destroy_sv(sv); 1076 } 1077 } 1078 1079 kfree(si); 1080} 1081 1082#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1083 1084/** 1085 * paranoid_check_si - check the scanning information. 1086 * @ubi: UBI device description object 1087 * @si: scanning information 1088 * 1089 * This function returns zero if the scanning information is all right, %1 if 1090 * not and a negative error code if an error occurred. 1091 */ 1092static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1093{ 1094 int pnum, err, vols_found = 0; 1095 struct rb_node *rb1, *rb2; 1096 struct ubi_scan_volume *sv; 1097 struct ubi_scan_leb *seb, *last_seb; 1098 uint8_t *buf; 1099 1100 /* 1101 * At first, check that scanning information is OK. 1102 */ 1103 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1104 int leb_count = 0; 1105 1106 cond_resched(); 1107 1108 vols_found += 1; 1109 1110 if (si->is_empty) { 1111 ubi_err("bad is_empty flag"); 1112 goto bad_sv; 1113 } 1114 1115 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1116 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1117 sv->data_pad < 0 || sv->last_data_size < 0) { 1118 ubi_err("negative values"); 1119 goto bad_sv; 1120 } 1121 1122 if (sv->vol_id >= UBI_MAX_VOLUMES && 1123 sv->vol_id < UBI_INTERNAL_VOL_START) { 1124 ubi_err("bad vol_id"); 1125 goto bad_sv; 1126 } 1127 1128 if (sv->vol_id > si->highest_vol_id) { 1129 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1130 si->highest_vol_id, sv->vol_id); 1131 goto out; 1132 } 1133 1134 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1135 sv->vol_type != UBI_STATIC_VOLUME) { 1136 ubi_err("bad vol_type"); 1137 goto bad_sv; 1138 } 1139 1140 if (sv->data_pad > ubi->leb_size / 2) { 1141 ubi_err("bad data_pad"); 1142 goto bad_sv; 1143 } 1144 1145 last_seb = NULL; 1146 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1147 cond_resched(); 1148 1149 last_seb = seb; 1150 leb_count += 1; 1151 1152 if (seb->pnum < 0 || seb->ec < 0) { 1153 ubi_err("negative values"); 1154 goto bad_seb; 1155 } 1156 1157 if (seb->ec < si->min_ec) { 1158 ubi_err("bad si->min_ec (%d), %d found", 1159 si->min_ec, seb->ec); 1160 goto bad_seb; 1161 } 1162 1163 if (seb->ec > si->max_ec) { 1164 ubi_err("bad si->max_ec (%d), %d found", 1165 si->max_ec, seb->ec); 1166 goto bad_seb; 1167 } 1168 1169 if (seb->pnum >= ubi->peb_count) { 1170 ubi_err("too high PEB number %d, total PEBs %d", 1171 seb->pnum, ubi->peb_count); 1172 goto bad_seb; 1173 } 1174 1175 if (sv->vol_type == UBI_STATIC_VOLUME) { 1176 if (seb->lnum >= sv->used_ebs) { 1177 ubi_err("bad lnum or used_ebs"); 1178 goto bad_seb; 1179 } 1180 } else { 1181 if (sv->used_ebs != 0) { 1182 ubi_err("non-zero used_ebs"); 1183 goto bad_seb; 1184 } 1185 } 1186 1187 if (seb->lnum > sv->highest_lnum) { 1188 ubi_err("incorrect highest_lnum or lnum"); 1189 goto bad_seb; 1190 } 1191 } 1192 1193 if (sv->leb_count != leb_count) { 1194 ubi_err("bad leb_count, %d objects in the tree", 1195 leb_count); 1196 goto bad_sv; 1197 } 1198 1199 if (!last_seb) 1200 continue; 1201 1202 seb = last_seb; 1203 1204 if (seb->lnum != sv->highest_lnum) { 1205 ubi_err("bad highest_lnum"); 1206 goto bad_seb; 1207 } 1208 } 1209 1210 if (vols_found != si->vols_found) { 1211 ubi_err("bad si->vols_found %d, should be %d", 1212 si->vols_found, vols_found); 1213 goto out; 1214 } 1215 1216 /* Check that scanning information is correct */ 1217 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1218 last_seb = NULL; 1219 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1220 int vol_type; 1221 1222 cond_resched(); 1223 1224 last_seb = seb; 1225 1226 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1227 if (err && err != UBI_IO_BITFLIPS) { 1228 ubi_err("VID header is not OK (%d)", err); 1229 if (err > 0) 1230 err = -EIO; 1231 return err; 1232 } 1233 1234 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1235 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1236 if (sv->vol_type != vol_type) { 1237 ubi_err("bad vol_type"); 1238 goto bad_vid_hdr; 1239 } 1240 1241 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1242 ubi_err("bad sqnum %llu", seb->sqnum); 1243 goto bad_vid_hdr; 1244 } 1245 1246 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1247 ubi_err("bad vol_id %d", sv->vol_id); 1248 goto bad_vid_hdr; 1249 } 1250 1251 if (sv->compat != vidh->compat) { 1252 ubi_err("bad compat %d", vidh->compat); 1253 goto bad_vid_hdr; 1254 } 1255 1256 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1257 ubi_err("bad lnum %d", seb->lnum); 1258 goto bad_vid_hdr; 1259 } 1260 1261 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1262 ubi_err("bad used_ebs %d", sv->used_ebs); 1263 goto bad_vid_hdr; 1264 } 1265 1266 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1267 ubi_err("bad data_pad %d", sv->data_pad); 1268 goto bad_vid_hdr; 1269 } 1270 } 1271 1272 if (!last_seb) 1273 continue; 1274 1275 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1276 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1277 goto bad_vid_hdr; 1278 } 1279 1280 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1281 ubi_err("bad last_data_size %d", sv->last_data_size); 1282 goto bad_vid_hdr; 1283 } 1284 } 1285 1286 /* 1287 * Make sure that all the physical eraseblocks are in one of the lists 1288 * or trees. 1289 */ 1290 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1291 if (!buf) 1292 return -ENOMEM; 1293 1294 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1295 err = ubi_io_is_bad(ubi, pnum); 1296 if (err < 0) { 1297 kfree(buf); 1298 return err; 1299 } else if (err) 1300 buf[pnum] = 1; 1301 } 1302 1303 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1304 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1305 buf[seb->pnum] = 1; 1306 1307 list_for_each_entry(seb, &si->free, u.list) 1308 buf[seb->pnum] = 1; 1309 1310 list_for_each_entry(seb, &si->corr, u.list) 1311 buf[seb->pnum] = 1; 1312 1313 list_for_each_entry(seb, &si->erase, u.list) 1314 buf[seb->pnum] = 1; 1315 1316 list_for_each_entry(seb, &si->alien, u.list) 1317 buf[seb->pnum] = 1; 1318 1319 err = 0; 1320 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1321 if (!buf[pnum]) { 1322 ubi_err("PEB %d is not referred", pnum); 1323 err = 1; 1324 } 1325 1326 kfree(buf); 1327 if (err) 1328 goto out; 1329 return 0; 1330 1331bad_seb: 1332 ubi_err("bad scanning information about LEB %d", seb->lnum); 1333 ubi_dbg_dump_seb(seb, 0); 1334 ubi_dbg_dump_sv(sv); 1335 goto out; 1336 1337bad_sv: 1338 ubi_err("bad scanning information about volume %d", sv->vol_id); 1339 ubi_dbg_dump_sv(sv); 1340 goto out; 1341 1342bad_vid_hdr: 1343 ubi_err("bad scanning information about volume %d", sv->vol_id); 1344 ubi_dbg_dump_sv(sv); 1345 ubi_dbg_dump_vid_hdr(vidh); 1346 1347out: 1348 ubi_dbg_dump_stack(); 1349 return 1; 1350} 1351 1352#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */