at v2.6.32 40 kB view raw
1/* 2 * Anticipatory & deadline i/o scheduler. 3 * 4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk> 5 * Nick Piggin <nickpiggin@yahoo.com.au> 6 * 7 */ 8#include <linux/kernel.h> 9#include <linux/fs.h> 10#include <linux/blkdev.h> 11#include <linux/elevator.h> 12#include <linux/bio.h> 13#include <linux/module.h> 14#include <linux/slab.h> 15#include <linux/init.h> 16#include <linux/compiler.h> 17#include <linux/rbtree.h> 18#include <linux/interrupt.h> 19 20/* 21 * See Documentation/block/as-iosched.txt 22 */ 23 24/* 25 * max time before a read is submitted. 26 */ 27#define default_read_expire (HZ / 8) 28 29/* 30 * ditto for writes, these limits are not hard, even 31 * if the disk is capable of satisfying them. 32 */ 33#define default_write_expire (HZ / 4) 34 35/* 36 * read_batch_expire describes how long we will allow a stream of reads to 37 * persist before looking to see whether it is time to switch over to writes. 38 */ 39#define default_read_batch_expire (HZ / 2) 40 41/* 42 * write_batch_expire describes how long we want a stream of writes to run for. 43 * This is not a hard limit, but a target we set for the auto-tuning thingy. 44 * See, the problem is: we can send a lot of writes to disk cache / TCQ in 45 * a short amount of time... 46 */ 47#define default_write_batch_expire (HZ / 8) 48 49/* 50 * max time we may wait to anticipate a read (default around 6ms) 51 */ 52#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) 53 54/* 55 * Keep track of up to 20ms thinktimes. We can go as big as we like here, 56 * however huge values tend to interfere and not decay fast enough. A program 57 * might be in a non-io phase of operation. Waiting on user input for example, 58 * or doing a lengthy computation. A small penalty can be justified there, and 59 * will still catch out those processes that constantly have large thinktimes. 60 */ 61#define MAX_THINKTIME (HZ/50UL) 62 63/* Bits in as_io_context.state */ 64enum as_io_states { 65 AS_TASK_RUNNING=0, /* Process has not exited */ 66 AS_TASK_IOSTARTED, /* Process has started some IO */ 67 AS_TASK_IORUNNING, /* Process has completed some IO */ 68}; 69 70enum anticipation_status { 71 ANTIC_OFF=0, /* Not anticipating (normal operation) */ 72 ANTIC_WAIT_REQ, /* The last read has not yet completed */ 73 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs 74 last read (which has completed) */ 75 ANTIC_FINISHED, /* Anticipating but have found a candidate 76 * or timed out */ 77}; 78 79struct as_data { 80 /* 81 * run time data 82 */ 83 84 struct request_queue *q; /* the "owner" queue */ 85 86 /* 87 * requests (as_rq s) are present on both sort_list and fifo_list 88 */ 89 struct rb_root sort_list[2]; 90 struct list_head fifo_list[2]; 91 92 struct request *next_rq[2]; /* next in sort order */ 93 sector_t last_sector[2]; /* last SYNC & ASYNC sectors */ 94 95 unsigned long exit_prob; /* probability a task will exit while 96 being waited on */ 97 unsigned long exit_no_coop; /* probablility an exited task will 98 not be part of a later cooperating 99 request */ 100 unsigned long new_ttime_total; /* mean thinktime on new proc */ 101 unsigned long new_ttime_mean; 102 u64 new_seek_total; /* mean seek on new proc */ 103 sector_t new_seek_mean; 104 105 unsigned long current_batch_expires; 106 unsigned long last_check_fifo[2]; 107 int changed_batch; /* 1: waiting for old batch to end */ 108 int new_batch; /* 1: waiting on first read complete */ 109 int batch_data_dir; /* current batch SYNC / ASYNC */ 110 int write_batch_count; /* max # of reqs in a write batch */ 111 int current_write_count; /* how many requests left this batch */ 112 int write_batch_idled; /* has the write batch gone idle? */ 113 114 enum anticipation_status antic_status; 115 unsigned long antic_start; /* jiffies: when it started */ 116 struct timer_list antic_timer; /* anticipatory scheduling timer */ 117 struct work_struct antic_work; /* Deferred unplugging */ 118 struct io_context *io_context; /* Identify the expected process */ 119 int ioc_finished; /* IO associated with io_context is finished */ 120 int nr_dispatched; 121 122 /* 123 * settings that change how the i/o scheduler behaves 124 */ 125 unsigned long fifo_expire[2]; 126 unsigned long batch_expire[2]; 127 unsigned long antic_expire; 128}; 129 130/* 131 * per-request data. 132 */ 133enum arq_state { 134 AS_RQ_NEW=0, /* New - not referenced and not on any lists */ 135 AS_RQ_QUEUED, /* In the request queue. It belongs to the 136 scheduler */ 137 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the 138 driver now */ 139 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ 140 AS_RQ_REMOVED, 141 AS_RQ_MERGED, 142 AS_RQ_POSTSCHED, /* when they shouldn't be */ 143}; 144 145#define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private) 146#define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2) 147#define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state) 148 149static DEFINE_PER_CPU(unsigned long, as_ioc_count); 150static struct completion *ioc_gone; 151static DEFINE_SPINLOCK(ioc_gone_lock); 152 153static void as_move_to_dispatch(struct as_data *ad, struct request *rq); 154static void as_antic_stop(struct as_data *ad); 155 156/* 157 * IO Context helper functions 158 */ 159 160/* Called to deallocate the as_io_context */ 161static void free_as_io_context(struct as_io_context *aic) 162{ 163 kfree(aic); 164 elv_ioc_count_dec(as_ioc_count); 165 if (ioc_gone) { 166 /* 167 * AS scheduler is exiting, grab exit lock and check 168 * the pending io context count. If it hits zero, 169 * complete ioc_gone and set it back to NULL. 170 */ 171 spin_lock(&ioc_gone_lock); 172 if (ioc_gone && !elv_ioc_count_read(as_ioc_count)) { 173 complete(ioc_gone); 174 ioc_gone = NULL; 175 } 176 spin_unlock(&ioc_gone_lock); 177 } 178} 179 180static void as_trim(struct io_context *ioc) 181{ 182 spin_lock_irq(&ioc->lock); 183 if (ioc->aic) 184 free_as_io_context(ioc->aic); 185 ioc->aic = NULL; 186 spin_unlock_irq(&ioc->lock); 187} 188 189/* Called when the task exits */ 190static void exit_as_io_context(struct as_io_context *aic) 191{ 192 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); 193 clear_bit(AS_TASK_RUNNING, &aic->state); 194} 195 196static struct as_io_context *alloc_as_io_context(void) 197{ 198 struct as_io_context *ret; 199 200 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 201 if (ret) { 202 ret->dtor = free_as_io_context; 203 ret->exit = exit_as_io_context; 204 ret->state = 1 << AS_TASK_RUNNING; 205 atomic_set(&ret->nr_queued, 0); 206 atomic_set(&ret->nr_dispatched, 0); 207 spin_lock_init(&ret->lock); 208 ret->ttime_total = 0; 209 ret->ttime_samples = 0; 210 ret->ttime_mean = 0; 211 ret->seek_total = 0; 212 ret->seek_samples = 0; 213 ret->seek_mean = 0; 214 elv_ioc_count_inc(as_ioc_count); 215 } 216 217 return ret; 218} 219 220/* 221 * If the current task has no AS IO context then create one and initialise it. 222 * Then take a ref on the task's io context and return it. 223 */ 224static struct io_context *as_get_io_context(int node) 225{ 226 struct io_context *ioc = get_io_context(GFP_ATOMIC, node); 227 if (ioc && !ioc->aic) { 228 ioc->aic = alloc_as_io_context(); 229 if (!ioc->aic) { 230 put_io_context(ioc); 231 ioc = NULL; 232 } 233 } 234 return ioc; 235} 236 237static void as_put_io_context(struct request *rq) 238{ 239 struct as_io_context *aic; 240 241 if (unlikely(!RQ_IOC(rq))) 242 return; 243 244 aic = RQ_IOC(rq)->aic; 245 246 if (rq_is_sync(rq) && aic) { 247 unsigned long flags; 248 249 spin_lock_irqsave(&aic->lock, flags); 250 set_bit(AS_TASK_IORUNNING, &aic->state); 251 aic->last_end_request = jiffies; 252 spin_unlock_irqrestore(&aic->lock, flags); 253 } 254 255 put_io_context(RQ_IOC(rq)); 256} 257 258/* 259 * rb tree support functions 260 */ 261#define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))]) 262 263static void as_add_rq_rb(struct as_data *ad, struct request *rq) 264{ 265 struct request *alias; 266 267 while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) { 268 as_move_to_dispatch(ad, alias); 269 as_antic_stop(ad); 270 } 271} 272 273static inline void as_del_rq_rb(struct as_data *ad, struct request *rq) 274{ 275 elv_rb_del(RQ_RB_ROOT(ad, rq), rq); 276} 277 278/* 279 * IO Scheduler proper 280 */ 281 282#define MAXBACK (1024 * 1024) /* 283 * Maximum distance the disk will go backward 284 * for a request. 285 */ 286 287#define BACK_PENALTY 2 288 289/* 290 * as_choose_req selects the preferred one of two requests of the same data_dir 291 * ignoring time - eg. timeouts, which is the job of as_dispatch_request 292 */ 293static struct request * 294as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2) 295{ 296 int data_dir; 297 sector_t last, s1, s2, d1, d2; 298 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ 299 const sector_t maxback = MAXBACK; 300 301 if (rq1 == NULL || rq1 == rq2) 302 return rq2; 303 if (rq2 == NULL) 304 return rq1; 305 306 data_dir = rq_is_sync(rq1); 307 308 last = ad->last_sector[data_dir]; 309 s1 = blk_rq_pos(rq1); 310 s2 = blk_rq_pos(rq2); 311 312 BUG_ON(data_dir != rq_is_sync(rq2)); 313 314 /* 315 * Strict one way elevator _except_ in the case where we allow 316 * short backward seeks which are biased as twice the cost of a 317 * similar forward seek. 318 */ 319 if (s1 >= last) 320 d1 = s1 - last; 321 else if (s1+maxback >= last) 322 d1 = (last - s1)*BACK_PENALTY; 323 else { 324 r1_wrap = 1; 325 d1 = 0; /* shut up, gcc */ 326 } 327 328 if (s2 >= last) 329 d2 = s2 - last; 330 else if (s2+maxback >= last) 331 d2 = (last - s2)*BACK_PENALTY; 332 else { 333 r2_wrap = 1; 334 d2 = 0; 335 } 336 337 /* Found required data */ 338 if (!r1_wrap && r2_wrap) 339 return rq1; 340 else if (!r2_wrap && r1_wrap) 341 return rq2; 342 else if (r1_wrap && r2_wrap) { 343 /* both behind the head */ 344 if (s1 <= s2) 345 return rq1; 346 else 347 return rq2; 348 } 349 350 /* Both requests in front of the head */ 351 if (d1 < d2) 352 return rq1; 353 else if (d2 < d1) 354 return rq2; 355 else { 356 if (s1 >= s2) 357 return rq1; 358 else 359 return rq2; 360 } 361} 362 363/* 364 * as_find_next_rq finds the next request after @prev in elevator order. 365 * this with as_choose_req form the basis for how the scheduler chooses 366 * what request to process next. Anticipation works on top of this. 367 */ 368static struct request * 369as_find_next_rq(struct as_data *ad, struct request *last) 370{ 371 struct rb_node *rbnext = rb_next(&last->rb_node); 372 struct rb_node *rbprev = rb_prev(&last->rb_node); 373 struct request *next = NULL, *prev = NULL; 374 375 BUG_ON(RB_EMPTY_NODE(&last->rb_node)); 376 377 if (rbprev) 378 prev = rb_entry_rq(rbprev); 379 380 if (rbnext) 381 next = rb_entry_rq(rbnext); 382 else { 383 const int data_dir = rq_is_sync(last); 384 385 rbnext = rb_first(&ad->sort_list[data_dir]); 386 if (rbnext && rbnext != &last->rb_node) 387 next = rb_entry_rq(rbnext); 388 } 389 390 return as_choose_req(ad, next, prev); 391} 392 393/* 394 * anticipatory scheduling functions follow 395 */ 396 397/* 398 * as_antic_expired tells us when we have anticipated too long. 399 * The funny "absolute difference" math on the elapsed time is to handle 400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. 401 */ 402static int as_antic_expired(struct as_data *ad) 403{ 404 long delta_jif; 405 406 delta_jif = jiffies - ad->antic_start; 407 if (unlikely(delta_jif < 0)) 408 delta_jif = -delta_jif; 409 if (delta_jif < ad->antic_expire) 410 return 0; 411 412 return 1; 413} 414 415/* 416 * as_antic_waitnext starts anticipating that a nice request will soon be 417 * submitted. See also as_antic_waitreq 418 */ 419static void as_antic_waitnext(struct as_data *ad) 420{ 421 unsigned long timeout; 422 423 BUG_ON(ad->antic_status != ANTIC_OFF 424 && ad->antic_status != ANTIC_WAIT_REQ); 425 426 timeout = ad->antic_start + ad->antic_expire; 427 428 mod_timer(&ad->antic_timer, timeout); 429 430 ad->antic_status = ANTIC_WAIT_NEXT; 431} 432 433/* 434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation 435 * until the request that we're anticipating on has finished. This means we 436 * are timing from when the candidate process wakes up hopefully. 437 */ 438static void as_antic_waitreq(struct as_data *ad) 439{ 440 BUG_ON(ad->antic_status == ANTIC_FINISHED); 441 if (ad->antic_status == ANTIC_OFF) { 442 if (!ad->io_context || ad->ioc_finished) 443 as_antic_waitnext(ad); 444 else 445 ad->antic_status = ANTIC_WAIT_REQ; 446 } 447} 448 449/* 450 * This is called directly by the functions in this file to stop anticipation. 451 * We kill the timer and schedule a call to the request_fn asap. 452 */ 453static void as_antic_stop(struct as_data *ad) 454{ 455 int status = ad->antic_status; 456 457 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { 458 if (status == ANTIC_WAIT_NEXT) 459 del_timer(&ad->antic_timer); 460 ad->antic_status = ANTIC_FINISHED; 461 /* see as_work_handler */ 462 kblockd_schedule_work(ad->q, &ad->antic_work); 463 } 464} 465 466/* 467 * as_antic_timeout is the timer function set by as_antic_waitnext. 468 */ 469static void as_antic_timeout(unsigned long data) 470{ 471 struct request_queue *q = (struct request_queue *)data; 472 struct as_data *ad = q->elevator->elevator_data; 473 unsigned long flags; 474 475 spin_lock_irqsave(q->queue_lock, flags); 476 if (ad->antic_status == ANTIC_WAIT_REQ 477 || ad->antic_status == ANTIC_WAIT_NEXT) { 478 struct as_io_context *aic; 479 spin_lock(&ad->io_context->lock); 480 aic = ad->io_context->aic; 481 482 ad->antic_status = ANTIC_FINISHED; 483 kblockd_schedule_work(q, &ad->antic_work); 484 485 if (aic->ttime_samples == 0) { 486 /* process anticipated on has exited or timed out*/ 487 ad->exit_prob = (7*ad->exit_prob + 256)/8; 488 } 489 if (!test_bit(AS_TASK_RUNNING, &aic->state)) { 490 /* process not "saved" by a cooperating request */ 491 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8; 492 } 493 spin_unlock(&ad->io_context->lock); 494 } 495 spin_unlock_irqrestore(q->queue_lock, flags); 496} 497 498static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, 499 unsigned long ttime) 500{ 501 /* fixed point: 1.0 == 1<<8 */ 502 if (aic->ttime_samples == 0) { 503 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; 504 ad->new_ttime_mean = ad->new_ttime_total / 256; 505 506 ad->exit_prob = (7*ad->exit_prob)/8; 507 } 508 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; 509 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; 510 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; 511} 512 513static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, 514 sector_t sdist) 515{ 516 u64 total; 517 518 if (aic->seek_samples == 0) { 519 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; 520 ad->new_seek_mean = ad->new_seek_total / 256; 521 } 522 523 /* 524 * Don't allow the seek distance to get too large from the 525 * odd fragment, pagein, etc 526 */ 527 if (aic->seek_samples <= 60) /* second&third seek */ 528 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); 529 else 530 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); 531 532 aic->seek_samples = (7*aic->seek_samples + 256) / 8; 533 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; 534 total = aic->seek_total + (aic->seek_samples/2); 535 do_div(total, aic->seek_samples); 536 aic->seek_mean = (sector_t)total; 537} 538 539/* 540 * as_update_iohist keeps a decaying histogram of IO thinktimes, and 541 * updates @aic->ttime_mean based on that. It is called when a new 542 * request is queued. 543 */ 544static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, 545 struct request *rq) 546{ 547 int data_dir = rq_is_sync(rq); 548 unsigned long thinktime = 0; 549 sector_t seek_dist; 550 551 if (aic == NULL) 552 return; 553 554 if (data_dir == BLK_RW_SYNC) { 555 unsigned long in_flight = atomic_read(&aic->nr_queued) 556 + atomic_read(&aic->nr_dispatched); 557 spin_lock(&aic->lock); 558 if (test_bit(AS_TASK_IORUNNING, &aic->state) || 559 test_bit(AS_TASK_IOSTARTED, &aic->state)) { 560 /* Calculate read -> read thinktime */ 561 if (test_bit(AS_TASK_IORUNNING, &aic->state) 562 && in_flight == 0) { 563 thinktime = jiffies - aic->last_end_request; 564 thinktime = min(thinktime, MAX_THINKTIME-1); 565 } 566 as_update_thinktime(ad, aic, thinktime); 567 568 /* Calculate read -> read seek distance */ 569 if (aic->last_request_pos < blk_rq_pos(rq)) 570 seek_dist = blk_rq_pos(rq) - 571 aic->last_request_pos; 572 else 573 seek_dist = aic->last_request_pos - 574 blk_rq_pos(rq); 575 as_update_seekdist(ad, aic, seek_dist); 576 } 577 aic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 578 set_bit(AS_TASK_IOSTARTED, &aic->state); 579 spin_unlock(&aic->lock); 580 } 581} 582 583/* 584 * as_close_req decides if one request is considered "close" to the 585 * previous one issued. 586 */ 587static int as_close_req(struct as_data *ad, struct as_io_context *aic, 588 struct request *rq) 589{ 590 unsigned long delay; /* jiffies */ 591 sector_t last = ad->last_sector[ad->batch_data_dir]; 592 sector_t next = blk_rq_pos(rq); 593 sector_t delta; /* acceptable close offset (in sectors) */ 594 sector_t s; 595 596 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) 597 delay = 0; 598 else 599 delay = jiffies - ad->antic_start; 600 601 if (delay == 0) 602 delta = 8192; 603 else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire) 604 delta = 8192 << delay; 605 else 606 return 1; 607 608 if ((last <= next + (delta>>1)) && (next <= last + delta)) 609 return 1; 610 611 if (last < next) 612 s = next - last; 613 else 614 s = last - next; 615 616 if (aic->seek_samples == 0) { 617 /* 618 * Process has just started IO. Use past statistics to 619 * gauge success possibility 620 */ 621 if (ad->new_seek_mean > s) { 622 /* this request is better than what we're expecting */ 623 return 1; 624 } 625 626 } else { 627 if (aic->seek_mean > s) { 628 /* this request is better than what we're expecting */ 629 return 1; 630 } 631 } 632 633 return 0; 634} 635 636/* 637 * as_can_break_anticipation returns true if we have been anticipating this 638 * request. 639 * 640 * It also returns true if the process against which we are anticipating 641 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to 642 * dispatch it ASAP, because we know that application will not be submitting 643 * any new reads. 644 * 645 * If the task which has submitted the request has exited, break anticipation. 646 * 647 * If this task has queued some other IO, do not enter enticipation. 648 */ 649static int as_can_break_anticipation(struct as_data *ad, struct request *rq) 650{ 651 struct io_context *ioc; 652 struct as_io_context *aic; 653 654 ioc = ad->io_context; 655 BUG_ON(!ioc); 656 spin_lock(&ioc->lock); 657 658 if (rq && ioc == RQ_IOC(rq)) { 659 /* request from same process */ 660 spin_unlock(&ioc->lock); 661 return 1; 662 } 663 664 if (ad->ioc_finished && as_antic_expired(ad)) { 665 /* 666 * In this situation status should really be FINISHED, 667 * however the timer hasn't had the chance to run yet. 668 */ 669 spin_unlock(&ioc->lock); 670 return 1; 671 } 672 673 aic = ioc->aic; 674 if (!aic) { 675 spin_unlock(&ioc->lock); 676 return 0; 677 } 678 679 if (atomic_read(&aic->nr_queued) > 0) { 680 /* process has more requests queued */ 681 spin_unlock(&ioc->lock); 682 return 1; 683 } 684 685 if (atomic_read(&aic->nr_dispatched) > 0) { 686 /* process has more requests dispatched */ 687 spin_unlock(&ioc->lock); 688 return 1; 689 } 690 691 if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) { 692 /* 693 * Found a close request that is not one of ours. 694 * 695 * This makes close requests from another process update 696 * our IO history. Is generally useful when there are 697 * two or more cooperating processes working in the same 698 * area. 699 */ 700 if (!test_bit(AS_TASK_RUNNING, &aic->state)) { 701 if (aic->ttime_samples == 0) 702 ad->exit_prob = (7*ad->exit_prob + 256)/8; 703 704 ad->exit_no_coop = (7*ad->exit_no_coop)/8; 705 } 706 707 as_update_iohist(ad, aic, rq); 708 spin_unlock(&ioc->lock); 709 return 1; 710 } 711 712 if (!test_bit(AS_TASK_RUNNING, &aic->state)) { 713 /* process anticipated on has exited */ 714 if (aic->ttime_samples == 0) 715 ad->exit_prob = (7*ad->exit_prob + 256)/8; 716 717 if (ad->exit_no_coop > 128) { 718 spin_unlock(&ioc->lock); 719 return 1; 720 } 721 } 722 723 if (aic->ttime_samples == 0) { 724 if (ad->new_ttime_mean > ad->antic_expire) { 725 spin_unlock(&ioc->lock); 726 return 1; 727 } 728 if (ad->exit_prob * ad->exit_no_coop > 128*256) { 729 spin_unlock(&ioc->lock); 730 return 1; 731 } 732 } else if (aic->ttime_mean > ad->antic_expire) { 733 /* the process thinks too much between requests */ 734 spin_unlock(&ioc->lock); 735 return 1; 736 } 737 spin_unlock(&ioc->lock); 738 return 0; 739} 740 741/* 742 * as_can_anticipate indicates whether we should either run rq 743 * or keep anticipating a better request. 744 */ 745static int as_can_anticipate(struct as_data *ad, struct request *rq) 746{ 747#if 0 /* disable for now, we need to check tag level as well */ 748 /* 749 * SSD device without seek penalty, disable idling 750 */ 751 if (blk_queue_nonrot(ad->q)) axman 752 return 0; 753#endif 754 755 if (!ad->io_context) 756 /* 757 * Last request submitted was a write 758 */ 759 return 0; 760 761 if (ad->antic_status == ANTIC_FINISHED) 762 /* 763 * Don't restart if we have just finished. Run the next request 764 */ 765 return 0; 766 767 if (as_can_break_anticipation(ad, rq)) 768 /* 769 * This request is a good candidate. Don't keep anticipating, 770 * run it. 771 */ 772 return 0; 773 774 /* 775 * OK from here, we haven't finished, and don't have a decent request! 776 * Status is either ANTIC_OFF so start waiting, 777 * ANTIC_WAIT_REQ so continue waiting for request to finish 778 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. 779 */ 780 781 return 1; 782} 783 784/* 785 * as_update_rq must be called whenever a request (rq) is added to 786 * the sort_list. This function keeps caches up to date, and checks if the 787 * request might be one we are "anticipating" 788 */ 789static void as_update_rq(struct as_data *ad, struct request *rq) 790{ 791 const int data_dir = rq_is_sync(rq); 792 793 /* keep the next_rq cache up to date */ 794 ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]); 795 796 /* 797 * have we been anticipating this request? 798 * or does it come from the same process as the one we are anticipating 799 * for? 800 */ 801 if (ad->antic_status == ANTIC_WAIT_REQ 802 || ad->antic_status == ANTIC_WAIT_NEXT) { 803 if (as_can_break_anticipation(ad, rq)) 804 as_antic_stop(ad); 805 } 806} 807 808/* 809 * Gathers timings and resizes the write batch automatically 810 */ 811static void update_write_batch(struct as_data *ad) 812{ 813 unsigned long batch = ad->batch_expire[BLK_RW_ASYNC]; 814 long write_time; 815 816 write_time = (jiffies - ad->current_batch_expires) + batch; 817 if (write_time < 0) 818 write_time = 0; 819 820 if (write_time > batch && !ad->write_batch_idled) { 821 if (write_time > batch * 3) 822 ad->write_batch_count /= 2; 823 else 824 ad->write_batch_count--; 825 } else if (write_time < batch && ad->current_write_count == 0) { 826 if (batch > write_time * 3) 827 ad->write_batch_count *= 2; 828 else 829 ad->write_batch_count++; 830 } 831 832 if (ad->write_batch_count < 1) 833 ad->write_batch_count = 1; 834} 835 836/* 837 * as_completed_request is to be called when a request has completed and 838 * returned something to the requesting process, be it an error or data. 839 */ 840static void as_completed_request(struct request_queue *q, struct request *rq) 841{ 842 struct as_data *ad = q->elevator->elevator_data; 843 844 WARN_ON(!list_empty(&rq->queuelist)); 845 846 if (RQ_STATE(rq) != AS_RQ_REMOVED) { 847 WARN(1, "rq->state %d\n", RQ_STATE(rq)); 848 goto out; 849 } 850 851 if (ad->changed_batch && ad->nr_dispatched == 1) { 852 ad->current_batch_expires = jiffies + 853 ad->batch_expire[ad->batch_data_dir]; 854 kblockd_schedule_work(q, &ad->antic_work); 855 ad->changed_batch = 0; 856 857 if (ad->batch_data_dir == BLK_RW_SYNC) 858 ad->new_batch = 1; 859 } 860 WARN_ON(ad->nr_dispatched == 0); 861 ad->nr_dispatched--; 862 863 /* 864 * Start counting the batch from when a request of that direction is 865 * actually serviced. This should help devices with big TCQ windows 866 * and writeback caches 867 */ 868 if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) { 869 update_write_batch(ad); 870 ad->current_batch_expires = jiffies + 871 ad->batch_expire[BLK_RW_SYNC]; 872 ad->new_batch = 0; 873 } 874 875 if (ad->io_context == RQ_IOC(rq) && ad->io_context) { 876 ad->antic_start = jiffies; 877 ad->ioc_finished = 1; 878 if (ad->antic_status == ANTIC_WAIT_REQ) { 879 /* 880 * We were waiting on this request, now anticipate 881 * the next one 882 */ 883 as_antic_waitnext(ad); 884 } 885 } 886 887 as_put_io_context(rq); 888out: 889 RQ_SET_STATE(rq, AS_RQ_POSTSCHED); 890} 891 892/* 893 * as_remove_queued_request removes a request from the pre dispatch queue 894 * without updating refcounts. It is expected the caller will drop the 895 * reference unless it replaces the request at somepart of the elevator 896 * (ie. the dispatch queue) 897 */ 898static void as_remove_queued_request(struct request_queue *q, 899 struct request *rq) 900{ 901 const int data_dir = rq_is_sync(rq); 902 struct as_data *ad = q->elevator->elevator_data; 903 struct io_context *ioc; 904 905 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); 906 907 ioc = RQ_IOC(rq); 908 if (ioc && ioc->aic) { 909 BUG_ON(!atomic_read(&ioc->aic->nr_queued)); 910 atomic_dec(&ioc->aic->nr_queued); 911 } 912 913 /* 914 * Update the "next_rq" cache if we are about to remove its 915 * entry 916 */ 917 if (ad->next_rq[data_dir] == rq) 918 ad->next_rq[data_dir] = as_find_next_rq(ad, rq); 919 920 rq_fifo_clear(rq); 921 as_del_rq_rb(ad, rq); 922} 923 924/* 925 * as_fifo_expired returns 0 if there are no expired requests on the fifo, 926 * 1 otherwise. It is ratelimited so that we only perform the check once per 927 * `fifo_expire' interval. Otherwise a large number of expired requests 928 * would create a hopeless seekstorm. 929 * 930 * See as_antic_expired comment. 931 */ 932static int as_fifo_expired(struct as_data *ad, int adir) 933{ 934 struct request *rq; 935 long delta_jif; 936 937 delta_jif = jiffies - ad->last_check_fifo[adir]; 938 if (unlikely(delta_jif < 0)) 939 delta_jif = -delta_jif; 940 if (delta_jif < ad->fifo_expire[adir]) 941 return 0; 942 943 ad->last_check_fifo[adir] = jiffies; 944 945 if (list_empty(&ad->fifo_list[adir])) 946 return 0; 947 948 rq = rq_entry_fifo(ad->fifo_list[adir].next); 949 950 return time_after(jiffies, rq_fifo_time(rq)); 951} 952 953/* 954 * as_batch_expired returns true if the current batch has expired. A batch 955 * is a set of reads or a set of writes. 956 */ 957static inline int as_batch_expired(struct as_data *ad) 958{ 959 if (ad->changed_batch || ad->new_batch) 960 return 0; 961 962 if (ad->batch_data_dir == BLK_RW_SYNC) 963 /* TODO! add a check so a complete fifo gets written? */ 964 return time_after(jiffies, ad->current_batch_expires); 965 966 return time_after(jiffies, ad->current_batch_expires) 967 || ad->current_write_count == 0; 968} 969 970/* 971 * move an entry to dispatch queue 972 */ 973static void as_move_to_dispatch(struct as_data *ad, struct request *rq) 974{ 975 const int data_dir = rq_is_sync(rq); 976 977 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 978 979 as_antic_stop(ad); 980 ad->antic_status = ANTIC_OFF; 981 982 /* 983 * This has to be set in order to be correctly updated by 984 * as_find_next_rq 985 */ 986 ad->last_sector[data_dir] = blk_rq_pos(rq) + blk_rq_sectors(rq); 987 988 if (data_dir == BLK_RW_SYNC) { 989 struct io_context *ioc = RQ_IOC(rq); 990 /* In case we have to anticipate after this */ 991 copy_io_context(&ad->io_context, &ioc); 992 } else { 993 if (ad->io_context) { 994 put_io_context(ad->io_context); 995 ad->io_context = NULL; 996 } 997 998 if (ad->current_write_count != 0) 999 ad->current_write_count--; 1000 } 1001 ad->ioc_finished = 0; 1002 1003 ad->next_rq[data_dir] = as_find_next_rq(ad, rq); 1004 1005 /* 1006 * take it off the sort and fifo list, add to dispatch queue 1007 */ 1008 as_remove_queued_request(ad->q, rq); 1009 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); 1010 1011 elv_dispatch_sort(ad->q, rq); 1012 1013 RQ_SET_STATE(rq, AS_RQ_DISPATCHED); 1014 if (RQ_IOC(rq) && RQ_IOC(rq)->aic) 1015 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); 1016 ad->nr_dispatched++; 1017} 1018 1019/* 1020 * as_dispatch_request selects the best request according to 1021 * read/write expire, batch expire, etc, and moves it to the dispatch 1022 * queue. Returns 1 if a request was found, 0 otherwise. 1023 */ 1024static int as_dispatch_request(struct request_queue *q, int force) 1025{ 1026 struct as_data *ad = q->elevator->elevator_data; 1027 const int reads = !list_empty(&ad->fifo_list[BLK_RW_SYNC]); 1028 const int writes = !list_empty(&ad->fifo_list[BLK_RW_ASYNC]); 1029 struct request *rq; 1030 1031 if (unlikely(force)) { 1032 /* 1033 * Forced dispatch, accounting is useless. Reset 1034 * accounting states and dump fifo_lists. Note that 1035 * batch_data_dir is reset to BLK_RW_SYNC to avoid 1036 * screwing write batch accounting as write batch 1037 * accounting occurs on W->R transition. 1038 */ 1039 int dispatched = 0; 1040 1041 ad->batch_data_dir = BLK_RW_SYNC; 1042 ad->changed_batch = 0; 1043 ad->new_batch = 0; 1044 1045 while (ad->next_rq[BLK_RW_SYNC]) { 1046 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_SYNC]); 1047 dispatched++; 1048 } 1049 ad->last_check_fifo[BLK_RW_SYNC] = jiffies; 1050 1051 while (ad->next_rq[BLK_RW_ASYNC]) { 1052 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_ASYNC]); 1053 dispatched++; 1054 } 1055 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies; 1056 1057 return dispatched; 1058 } 1059 1060 /* Signal that the write batch was uncontended, so we can't time it */ 1061 if (ad->batch_data_dir == BLK_RW_ASYNC && !reads) { 1062 if (ad->current_write_count == 0 || !writes) 1063 ad->write_batch_idled = 1; 1064 } 1065 1066 if (!(reads || writes) 1067 || ad->antic_status == ANTIC_WAIT_REQ 1068 || ad->antic_status == ANTIC_WAIT_NEXT 1069 || ad->changed_batch) 1070 return 0; 1071 1072 if (!(reads && writes && as_batch_expired(ad))) { 1073 /* 1074 * batch is still running or no reads or no writes 1075 */ 1076 rq = ad->next_rq[ad->batch_data_dir]; 1077 1078 if (ad->batch_data_dir == BLK_RW_SYNC && ad->antic_expire) { 1079 if (as_fifo_expired(ad, BLK_RW_SYNC)) 1080 goto fifo_expired; 1081 1082 if (as_can_anticipate(ad, rq)) { 1083 as_antic_waitreq(ad); 1084 return 0; 1085 } 1086 } 1087 1088 if (rq) { 1089 /* we have a "next request" */ 1090 if (reads && !writes) 1091 ad->current_batch_expires = 1092 jiffies + ad->batch_expire[BLK_RW_SYNC]; 1093 goto dispatch_request; 1094 } 1095 } 1096 1097 /* 1098 * at this point we are not running a batch. select the appropriate 1099 * data direction (read / write) 1100 */ 1101 1102 if (reads) { 1103 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_SYNC])); 1104 1105 if (writes && ad->batch_data_dir == BLK_RW_SYNC) 1106 /* 1107 * Last batch was a read, switch to writes 1108 */ 1109 goto dispatch_writes; 1110 1111 if (ad->batch_data_dir == BLK_RW_ASYNC) { 1112 WARN_ON(ad->new_batch); 1113 ad->changed_batch = 1; 1114 } 1115 ad->batch_data_dir = BLK_RW_SYNC; 1116 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_SYNC].next); 1117 ad->last_check_fifo[ad->batch_data_dir] = jiffies; 1118 goto dispatch_request; 1119 } 1120 1121 /* 1122 * the last batch was a read 1123 */ 1124 1125 if (writes) { 1126dispatch_writes: 1127 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_ASYNC])); 1128 1129 if (ad->batch_data_dir == BLK_RW_SYNC) { 1130 ad->changed_batch = 1; 1131 1132 /* 1133 * new_batch might be 1 when the queue runs out of 1134 * reads. A subsequent submission of a write might 1135 * cause a change of batch before the read is finished. 1136 */ 1137 ad->new_batch = 0; 1138 } 1139 ad->batch_data_dir = BLK_RW_ASYNC; 1140 ad->current_write_count = ad->write_batch_count; 1141 ad->write_batch_idled = 0; 1142 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_ASYNC].next); 1143 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies; 1144 goto dispatch_request; 1145 } 1146 1147 BUG(); 1148 return 0; 1149 1150dispatch_request: 1151 /* 1152 * If a request has expired, service it. 1153 */ 1154 1155 if (as_fifo_expired(ad, ad->batch_data_dir)) { 1156fifo_expired: 1157 rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); 1158 } 1159 1160 if (ad->changed_batch) { 1161 WARN_ON(ad->new_batch); 1162 1163 if (ad->nr_dispatched) 1164 return 0; 1165 1166 if (ad->batch_data_dir == BLK_RW_ASYNC) 1167 ad->current_batch_expires = jiffies + 1168 ad->batch_expire[BLK_RW_ASYNC]; 1169 else 1170 ad->new_batch = 1; 1171 1172 ad->changed_batch = 0; 1173 } 1174 1175 /* 1176 * rq is the selected appropriate request. 1177 */ 1178 as_move_to_dispatch(ad, rq); 1179 1180 return 1; 1181} 1182 1183/* 1184 * add rq to rbtree and fifo 1185 */ 1186static void as_add_request(struct request_queue *q, struct request *rq) 1187{ 1188 struct as_data *ad = q->elevator->elevator_data; 1189 int data_dir; 1190 1191 RQ_SET_STATE(rq, AS_RQ_NEW); 1192 1193 data_dir = rq_is_sync(rq); 1194 1195 rq->elevator_private = as_get_io_context(q->node); 1196 1197 if (RQ_IOC(rq)) { 1198 as_update_iohist(ad, RQ_IOC(rq)->aic, rq); 1199 atomic_inc(&RQ_IOC(rq)->aic->nr_queued); 1200 } 1201 1202 as_add_rq_rb(ad, rq); 1203 1204 /* 1205 * set expire time and add to fifo list 1206 */ 1207 rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]); 1208 list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]); 1209 1210 as_update_rq(ad, rq); /* keep state machine up to date */ 1211 RQ_SET_STATE(rq, AS_RQ_QUEUED); 1212} 1213 1214static void as_activate_request(struct request_queue *q, struct request *rq) 1215{ 1216 WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED); 1217 RQ_SET_STATE(rq, AS_RQ_REMOVED); 1218 if (RQ_IOC(rq) && RQ_IOC(rq)->aic) 1219 atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched); 1220} 1221 1222static void as_deactivate_request(struct request_queue *q, struct request *rq) 1223{ 1224 WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED); 1225 RQ_SET_STATE(rq, AS_RQ_DISPATCHED); 1226 if (RQ_IOC(rq) && RQ_IOC(rq)->aic) 1227 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); 1228} 1229 1230/* 1231 * as_queue_empty tells us if there are requests left in the device. It may 1232 * not be the case that a driver can get the next request even if the queue 1233 * is not empty - it is used in the block layer to check for plugging and 1234 * merging opportunities 1235 */ 1236static int as_queue_empty(struct request_queue *q) 1237{ 1238 struct as_data *ad = q->elevator->elevator_data; 1239 1240 return list_empty(&ad->fifo_list[BLK_RW_ASYNC]) 1241 && list_empty(&ad->fifo_list[BLK_RW_SYNC]); 1242} 1243 1244static int 1245as_merge(struct request_queue *q, struct request **req, struct bio *bio) 1246{ 1247 struct as_data *ad = q->elevator->elevator_data; 1248 sector_t rb_key = bio->bi_sector + bio_sectors(bio); 1249 struct request *__rq; 1250 1251 /* 1252 * check for front merge 1253 */ 1254 __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key); 1255 if (__rq && elv_rq_merge_ok(__rq, bio)) { 1256 *req = __rq; 1257 return ELEVATOR_FRONT_MERGE; 1258 } 1259 1260 return ELEVATOR_NO_MERGE; 1261} 1262 1263static void as_merged_request(struct request_queue *q, struct request *req, 1264 int type) 1265{ 1266 struct as_data *ad = q->elevator->elevator_data; 1267 1268 /* 1269 * if the merge was a front merge, we need to reposition request 1270 */ 1271 if (type == ELEVATOR_FRONT_MERGE) { 1272 as_del_rq_rb(ad, req); 1273 as_add_rq_rb(ad, req); 1274 /* 1275 * Note! At this stage of this and the next function, our next 1276 * request may not be optimal - eg the request may have "grown" 1277 * behind the disk head. We currently don't bother adjusting. 1278 */ 1279 } 1280} 1281 1282static void as_merged_requests(struct request_queue *q, struct request *req, 1283 struct request *next) 1284{ 1285 /* 1286 * if next expires before rq, assign its expire time to arq 1287 * and move into next position (next will be deleted) in fifo 1288 */ 1289 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { 1290 if (time_before(rq_fifo_time(next), rq_fifo_time(req))) { 1291 list_move(&req->queuelist, &next->queuelist); 1292 rq_set_fifo_time(req, rq_fifo_time(next)); 1293 } 1294 } 1295 1296 /* 1297 * kill knowledge of next, this one is a goner 1298 */ 1299 as_remove_queued_request(q, next); 1300 as_put_io_context(next); 1301 1302 RQ_SET_STATE(next, AS_RQ_MERGED); 1303} 1304 1305/* 1306 * This is executed in a "deferred" process context, by kblockd. It calls the 1307 * driver's request_fn so the driver can submit that request. 1308 * 1309 * IMPORTANT! This guy will reenter the elevator, so set up all queue global 1310 * state before calling, and don't rely on any state over calls. 1311 * 1312 * FIXME! dispatch queue is not a queue at all! 1313 */ 1314static void as_work_handler(struct work_struct *work) 1315{ 1316 struct as_data *ad = container_of(work, struct as_data, antic_work); 1317 1318 blk_run_queue(ad->q); 1319} 1320 1321static int as_may_queue(struct request_queue *q, int rw) 1322{ 1323 int ret = ELV_MQUEUE_MAY; 1324 struct as_data *ad = q->elevator->elevator_data; 1325 struct io_context *ioc; 1326 if (ad->antic_status == ANTIC_WAIT_REQ || 1327 ad->antic_status == ANTIC_WAIT_NEXT) { 1328 ioc = as_get_io_context(q->node); 1329 if (ad->io_context == ioc) 1330 ret = ELV_MQUEUE_MUST; 1331 put_io_context(ioc); 1332 } 1333 1334 return ret; 1335} 1336 1337static void as_exit_queue(struct elevator_queue *e) 1338{ 1339 struct as_data *ad = e->elevator_data; 1340 1341 del_timer_sync(&ad->antic_timer); 1342 cancel_work_sync(&ad->antic_work); 1343 1344 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_SYNC])); 1345 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_ASYNC])); 1346 1347 put_io_context(ad->io_context); 1348 kfree(ad); 1349} 1350 1351/* 1352 * initialize elevator private data (as_data). 1353 */ 1354static void *as_init_queue(struct request_queue *q) 1355{ 1356 struct as_data *ad; 1357 1358 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node); 1359 if (!ad) 1360 return NULL; 1361 1362 ad->q = q; /* Identify what queue the data belongs to */ 1363 1364 /* anticipatory scheduling helpers */ 1365 ad->antic_timer.function = as_antic_timeout; 1366 ad->antic_timer.data = (unsigned long)q; 1367 init_timer(&ad->antic_timer); 1368 INIT_WORK(&ad->antic_work, as_work_handler); 1369 1370 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_SYNC]); 1371 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_ASYNC]); 1372 ad->sort_list[BLK_RW_SYNC] = RB_ROOT; 1373 ad->sort_list[BLK_RW_ASYNC] = RB_ROOT; 1374 ad->fifo_expire[BLK_RW_SYNC] = default_read_expire; 1375 ad->fifo_expire[BLK_RW_ASYNC] = default_write_expire; 1376 ad->antic_expire = default_antic_expire; 1377 ad->batch_expire[BLK_RW_SYNC] = default_read_batch_expire; 1378 ad->batch_expire[BLK_RW_ASYNC] = default_write_batch_expire; 1379 1380 ad->current_batch_expires = jiffies + ad->batch_expire[BLK_RW_SYNC]; 1381 ad->write_batch_count = ad->batch_expire[BLK_RW_ASYNC] / 10; 1382 if (ad->write_batch_count < 2) 1383 ad->write_batch_count = 2; 1384 1385 return ad; 1386} 1387 1388/* 1389 * sysfs parts below 1390 */ 1391 1392static ssize_t 1393as_var_show(unsigned int var, char *page) 1394{ 1395 return sprintf(page, "%d\n", var); 1396} 1397 1398static ssize_t 1399as_var_store(unsigned long *var, const char *page, size_t count) 1400{ 1401 char *p = (char *) page; 1402 1403 *var = simple_strtoul(p, &p, 10); 1404 return count; 1405} 1406 1407static ssize_t est_time_show(struct elevator_queue *e, char *page) 1408{ 1409 struct as_data *ad = e->elevator_data; 1410 int pos = 0; 1411 1412 pos += sprintf(page+pos, "%lu %% exit probability\n", 1413 100*ad->exit_prob/256); 1414 pos += sprintf(page+pos, "%lu %% probability of exiting without a " 1415 "cooperating process submitting IO\n", 1416 100*ad->exit_no_coop/256); 1417 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); 1418 pos += sprintf(page+pos, "%llu sectors new seek distance\n", 1419 (unsigned long long)ad->new_seek_mean); 1420 1421 return pos; 1422} 1423 1424#define SHOW_FUNCTION(__FUNC, __VAR) \ 1425static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 1426{ \ 1427 struct as_data *ad = e->elevator_data; \ 1428 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ 1429} 1430SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[BLK_RW_SYNC]); 1431SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[BLK_RW_ASYNC]); 1432SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire); 1433SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[BLK_RW_SYNC]); 1434SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[BLK_RW_ASYNC]); 1435#undef SHOW_FUNCTION 1436 1437#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 1438static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 1439{ \ 1440 struct as_data *ad = e->elevator_data; \ 1441 int ret = as_var_store(__PTR, (page), count); \ 1442 if (*(__PTR) < (MIN)) \ 1443 *(__PTR) = (MIN); \ 1444 else if (*(__PTR) > (MAX)) \ 1445 *(__PTR) = (MAX); \ 1446 *(__PTR) = msecs_to_jiffies(*(__PTR)); \ 1447 return ret; \ 1448} 1449STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[BLK_RW_SYNC], 0, INT_MAX); 1450STORE_FUNCTION(as_write_expire_store, 1451 &ad->fifo_expire[BLK_RW_ASYNC], 0, INT_MAX); 1452STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX); 1453STORE_FUNCTION(as_read_batch_expire_store, 1454 &ad->batch_expire[BLK_RW_SYNC], 0, INT_MAX); 1455STORE_FUNCTION(as_write_batch_expire_store, 1456 &ad->batch_expire[BLK_RW_ASYNC], 0, INT_MAX); 1457#undef STORE_FUNCTION 1458 1459#define AS_ATTR(name) \ 1460 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store) 1461 1462static struct elv_fs_entry as_attrs[] = { 1463 __ATTR_RO(est_time), 1464 AS_ATTR(read_expire), 1465 AS_ATTR(write_expire), 1466 AS_ATTR(antic_expire), 1467 AS_ATTR(read_batch_expire), 1468 AS_ATTR(write_batch_expire), 1469 __ATTR_NULL 1470}; 1471 1472static struct elevator_type iosched_as = { 1473 .ops = { 1474 .elevator_merge_fn = as_merge, 1475 .elevator_merged_fn = as_merged_request, 1476 .elevator_merge_req_fn = as_merged_requests, 1477 .elevator_dispatch_fn = as_dispatch_request, 1478 .elevator_add_req_fn = as_add_request, 1479 .elevator_activate_req_fn = as_activate_request, 1480 .elevator_deactivate_req_fn = as_deactivate_request, 1481 .elevator_queue_empty_fn = as_queue_empty, 1482 .elevator_completed_req_fn = as_completed_request, 1483 .elevator_former_req_fn = elv_rb_former_request, 1484 .elevator_latter_req_fn = elv_rb_latter_request, 1485 .elevator_may_queue_fn = as_may_queue, 1486 .elevator_init_fn = as_init_queue, 1487 .elevator_exit_fn = as_exit_queue, 1488 .trim = as_trim, 1489 }, 1490 1491 .elevator_attrs = as_attrs, 1492 .elevator_name = "anticipatory", 1493 .elevator_owner = THIS_MODULE, 1494}; 1495 1496static int __init as_init(void) 1497{ 1498 elv_register(&iosched_as); 1499 1500 return 0; 1501} 1502 1503static void __exit as_exit(void) 1504{ 1505 DECLARE_COMPLETION_ONSTACK(all_gone); 1506 elv_unregister(&iosched_as); 1507 ioc_gone = &all_gone; 1508 /* ioc_gone's update must be visible before reading ioc_count */ 1509 smp_wmb(); 1510 if (elv_ioc_count_read(as_ioc_count)) 1511 wait_for_completion(&all_gone); 1512 synchronize_rcu(); 1513} 1514 1515module_init(as_init); 1516module_exit(as_exit); 1517 1518MODULE_AUTHOR("Nick Piggin"); 1519MODULE_LICENSE("GPL"); 1520MODULE_DESCRIPTION("anticipatory IO scheduler");