1/* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7/* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13#include <linux/init.h> 14#include <linux/types.h> 15#include <linux/input.h> 16#include <linux/module.h> 17#include <linux/random.h> 18#include <linux/major.h> 19#include <linux/proc_fs.h> 20#include <linux/seq_file.h> 21#include <linux/poll.h> 22#include <linux/device.h> 23#include <linux/mutex.h> 24#include <linux/rcupdate.h> 25#include <linux/smp_lock.h> 26 27MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 28MODULE_DESCRIPTION("Input core"); 29MODULE_LICENSE("GPL"); 30 31#define INPUT_DEVICES 256 32 33/* 34 * EV_ABS events which should not be cached are listed here. 35 */ 36static unsigned int input_abs_bypass_init_data[] __initdata = { 37 ABS_MT_TOUCH_MAJOR, 38 ABS_MT_TOUCH_MINOR, 39 ABS_MT_WIDTH_MAJOR, 40 ABS_MT_WIDTH_MINOR, 41 ABS_MT_ORIENTATION, 42 ABS_MT_POSITION_X, 43 ABS_MT_POSITION_Y, 44 ABS_MT_TOOL_TYPE, 45 ABS_MT_BLOB_ID, 46 ABS_MT_TRACKING_ID, 47 0 48}; 49static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 50 51static LIST_HEAD(input_dev_list); 52static LIST_HEAD(input_handler_list); 53 54/* 55 * input_mutex protects access to both input_dev_list and input_handler_list. 56 * This also causes input_[un]register_device and input_[un]register_handler 57 * be mutually exclusive which simplifies locking in drivers implementing 58 * input handlers. 59 */ 60static DEFINE_MUTEX(input_mutex); 61 62static struct input_handler *input_table[8]; 63 64static inline int is_event_supported(unsigned int code, 65 unsigned long *bm, unsigned int max) 66{ 67 return code <= max && test_bit(code, bm); 68} 69 70static int input_defuzz_abs_event(int value, int old_val, int fuzz) 71{ 72 if (fuzz) { 73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 74 return old_val; 75 76 if (value > old_val - fuzz && value < old_val + fuzz) 77 return (old_val * 3 + value) / 4; 78 79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 80 return (old_val + value) / 2; 81 } 82 83 return value; 84} 85 86/* 87 * Pass event through all open handles. This function is called with 88 * dev->event_lock held and interrupts disabled. 89 */ 90static void input_pass_event(struct input_dev *dev, 91 unsigned int type, unsigned int code, int value) 92{ 93 struct input_handle *handle; 94 95 rcu_read_lock(); 96 97 handle = rcu_dereference(dev->grab); 98 if (handle) 99 handle->handler->event(handle, type, code, value); 100 else 101 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 102 if (handle->open) 103 handle->handler->event(handle, 104 type, code, value); 105 rcu_read_unlock(); 106} 107 108/* 109 * Generate software autorepeat event. Note that we take 110 * dev->event_lock here to avoid racing with input_event 111 * which may cause keys get "stuck". 112 */ 113static void input_repeat_key(unsigned long data) 114{ 115 struct input_dev *dev = (void *) data; 116 unsigned long flags; 117 118 spin_lock_irqsave(&dev->event_lock, flags); 119 120 if (test_bit(dev->repeat_key, dev->key) && 121 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 122 123 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 124 125 if (dev->sync) { 126 /* 127 * Only send SYN_REPORT if we are not in a middle 128 * of driver parsing a new hardware packet. 129 * Otherwise assume that the driver will send 130 * SYN_REPORT once it's done. 131 */ 132 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 133 } 134 135 if (dev->rep[REP_PERIOD]) 136 mod_timer(&dev->timer, jiffies + 137 msecs_to_jiffies(dev->rep[REP_PERIOD])); 138 } 139 140 spin_unlock_irqrestore(&dev->event_lock, flags); 141} 142 143static void input_start_autorepeat(struct input_dev *dev, int code) 144{ 145 if (test_bit(EV_REP, dev->evbit) && 146 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 147 dev->timer.data) { 148 dev->repeat_key = code; 149 mod_timer(&dev->timer, 150 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 151 } 152} 153 154static void input_stop_autorepeat(struct input_dev *dev) 155{ 156 del_timer(&dev->timer); 157} 158 159#define INPUT_IGNORE_EVENT 0 160#define INPUT_PASS_TO_HANDLERS 1 161#define INPUT_PASS_TO_DEVICE 2 162#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 163 164static void input_handle_event(struct input_dev *dev, 165 unsigned int type, unsigned int code, int value) 166{ 167 int disposition = INPUT_IGNORE_EVENT; 168 169 switch (type) { 170 171 case EV_SYN: 172 switch (code) { 173 case SYN_CONFIG: 174 disposition = INPUT_PASS_TO_ALL; 175 break; 176 177 case SYN_REPORT: 178 if (!dev->sync) { 179 dev->sync = 1; 180 disposition = INPUT_PASS_TO_HANDLERS; 181 } 182 break; 183 case SYN_MT_REPORT: 184 dev->sync = 0; 185 disposition = INPUT_PASS_TO_HANDLERS; 186 break; 187 } 188 break; 189 190 case EV_KEY: 191 if (is_event_supported(code, dev->keybit, KEY_MAX) && 192 !!test_bit(code, dev->key) != value) { 193 194 if (value != 2) { 195 __change_bit(code, dev->key); 196 if (value) 197 input_start_autorepeat(dev, code); 198 else 199 input_stop_autorepeat(dev); 200 } 201 202 disposition = INPUT_PASS_TO_HANDLERS; 203 } 204 break; 205 206 case EV_SW: 207 if (is_event_supported(code, dev->swbit, SW_MAX) && 208 !!test_bit(code, dev->sw) != value) { 209 210 __change_bit(code, dev->sw); 211 disposition = INPUT_PASS_TO_HANDLERS; 212 } 213 break; 214 215 case EV_ABS: 216 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 217 218 if (test_bit(code, input_abs_bypass)) { 219 disposition = INPUT_PASS_TO_HANDLERS; 220 break; 221 } 222 223 value = input_defuzz_abs_event(value, 224 dev->abs[code], dev->absfuzz[code]); 225 226 if (dev->abs[code] != value) { 227 dev->abs[code] = value; 228 disposition = INPUT_PASS_TO_HANDLERS; 229 } 230 } 231 break; 232 233 case EV_REL: 234 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 235 disposition = INPUT_PASS_TO_HANDLERS; 236 237 break; 238 239 case EV_MSC: 240 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 241 disposition = INPUT_PASS_TO_ALL; 242 243 break; 244 245 case EV_LED: 246 if (is_event_supported(code, dev->ledbit, LED_MAX) && 247 !!test_bit(code, dev->led) != value) { 248 249 __change_bit(code, dev->led); 250 disposition = INPUT_PASS_TO_ALL; 251 } 252 break; 253 254 case EV_SND: 255 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 256 257 if (!!test_bit(code, dev->snd) != !!value) 258 __change_bit(code, dev->snd); 259 disposition = INPUT_PASS_TO_ALL; 260 } 261 break; 262 263 case EV_REP: 264 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 265 dev->rep[code] = value; 266 disposition = INPUT_PASS_TO_ALL; 267 } 268 break; 269 270 case EV_FF: 271 if (value >= 0) 272 disposition = INPUT_PASS_TO_ALL; 273 break; 274 275 case EV_PWR: 276 disposition = INPUT_PASS_TO_ALL; 277 break; 278 } 279 280 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 281 dev->sync = 0; 282 283 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 284 dev->event(dev, type, code, value); 285 286 if (disposition & INPUT_PASS_TO_HANDLERS) 287 input_pass_event(dev, type, code, value); 288} 289 290/** 291 * input_event() - report new input event 292 * @dev: device that generated the event 293 * @type: type of the event 294 * @code: event code 295 * @value: value of the event 296 * 297 * This function should be used by drivers implementing various input 298 * devices. See also input_inject_event(). 299 */ 300 301void input_event(struct input_dev *dev, 302 unsigned int type, unsigned int code, int value) 303{ 304 unsigned long flags; 305 306 if (is_event_supported(type, dev->evbit, EV_MAX)) { 307 308 spin_lock_irqsave(&dev->event_lock, flags); 309 add_input_randomness(type, code, value); 310 input_handle_event(dev, type, code, value); 311 spin_unlock_irqrestore(&dev->event_lock, flags); 312 } 313} 314EXPORT_SYMBOL(input_event); 315 316/** 317 * input_inject_event() - send input event from input handler 318 * @handle: input handle to send event through 319 * @type: type of the event 320 * @code: event code 321 * @value: value of the event 322 * 323 * Similar to input_event() but will ignore event if device is 324 * "grabbed" and handle injecting event is not the one that owns 325 * the device. 326 */ 327void input_inject_event(struct input_handle *handle, 328 unsigned int type, unsigned int code, int value) 329{ 330 struct input_dev *dev = handle->dev; 331 struct input_handle *grab; 332 unsigned long flags; 333 334 if (is_event_supported(type, dev->evbit, EV_MAX)) { 335 spin_lock_irqsave(&dev->event_lock, flags); 336 337 rcu_read_lock(); 338 grab = rcu_dereference(dev->grab); 339 if (!grab || grab == handle) 340 input_handle_event(dev, type, code, value); 341 rcu_read_unlock(); 342 343 spin_unlock_irqrestore(&dev->event_lock, flags); 344 } 345} 346EXPORT_SYMBOL(input_inject_event); 347 348/** 349 * input_grab_device - grabs device for exclusive use 350 * @handle: input handle that wants to own the device 351 * 352 * When a device is grabbed by an input handle all events generated by 353 * the device are delivered only to this handle. Also events injected 354 * by other input handles are ignored while device is grabbed. 355 */ 356int input_grab_device(struct input_handle *handle) 357{ 358 struct input_dev *dev = handle->dev; 359 int retval; 360 361 retval = mutex_lock_interruptible(&dev->mutex); 362 if (retval) 363 return retval; 364 365 if (dev->grab) { 366 retval = -EBUSY; 367 goto out; 368 } 369 370 rcu_assign_pointer(dev->grab, handle); 371 synchronize_rcu(); 372 373 out: 374 mutex_unlock(&dev->mutex); 375 return retval; 376} 377EXPORT_SYMBOL(input_grab_device); 378 379static void __input_release_device(struct input_handle *handle) 380{ 381 struct input_dev *dev = handle->dev; 382 383 if (dev->grab == handle) { 384 rcu_assign_pointer(dev->grab, NULL); 385 /* Make sure input_pass_event() notices that grab is gone */ 386 synchronize_rcu(); 387 388 list_for_each_entry(handle, &dev->h_list, d_node) 389 if (handle->open && handle->handler->start) 390 handle->handler->start(handle); 391 } 392} 393 394/** 395 * input_release_device - release previously grabbed device 396 * @handle: input handle that owns the device 397 * 398 * Releases previously grabbed device so that other input handles can 399 * start receiving input events. Upon release all handlers attached 400 * to the device have their start() method called so they have a change 401 * to synchronize device state with the rest of the system. 402 */ 403void input_release_device(struct input_handle *handle) 404{ 405 struct input_dev *dev = handle->dev; 406 407 mutex_lock(&dev->mutex); 408 __input_release_device(handle); 409 mutex_unlock(&dev->mutex); 410} 411EXPORT_SYMBOL(input_release_device); 412 413/** 414 * input_open_device - open input device 415 * @handle: handle through which device is being accessed 416 * 417 * This function should be called by input handlers when they 418 * want to start receive events from given input device. 419 */ 420int input_open_device(struct input_handle *handle) 421{ 422 struct input_dev *dev = handle->dev; 423 int retval; 424 425 retval = mutex_lock_interruptible(&dev->mutex); 426 if (retval) 427 return retval; 428 429 if (dev->going_away) { 430 retval = -ENODEV; 431 goto out; 432 } 433 434 handle->open++; 435 436 if (!dev->users++ && dev->open) 437 retval = dev->open(dev); 438 439 if (retval) { 440 dev->users--; 441 if (!--handle->open) { 442 /* 443 * Make sure we are not delivering any more events 444 * through this handle 445 */ 446 synchronize_rcu(); 447 } 448 } 449 450 out: 451 mutex_unlock(&dev->mutex); 452 return retval; 453} 454EXPORT_SYMBOL(input_open_device); 455 456int input_flush_device(struct input_handle *handle, struct file *file) 457{ 458 struct input_dev *dev = handle->dev; 459 int retval; 460 461 retval = mutex_lock_interruptible(&dev->mutex); 462 if (retval) 463 return retval; 464 465 if (dev->flush) 466 retval = dev->flush(dev, file); 467 468 mutex_unlock(&dev->mutex); 469 return retval; 470} 471EXPORT_SYMBOL(input_flush_device); 472 473/** 474 * input_close_device - close input device 475 * @handle: handle through which device is being accessed 476 * 477 * This function should be called by input handlers when they 478 * want to stop receive events from given input device. 479 */ 480void input_close_device(struct input_handle *handle) 481{ 482 struct input_dev *dev = handle->dev; 483 484 mutex_lock(&dev->mutex); 485 486 __input_release_device(handle); 487 488 if (!--dev->users && dev->close) 489 dev->close(dev); 490 491 if (!--handle->open) { 492 /* 493 * synchronize_rcu() makes sure that input_pass_event() 494 * completed and that no more input events are delivered 495 * through this handle 496 */ 497 synchronize_rcu(); 498 } 499 500 mutex_unlock(&dev->mutex); 501} 502EXPORT_SYMBOL(input_close_device); 503 504/* 505 * Prepare device for unregistering 506 */ 507static void input_disconnect_device(struct input_dev *dev) 508{ 509 struct input_handle *handle; 510 int code; 511 512 /* 513 * Mark device as going away. Note that we take dev->mutex here 514 * not to protect access to dev->going_away but rather to ensure 515 * that there are no threads in the middle of input_open_device() 516 */ 517 mutex_lock(&dev->mutex); 518 dev->going_away = true; 519 mutex_unlock(&dev->mutex); 520 521 spin_lock_irq(&dev->event_lock); 522 523 /* 524 * Simulate keyup events for all pressed keys so that handlers 525 * are not left with "stuck" keys. The driver may continue 526 * generate events even after we done here but they will not 527 * reach any handlers. 528 */ 529 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 530 for (code = 0; code <= KEY_MAX; code++) { 531 if (is_event_supported(code, dev->keybit, KEY_MAX) && 532 __test_and_clear_bit(code, dev->key)) { 533 input_pass_event(dev, EV_KEY, code, 0); 534 } 535 } 536 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 537 } 538 539 list_for_each_entry(handle, &dev->h_list, d_node) 540 handle->open = 0; 541 542 spin_unlock_irq(&dev->event_lock); 543} 544 545static int input_fetch_keycode(struct input_dev *dev, int scancode) 546{ 547 switch (dev->keycodesize) { 548 case 1: 549 return ((u8 *)dev->keycode)[scancode]; 550 551 case 2: 552 return ((u16 *)dev->keycode)[scancode]; 553 554 default: 555 return ((u32 *)dev->keycode)[scancode]; 556 } 557} 558 559static int input_default_getkeycode(struct input_dev *dev, 560 int scancode, int *keycode) 561{ 562 if (!dev->keycodesize) 563 return -EINVAL; 564 565 if (scancode >= dev->keycodemax) 566 return -EINVAL; 567 568 *keycode = input_fetch_keycode(dev, scancode); 569 570 return 0; 571} 572 573static int input_default_setkeycode(struct input_dev *dev, 574 int scancode, int keycode) 575{ 576 int old_keycode; 577 int i; 578 579 if (scancode >= dev->keycodemax) 580 return -EINVAL; 581 582 if (!dev->keycodesize) 583 return -EINVAL; 584 585 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 586 return -EINVAL; 587 588 switch (dev->keycodesize) { 589 case 1: { 590 u8 *k = (u8 *)dev->keycode; 591 old_keycode = k[scancode]; 592 k[scancode] = keycode; 593 break; 594 } 595 case 2: { 596 u16 *k = (u16 *)dev->keycode; 597 old_keycode = k[scancode]; 598 k[scancode] = keycode; 599 break; 600 } 601 default: { 602 u32 *k = (u32 *)dev->keycode; 603 old_keycode = k[scancode]; 604 k[scancode] = keycode; 605 break; 606 } 607 } 608 609 clear_bit(old_keycode, dev->keybit); 610 set_bit(keycode, dev->keybit); 611 612 for (i = 0; i < dev->keycodemax; i++) { 613 if (input_fetch_keycode(dev, i) == old_keycode) { 614 set_bit(old_keycode, dev->keybit); 615 break; /* Setting the bit twice is useless, so break */ 616 } 617 } 618 619 return 0; 620} 621 622/** 623 * input_get_keycode - retrieve keycode currently mapped to a given scancode 624 * @dev: input device which keymap is being queried 625 * @scancode: scancode (or its equivalent for device in question) for which 626 * keycode is needed 627 * @keycode: result 628 * 629 * This function should be called by anyone interested in retrieving current 630 * keymap. Presently keyboard and evdev handlers use it. 631 */ 632int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 633{ 634 if (scancode < 0) 635 return -EINVAL; 636 637 return dev->getkeycode(dev, scancode, keycode); 638} 639EXPORT_SYMBOL(input_get_keycode); 640 641/** 642 * input_get_keycode - assign new keycode to a given scancode 643 * @dev: input device which keymap is being updated 644 * @scancode: scancode (or its equivalent for device in question) 645 * @keycode: new keycode to be assigned to the scancode 646 * 647 * This function should be called by anyone needing to update current 648 * keymap. Presently keyboard and evdev handlers use it. 649 */ 650int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 651{ 652 unsigned long flags; 653 int old_keycode; 654 int retval; 655 656 if (scancode < 0) 657 return -EINVAL; 658 659 if (keycode < 0 || keycode > KEY_MAX) 660 return -EINVAL; 661 662 spin_lock_irqsave(&dev->event_lock, flags); 663 664 retval = dev->getkeycode(dev, scancode, &old_keycode); 665 if (retval) 666 goto out; 667 668 retval = dev->setkeycode(dev, scancode, keycode); 669 if (retval) 670 goto out; 671 672 /* 673 * Simulate keyup event if keycode is not present 674 * in the keymap anymore 675 */ 676 if (test_bit(EV_KEY, dev->evbit) && 677 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 678 __test_and_clear_bit(old_keycode, dev->key)) { 679 680 input_pass_event(dev, EV_KEY, old_keycode, 0); 681 if (dev->sync) 682 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 683 } 684 685 out: 686 spin_unlock_irqrestore(&dev->event_lock, flags); 687 688 return retval; 689} 690EXPORT_SYMBOL(input_set_keycode); 691 692#define MATCH_BIT(bit, max) \ 693 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 694 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 695 break; \ 696 if (i != BITS_TO_LONGS(max)) \ 697 continue; 698 699static const struct input_device_id *input_match_device(const struct input_device_id *id, 700 struct input_dev *dev) 701{ 702 int i; 703 704 for (; id->flags || id->driver_info; id++) { 705 706 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 707 if (id->bustype != dev->id.bustype) 708 continue; 709 710 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 711 if (id->vendor != dev->id.vendor) 712 continue; 713 714 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 715 if (id->product != dev->id.product) 716 continue; 717 718 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 719 if (id->version != dev->id.version) 720 continue; 721 722 MATCH_BIT(evbit, EV_MAX); 723 MATCH_BIT(keybit, KEY_MAX); 724 MATCH_BIT(relbit, REL_MAX); 725 MATCH_BIT(absbit, ABS_MAX); 726 MATCH_BIT(mscbit, MSC_MAX); 727 MATCH_BIT(ledbit, LED_MAX); 728 MATCH_BIT(sndbit, SND_MAX); 729 MATCH_BIT(ffbit, FF_MAX); 730 MATCH_BIT(swbit, SW_MAX); 731 732 return id; 733 } 734 735 return NULL; 736} 737 738static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 739{ 740 const struct input_device_id *id; 741 int error; 742 743 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 744 return -ENODEV; 745 746 id = input_match_device(handler->id_table, dev); 747 if (!id) 748 return -ENODEV; 749 750 error = handler->connect(handler, dev, id); 751 if (error && error != -ENODEV) 752 printk(KERN_ERR 753 "input: failed to attach handler %s to device %s, " 754 "error: %d\n", 755 handler->name, kobject_name(&dev->dev.kobj), error); 756 757 return error; 758} 759 760 761#ifdef CONFIG_PROC_FS 762 763static struct proc_dir_entry *proc_bus_input_dir; 764static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 765static int input_devices_state; 766 767static inline void input_wakeup_procfs_readers(void) 768{ 769 input_devices_state++; 770 wake_up(&input_devices_poll_wait); 771} 772 773static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 774{ 775 poll_wait(file, &input_devices_poll_wait, wait); 776 if (file->f_version != input_devices_state) { 777 file->f_version = input_devices_state; 778 return POLLIN | POLLRDNORM; 779 } 780 781 return 0; 782} 783 784static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 785{ 786 if (mutex_lock_interruptible(&input_mutex)) 787 return NULL; 788 789 return seq_list_start(&input_dev_list, *pos); 790} 791 792static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 793{ 794 return seq_list_next(v, &input_dev_list, pos); 795} 796 797static void input_devices_seq_stop(struct seq_file *seq, void *v) 798{ 799 mutex_unlock(&input_mutex); 800} 801 802static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 803 unsigned long *bitmap, int max) 804{ 805 int i; 806 807 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 808 if (bitmap[i]) 809 break; 810 811 seq_printf(seq, "B: %s=", name); 812 for (; i >= 0; i--) 813 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : ""); 814 seq_putc(seq, '\n'); 815} 816 817static int input_devices_seq_show(struct seq_file *seq, void *v) 818{ 819 struct input_dev *dev = container_of(v, struct input_dev, node); 820 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 821 struct input_handle *handle; 822 823 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 824 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 825 826 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 827 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 828 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 829 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 830 seq_printf(seq, "H: Handlers="); 831 832 list_for_each_entry(handle, &dev->h_list, d_node) 833 seq_printf(seq, "%s ", handle->name); 834 seq_putc(seq, '\n'); 835 836 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 837 if (test_bit(EV_KEY, dev->evbit)) 838 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 839 if (test_bit(EV_REL, dev->evbit)) 840 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 841 if (test_bit(EV_ABS, dev->evbit)) 842 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 843 if (test_bit(EV_MSC, dev->evbit)) 844 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 845 if (test_bit(EV_LED, dev->evbit)) 846 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 847 if (test_bit(EV_SND, dev->evbit)) 848 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 849 if (test_bit(EV_FF, dev->evbit)) 850 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 851 if (test_bit(EV_SW, dev->evbit)) 852 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 853 854 seq_putc(seq, '\n'); 855 856 kfree(path); 857 return 0; 858} 859 860static const struct seq_operations input_devices_seq_ops = { 861 .start = input_devices_seq_start, 862 .next = input_devices_seq_next, 863 .stop = input_devices_seq_stop, 864 .show = input_devices_seq_show, 865}; 866 867static int input_proc_devices_open(struct inode *inode, struct file *file) 868{ 869 return seq_open(file, &input_devices_seq_ops); 870} 871 872static const struct file_operations input_devices_fileops = { 873 .owner = THIS_MODULE, 874 .open = input_proc_devices_open, 875 .poll = input_proc_devices_poll, 876 .read = seq_read, 877 .llseek = seq_lseek, 878 .release = seq_release, 879}; 880 881static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 882{ 883 if (mutex_lock_interruptible(&input_mutex)) 884 return NULL; 885 886 seq->private = (void *)(unsigned long)*pos; 887 return seq_list_start(&input_handler_list, *pos); 888} 889 890static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 891{ 892 seq->private = (void *)(unsigned long)(*pos + 1); 893 return seq_list_next(v, &input_handler_list, pos); 894} 895 896static void input_handlers_seq_stop(struct seq_file *seq, void *v) 897{ 898 mutex_unlock(&input_mutex); 899} 900 901static int input_handlers_seq_show(struct seq_file *seq, void *v) 902{ 903 struct input_handler *handler = container_of(v, struct input_handler, node); 904 905 seq_printf(seq, "N: Number=%ld Name=%s", 906 (unsigned long)seq->private, handler->name); 907 if (handler->fops) 908 seq_printf(seq, " Minor=%d", handler->minor); 909 seq_putc(seq, '\n'); 910 911 return 0; 912} 913static const struct seq_operations input_handlers_seq_ops = { 914 .start = input_handlers_seq_start, 915 .next = input_handlers_seq_next, 916 .stop = input_handlers_seq_stop, 917 .show = input_handlers_seq_show, 918}; 919 920static int input_proc_handlers_open(struct inode *inode, struct file *file) 921{ 922 return seq_open(file, &input_handlers_seq_ops); 923} 924 925static const struct file_operations input_handlers_fileops = { 926 .owner = THIS_MODULE, 927 .open = input_proc_handlers_open, 928 .read = seq_read, 929 .llseek = seq_lseek, 930 .release = seq_release, 931}; 932 933static int __init input_proc_init(void) 934{ 935 struct proc_dir_entry *entry; 936 937 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 938 if (!proc_bus_input_dir) 939 return -ENOMEM; 940 941 entry = proc_create("devices", 0, proc_bus_input_dir, 942 &input_devices_fileops); 943 if (!entry) 944 goto fail1; 945 946 entry = proc_create("handlers", 0, proc_bus_input_dir, 947 &input_handlers_fileops); 948 if (!entry) 949 goto fail2; 950 951 return 0; 952 953 fail2: remove_proc_entry("devices", proc_bus_input_dir); 954 fail1: remove_proc_entry("bus/input", NULL); 955 return -ENOMEM; 956} 957 958static void input_proc_exit(void) 959{ 960 remove_proc_entry("devices", proc_bus_input_dir); 961 remove_proc_entry("handlers", proc_bus_input_dir); 962 remove_proc_entry("bus/input", NULL); 963} 964 965#else /* !CONFIG_PROC_FS */ 966static inline void input_wakeup_procfs_readers(void) { } 967static inline int input_proc_init(void) { return 0; } 968static inline void input_proc_exit(void) { } 969#endif 970 971#define INPUT_DEV_STRING_ATTR_SHOW(name) \ 972static ssize_t input_dev_show_##name(struct device *dev, \ 973 struct device_attribute *attr, \ 974 char *buf) \ 975{ \ 976 struct input_dev *input_dev = to_input_dev(dev); \ 977 \ 978 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 979 input_dev->name ? input_dev->name : ""); \ 980} \ 981static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 982 983INPUT_DEV_STRING_ATTR_SHOW(name); 984INPUT_DEV_STRING_ATTR_SHOW(phys); 985INPUT_DEV_STRING_ATTR_SHOW(uniq); 986 987static int input_print_modalias_bits(char *buf, int size, 988 char name, unsigned long *bm, 989 unsigned int min_bit, unsigned int max_bit) 990{ 991 int len = 0, i; 992 993 len += snprintf(buf, max(size, 0), "%c", name); 994 for (i = min_bit; i < max_bit; i++) 995 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 996 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 997 return len; 998} 999 1000static int input_print_modalias(char *buf, int size, struct input_dev *id, 1001 int add_cr) 1002{ 1003 int len; 1004 1005 len = snprintf(buf, max(size, 0), 1006 "input:b%04Xv%04Xp%04Xe%04X-", 1007 id->id.bustype, id->id.vendor, 1008 id->id.product, id->id.version); 1009 1010 len += input_print_modalias_bits(buf + len, size - len, 1011 'e', id->evbit, 0, EV_MAX); 1012 len += input_print_modalias_bits(buf + len, size - len, 1013 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1014 len += input_print_modalias_bits(buf + len, size - len, 1015 'r', id->relbit, 0, REL_MAX); 1016 len += input_print_modalias_bits(buf + len, size - len, 1017 'a', id->absbit, 0, ABS_MAX); 1018 len += input_print_modalias_bits(buf + len, size - len, 1019 'm', id->mscbit, 0, MSC_MAX); 1020 len += input_print_modalias_bits(buf + len, size - len, 1021 'l', id->ledbit, 0, LED_MAX); 1022 len += input_print_modalias_bits(buf + len, size - len, 1023 's', id->sndbit, 0, SND_MAX); 1024 len += input_print_modalias_bits(buf + len, size - len, 1025 'f', id->ffbit, 0, FF_MAX); 1026 len += input_print_modalias_bits(buf + len, size - len, 1027 'w', id->swbit, 0, SW_MAX); 1028 1029 if (add_cr) 1030 len += snprintf(buf + len, max(size - len, 0), "\n"); 1031 1032 return len; 1033} 1034 1035static ssize_t input_dev_show_modalias(struct device *dev, 1036 struct device_attribute *attr, 1037 char *buf) 1038{ 1039 struct input_dev *id = to_input_dev(dev); 1040 ssize_t len; 1041 1042 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1043 1044 return min_t(int, len, PAGE_SIZE); 1045} 1046static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1047 1048static struct attribute *input_dev_attrs[] = { 1049 &dev_attr_name.attr, 1050 &dev_attr_phys.attr, 1051 &dev_attr_uniq.attr, 1052 &dev_attr_modalias.attr, 1053 NULL 1054}; 1055 1056static struct attribute_group input_dev_attr_group = { 1057 .attrs = input_dev_attrs, 1058}; 1059 1060#define INPUT_DEV_ID_ATTR(name) \ 1061static ssize_t input_dev_show_id_##name(struct device *dev, \ 1062 struct device_attribute *attr, \ 1063 char *buf) \ 1064{ \ 1065 struct input_dev *input_dev = to_input_dev(dev); \ 1066 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1067} \ 1068static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1069 1070INPUT_DEV_ID_ATTR(bustype); 1071INPUT_DEV_ID_ATTR(vendor); 1072INPUT_DEV_ID_ATTR(product); 1073INPUT_DEV_ID_ATTR(version); 1074 1075static struct attribute *input_dev_id_attrs[] = { 1076 &dev_attr_bustype.attr, 1077 &dev_attr_vendor.attr, 1078 &dev_attr_product.attr, 1079 &dev_attr_version.attr, 1080 NULL 1081}; 1082 1083static struct attribute_group input_dev_id_attr_group = { 1084 .name = "id", 1085 .attrs = input_dev_id_attrs, 1086}; 1087 1088static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1089 int max, int add_cr) 1090{ 1091 int i; 1092 int len = 0; 1093 1094 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 1095 if (bitmap[i]) 1096 break; 1097 1098 for (; i >= 0; i--) 1099 len += snprintf(buf + len, max(buf_size - len, 0), 1100 "%lx%s", bitmap[i], i > 0 ? " " : ""); 1101 1102 if (add_cr) 1103 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1104 1105 return len; 1106} 1107 1108#define INPUT_DEV_CAP_ATTR(ev, bm) \ 1109static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1110 struct device_attribute *attr, \ 1111 char *buf) \ 1112{ \ 1113 struct input_dev *input_dev = to_input_dev(dev); \ 1114 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1115 input_dev->bm##bit, ev##_MAX, 1); \ 1116 return min_t(int, len, PAGE_SIZE); \ 1117} \ 1118static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1119 1120INPUT_DEV_CAP_ATTR(EV, ev); 1121INPUT_DEV_CAP_ATTR(KEY, key); 1122INPUT_DEV_CAP_ATTR(REL, rel); 1123INPUT_DEV_CAP_ATTR(ABS, abs); 1124INPUT_DEV_CAP_ATTR(MSC, msc); 1125INPUT_DEV_CAP_ATTR(LED, led); 1126INPUT_DEV_CAP_ATTR(SND, snd); 1127INPUT_DEV_CAP_ATTR(FF, ff); 1128INPUT_DEV_CAP_ATTR(SW, sw); 1129 1130static struct attribute *input_dev_caps_attrs[] = { 1131 &dev_attr_ev.attr, 1132 &dev_attr_key.attr, 1133 &dev_attr_rel.attr, 1134 &dev_attr_abs.attr, 1135 &dev_attr_msc.attr, 1136 &dev_attr_led.attr, 1137 &dev_attr_snd.attr, 1138 &dev_attr_ff.attr, 1139 &dev_attr_sw.attr, 1140 NULL 1141}; 1142 1143static struct attribute_group input_dev_caps_attr_group = { 1144 .name = "capabilities", 1145 .attrs = input_dev_caps_attrs, 1146}; 1147 1148static const struct attribute_group *input_dev_attr_groups[] = { 1149 &input_dev_attr_group, 1150 &input_dev_id_attr_group, 1151 &input_dev_caps_attr_group, 1152 NULL 1153}; 1154 1155static void input_dev_release(struct device *device) 1156{ 1157 struct input_dev *dev = to_input_dev(device); 1158 1159 input_ff_destroy(dev); 1160 kfree(dev); 1161 1162 module_put(THIS_MODULE); 1163} 1164 1165/* 1166 * Input uevent interface - loading event handlers based on 1167 * device bitfields. 1168 */ 1169static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1170 const char *name, unsigned long *bitmap, int max) 1171{ 1172 int len; 1173 1174 if (add_uevent_var(env, "%s=", name)) 1175 return -ENOMEM; 1176 1177 len = input_print_bitmap(&env->buf[env->buflen - 1], 1178 sizeof(env->buf) - env->buflen, 1179 bitmap, max, 0); 1180 if (len >= (sizeof(env->buf) - env->buflen)) 1181 return -ENOMEM; 1182 1183 env->buflen += len; 1184 return 0; 1185} 1186 1187static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1188 struct input_dev *dev) 1189{ 1190 int len; 1191 1192 if (add_uevent_var(env, "MODALIAS=")) 1193 return -ENOMEM; 1194 1195 len = input_print_modalias(&env->buf[env->buflen - 1], 1196 sizeof(env->buf) - env->buflen, 1197 dev, 0); 1198 if (len >= (sizeof(env->buf) - env->buflen)) 1199 return -ENOMEM; 1200 1201 env->buflen += len; 1202 return 0; 1203} 1204 1205#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1206 do { \ 1207 int err = add_uevent_var(env, fmt, val); \ 1208 if (err) \ 1209 return err; \ 1210 } while (0) 1211 1212#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1213 do { \ 1214 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1215 if (err) \ 1216 return err; \ 1217 } while (0) 1218 1219#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1220 do { \ 1221 int err = input_add_uevent_modalias_var(env, dev); \ 1222 if (err) \ 1223 return err; \ 1224 } while (0) 1225 1226static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1227{ 1228 struct input_dev *dev = to_input_dev(device); 1229 1230 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1231 dev->id.bustype, dev->id.vendor, 1232 dev->id.product, dev->id.version); 1233 if (dev->name) 1234 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1235 if (dev->phys) 1236 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1237 if (dev->uniq) 1238 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1239 1240 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1241 if (test_bit(EV_KEY, dev->evbit)) 1242 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1243 if (test_bit(EV_REL, dev->evbit)) 1244 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1245 if (test_bit(EV_ABS, dev->evbit)) 1246 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1247 if (test_bit(EV_MSC, dev->evbit)) 1248 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1249 if (test_bit(EV_LED, dev->evbit)) 1250 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1251 if (test_bit(EV_SND, dev->evbit)) 1252 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1253 if (test_bit(EV_FF, dev->evbit)) 1254 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1255 if (test_bit(EV_SW, dev->evbit)) 1256 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1257 1258 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1259 1260 return 0; 1261} 1262 1263#define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1264 do { \ 1265 int i; \ 1266 if (!test_bit(EV_##type, dev->evbit)) \ 1267 break; \ 1268 for (i = 0; i < type##_MAX; i++) { \ 1269 if (!test_bit(i, dev->bits##bit) || \ 1270 !test_bit(i, dev->bits)) \ 1271 continue; \ 1272 dev->event(dev, EV_##type, i, on); \ 1273 } \ 1274 } while (0) 1275 1276static void input_dev_reset(struct input_dev *dev, bool activate) 1277{ 1278 if (!dev->event) 1279 return; 1280 1281 INPUT_DO_TOGGLE(dev, LED, led, activate); 1282 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1283 1284 if (activate && test_bit(EV_REP, dev->evbit)) { 1285 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1286 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1287 } 1288} 1289 1290#ifdef CONFIG_PM 1291static int input_dev_suspend(struct device *dev) 1292{ 1293 struct input_dev *input_dev = to_input_dev(dev); 1294 1295 mutex_lock(&input_dev->mutex); 1296 input_dev_reset(input_dev, false); 1297 mutex_unlock(&input_dev->mutex); 1298 1299 return 0; 1300} 1301 1302static int input_dev_resume(struct device *dev) 1303{ 1304 struct input_dev *input_dev = to_input_dev(dev); 1305 1306 mutex_lock(&input_dev->mutex); 1307 input_dev_reset(input_dev, true); 1308 mutex_unlock(&input_dev->mutex); 1309 1310 return 0; 1311} 1312 1313static const struct dev_pm_ops input_dev_pm_ops = { 1314 .suspend = input_dev_suspend, 1315 .resume = input_dev_resume, 1316 .poweroff = input_dev_suspend, 1317 .restore = input_dev_resume, 1318}; 1319#endif /* CONFIG_PM */ 1320 1321static struct device_type input_dev_type = { 1322 .groups = input_dev_attr_groups, 1323 .release = input_dev_release, 1324 .uevent = input_dev_uevent, 1325#ifdef CONFIG_PM 1326 .pm = &input_dev_pm_ops, 1327#endif 1328}; 1329 1330static char *input_devnode(struct device *dev, mode_t *mode) 1331{ 1332 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1333} 1334 1335struct class input_class = { 1336 .name = "input", 1337 .devnode = input_devnode, 1338}; 1339EXPORT_SYMBOL_GPL(input_class); 1340 1341/** 1342 * input_allocate_device - allocate memory for new input device 1343 * 1344 * Returns prepared struct input_dev or NULL. 1345 * 1346 * NOTE: Use input_free_device() to free devices that have not been 1347 * registered; input_unregister_device() should be used for already 1348 * registered devices. 1349 */ 1350struct input_dev *input_allocate_device(void) 1351{ 1352 struct input_dev *dev; 1353 1354 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1355 if (dev) { 1356 dev->dev.type = &input_dev_type; 1357 dev->dev.class = &input_class; 1358 device_initialize(&dev->dev); 1359 mutex_init(&dev->mutex); 1360 spin_lock_init(&dev->event_lock); 1361 INIT_LIST_HEAD(&dev->h_list); 1362 INIT_LIST_HEAD(&dev->node); 1363 1364 __module_get(THIS_MODULE); 1365 } 1366 1367 return dev; 1368} 1369EXPORT_SYMBOL(input_allocate_device); 1370 1371/** 1372 * input_free_device - free memory occupied by input_dev structure 1373 * @dev: input device to free 1374 * 1375 * This function should only be used if input_register_device() 1376 * was not called yet or if it failed. Once device was registered 1377 * use input_unregister_device() and memory will be freed once last 1378 * reference to the device is dropped. 1379 * 1380 * Device should be allocated by input_allocate_device(). 1381 * 1382 * NOTE: If there are references to the input device then memory 1383 * will not be freed until last reference is dropped. 1384 */ 1385void input_free_device(struct input_dev *dev) 1386{ 1387 if (dev) 1388 input_put_device(dev); 1389} 1390EXPORT_SYMBOL(input_free_device); 1391 1392/** 1393 * input_set_capability - mark device as capable of a certain event 1394 * @dev: device that is capable of emitting or accepting event 1395 * @type: type of the event (EV_KEY, EV_REL, etc...) 1396 * @code: event code 1397 * 1398 * In addition to setting up corresponding bit in appropriate capability 1399 * bitmap the function also adjusts dev->evbit. 1400 */ 1401void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1402{ 1403 switch (type) { 1404 case EV_KEY: 1405 __set_bit(code, dev->keybit); 1406 break; 1407 1408 case EV_REL: 1409 __set_bit(code, dev->relbit); 1410 break; 1411 1412 case EV_ABS: 1413 __set_bit(code, dev->absbit); 1414 break; 1415 1416 case EV_MSC: 1417 __set_bit(code, dev->mscbit); 1418 break; 1419 1420 case EV_SW: 1421 __set_bit(code, dev->swbit); 1422 break; 1423 1424 case EV_LED: 1425 __set_bit(code, dev->ledbit); 1426 break; 1427 1428 case EV_SND: 1429 __set_bit(code, dev->sndbit); 1430 break; 1431 1432 case EV_FF: 1433 __set_bit(code, dev->ffbit); 1434 break; 1435 1436 case EV_PWR: 1437 /* do nothing */ 1438 break; 1439 1440 default: 1441 printk(KERN_ERR 1442 "input_set_capability: unknown type %u (code %u)\n", 1443 type, code); 1444 dump_stack(); 1445 return; 1446 } 1447 1448 __set_bit(type, dev->evbit); 1449} 1450EXPORT_SYMBOL(input_set_capability); 1451 1452/** 1453 * input_register_device - register device with input core 1454 * @dev: device to be registered 1455 * 1456 * This function registers device with input core. The device must be 1457 * allocated with input_allocate_device() and all it's capabilities 1458 * set up before registering. 1459 * If function fails the device must be freed with input_free_device(). 1460 * Once device has been successfully registered it can be unregistered 1461 * with input_unregister_device(); input_free_device() should not be 1462 * called in this case. 1463 */ 1464int input_register_device(struct input_dev *dev) 1465{ 1466 static atomic_t input_no = ATOMIC_INIT(0); 1467 struct input_handler *handler; 1468 const char *path; 1469 int error; 1470 1471 __set_bit(EV_SYN, dev->evbit); 1472 1473 /* 1474 * If delay and period are pre-set by the driver, then autorepeating 1475 * is handled by the driver itself and we don't do it in input.c. 1476 */ 1477 1478 init_timer(&dev->timer); 1479 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1480 dev->timer.data = (long) dev; 1481 dev->timer.function = input_repeat_key; 1482 dev->rep[REP_DELAY] = 250; 1483 dev->rep[REP_PERIOD] = 33; 1484 } 1485 1486 if (!dev->getkeycode) 1487 dev->getkeycode = input_default_getkeycode; 1488 1489 if (!dev->setkeycode) 1490 dev->setkeycode = input_default_setkeycode; 1491 1492 dev_set_name(&dev->dev, "input%ld", 1493 (unsigned long) atomic_inc_return(&input_no) - 1); 1494 1495 error = device_add(&dev->dev); 1496 if (error) 1497 return error; 1498 1499 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1500 printk(KERN_INFO "input: %s as %s\n", 1501 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1502 kfree(path); 1503 1504 error = mutex_lock_interruptible(&input_mutex); 1505 if (error) { 1506 device_del(&dev->dev); 1507 return error; 1508 } 1509 1510 list_add_tail(&dev->node, &input_dev_list); 1511 1512 list_for_each_entry(handler, &input_handler_list, node) 1513 input_attach_handler(dev, handler); 1514 1515 input_wakeup_procfs_readers(); 1516 1517 mutex_unlock(&input_mutex); 1518 1519 return 0; 1520} 1521EXPORT_SYMBOL(input_register_device); 1522 1523/** 1524 * input_unregister_device - unregister previously registered device 1525 * @dev: device to be unregistered 1526 * 1527 * This function unregisters an input device. Once device is unregistered 1528 * the caller should not try to access it as it may get freed at any moment. 1529 */ 1530void input_unregister_device(struct input_dev *dev) 1531{ 1532 struct input_handle *handle, *next; 1533 1534 input_disconnect_device(dev); 1535 1536 mutex_lock(&input_mutex); 1537 1538 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1539 handle->handler->disconnect(handle); 1540 WARN_ON(!list_empty(&dev->h_list)); 1541 1542 del_timer_sync(&dev->timer); 1543 list_del_init(&dev->node); 1544 1545 input_wakeup_procfs_readers(); 1546 1547 mutex_unlock(&input_mutex); 1548 1549 device_unregister(&dev->dev); 1550} 1551EXPORT_SYMBOL(input_unregister_device); 1552 1553/** 1554 * input_register_handler - register a new input handler 1555 * @handler: handler to be registered 1556 * 1557 * This function registers a new input handler (interface) for input 1558 * devices in the system and attaches it to all input devices that 1559 * are compatible with the handler. 1560 */ 1561int input_register_handler(struct input_handler *handler) 1562{ 1563 struct input_dev *dev; 1564 int retval; 1565 1566 retval = mutex_lock_interruptible(&input_mutex); 1567 if (retval) 1568 return retval; 1569 1570 INIT_LIST_HEAD(&handler->h_list); 1571 1572 if (handler->fops != NULL) { 1573 if (input_table[handler->minor >> 5]) { 1574 retval = -EBUSY; 1575 goto out; 1576 } 1577 input_table[handler->minor >> 5] = handler; 1578 } 1579 1580 list_add_tail(&handler->node, &input_handler_list); 1581 1582 list_for_each_entry(dev, &input_dev_list, node) 1583 input_attach_handler(dev, handler); 1584 1585 input_wakeup_procfs_readers(); 1586 1587 out: 1588 mutex_unlock(&input_mutex); 1589 return retval; 1590} 1591EXPORT_SYMBOL(input_register_handler); 1592 1593/** 1594 * input_unregister_handler - unregisters an input handler 1595 * @handler: handler to be unregistered 1596 * 1597 * This function disconnects a handler from its input devices and 1598 * removes it from lists of known handlers. 1599 */ 1600void input_unregister_handler(struct input_handler *handler) 1601{ 1602 struct input_handle *handle, *next; 1603 1604 mutex_lock(&input_mutex); 1605 1606 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1607 handler->disconnect(handle); 1608 WARN_ON(!list_empty(&handler->h_list)); 1609 1610 list_del_init(&handler->node); 1611 1612 if (handler->fops != NULL) 1613 input_table[handler->minor >> 5] = NULL; 1614 1615 input_wakeup_procfs_readers(); 1616 1617 mutex_unlock(&input_mutex); 1618} 1619EXPORT_SYMBOL(input_unregister_handler); 1620 1621/** 1622 * input_register_handle - register a new input handle 1623 * @handle: handle to register 1624 * 1625 * This function puts a new input handle onto device's 1626 * and handler's lists so that events can flow through 1627 * it once it is opened using input_open_device(). 1628 * 1629 * This function is supposed to be called from handler's 1630 * connect() method. 1631 */ 1632int input_register_handle(struct input_handle *handle) 1633{ 1634 struct input_handler *handler = handle->handler; 1635 struct input_dev *dev = handle->dev; 1636 int error; 1637 1638 /* 1639 * We take dev->mutex here to prevent race with 1640 * input_release_device(). 1641 */ 1642 error = mutex_lock_interruptible(&dev->mutex); 1643 if (error) 1644 return error; 1645 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1646 mutex_unlock(&dev->mutex); 1647 1648 /* 1649 * Since we are supposed to be called from ->connect() 1650 * which is mutually exclusive with ->disconnect() 1651 * we can't be racing with input_unregister_handle() 1652 * and so separate lock is not needed here. 1653 */ 1654 list_add_tail(&handle->h_node, &handler->h_list); 1655 1656 if (handler->start) 1657 handler->start(handle); 1658 1659 return 0; 1660} 1661EXPORT_SYMBOL(input_register_handle); 1662 1663/** 1664 * input_unregister_handle - unregister an input handle 1665 * @handle: handle to unregister 1666 * 1667 * This function removes input handle from device's 1668 * and handler's lists. 1669 * 1670 * This function is supposed to be called from handler's 1671 * disconnect() method. 1672 */ 1673void input_unregister_handle(struct input_handle *handle) 1674{ 1675 struct input_dev *dev = handle->dev; 1676 1677 list_del_init(&handle->h_node); 1678 1679 /* 1680 * Take dev->mutex to prevent race with input_release_device(). 1681 */ 1682 mutex_lock(&dev->mutex); 1683 list_del_rcu(&handle->d_node); 1684 mutex_unlock(&dev->mutex); 1685 synchronize_rcu(); 1686} 1687EXPORT_SYMBOL(input_unregister_handle); 1688 1689static int input_open_file(struct inode *inode, struct file *file) 1690{ 1691 struct input_handler *handler; 1692 const struct file_operations *old_fops, *new_fops = NULL; 1693 int err; 1694 1695 lock_kernel(); 1696 /* No load-on-demand here? */ 1697 handler = input_table[iminor(inode) >> 5]; 1698 if (!handler || !(new_fops = fops_get(handler->fops))) { 1699 err = -ENODEV; 1700 goto out; 1701 } 1702 1703 /* 1704 * That's _really_ odd. Usually NULL ->open means "nothing special", 1705 * not "no device". Oh, well... 1706 */ 1707 if (!new_fops->open) { 1708 fops_put(new_fops); 1709 err = -ENODEV; 1710 goto out; 1711 } 1712 old_fops = file->f_op; 1713 file->f_op = new_fops; 1714 1715 err = new_fops->open(inode, file); 1716 1717 if (err) { 1718 fops_put(file->f_op); 1719 file->f_op = fops_get(old_fops); 1720 } 1721 fops_put(old_fops); 1722out: 1723 unlock_kernel(); 1724 return err; 1725} 1726 1727static const struct file_operations input_fops = { 1728 .owner = THIS_MODULE, 1729 .open = input_open_file, 1730}; 1731 1732static void __init input_init_abs_bypass(void) 1733{ 1734 const unsigned int *p; 1735 1736 for (p = input_abs_bypass_init_data; *p; p++) 1737 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1738} 1739 1740static int __init input_init(void) 1741{ 1742 int err; 1743 1744 input_init_abs_bypass(); 1745 1746 err = class_register(&input_class); 1747 if (err) { 1748 printk(KERN_ERR "input: unable to register input_dev class\n"); 1749 return err; 1750 } 1751 1752 err = input_proc_init(); 1753 if (err) 1754 goto fail1; 1755 1756 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1757 if (err) { 1758 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1759 goto fail2; 1760 } 1761 1762 return 0; 1763 1764 fail2: input_proc_exit(); 1765 fail1: class_unregister(&input_class); 1766 return err; 1767} 1768 1769static void __exit input_exit(void) 1770{ 1771 input_proc_exit(); 1772 unregister_chrdev(INPUT_MAJOR, "input"); 1773 class_unregister(&input_class); 1774} 1775 1776subsys_initcall(input_init); 1777module_exit(input_exit);