at v2.6.32 491 lines 14 kB view raw
1/* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/mm.h> 14 15#include <asm/glue.h> 16#include <asm/shmparam.h> 17#include <asm/cachetype.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * Cache Model 23 * =========== 24 */ 25#undef _CACHE 26#undef MULTI_CACHE 27 28#if defined(CONFIG_CPU_CACHE_V3) 29# ifdef _CACHE 30# define MULTI_CACHE 1 31# else 32# define _CACHE v3 33# endif 34#endif 35 36#if defined(CONFIG_CPU_CACHE_V4) 37# ifdef _CACHE 38# define MULTI_CACHE 1 39# else 40# define _CACHE v4 41# endif 42#endif 43 44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46# define MULTI_CACHE 1 47#endif 48 49#if defined(CONFIG_CPU_FA526) 50# ifdef _CACHE 51# define MULTI_CACHE 1 52# else 53# define _CACHE fa 54# endif 55#endif 56 57#if defined(CONFIG_CPU_ARM926T) 58# ifdef _CACHE 59# define MULTI_CACHE 1 60# else 61# define _CACHE arm926 62# endif 63#endif 64 65#if defined(CONFIG_CPU_ARM940T) 66# ifdef _CACHE 67# define MULTI_CACHE 1 68# else 69# define _CACHE arm940 70# endif 71#endif 72 73#if defined(CONFIG_CPU_ARM946E) 74# ifdef _CACHE 75# define MULTI_CACHE 1 76# else 77# define _CACHE arm946 78# endif 79#endif 80 81#if defined(CONFIG_CPU_CACHE_V4WB) 82# ifdef _CACHE 83# define MULTI_CACHE 1 84# else 85# define _CACHE v4wb 86# endif 87#endif 88 89#if defined(CONFIG_CPU_XSCALE) 90# ifdef _CACHE 91# define MULTI_CACHE 1 92# else 93# define _CACHE xscale 94# endif 95#endif 96 97#if defined(CONFIG_CPU_XSC3) 98# ifdef _CACHE 99# define MULTI_CACHE 1 100# else 101# define _CACHE xsc3 102# endif 103#endif 104 105#if defined(CONFIG_CPU_MOHAWK) 106# ifdef _CACHE 107# define MULTI_CACHE 1 108# else 109# define _CACHE mohawk 110# endif 111#endif 112 113#if defined(CONFIG_CPU_FEROCEON) 114# define MULTI_CACHE 1 115#endif 116 117#if defined(CONFIG_CPU_V6) 118//# ifdef _CACHE 119# define MULTI_CACHE 1 120//# else 121//# define _CACHE v6 122//# endif 123#endif 124 125#if defined(CONFIG_CPU_V7) 126//# ifdef _CACHE 127# define MULTI_CACHE 1 128//# else 129//# define _CACHE v7 130//# endif 131#endif 132 133#if !defined(_CACHE) && !defined(MULTI_CACHE) 134#error Unknown cache maintainence model 135#endif 136 137/* 138 * This flag is used to indicate that the page pointed to by a pte 139 * is dirty and requires cleaning before returning it to the user. 140 */ 141#define PG_dcache_dirty PG_arch_1 142 143/* 144 * MM Cache Management 145 * =================== 146 * 147 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 148 * implement these methods. 149 * 150 * Start addresses are inclusive and end addresses are exclusive; 151 * start addresses should be rounded down, end addresses up. 152 * 153 * See Documentation/cachetlb.txt for more information. 154 * Please note that the implementation of these, and the required 155 * effects are cache-type (VIVT/VIPT/PIPT) specific. 156 * 157 * flush_cache_kern_all() 158 * 159 * Unconditionally clean and invalidate the entire cache. 160 * 161 * flush_cache_user_mm(mm) 162 * 163 * Clean and invalidate all user space cache entries 164 * before a change of page tables. 165 * 166 * flush_cache_user_range(start, end, flags) 167 * 168 * Clean and invalidate a range of cache entries in the 169 * specified address space before a change of page tables. 170 * - start - user start address (inclusive, page aligned) 171 * - end - user end address (exclusive, page aligned) 172 * - flags - vma->vm_flags field 173 * 174 * coherent_kern_range(start, end) 175 * 176 * Ensure coherency between the Icache and the Dcache in the 177 * region described by start, end. If you have non-snooping 178 * Harvard caches, you need to implement this function. 179 * - start - virtual start address 180 * - end - virtual end address 181 * 182 * DMA Cache Coherency 183 * =================== 184 * 185 * dma_inv_range(start, end) 186 * 187 * Invalidate (discard) the specified virtual address range. 188 * May not write back any entries. If 'start' or 'end' 189 * are not cache line aligned, those lines must be written 190 * back. 191 * - start - virtual start address 192 * - end - virtual end address 193 * 194 * dma_clean_range(start, end) 195 * 196 * Clean (write back) the specified virtual address range. 197 * - start - virtual start address 198 * - end - virtual end address 199 * 200 * dma_flush_range(start, end) 201 * 202 * Clean and invalidate the specified virtual address range. 203 * - start - virtual start address 204 * - end - virtual end address 205 */ 206 207struct cpu_cache_fns { 208 void (*flush_kern_all)(void); 209 void (*flush_user_all)(void); 210 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 211 212 void (*coherent_kern_range)(unsigned long, unsigned long); 213 void (*coherent_user_range)(unsigned long, unsigned long); 214 void (*flush_kern_dcache_page)(void *); 215 216 void (*dma_inv_range)(const void *, const void *); 217 void (*dma_clean_range)(const void *, const void *); 218 void (*dma_flush_range)(const void *, const void *); 219}; 220 221struct outer_cache_fns { 222 void (*inv_range)(unsigned long, unsigned long); 223 void (*clean_range)(unsigned long, unsigned long); 224 void (*flush_range)(unsigned long, unsigned long); 225}; 226 227/* 228 * Select the calling method 229 */ 230#ifdef MULTI_CACHE 231 232extern struct cpu_cache_fns cpu_cache; 233 234#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 235#define __cpuc_flush_user_all cpu_cache.flush_user_all 236#define __cpuc_flush_user_range cpu_cache.flush_user_range 237#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 238#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 239#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 240 241/* 242 * These are private to the dma-mapping API. Do not use directly. 243 * Their sole purpose is to ensure that data held in the cache 244 * is visible to DMA, or data written by DMA to system memory is 245 * visible to the CPU. 246 */ 247#define dmac_inv_range cpu_cache.dma_inv_range 248#define dmac_clean_range cpu_cache.dma_clean_range 249#define dmac_flush_range cpu_cache.dma_flush_range 250 251#else 252 253#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 254#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 255#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 256#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 257#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 258#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 259 260extern void __cpuc_flush_kern_all(void); 261extern void __cpuc_flush_user_all(void); 262extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 263extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 264extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 265extern void __cpuc_flush_dcache_page(void *); 266 267/* 268 * These are private to the dma-mapping API. Do not use directly. 269 * Their sole purpose is to ensure that data held in the cache 270 * is visible to DMA, or data written by DMA to system memory is 271 * visible to the CPU. 272 */ 273#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 274#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 275#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 276 277extern void dmac_inv_range(const void *, const void *); 278extern void dmac_clean_range(const void *, const void *); 279extern void dmac_flush_range(const void *, const void *); 280 281#endif 282 283#ifdef CONFIG_OUTER_CACHE 284 285extern struct outer_cache_fns outer_cache; 286 287static inline void outer_inv_range(unsigned long start, unsigned long end) 288{ 289 if (outer_cache.inv_range) 290 outer_cache.inv_range(start, end); 291} 292static inline void outer_clean_range(unsigned long start, unsigned long end) 293{ 294 if (outer_cache.clean_range) 295 outer_cache.clean_range(start, end); 296} 297static inline void outer_flush_range(unsigned long start, unsigned long end) 298{ 299 if (outer_cache.flush_range) 300 outer_cache.flush_range(start, end); 301} 302 303#else 304 305static inline void outer_inv_range(unsigned long start, unsigned long end) 306{ } 307static inline void outer_clean_range(unsigned long start, unsigned long end) 308{ } 309static inline void outer_flush_range(unsigned long start, unsigned long end) 310{ } 311 312#endif 313 314/* 315 * Copy user data from/to a page which is mapped into a different 316 * processes address space. Really, we want to allow our "user 317 * space" model to handle this. 318 */ 319#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 320 do { \ 321 memcpy(dst, src, len); \ 322 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 323 } while (0) 324 325#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 326 do { \ 327 memcpy(dst, src, len); \ 328 } while (0) 329 330/* 331 * Convert calls to our calling convention. 332 */ 333#define flush_cache_all() __cpuc_flush_kern_all() 334#ifndef CONFIG_CPU_CACHE_VIPT 335static inline void flush_cache_mm(struct mm_struct *mm) 336{ 337 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 338 __cpuc_flush_user_all(); 339} 340 341static inline void 342flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 343{ 344 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) 345 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 346 vma->vm_flags); 347} 348 349static inline void 350flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 351{ 352 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { 353 unsigned long addr = user_addr & PAGE_MASK; 354 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 355 } 356} 357 358static inline void 359flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 360 unsigned long uaddr, void *kaddr, 361 unsigned long len, int write) 362{ 363 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { 364 unsigned long addr = (unsigned long)kaddr; 365 __cpuc_coherent_kern_range(addr, addr + len); 366 } 367} 368#else 369extern void flush_cache_mm(struct mm_struct *mm); 370extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 371extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 372extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 373 unsigned long uaddr, void *kaddr, 374 unsigned long len, int write); 375#endif 376 377#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 378 379/* 380 * flush_cache_user_range is used when we want to ensure that the 381 * Harvard caches are synchronised for the user space address range. 382 * This is used for the ARM private sys_cacheflush system call. 383 */ 384#define flush_cache_user_range(vma,start,end) \ 385 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 386 387/* 388 * Perform necessary cache operations to ensure that data previously 389 * stored within this range of addresses can be executed by the CPU. 390 */ 391#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 392 393/* 394 * Perform necessary cache operations to ensure that the TLB will 395 * see data written in the specified area. 396 */ 397#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 398 399/* 400 * flush_dcache_page is used when the kernel has written to the page 401 * cache page at virtual address page->virtual. 402 * 403 * If this page isn't mapped (ie, page_mapping == NULL), or it might 404 * have userspace mappings, then we _must_ always clean + invalidate 405 * the dcache entries associated with the kernel mapping. 406 * 407 * Otherwise we can defer the operation, and clean the cache when we are 408 * about to change to user space. This is the same method as used on SPARC64. 409 * See update_mmu_cache for the user space part. 410 */ 411extern void flush_dcache_page(struct page *); 412 413extern void __flush_dcache_page(struct address_space *mapping, struct page *page); 414 415static inline void __flush_icache_all(void) 416{ 417#ifdef CONFIG_ARM_ERRATA_411920 418 extern void v6_icache_inval_all(void); 419 v6_icache_inval_all(); 420#else 421 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n" 422 : 423 : "r" (0)); 424#endif 425} 426 427#define ARCH_HAS_FLUSH_ANON_PAGE 428static inline void flush_anon_page(struct vm_area_struct *vma, 429 struct page *page, unsigned long vmaddr) 430{ 431 extern void __flush_anon_page(struct vm_area_struct *vma, 432 struct page *, unsigned long); 433 if (PageAnon(page)) 434 __flush_anon_page(vma, page, vmaddr); 435} 436 437#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 438static inline void flush_kernel_dcache_page(struct page *page) 439{ 440 /* highmem pages are always flushed upon kunmap already */ 441 if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page)) 442 __cpuc_flush_dcache_page(page_address(page)); 443} 444 445#define flush_dcache_mmap_lock(mapping) \ 446 spin_lock_irq(&(mapping)->tree_lock) 447#define flush_dcache_mmap_unlock(mapping) \ 448 spin_unlock_irq(&(mapping)->tree_lock) 449 450#define flush_icache_user_range(vma,page,addr,len) \ 451 flush_dcache_page(page) 452 453/* 454 * We don't appear to need to do anything here. In fact, if we did, we'd 455 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 456 */ 457#define flush_icache_page(vma,page) do { } while (0) 458 459static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt, 460 unsigned offset, size_t size) 461{ 462 const void *start = (void __force *)virt + offset; 463 dmac_inv_range(start, start + size); 464} 465 466/* 467 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 468 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 469 * caches, since the direct-mappings of these pages may contain cached 470 * data, we need to do a full cache flush to ensure that writebacks 471 * don't corrupt data placed into these pages via the new mappings. 472 */ 473static inline void flush_cache_vmap(unsigned long start, unsigned long end) 474{ 475 if (!cache_is_vipt_nonaliasing()) 476 flush_cache_all(); 477 else 478 /* 479 * set_pte_at() called from vmap_pte_range() does not 480 * have a DSB after cleaning the cache line. 481 */ 482 dsb(); 483} 484 485static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 486{ 487 if (!cache_is_vipt_nonaliasing()) 488 flush_cache_all(); 489} 490 491#endif