Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#include <linux/init.h>
14#include <linux/types.h>
15#include <linux/input.h>
16#include <linux/module.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/poll.h>
22#include <linux/device.h>
23#include <linux/mutex.h>
24#include <linux/rcupdate.h>
25#include <linux/smp_lock.h>
26
27MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
28MODULE_DESCRIPTION("Input core");
29MODULE_LICENSE("GPL");
30
31#define INPUT_DEVICES 256
32
33/*
34 * EV_ABS events which should not be cached are listed here.
35 */
36static unsigned int input_abs_bypass_init_data[] __initdata = {
37 ABS_MT_TOUCH_MAJOR,
38 ABS_MT_TOUCH_MINOR,
39 ABS_MT_WIDTH_MAJOR,
40 ABS_MT_WIDTH_MINOR,
41 ABS_MT_ORIENTATION,
42 ABS_MT_POSITION_X,
43 ABS_MT_POSITION_Y,
44 ABS_MT_TOOL_TYPE,
45 ABS_MT_BLOB_ID,
46 ABS_MT_TRACKING_ID,
47 0
48};
49static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
50
51static LIST_HEAD(input_dev_list);
52static LIST_HEAD(input_handler_list);
53
54/*
55 * input_mutex protects access to both input_dev_list and input_handler_list.
56 * This also causes input_[un]register_device and input_[un]register_handler
57 * be mutually exclusive which simplifies locking in drivers implementing
58 * input handlers.
59 */
60static DEFINE_MUTEX(input_mutex);
61
62static struct input_handler *input_table[8];
63
64static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
66{
67 return code <= max && test_bit(code, bm);
68}
69
70static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71{
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
75
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
78
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
81 }
82
83 return value;
84}
85
86/*
87 * Pass event through all open handles. This function is called with
88 * dev->event_lock held and interrupts disabled.
89 */
90static void input_pass_event(struct input_dev *dev,
91 unsigned int type, unsigned int code, int value)
92{
93 struct input_handle *handle;
94
95 rcu_read_lock();
96
97 handle = rcu_dereference(dev->grab);
98 if (handle)
99 handle->handler->event(handle, type, code, value);
100 else
101 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
102 if (handle->open)
103 handle->handler->event(handle,
104 type, code, value);
105 rcu_read_unlock();
106}
107
108/*
109 * Generate software autorepeat event. Note that we take
110 * dev->event_lock here to avoid racing with input_event
111 * which may cause keys get "stuck".
112 */
113static void input_repeat_key(unsigned long data)
114{
115 struct input_dev *dev = (void *) data;
116 unsigned long flags;
117
118 spin_lock_irqsave(&dev->event_lock, flags);
119
120 if (test_bit(dev->repeat_key, dev->key) &&
121 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
122
123 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
124
125 if (dev->sync) {
126 /*
127 * Only send SYN_REPORT if we are not in a middle
128 * of driver parsing a new hardware packet.
129 * Otherwise assume that the driver will send
130 * SYN_REPORT once it's done.
131 */
132 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
133 }
134
135 if (dev->rep[REP_PERIOD])
136 mod_timer(&dev->timer, jiffies +
137 msecs_to_jiffies(dev->rep[REP_PERIOD]));
138 }
139
140 spin_unlock_irqrestore(&dev->event_lock, flags);
141}
142
143static void input_start_autorepeat(struct input_dev *dev, int code)
144{
145 if (test_bit(EV_REP, dev->evbit) &&
146 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
147 dev->timer.data) {
148 dev->repeat_key = code;
149 mod_timer(&dev->timer,
150 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
151 }
152}
153
154static void input_stop_autorepeat(struct input_dev *dev)
155{
156 del_timer(&dev->timer);
157}
158
159#define INPUT_IGNORE_EVENT 0
160#define INPUT_PASS_TO_HANDLERS 1
161#define INPUT_PASS_TO_DEVICE 2
162#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
163
164static void input_handle_event(struct input_dev *dev,
165 unsigned int type, unsigned int code, int value)
166{
167 int disposition = INPUT_IGNORE_EVENT;
168
169 switch (type) {
170
171 case EV_SYN:
172 switch (code) {
173 case SYN_CONFIG:
174 disposition = INPUT_PASS_TO_ALL;
175 break;
176
177 case SYN_REPORT:
178 if (!dev->sync) {
179 dev->sync = 1;
180 disposition = INPUT_PASS_TO_HANDLERS;
181 }
182 break;
183 case SYN_MT_REPORT:
184 dev->sync = 0;
185 disposition = INPUT_PASS_TO_HANDLERS;
186 break;
187 }
188 break;
189
190 case EV_KEY:
191 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
192 !!test_bit(code, dev->key) != value) {
193
194 if (value != 2) {
195 __change_bit(code, dev->key);
196 if (value)
197 input_start_autorepeat(dev, code);
198 else
199 input_stop_autorepeat(dev);
200 }
201
202 disposition = INPUT_PASS_TO_HANDLERS;
203 }
204 break;
205
206 case EV_SW:
207 if (is_event_supported(code, dev->swbit, SW_MAX) &&
208 !!test_bit(code, dev->sw) != value) {
209
210 __change_bit(code, dev->sw);
211 disposition = INPUT_PASS_TO_HANDLERS;
212 }
213 break;
214
215 case EV_ABS:
216 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
217
218 if (test_bit(code, input_abs_bypass)) {
219 disposition = INPUT_PASS_TO_HANDLERS;
220 break;
221 }
222
223 value = input_defuzz_abs_event(value,
224 dev->abs[code], dev->absfuzz[code]);
225
226 if (dev->abs[code] != value) {
227 dev->abs[code] = value;
228 disposition = INPUT_PASS_TO_HANDLERS;
229 }
230 }
231 break;
232
233 case EV_REL:
234 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
235 disposition = INPUT_PASS_TO_HANDLERS;
236
237 break;
238
239 case EV_MSC:
240 if (is_event_supported(code, dev->mscbit, MSC_MAX))
241 disposition = INPUT_PASS_TO_ALL;
242
243 break;
244
245 case EV_LED:
246 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
247 !!test_bit(code, dev->led) != value) {
248
249 __change_bit(code, dev->led);
250 disposition = INPUT_PASS_TO_ALL;
251 }
252 break;
253
254 case EV_SND:
255 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
256
257 if (!!test_bit(code, dev->snd) != !!value)
258 __change_bit(code, dev->snd);
259 disposition = INPUT_PASS_TO_ALL;
260 }
261 break;
262
263 case EV_REP:
264 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
265 dev->rep[code] = value;
266 disposition = INPUT_PASS_TO_ALL;
267 }
268 break;
269
270 case EV_FF:
271 if (value >= 0)
272 disposition = INPUT_PASS_TO_ALL;
273 break;
274
275 case EV_PWR:
276 disposition = INPUT_PASS_TO_ALL;
277 break;
278 }
279
280 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
281 dev->sync = 0;
282
283 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
284 dev->event(dev, type, code, value);
285
286 if (disposition & INPUT_PASS_TO_HANDLERS)
287 input_pass_event(dev, type, code, value);
288}
289
290/**
291 * input_event() - report new input event
292 * @dev: device that generated the event
293 * @type: type of the event
294 * @code: event code
295 * @value: value of the event
296 *
297 * This function should be used by drivers implementing various input
298 * devices. See also input_inject_event().
299 */
300
301void input_event(struct input_dev *dev,
302 unsigned int type, unsigned int code, int value)
303{
304 unsigned long flags;
305
306 if (is_event_supported(type, dev->evbit, EV_MAX)) {
307
308 spin_lock_irqsave(&dev->event_lock, flags);
309 add_input_randomness(type, code, value);
310 input_handle_event(dev, type, code, value);
311 spin_unlock_irqrestore(&dev->event_lock, flags);
312 }
313}
314EXPORT_SYMBOL(input_event);
315
316/**
317 * input_inject_event() - send input event from input handler
318 * @handle: input handle to send event through
319 * @type: type of the event
320 * @code: event code
321 * @value: value of the event
322 *
323 * Similar to input_event() but will ignore event if device is
324 * "grabbed" and handle injecting event is not the one that owns
325 * the device.
326 */
327void input_inject_event(struct input_handle *handle,
328 unsigned int type, unsigned int code, int value)
329{
330 struct input_dev *dev = handle->dev;
331 struct input_handle *grab;
332 unsigned long flags;
333
334 if (is_event_supported(type, dev->evbit, EV_MAX)) {
335 spin_lock_irqsave(&dev->event_lock, flags);
336
337 rcu_read_lock();
338 grab = rcu_dereference(dev->grab);
339 if (!grab || grab == handle)
340 input_handle_event(dev, type, code, value);
341 rcu_read_unlock();
342
343 spin_unlock_irqrestore(&dev->event_lock, flags);
344 }
345}
346EXPORT_SYMBOL(input_inject_event);
347
348/**
349 * input_grab_device - grabs device for exclusive use
350 * @handle: input handle that wants to own the device
351 *
352 * When a device is grabbed by an input handle all events generated by
353 * the device are delivered only to this handle. Also events injected
354 * by other input handles are ignored while device is grabbed.
355 */
356int input_grab_device(struct input_handle *handle)
357{
358 struct input_dev *dev = handle->dev;
359 int retval;
360
361 retval = mutex_lock_interruptible(&dev->mutex);
362 if (retval)
363 return retval;
364
365 if (dev->grab) {
366 retval = -EBUSY;
367 goto out;
368 }
369
370 rcu_assign_pointer(dev->grab, handle);
371 synchronize_rcu();
372
373 out:
374 mutex_unlock(&dev->mutex);
375 return retval;
376}
377EXPORT_SYMBOL(input_grab_device);
378
379static void __input_release_device(struct input_handle *handle)
380{
381 struct input_dev *dev = handle->dev;
382
383 if (dev->grab == handle) {
384 rcu_assign_pointer(dev->grab, NULL);
385 /* Make sure input_pass_event() notices that grab is gone */
386 synchronize_rcu();
387
388 list_for_each_entry(handle, &dev->h_list, d_node)
389 if (handle->open && handle->handler->start)
390 handle->handler->start(handle);
391 }
392}
393
394/**
395 * input_release_device - release previously grabbed device
396 * @handle: input handle that owns the device
397 *
398 * Releases previously grabbed device so that other input handles can
399 * start receiving input events. Upon release all handlers attached
400 * to the device have their start() method called so they have a change
401 * to synchronize device state with the rest of the system.
402 */
403void input_release_device(struct input_handle *handle)
404{
405 struct input_dev *dev = handle->dev;
406
407 mutex_lock(&dev->mutex);
408 __input_release_device(handle);
409 mutex_unlock(&dev->mutex);
410}
411EXPORT_SYMBOL(input_release_device);
412
413/**
414 * input_open_device - open input device
415 * @handle: handle through which device is being accessed
416 *
417 * This function should be called by input handlers when they
418 * want to start receive events from given input device.
419 */
420int input_open_device(struct input_handle *handle)
421{
422 struct input_dev *dev = handle->dev;
423 int retval;
424
425 retval = mutex_lock_interruptible(&dev->mutex);
426 if (retval)
427 return retval;
428
429 if (dev->going_away) {
430 retval = -ENODEV;
431 goto out;
432 }
433
434 handle->open++;
435
436 if (!dev->users++ && dev->open)
437 retval = dev->open(dev);
438
439 if (retval) {
440 dev->users--;
441 if (!--handle->open) {
442 /*
443 * Make sure we are not delivering any more events
444 * through this handle
445 */
446 synchronize_rcu();
447 }
448 }
449
450 out:
451 mutex_unlock(&dev->mutex);
452 return retval;
453}
454EXPORT_SYMBOL(input_open_device);
455
456int input_flush_device(struct input_handle *handle, struct file *file)
457{
458 struct input_dev *dev = handle->dev;
459 int retval;
460
461 retval = mutex_lock_interruptible(&dev->mutex);
462 if (retval)
463 return retval;
464
465 if (dev->flush)
466 retval = dev->flush(dev, file);
467
468 mutex_unlock(&dev->mutex);
469 return retval;
470}
471EXPORT_SYMBOL(input_flush_device);
472
473/**
474 * input_close_device - close input device
475 * @handle: handle through which device is being accessed
476 *
477 * This function should be called by input handlers when they
478 * want to stop receive events from given input device.
479 */
480void input_close_device(struct input_handle *handle)
481{
482 struct input_dev *dev = handle->dev;
483
484 mutex_lock(&dev->mutex);
485
486 __input_release_device(handle);
487
488 if (!--dev->users && dev->close)
489 dev->close(dev);
490
491 if (!--handle->open) {
492 /*
493 * synchronize_rcu() makes sure that input_pass_event()
494 * completed and that no more input events are delivered
495 * through this handle
496 */
497 synchronize_rcu();
498 }
499
500 mutex_unlock(&dev->mutex);
501}
502EXPORT_SYMBOL(input_close_device);
503
504/*
505 * Prepare device for unregistering
506 */
507static void input_disconnect_device(struct input_dev *dev)
508{
509 struct input_handle *handle;
510 int code;
511
512 /*
513 * Mark device as going away. Note that we take dev->mutex here
514 * not to protect access to dev->going_away but rather to ensure
515 * that there are no threads in the middle of input_open_device()
516 */
517 mutex_lock(&dev->mutex);
518 dev->going_away = true;
519 mutex_unlock(&dev->mutex);
520
521 spin_lock_irq(&dev->event_lock);
522
523 /*
524 * Simulate keyup events for all pressed keys so that handlers
525 * are not left with "stuck" keys. The driver may continue
526 * generate events even after we done here but they will not
527 * reach any handlers.
528 */
529 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
530 for (code = 0; code <= KEY_MAX; code++) {
531 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
532 __test_and_clear_bit(code, dev->key)) {
533 input_pass_event(dev, EV_KEY, code, 0);
534 }
535 }
536 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
537 }
538
539 list_for_each_entry(handle, &dev->h_list, d_node)
540 handle->open = 0;
541
542 spin_unlock_irq(&dev->event_lock);
543}
544
545static int input_fetch_keycode(struct input_dev *dev, int scancode)
546{
547 switch (dev->keycodesize) {
548 case 1:
549 return ((u8 *)dev->keycode)[scancode];
550
551 case 2:
552 return ((u16 *)dev->keycode)[scancode];
553
554 default:
555 return ((u32 *)dev->keycode)[scancode];
556 }
557}
558
559static int input_default_getkeycode(struct input_dev *dev,
560 int scancode, int *keycode)
561{
562 if (!dev->keycodesize)
563 return -EINVAL;
564
565 if (scancode >= dev->keycodemax)
566 return -EINVAL;
567
568 *keycode = input_fetch_keycode(dev, scancode);
569
570 return 0;
571}
572
573static int input_default_setkeycode(struct input_dev *dev,
574 int scancode, int keycode)
575{
576 int old_keycode;
577 int i;
578
579 if (scancode >= dev->keycodemax)
580 return -EINVAL;
581
582 if (!dev->keycodesize)
583 return -EINVAL;
584
585 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
586 return -EINVAL;
587
588 switch (dev->keycodesize) {
589 case 1: {
590 u8 *k = (u8 *)dev->keycode;
591 old_keycode = k[scancode];
592 k[scancode] = keycode;
593 break;
594 }
595 case 2: {
596 u16 *k = (u16 *)dev->keycode;
597 old_keycode = k[scancode];
598 k[scancode] = keycode;
599 break;
600 }
601 default: {
602 u32 *k = (u32 *)dev->keycode;
603 old_keycode = k[scancode];
604 k[scancode] = keycode;
605 break;
606 }
607 }
608
609 clear_bit(old_keycode, dev->keybit);
610 set_bit(keycode, dev->keybit);
611
612 for (i = 0; i < dev->keycodemax; i++) {
613 if (input_fetch_keycode(dev, i) == old_keycode) {
614 set_bit(old_keycode, dev->keybit);
615 break; /* Setting the bit twice is useless, so break */
616 }
617 }
618
619 return 0;
620}
621
622/**
623 * input_get_keycode - retrieve keycode currently mapped to a given scancode
624 * @dev: input device which keymap is being queried
625 * @scancode: scancode (or its equivalent for device in question) for which
626 * keycode is needed
627 * @keycode: result
628 *
629 * This function should be called by anyone interested in retrieving current
630 * keymap. Presently keyboard and evdev handlers use it.
631 */
632int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
633{
634 if (scancode < 0)
635 return -EINVAL;
636
637 return dev->getkeycode(dev, scancode, keycode);
638}
639EXPORT_SYMBOL(input_get_keycode);
640
641/**
642 * input_get_keycode - assign new keycode to a given scancode
643 * @dev: input device which keymap is being updated
644 * @scancode: scancode (or its equivalent for device in question)
645 * @keycode: new keycode to be assigned to the scancode
646 *
647 * This function should be called by anyone needing to update current
648 * keymap. Presently keyboard and evdev handlers use it.
649 */
650int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
651{
652 unsigned long flags;
653 int old_keycode;
654 int retval;
655
656 if (scancode < 0)
657 return -EINVAL;
658
659 if (keycode < 0 || keycode > KEY_MAX)
660 return -EINVAL;
661
662 spin_lock_irqsave(&dev->event_lock, flags);
663
664 retval = dev->getkeycode(dev, scancode, &old_keycode);
665 if (retval)
666 goto out;
667
668 retval = dev->setkeycode(dev, scancode, keycode);
669 if (retval)
670 goto out;
671
672 /*
673 * Simulate keyup event if keycode is not present
674 * in the keymap anymore
675 */
676 if (test_bit(EV_KEY, dev->evbit) &&
677 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
678 __test_and_clear_bit(old_keycode, dev->key)) {
679
680 input_pass_event(dev, EV_KEY, old_keycode, 0);
681 if (dev->sync)
682 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
683 }
684
685 out:
686 spin_unlock_irqrestore(&dev->event_lock, flags);
687
688 return retval;
689}
690EXPORT_SYMBOL(input_set_keycode);
691
692#define MATCH_BIT(bit, max) \
693 for (i = 0; i < BITS_TO_LONGS(max); i++) \
694 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
695 break; \
696 if (i != BITS_TO_LONGS(max)) \
697 continue;
698
699static const struct input_device_id *input_match_device(const struct input_device_id *id,
700 struct input_dev *dev)
701{
702 int i;
703
704 for (; id->flags || id->driver_info; id++) {
705
706 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
707 if (id->bustype != dev->id.bustype)
708 continue;
709
710 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
711 if (id->vendor != dev->id.vendor)
712 continue;
713
714 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
715 if (id->product != dev->id.product)
716 continue;
717
718 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
719 if (id->version != dev->id.version)
720 continue;
721
722 MATCH_BIT(evbit, EV_MAX);
723 MATCH_BIT(keybit, KEY_MAX);
724 MATCH_BIT(relbit, REL_MAX);
725 MATCH_BIT(absbit, ABS_MAX);
726 MATCH_BIT(mscbit, MSC_MAX);
727 MATCH_BIT(ledbit, LED_MAX);
728 MATCH_BIT(sndbit, SND_MAX);
729 MATCH_BIT(ffbit, FF_MAX);
730 MATCH_BIT(swbit, SW_MAX);
731
732 return id;
733 }
734
735 return NULL;
736}
737
738static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
739{
740 const struct input_device_id *id;
741 int error;
742
743 if (handler->blacklist && input_match_device(handler->blacklist, dev))
744 return -ENODEV;
745
746 id = input_match_device(handler->id_table, dev);
747 if (!id)
748 return -ENODEV;
749
750 error = handler->connect(handler, dev, id);
751 if (error && error != -ENODEV)
752 printk(KERN_ERR
753 "input: failed to attach handler %s to device %s, "
754 "error: %d\n",
755 handler->name, kobject_name(&dev->dev.kobj), error);
756
757 return error;
758}
759
760
761#ifdef CONFIG_PROC_FS
762
763static struct proc_dir_entry *proc_bus_input_dir;
764static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
765static int input_devices_state;
766
767static inline void input_wakeup_procfs_readers(void)
768{
769 input_devices_state++;
770 wake_up(&input_devices_poll_wait);
771}
772
773static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
774{
775 poll_wait(file, &input_devices_poll_wait, wait);
776 if (file->f_version != input_devices_state) {
777 file->f_version = input_devices_state;
778 return POLLIN | POLLRDNORM;
779 }
780
781 return 0;
782}
783
784static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
785{
786 if (mutex_lock_interruptible(&input_mutex))
787 return NULL;
788
789 return seq_list_start(&input_dev_list, *pos);
790}
791
792static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
793{
794 return seq_list_next(v, &input_dev_list, pos);
795}
796
797static void input_devices_seq_stop(struct seq_file *seq, void *v)
798{
799 mutex_unlock(&input_mutex);
800}
801
802static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
803 unsigned long *bitmap, int max)
804{
805 int i;
806
807 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
808 if (bitmap[i])
809 break;
810
811 seq_printf(seq, "B: %s=", name);
812 for (; i >= 0; i--)
813 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
814 seq_putc(seq, '\n');
815}
816
817static int input_devices_seq_show(struct seq_file *seq, void *v)
818{
819 struct input_dev *dev = container_of(v, struct input_dev, node);
820 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
821 struct input_handle *handle;
822
823 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
824 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
825
826 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
827 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
828 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
829 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
830 seq_printf(seq, "H: Handlers=");
831
832 list_for_each_entry(handle, &dev->h_list, d_node)
833 seq_printf(seq, "%s ", handle->name);
834 seq_putc(seq, '\n');
835
836 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
837 if (test_bit(EV_KEY, dev->evbit))
838 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
839 if (test_bit(EV_REL, dev->evbit))
840 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
841 if (test_bit(EV_ABS, dev->evbit))
842 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
843 if (test_bit(EV_MSC, dev->evbit))
844 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
845 if (test_bit(EV_LED, dev->evbit))
846 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
847 if (test_bit(EV_SND, dev->evbit))
848 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
849 if (test_bit(EV_FF, dev->evbit))
850 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
851 if (test_bit(EV_SW, dev->evbit))
852 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
853
854 seq_putc(seq, '\n');
855
856 kfree(path);
857 return 0;
858}
859
860static const struct seq_operations input_devices_seq_ops = {
861 .start = input_devices_seq_start,
862 .next = input_devices_seq_next,
863 .stop = input_devices_seq_stop,
864 .show = input_devices_seq_show,
865};
866
867static int input_proc_devices_open(struct inode *inode, struct file *file)
868{
869 return seq_open(file, &input_devices_seq_ops);
870}
871
872static const struct file_operations input_devices_fileops = {
873 .owner = THIS_MODULE,
874 .open = input_proc_devices_open,
875 .poll = input_proc_devices_poll,
876 .read = seq_read,
877 .llseek = seq_lseek,
878 .release = seq_release,
879};
880
881static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
882{
883 if (mutex_lock_interruptible(&input_mutex))
884 return NULL;
885
886 seq->private = (void *)(unsigned long)*pos;
887 return seq_list_start(&input_handler_list, *pos);
888}
889
890static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
891{
892 seq->private = (void *)(unsigned long)(*pos + 1);
893 return seq_list_next(v, &input_handler_list, pos);
894}
895
896static void input_handlers_seq_stop(struct seq_file *seq, void *v)
897{
898 mutex_unlock(&input_mutex);
899}
900
901static int input_handlers_seq_show(struct seq_file *seq, void *v)
902{
903 struct input_handler *handler = container_of(v, struct input_handler, node);
904
905 seq_printf(seq, "N: Number=%ld Name=%s",
906 (unsigned long)seq->private, handler->name);
907 if (handler->fops)
908 seq_printf(seq, " Minor=%d", handler->minor);
909 seq_putc(seq, '\n');
910
911 return 0;
912}
913static const struct seq_operations input_handlers_seq_ops = {
914 .start = input_handlers_seq_start,
915 .next = input_handlers_seq_next,
916 .stop = input_handlers_seq_stop,
917 .show = input_handlers_seq_show,
918};
919
920static int input_proc_handlers_open(struct inode *inode, struct file *file)
921{
922 return seq_open(file, &input_handlers_seq_ops);
923}
924
925static const struct file_operations input_handlers_fileops = {
926 .owner = THIS_MODULE,
927 .open = input_proc_handlers_open,
928 .read = seq_read,
929 .llseek = seq_lseek,
930 .release = seq_release,
931};
932
933static int __init input_proc_init(void)
934{
935 struct proc_dir_entry *entry;
936
937 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
938 if (!proc_bus_input_dir)
939 return -ENOMEM;
940
941 entry = proc_create("devices", 0, proc_bus_input_dir,
942 &input_devices_fileops);
943 if (!entry)
944 goto fail1;
945
946 entry = proc_create("handlers", 0, proc_bus_input_dir,
947 &input_handlers_fileops);
948 if (!entry)
949 goto fail2;
950
951 return 0;
952
953 fail2: remove_proc_entry("devices", proc_bus_input_dir);
954 fail1: remove_proc_entry("bus/input", NULL);
955 return -ENOMEM;
956}
957
958static void input_proc_exit(void)
959{
960 remove_proc_entry("devices", proc_bus_input_dir);
961 remove_proc_entry("handlers", proc_bus_input_dir);
962 remove_proc_entry("bus/input", NULL);
963}
964
965#else /* !CONFIG_PROC_FS */
966static inline void input_wakeup_procfs_readers(void) { }
967static inline int input_proc_init(void) { return 0; }
968static inline void input_proc_exit(void) { }
969#endif
970
971#define INPUT_DEV_STRING_ATTR_SHOW(name) \
972static ssize_t input_dev_show_##name(struct device *dev, \
973 struct device_attribute *attr, \
974 char *buf) \
975{ \
976 struct input_dev *input_dev = to_input_dev(dev); \
977 \
978 return scnprintf(buf, PAGE_SIZE, "%s\n", \
979 input_dev->name ? input_dev->name : ""); \
980} \
981static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
982
983INPUT_DEV_STRING_ATTR_SHOW(name);
984INPUT_DEV_STRING_ATTR_SHOW(phys);
985INPUT_DEV_STRING_ATTR_SHOW(uniq);
986
987static int input_print_modalias_bits(char *buf, int size,
988 char name, unsigned long *bm,
989 unsigned int min_bit, unsigned int max_bit)
990{
991 int len = 0, i;
992
993 len += snprintf(buf, max(size, 0), "%c", name);
994 for (i = min_bit; i < max_bit; i++)
995 if (bm[BIT_WORD(i)] & BIT_MASK(i))
996 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
997 return len;
998}
999
1000static int input_print_modalias(char *buf, int size, struct input_dev *id,
1001 int add_cr)
1002{
1003 int len;
1004
1005 len = snprintf(buf, max(size, 0),
1006 "input:b%04Xv%04Xp%04Xe%04X-",
1007 id->id.bustype, id->id.vendor,
1008 id->id.product, id->id.version);
1009
1010 len += input_print_modalias_bits(buf + len, size - len,
1011 'e', id->evbit, 0, EV_MAX);
1012 len += input_print_modalias_bits(buf + len, size - len,
1013 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1014 len += input_print_modalias_bits(buf + len, size - len,
1015 'r', id->relbit, 0, REL_MAX);
1016 len += input_print_modalias_bits(buf + len, size - len,
1017 'a', id->absbit, 0, ABS_MAX);
1018 len += input_print_modalias_bits(buf + len, size - len,
1019 'm', id->mscbit, 0, MSC_MAX);
1020 len += input_print_modalias_bits(buf + len, size - len,
1021 'l', id->ledbit, 0, LED_MAX);
1022 len += input_print_modalias_bits(buf + len, size - len,
1023 's', id->sndbit, 0, SND_MAX);
1024 len += input_print_modalias_bits(buf + len, size - len,
1025 'f', id->ffbit, 0, FF_MAX);
1026 len += input_print_modalias_bits(buf + len, size - len,
1027 'w', id->swbit, 0, SW_MAX);
1028
1029 if (add_cr)
1030 len += snprintf(buf + len, max(size - len, 0), "\n");
1031
1032 return len;
1033}
1034
1035static ssize_t input_dev_show_modalias(struct device *dev,
1036 struct device_attribute *attr,
1037 char *buf)
1038{
1039 struct input_dev *id = to_input_dev(dev);
1040 ssize_t len;
1041
1042 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1043
1044 return min_t(int, len, PAGE_SIZE);
1045}
1046static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1047
1048static struct attribute *input_dev_attrs[] = {
1049 &dev_attr_name.attr,
1050 &dev_attr_phys.attr,
1051 &dev_attr_uniq.attr,
1052 &dev_attr_modalias.attr,
1053 NULL
1054};
1055
1056static struct attribute_group input_dev_attr_group = {
1057 .attrs = input_dev_attrs,
1058};
1059
1060#define INPUT_DEV_ID_ATTR(name) \
1061static ssize_t input_dev_show_id_##name(struct device *dev, \
1062 struct device_attribute *attr, \
1063 char *buf) \
1064{ \
1065 struct input_dev *input_dev = to_input_dev(dev); \
1066 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1067} \
1068static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1069
1070INPUT_DEV_ID_ATTR(bustype);
1071INPUT_DEV_ID_ATTR(vendor);
1072INPUT_DEV_ID_ATTR(product);
1073INPUT_DEV_ID_ATTR(version);
1074
1075static struct attribute *input_dev_id_attrs[] = {
1076 &dev_attr_bustype.attr,
1077 &dev_attr_vendor.attr,
1078 &dev_attr_product.attr,
1079 &dev_attr_version.attr,
1080 NULL
1081};
1082
1083static struct attribute_group input_dev_id_attr_group = {
1084 .name = "id",
1085 .attrs = input_dev_id_attrs,
1086};
1087
1088static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1089 int max, int add_cr)
1090{
1091 int i;
1092 int len = 0;
1093
1094 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1095 if (bitmap[i])
1096 break;
1097
1098 for (; i >= 0; i--)
1099 len += snprintf(buf + len, max(buf_size - len, 0),
1100 "%lx%s", bitmap[i], i > 0 ? " " : "");
1101
1102 if (add_cr)
1103 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1104
1105 return len;
1106}
1107
1108#define INPUT_DEV_CAP_ATTR(ev, bm) \
1109static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1110 struct device_attribute *attr, \
1111 char *buf) \
1112{ \
1113 struct input_dev *input_dev = to_input_dev(dev); \
1114 int len = input_print_bitmap(buf, PAGE_SIZE, \
1115 input_dev->bm##bit, ev##_MAX, 1); \
1116 return min_t(int, len, PAGE_SIZE); \
1117} \
1118static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1119
1120INPUT_DEV_CAP_ATTR(EV, ev);
1121INPUT_DEV_CAP_ATTR(KEY, key);
1122INPUT_DEV_CAP_ATTR(REL, rel);
1123INPUT_DEV_CAP_ATTR(ABS, abs);
1124INPUT_DEV_CAP_ATTR(MSC, msc);
1125INPUT_DEV_CAP_ATTR(LED, led);
1126INPUT_DEV_CAP_ATTR(SND, snd);
1127INPUT_DEV_CAP_ATTR(FF, ff);
1128INPUT_DEV_CAP_ATTR(SW, sw);
1129
1130static struct attribute *input_dev_caps_attrs[] = {
1131 &dev_attr_ev.attr,
1132 &dev_attr_key.attr,
1133 &dev_attr_rel.attr,
1134 &dev_attr_abs.attr,
1135 &dev_attr_msc.attr,
1136 &dev_attr_led.attr,
1137 &dev_attr_snd.attr,
1138 &dev_attr_ff.attr,
1139 &dev_attr_sw.attr,
1140 NULL
1141};
1142
1143static struct attribute_group input_dev_caps_attr_group = {
1144 .name = "capabilities",
1145 .attrs = input_dev_caps_attrs,
1146};
1147
1148static const struct attribute_group *input_dev_attr_groups[] = {
1149 &input_dev_attr_group,
1150 &input_dev_id_attr_group,
1151 &input_dev_caps_attr_group,
1152 NULL
1153};
1154
1155static void input_dev_release(struct device *device)
1156{
1157 struct input_dev *dev = to_input_dev(device);
1158
1159 input_ff_destroy(dev);
1160 kfree(dev);
1161
1162 module_put(THIS_MODULE);
1163}
1164
1165/*
1166 * Input uevent interface - loading event handlers based on
1167 * device bitfields.
1168 */
1169static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1170 const char *name, unsigned long *bitmap, int max)
1171{
1172 int len;
1173
1174 if (add_uevent_var(env, "%s=", name))
1175 return -ENOMEM;
1176
1177 len = input_print_bitmap(&env->buf[env->buflen - 1],
1178 sizeof(env->buf) - env->buflen,
1179 bitmap, max, 0);
1180 if (len >= (sizeof(env->buf) - env->buflen))
1181 return -ENOMEM;
1182
1183 env->buflen += len;
1184 return 0;
1185}
1186
1187static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1188 struct input_dev *dev)
1189{
1190 int len;
1191
1192 if (add_uevent_var(env, "MODALIAS="))
1193 return -ENOMEM;
1194
1195 len = input_print_modalias(&env->buf[env->buflen - 1],
1196 sizeof(env->buf) - env->buflen,
1197 dev, 0);
1198 if (len >= (sizeof(env->buf) - env->buflen))
1199 return -ENOMEM;
1200
1201 env->buflen += len;
1202 return 0;
1203}
1204
1205#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1206 do { \
1207 int err = add_uevent_var(env, fmt, val); \
1208 if (err) \
1209 return err; \
1210 } while (0)
1211
1212#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1213 do { \
1214 int err = input_add_uevent_bm_var(env, name, bm, max); \
1215 if (err) \
1216 return err; \
1217 } while (0)
1218
1219#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1220 do { \
1221 int err = input_add_uevent_modalias_var(env, dev); \
1222 if (err) \
1223 return err; \
1224 } while (0)
1225
1226static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1227{
1228 struct input_dev *dev = to_input_dev(device);
1229
1230 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1231 dev->id.bustype, dev->id.vendor,
1232 dev->id.product, dev->id.version);
1233 if (dev->name)
1234 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1235 if (dev->phys)
1236 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1237 if (dev->uniq)
1238 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1239
1240 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1241 if (test_bit(EV_KEY, dev->evbit))
1242 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1243 if (test_bit(EV_REL, dev->evbit))
1244 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1245 if (test_bit(EV_ABS, dev->evbit))
1246 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1247 if (test_bit(EV_MSC, dev->evbit))
1248 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1249 if (test_bit(EV_LED, dev->evbit))
1250 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1251 if (test_bit(EV_SND, dev->evbit))
1252 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1253 if (test_bit(EV_FF, dev->evbit))
1254 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1255 if (test_bit(EV_SW, dev->evbit))
1256 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1257
1258 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1259
1260 return 0;
1261}
1262
1263#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1264 do { \
1265 int i; \
1266 if (!test_bit(EV_##type, dev->evbit)) \
1267 break; \
1268 for (i = 0; i < type##_MAX; i++) { \
1269 if (!test_bit(i, dev->bits##bit) || \
1270 !test_bit(i, dev->bits)) \
1271 continue; \
1272 dev->event(dev, EV_##type, i, on); \
1273 } \
1274 } while (0)
1275
1276static void input_dev_reset(struct input_dev *dev, bool activate)
1277{
1278 if (!dev->event)
1279 return;
1280
1281 INPUT_DO_TOGGLE(dev, LED, led, activate);
1282 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1283
1284 if (activate && test_bit(EV_REP, dev->evbit)) {
1285 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1286 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1287 }
1288}
1289
1290#ifdef CONFIG_PM
1291static int input_dev_suspend(struct device *dev)
1292{
1293 struct input_dev *input_dev = to_input_dev(dev);
1294
1295 mutex_lock(&input_dev->mutex);
1296 input_dev_reset(input_dev, false);
1297 mutex_unlock(&input_dev->mutex);
1298
1299 return 0;
1300}
1301
1302static int input_dev_resume(struct device *dev)
1303{
1304 struct input_dev *input_dev = to_input_dev(dev);
1305
1306 mutex_lock(&input_dev->mutex);
1307 input_dev_reset(input_dev, true);
1308 mutex_unlock(&input_dev->mutex);
1309
1310 return 0;
1311}
1312
1313static const struct dev_pm_ops input_dev_pm_ops = {
1314 .suspend = input_dev_suspend,
1315 .resume = input_dev_resume,
1316 .poweroff = input_dev_suspend,
1317 .restore = input_dev_resume,
1318};
1319#endif /* CONFIG_PM */
1320
1321static struct device_type input_dev_type = {
1322 .groups = input_dev_attr_groups,
1323 .release = input_dev_release,
1324 .uevent = input_dev_uevent,
1325#ifdef CONFIG_PM
1326 .pm = &input_dev_pm_ops,
1327#endif
1328};
1329
1330static char *input_devnode(struct device *dev, mode_t *mode)
1331{
1332 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1333}
1334
1335struct class input_class = {
1336 .name = "input",
1337 .devnode = input_devnode,
1338};
1339EXPORT_SYMBOL_GPL(input_class);
1340
1341/**
1342 * input_allocate_device - allocate memory for new input device
1343 *
1344 * Returns prepared struct input_dev or NULL.
1345 *
1346 * NOTE: Use input_free_device() to free devices that have not been
1347 * registered; input_unregister_device() should be used for already
1348 * registered devices.
1349 */
1350struct input_dev *input_allocate_device(void)
1351{
1352 struct input_dev *dev;
1353
1354 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1355 if (dev) {
1356 dev->dev.type = &input_dev_type;
1357 dev->dev.class = &input_class;
1358 device_initialize(&dev->dev);
1359 mutex_init(&dev->mutex);
1360 spin_lock_init(&dev->event_lock);
1361 INIT_LIST_HEAD(&dev->h_list);
1362 INIT_LIST_HEAD(&dev->node);
1363
1364 __module_get(THIS_MODULE);
1365 }
1366
1367 return dev;
1368}
1369EXPORT_SYMBOL(input_allocate_device);
1370
1371/**
1372 * input_free_device - free memory occupied by input_dev structure
1373 * @dev: input device to free
1374 *
1375 * This function should only be used if input_register_device()
1376 * was not called yet or if it failed. Once device was registered
1377 * use input_unregister_device() and memory will be freed once last
1378 * reference to the device is dropped.
1379 *
1380 * Device should be allocated by input_allocate_device().
1381 *
1382 * NOTE: If there are references to the input device then memory
1383 * will not be freed until last reference is dropped.
1384 */
1385void input_free_device(struct input_dev *dev)
1386{
1387 if (dev)
1388 input_put_device(dev);
1389}
1390EXPORT_SYMBOL(input_free_device);
1391
1392/**
1393 * input_set_capability - mark device as capable of a certain event
1394 * @dev: device that is capable of emitting or accepting event
1395 * @type: type of the event (EV_KEY, EV_REL, etc...)
1396 * @code: event code
1397 *
1398 * In addition to setting up corresponding bit in appropriate capability
1399 * bitmap the function also adjusts dev->evbit.
1400 */
1401void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1402{
1403 switch (type) {
1404 case EV_KEY:
1405 __set_bit(code, dev->keybit);
1406 break;
1407
1408 case EV_REL:
1409 __set_bit(code, dev->relbit);
1410 break;
1411
1412 case EV_ABS:
1413 __set_bit(code, dev->absbit);
1414 break;
1415
1416 case EV_MSC:
1417 __set_bit(code, dev->mscbit);
1418 break;
1419
1420 case EV_SW:
1421 __set_bit(code, dev->swbit);
1422 break;
1423
1424 case EV_LED:
1425 __set_bit(code, dev->ledbit);
1426 break;
1427
1428 case EV_SND:
1429 __set_bit(code, dev->sndbit);
1430 break;
1431
1432 case EV_FF:
1433 __set_bit(code, dev->ffbit);
1434 break;
1435
1436 case EV_PWR:
1437 /* do nothing */
1438 break;
1439
1440 default:
1441 printk(KERN_ERR
1442 "input_set_capability: unknown type %u (code %u)\n",
1443 type, code);
1444 dump_stack();
1445 return;
1446 }
1447
1448 __set_bit(type, dev->evbit);
1449}
1450EXPORT_SYMBOL(input_set_capability);
1451
1452/**
1453 * input_register_device - register device with input core
1454 * @dev: device to be registered
1455 *
1456 * This function registers device with input core. The device must be
1457 * allocated with input_allocate_device() and all it's capabilities
1458 * set up before registering.
1459 * If function fails the device must be freed with input_free_device().
1460 * Once device has been successfully registered it can be unregistered
1461 * with input_unregister_device(); input_free_device() should not be
1462 * called in this case.
1463 */
1464int input_register_device(struct input_dev *dev)
1465{
1466 static atomic_t input_no = ATOMIC_INIT(0);
1467 struct input_handler *handler;
1468 const char *path;
1469 int error;
1470
1471 __set_bit(EV_SYN, dev->evbit);
1472
1473 /*
1474 * If delay and period are pre-set by the driver, then autorepeating
1475 * is handled by the driver itself and we don't do it in input.c.
1476 */
1477
1478 init_timer(&dev->timer);
1479 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1480 dev->timer.data = (long) dev;
1481 dev->timer.function = input_repeat_key;
1482 dev->rep[REP_DELAY] = 250;
1483 dev->rep[REP_PERIOD] = 33;
1484 }
1485
1486 if (!dev->getkeycode)
1487 dev->getkeycode = input_default_getkeycode;
1488
1489 if (!dev->setkeycode)
1490 dev->setkeycode = input_default_setkeycode;
1491
1492 dev_set_name(&dev->dev, "input%ld",
1493 (unsigned long) atomic_inc_return(&input_no) - 1);
1494
1495 error = device_add(&dev->dev);
1496 if (error)
1497 return error;
1498
1499 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1500 printk(KERN_INFO "input: %s as %s\n",
1501 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1502 kfree(path);
1503
1504 error = mutex_lock_interruptible(&input_mutex);
1505 if (error) {
1506 device_del(&dev->dev);
1507 return error;
1508 }
1509
1510 list_add_tail(&dev->node, &input_dev_list);
1511
1512 list_for_each_entry(handler, &input_handler_list, node)
1513 input_attach_handler(dev, handler);
1514
1515 input_wakeup_procfs_readers();
1516
1517 mutex_unlock(&input_mutex);
1518
1519 return 0;
1520}
1521EXPORT_SYMBOL(input_register_device);
1522
1523/**
1524 * input_unregister_device - unregister previously registered device
1525 * @dev: device to be unregistered
1526 *
1527 * This function unregisters an input device. Once device is unregistered
1528 * the caller should not try to access it as it may get freed at any moment.
1529 */
1530void input_unregister_device(struct input_dev *dev)
1531{
1532 struct input_handle *handle, *next;
1533
1534 input_disconnect_device(dev);
1535
1536 mutex_lock(&input_mutex);
1537
1538 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1539 handle->handler->disconnect(handle);
1540 WARN_ON(!list_empty(&dev->h_list));
1541
1542 del_timer_sync(&dev->timer);
1543 list_del_init(&dev->node);
1544
1545 input_wakeup_procfs_readers();
1546
1547 mutex_unlock(&input_mutex);
1548
1549 device_unregister(&dev->dev);
1550}
1551EXPORT_SYMBOL(input_unregister_device);
1552
1553/**
1554 * input_register_handler - register a new input handler
1555 * @handler: handler to be registered
1556 *
1557 * This function registers a new input handler (interface) for input
1558 * devices in the system and attaches it to all input devices that
1559 * are compatible with the handler.
1560 */
1561int input_register_handler(struct input_handler *handler)
1562{
1563 struct input_dev *dev;
1564 int retval;
1565
1566 retval = mutex_lock_interruptible(&input_mutex);
1567 if (retval)
1568 return retval;
1569
1570 INIT_LIST_HEAD(&handler->h_list);
1571
1572 if (handler->fops != NULL) {
1573 if (input_table[handler->minor >> 5]) {
1574 retval = -EBUSY;
1575 goto out;
1576 }
1577 input_table[handler->minor >> 5] = handler;
1578 }
1579
1580 list_add_tail(&handler->node, &input_handler_list);
1581
1582 list_for_each_entry(dev, &input_dev_list, node)
1583 input_attach_handler(dev, handler);
1584
1585 input_wakeup_procfs_readers();
1586
1587 out:
1588 mutex_unlock(&input_mutex);
1589 return retval;
1590}
1591EXPORT_SYMBOL(input_register_handler);
1592
1593/**
1594 * input_unregister_handler - unregisters an input handler
1595 * @handler: handler to be unregistered
1596 *
1597 * This function disconnects a handler from its input devices and
1598 * removes it from lists of known handlers.
1599 */
1600void input_unregister_handler(struct input_handler *handler)
1601{
1602 struct input_handle *handle, *next;
1603
1604 mutex_lock(&input_mutex);
1605
1606 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1607 handler->disconnect(handle);
1608 WARN_ON(!list_empty(&handler->h_list));
1609
1610 list_del_init(&handler->node);
1611
1612 if (handler->fops != NULL)
1613 input_table[handler->minor >> 5] = NULL;
1614
1615 input_wakeup_procfs_readers();
1616
1617 mutex_unlock(&input_mutex);
1618}
1619EXPORT_SYMBOL(input_unregister_handler);
1620
1621/**
1622 * input_register_handle - register a new input handle
1623 * @handle: handle to register
1624 *
1625 * This function puts a new input handle onto device's
1626 * and handler's lists so that events can flow through
1627 * it once it is opened using input_open_device().
1628 *
1629 * This function is supposed to be called from handler's
1630 * connect() method.
1631 */
1632int input_register_handle(struct input_handle *handle)
1633{
1634 struct input_handler *handler = handle->handler;
1635 struct input_dev *dev = handle->dev;
1636 int error;
1637
1638 /*
1639 * We take dev->mutex here to prevent race with
1640 * input_release_device().
1641 */
1642 error = mutex_lock_interruptible(&dev->mutex);
1643 if (error)
1644 return error;
1645 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1646 mutex_unlock(&dev->mutex);
1647
1648 /*
1649 * Since we are supposed to be called from ->connect()
1650 * which is mutually exclusive with ->disconnect()
1651 * we can't be racing with input_unregister_handle()
1652 * and so separate lock is not needed here.
1653 */
1654 list_add_tail(&handle->h_node, &handler->h_list);
1655
1656 if (handler->start)
1657 handler->start(handle);
1658
1659 return 0;
1660}
1661EXPORT_SYMBOL(input_register_handle);
1662
1663/**
1664 * input_unregister_handle - unregister an input handle
1665 * @handle: handle to unregister
1666 *
1667 * This function removes input handle from device's
1668 * and handler's lists.
1669 *
1670 * This function is supposed to be called from handler's
1671 * disconnect() method.
1672 */
1673void input_unregister_handle(struct input_handle *handle)
1674{
1675 struct input_dev *dev = handle->dev;
1676
1677 list_del_init(&handle->h_node);
1678
1679 /*
1680 * Take dev->mutex to prevent race with input_release_device().
1681 */
1682 mutex_lock(&dev->mutex);
1683 list_del_rcu(&handle->d_node);
1684 mutex_unlock(&dev->mutex);
1685 synchronize_rcu();
1686}
1687EXPORT_SYMBOL(input_unregister_handle);
1688
1689static int input_open_file(struct inode *inode, struct file *file)
1690{
1691 struct input_handler *handler;
1692 const struct file_operations *old_fops, *new_fops = NULL;
1693 int err;
1694
1695 lock_kernel();
1696 /* No load-on-demand here? */
1697 handler = input_table[iminor(inode) >> 5];
1698 if (!handler || !(new_fops = fops_get(handler->fops))) {
1699 err = -ENODEV;
1700 goto out;
1701 }
1702
1703 /*
1704 * That's _really_ odd. Usually NULL ->open means "nothing special",
1705 * not "no device". Oh, well...
1706 */
1707 if (!new_fops->open) {
1708 fops_put(new_fops);
1709 err = -ENODEV;
1710 goto out;
1711 }
1712 old_fops = file->f_op;
1713 file->f_op = new_fops;
1714
1715 err = new_fops->open(inode, file);
1716
1717 if (err) {
1718 fops_put(file->f_op);
1719 file->f_op = fops_get(old_fops);
1720 }
1721 fops_put(old_fops);
1722out:
1723 unlock_kernel();
1724 return err;
1725}
1726
1727static const struct file_operations input_fops = {
1728 .owner = THIS_MODULE,
1729 .open = input_open_file,
1730};
1731
1732static void __init input_init_abs_bypass(void)
1733{
1734 const unsigned int *p;
1735
1736 for (p = input_abs_bypass_init_data; *p; p++)
1737 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1738}
1739
1740static int __init input_init(void)
1741{
1742 int err;
1743
1744 input_init_abs_bypass();
1745
1746 err = class_register(&input_class);
1747 if (err) {
1748 printk(KERN_ERR "input: unable to register input_dev class\n");
1749 return err;
1750 }
1751
1752 err = input_proc_init();
1753 if (err)
1754 goto fail1;
1755
1756 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1757 if (err) {
1758 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1759 goto fail2;
1760 }
1761
1762 return 0;
1763
1764 fail2: input_proc_exit();
1765 fail1: class_unregister(&input_class);
1766 return err;
1767}
1768
1769static void __exit input_exit(void)
1770{
1771 input_proc_exit();
1772 unregister_chrdev(INPUT_MAJOR, "input");
1773 class_unregister(&input_class);
1774}
1775
1776subsys_initcall(input_init);
1777module_exit(input_exit);