at v2.6.31 62 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * - a SuperSpeed endpoint has a companion descriptor 40 * 41 * And there might be other descriptors mixed in with those. 42 * 43 * Devices may also have class-specific or vendor-specific descriptors. 44 */ 45 46struct ep_device; 47 48/* For SS devices */ 49/** 50 * struct usb_host_ss_ep_comp - Valid for SuperSpeed devices only 51 * @desc: endpoint companion descriptor, wMaxPacketSize in native byteorder 52 * @extra: descriptors following this endpoint companion descriptor 53 * @extralen: how many bytes of "extra" are valid 54 */ 55struct usb_host_ss_ep_comp { 56 struct usb_ss_ep_comp_descriptor desc; 57 unsigned char *extra; /* Extra descriptors */ 58 int extralen; 59}; 60 61/** 62 * struct usb_host_endpoint - host-side endpoint descriptor and queue 63 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 64 * @urb_list: urbs queued to this endpoint; maintained by usbcore 65 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 66 * with one or more transfer descriptors (TDs) per urb 67 * @ep_dev: ep_device for sysfs info 68 * @ss_ep_comp: companion descriptor information for this endpoint 69 * @extra: descriptors following this endpoint in the configuration 70 * @extralen: how many bytes of "extra" are valid 71 * @enabled: URBs may be submitted to this endpoint 72 * 73 * USB requests are always queued to a given endpoint, identified by a 74 * descriptor within an active interface in a given USB configuration. 75 */ 76struct usb_host_endpoint { 77 struct usb_endpoint_descriptor desc; 78 struct list_head urb_list; 79 void *hcpriv; 80 struct ep_device *ep_dev; /* For sysfs info */ 81 struct usb_host_ss_ep_comp *ss_ep_comp; /* For SS devices */ 82 83 unsigned char *extra; /* Extra descriptors */ 84 int extralen; 85 int enabled; 86}; 87 88/* host-side wrapper for one interface setting's parsed descriptors */ 89struct usb_host_interface { 90 struct usb_interface_descriptor desc; 91 92 /* array of desc.bNumEndpoint endpoints associated with this 93 * interface setting. these will be in no particular order. 94 */ 95 struct usb_host_endpoint *endpoint; 96 97 char *string; /* iInterface string, if present */ 98 unsigned char *extra; /* Extra descriptors */ 99 int extralen; 100}; 101 102enum usb_interface_condition { 103 USB_INTERFACE_UNBOUND = 0, 104 USB_INTERFACE_BINDING, 105 USB_INTERFACE_BOUND, 106 USB_INTERFACE_UNBINDING, 107}; 108 109/** 110 * struct usb_interface - what usb device drivers talk to 111 * @altsetting: array of interface structures, one for each alternate 112 * setting that may be selected. Each one includes a set of 113 * endpoint configurations. They will be in no particular order. 114 * @cur_altsetting: the current altsetting. 115 * @num_altsetting: number of altsettings defined. 116 * @intf_assoc: interface association descriptor 117 * @minor: the minor number assigned to this interface, if this 118 * interface is bound to a driver that uses the USB major number. 119 * If this interface does not use the USB major, this field should 120 * be unused. The driver should set this value in the probe() 121 * function of the driver, after it has been assigned a minor 122 * number from the USB core by calling usb_register_dev(). 123 * @condition: binding state of the interface: not bound, binding 124 * (in probe()), bound to a driver, or unbinding (in disconnect()) 125 * @is_active: flag set when the interface is bound and not suspended. 126 * @sysfs_files_created: sysfs attributes exist 127 * @ep_devs_created: endpoint child pseudo-devices exist 128 * @unregistering: flag set when the interface is being unregistered 129 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 130 * capability during autosuspend. 131 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 132 * has been deferred. 133 * @needs_binding: flag set when the driver should be re-probed or unbound 134 * following a reset or suspend operation it doesn't support. 135 * @dev: driver model's view of this device 136 * @usb_dev: if an interface is bound to the USB major, this will point 137 * to the sysfs representation for that device. 138 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 139 * allowed unless the counter is 0. 140 * @reset_ws: Used for scheduling resets from atomic context. 141 * @reset_running: set to 1 if the interface is currently running a 142 * queued reset so that usb_cancel_queued_reset() doesn't try to 143 * remove from the workqueue when running inside the worker 144 * thread. See __usb_queue_reset_device(). 145 * 146 * USB device drivers attach to interfaces on a physical device. Each 147 * interface encapsulates a single high level function, such as feeding 148 * an audio stream to a speaker or reporting a change in a volume control. 149 * Many USB devices only have one interface. The protocol used to talk to 150 * an interface's endpoints can be defined in a usb "class" specification, 151 * or by a product's vendor. The (default) control endpoint is part of 152 * every interface, but is never listed among the interface's descriptors. 153 * 154 * The driver that is bound to the interface can use standard driver model 155 * calls such as dev_get_drvdata() on the dev member of this structure. 156 * 157 * Each interface may have alternate settings. The initial configuration 158 * of a device sets altsetting 0, but the device driver can change 159 * that setting using usb_set_interface(). Alternate settings are often 160 * used to control the use of periodic endpoints, such as by having 161 * different endpoints use different amounts of reserved USB bandwidth. 162 * All standards-conformant USB devices that use isochronous endpoints 163 * will use them in non-default settings. 164 * 165 * The USB specification says that alternate setting numbers must run from 166 * 0 to one less than the total number of alternate settings. But some 167 * devices manage to mess this up, and the structures aren't necessarily 168 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 169 * look up an alternate setting in the altsetting array based on its number. 170 */ 171struct usb_interface { 172 /* array of alternate settings for this interface, 173 * stored in no particular order */ 174 struct usb_host_interface *altsetting; 175 176 struct usb_host_interface *cur_altsetting; /* the currently 177 * active alternate setting */ 178 unsigned num_altsetting; /* number of alternate settings */ 179 180 /* If there is an interface association descriptor then it will list 181 * the associated interfaces */ 182 struct usb_interface_assoc_descriptor *intf_assoc; 183 184 int minor; /* minor number this interface is 185 * bound to */ 186 enum usb_interface_condition condition; /* state of binding */ 187 unsigned is_active:1; /* the interface is not suspended */ 188 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 189 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 190 unsigned unregistering:1; /* unregistration is in progress */ 191 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 192 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 193 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 194 unsigned reset_running:1; 195 196 struct device dev; /* interface specific device info */ 197 struct device *usb_dev; 198 int pm_usage_cnt; /* usage counter for autosuspend */ 199 struct work_struct reset_ws; /* for resets in atomic context */ 200}; 201#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 202#define interface_to_usbdev(intf) \ 203 container_of(intf->dev.parent, struct usb_device, dev) 204 205static inline void *usb_get_intfdata(struct usb_interface *intf) 206{ 207 return dev_get_drvdata(&intf->dev); 208} 209 210static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 211{ 212 dev_set_drvdata(&intf->dev, data); 213} 214 215struct usb_interface *usb_get_intf(struct usb_interface *intf); 216void usb_put_intf(struct usb_interface *intf); 217 218/* this maximum is arbitrary */ 219#define USB_MAXINTERFACES 32 220#define USB_MAXIADS USB_MAXINTERFACES/2 221 222/** 223 * struct usb_interface_cache - long-term representation of a device interface 224 * @num_altsetting: number of altsettings defined. 225 * @ref: reference counter. 226 * @altsetting: variable-length array of interface structures, one for 227 * each alternate setting that may be selected. Each one includes a 228 * set of endpoint configurations. They will be in no particular order. 229 * 230 * These structures persist for the lifetime of a usb_device, unlike 231 * struct usb_interface (which persists only as long as its configuration 232 * is installed). The altsetting arrays can be accessed through these 233 * structures at any time, permitting comparison of configurations and 234 * providing support for the /proc/bus/usb/devices pseudo-file. 235 */ 236struct usb_interface_cache { 237 unsigned num_altsetting; /* number of alternate settings */ 238 struct kref ref; /* reference counter */ 239 240 /* variable-length array of alternate settings for this interface, 241 * stored in no particular order */ 242 struct usb_host_interface altsetting[0]; 243}; 244#define ref_to_usb_interface_cache(r) \ 245 container_of(r, struct usb_interface_cache, ref) 246#define altsetting_to_usb_interface_cache(a) \ 247 container_of(a, struct usb_interface_cache, altsetting[0]) 248 249/** 250 * struct usb_host_config - representation of a device's configuration 251 * @desc: the device's configuration descriptor. 252 * @string: pointer to the cached version of the iConfiguration string, if 253 * present for this configuration. 254 * @intf_assoc: list of any interface association descriptors in this config 255 * @interface: array of pointers to usb_interface structures, one for each 256 * interface in the configuration. The number of interfaces is stored 257 * in desc.bNumInterfaces. These pointers are valid only while the 258 * the configuration is active. 259 * @intf_cache: array of pointers to usb_interface_cache structures, one 260 * for each interface in the configuration. These structures exist 261 * for the entire life of the device. 262 * @extra: pointer to buffer containing all extra descriptors associated 263 * with this configuration (those preceding the first interface 264 * descriptor). 265 * @extralen: length of the extra descriptors buffer. 266 * 267 * USB devices may have multiple configurations, but only one can be active 268 * at any time. Each encapsulates a different operational environment; 269 * for example, a dual-speed device would have separate configurations for 270 * full-speed and high-speed operation. The number of configurations 271 * available is stored in the device descriptor as bNumConfigurations. 272 * 273 * A configuration can contain multiple interfaces. Each corresponds to 274 * a different function of the USB device, and all are available whenever 275 * the configuration is active. The USB standard says that interfaces 276 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 277 * of devices get this wrong. In addition, the interface array is not 278 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 279 * look up an interface entry based on its number. 280 * 281 * Device drivers should not attempt to activate configurations. The choice 282 * of which configuration to install is a policy decision based on such 283 * considerations as available power, functionality provided, and the user's 284 * desires (expressed through userspace tools). However, drivers can call 285 * usb_reset_configuration() to reinitialize the current configuration and 286 * all its interfaces. 287 */ 288struct usb_host_config { 289 struct usb_config_descriptor desc; 290 291 char *string; /* iConfiguration string, if present */ 292 293 /* List of any Interface Association Descriptors in this 294 * configuration. */ 295 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 296 297 /* the interfaces associated with this configuration, 298 * stored in no particular order */ 299 struct usb_interface *interface[USB_MAXINTERFACES]; 300 301 /* Interface information available even when this is not the 302 * active configuration */ 303 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 304 305 unsigned char *extra; /* Extra descriptors */ 306 int extralen; 307}; 308 309int __usb_get_extra_descriptor(char *buffer, unsigned size, 310 unsigned char type, void **ptr); 311#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 312 __usb_get_extra_descriptor((ifpoint)->extra, \ 313 (ifpoint)->extralen, \ 314 type, (void **)ptr) 315 316/* ----------------------------------------------------------------------- */ 317 318/* USB device number allocation bitmap */ 319struct usb_devmap { 320 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 321}; 322 323/* 324 * Allocated per bus (tree of devices) we have: 325 */ 326struct usb_bus { 327 struct device *controller; /* host/master side hardware */ 328 int busnum; /* Bus number (in order of reg) */ 329 const char *bus_name; /* stable id (PCI slot_name etc) */ 330 u8 uses_dma; /* Does the host controller use DMA? */ 331 u8 otg_port; /* 0, or number of OTG/HNP port */ 332 unsigned is_b_host:1; /* true during some HNP roleswitches */ 333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 334 335 int devnum_next; /* Next open device number in 336 * round-robin allocation */ 337 338 struct usb_devmap devmap; /* device address allocation map */ 339 struct usb_device *root_hub; /* Root hub */ 340 struct list_head bus_list; /* list of busses */ 341 342 int bandwidth_allocated; /* on this bus: how much of the time 343 * reserved for periodic (intr/iso) 344 * requests is used, on average? 345 * Units: microseconds/frame. 346 * Limits: Full/low speed reserve 90%, 347 * while high speed reserves 80%. 348 */ 349 int bandwidth_int_reqs; /* number of Interrupt requests */ 350 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 351 352#ifdef CONFIG_USB_DEVICEFS 353 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 354#endif 355 356#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 357 struct mon_bus *mon_bus; /* non-null when associated */ 358 int monitored; /* non-zero when monitored */ 359#endif 360}; 361 362/* ----------------------------------------------------------------------- */ 363 364/* This is arbitrary. 365 * From USB 2.0 spec Table 11-13, offset 7, a hub can 366 * have up to 255 ports. The most yet reported is 10. 367 * 368 * Current Wireless USB host hardware (Intel i1480 for example) allows 369 * up to 22 devices to connect. Upcoming hardware might raise that 370 * limit. Because the arrays need to add a bit for hub status data, we 371 * do 31, so plus one evens out to four bytes. 372 */ 373#define USB_MAXCHILDREN (31) 374 375struct usb_tt; 376 377/** 378 * struct usb_device - kernel's representation of a USB device 379 * @devnum: device number; address on a USB bus 380 * @devpath: device ID string for use in messages (e.g., /port/...) 381 * @route: tree topology hex string for use with xHCI 382 * @state: device state: configured, not attached, etc. 383 * @speed: device speed: high/full/low (or error) 384 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 385 * @ttport: device port on that tt hub 386 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 387 * @parent: our hub, unless we're the root 388 * @bus: bus we're part of 389 * @ep0: endpoint 0 data (default control pipe) 390 * @dev: generic device interface 391 * @descriptor: USB device descriptor 392 * @config: all of the device's configs 393 * @actconfig: the active configuration 394 * @ep_in: array of IN endpoints 395 * @ep_out: array of OUT endpoints 396 * @rawdescriptors: raw descriptors for each config 397 * @bus_mA: Current available from the bus 398 * @portnum: parent port number (origin 1) 399 * @level: number of USB hub ancestors 400 * @can_submit: URBs may be submitted 401 * @discon_suspended: disconnected while suspended 402 * @persist_enabled: USB_PERSIST enabled for this device 403 * @have_langid: whether string_langid is valid 404 * @authorized: policy has said we can use it; 405 * (user space) policy determines if we authorize this device to be 406 * used or not. By default, wired USB devices are authorized. 407 * WUSB devices are not, until we authorize them from user space. 408 * FIXME -- complete doc 409 * @authenticated: Crypto authentication passed 410 * @wusb: device is Wireless USB 411 * @string_langid: language ID for strings 412 * @product: iProduct string, if present (static) 413 * @manufacturer: iManufacturer string, if present (static) 414 * @serial: iSerialNumber string, if present (static) 415 * @filelist: usbfs files that are open to this device 416 * @usb_classdev: USB class device that was created for usbfs device 417 * access from userspace 418 * @usbfs_dentry: usbfs dentry entry for the device 419 * @maxchild: number of ports if hub 420 * @children: child devices - USB devices that are attached to this hub 421 * @pm_usage_cnt: usage counter for autosuspend 422 * @quirks: quirks of the whole device 423 * @urbnum: number of URBs submitted for the whole device 424 * @active_duration: total time device is not suspended 425 * @autosuspend: for delayed autosuspends 426 * @autoresume: for autoresumes requested while in_interrupt 427 * @pm_mutex: protects PM operations 428 * @last_busy: time of last use 429 * @autosuspend_delay: in jiffies 430 * @connect_time: time device was first connected 431 * @auto_pm: autosuspend/resume in progress 432 * @do_remote_wakeup: remote wakeup should be enabled 433 * @reset_resume: needs reset instead of resume 434 * @autosuspend_disabled: autosuspend disabled by the user 435 * @autoresume_disabled: autoresume disabled by the user 436 * @skip_sys_resume: skip the next system resume 437 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 438 * specific data for the device. 439 * @slot_id: Slot ID assigned by xHCI 440 * 441 * Notes: 442 * Usbcore drivers should not set usbdev->state directly. Instead use 443 * usb_set_device_state(). 444 */ 445struct usb_device { 446 int devnum; 447 char devpath [16]; 448 u32 route; 449 enum usb_device_state state; 450 enum usb_device_speed speed; 451 452 struct usb_tt *tt; 453 int ttport; 454 455 unsigned int toggle[2]; 456 457 struct usb_device *parent; 458 struct usb_bus *bus; 459 struct usb_host_endpoint ep0; 460 461 struct device dev; 462 463 struct usb_device_descriptor descriptor; 464 struct usb_host_config *config; 465 466 struct usb_host_config *actconfig; 467 struct usb_host_endpoint *ep_in[16]; 468 struct usb_host_endpoint *ep_out[16]; 469 470 char **rawdescriptors; 471 472 unsigned short bus_mA; 473 u8 portnum; 474 u8 level; 475 476 unsigned can_submit:1; 477 unsigned discon_suspended:1; 478 unsigned persist_enabled:1; 479 unsigned have_langid:1; 480 unsigned authorized:1; 481 unsigned authenticated:1; 482 unsigned wusb:1; 483 int string_langid; 484 485 /* static strings from the device */ 486 char *product; 487 char *manufacturer; 488 char *serial; 489 490 struct list_head filelist; 491#ifdef CONFIG_USB_DEVICE_CLASS 492 struct device *usb_classdev; 493#endif 494#ifdef CONFIG_USB_DEVICEFS 495 struct dentry *usbfs_dentry; 496#endif 497 498 int maxchild; 499 struct usb_device *children[USB_MAXCHILDREN]; 500 501 int pm_usage_cnt; 502 u32 quirks; 503 atomic_t urbnum; 504 505 unsigned long active_duration; 506 507#ifdef CONFIG_PM 508 struct delayed_work autosuspend; 509 struct work_struct autoresume; 510 struct mutex pm_mutex; 511 512 unsigned long last_busy; 513 int autosuspend_delay; 514 unsigned long connect_time; 515 516 unsigned auto_pm:1; 517 unsigned do_remote_wakeup:1; 518 unsigned reset_resume:1; 519 unsigned autosuspend_disabled:1; 520 unsigned autoresume_disabled:1; 521 unsigned skip_sys_resume:1; 522#endif 523 struct wusb_dev *wusb_dev; 524 int slot_id; 525}; 526#define to_usb_device(d) container_of(d, struct usb_device, dev) 527 528extern struct usb_device *usb_get_dev(struct usb_device *dev); 529extern void usb_put_dev(struct usb_device *dev); 530 531/* USB device locking */ 532#define usb_lock_device(udev) down(&(udev)->dev.sem) 533#define usb_unlock_device(udev) up(&(udev)->dev.sem) 534#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 535extern int usb_lock_device_for_reset(struct usb_device *udev, 536 const struct usb_interface *iface); 537 538/* USB port reset for device reinitialization */ 539extern int usb_reset_device(struct usb_device *dev); 540extern void usb_queue_reset_device(struct usb_interface *dev); 541 542extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 543 544/* USB autosuspend and autoresume */ 545#ifdef CONFIG_USB_SUSPEND 546extern int usb_autopm_set_interface(struct usb_interface *intf); 547extern int usb_autopm_get_interface(struct usb_interface *intf); 548extern void usb_autopm_put_interface(struct usb_interface *intf); 549extern int usb_autopm_get_interface_async(struct usb_interface *intf); 550extern void usb_autopm_put_interface_async(struct usb_interface *intf); 551 552static inline void usb_autopm_enable(struct usb_interface *intf) 553{ 554 intf->pm_usage_cnt = 0; 555 usb_autopm_set_interface(intf); 556} 557 558static inline void usb_autopm_disable(struct usb_interface *intf) 559{ 560 intf->pm_usage_cnt = 1; 561 usb_autopm_set_interface(intf); 562} 563 564static inline void usb_mark_last_busy(struct usb_device *udev) 565{ 566 udev->last_busy = jiffies; 567} 568 569#else 570 571static inline int usb_autopm_set_interface(struct usb_interface *intf) 572{ return 0; } 573 574static inline int usb_autopm_get_interface(struct usb_interface *intf) 575{ return 0; } 576 577static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 578{ return 0; } 579 580static inline void usb_autopm_put_interface(struct usb_interface *intf) 581{ } 582static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 583{ } 584static inline void usb_autopm_enable(struct usb_interface *intf) 585{ } 586static inline void usb_autopm_disable(struct usb_interface *intf) 587{ } 588static inline void usb_mark_last_busy(struct usb_device *udev) 589{ } 590#endif 591 592/*-------------------------------------------------------------------------*/ 593 594/* for drivers using iso endpoints */ 595extern int usb_get_current_frame_number(struct usb_device *usb_dev); 596 597/* used these for multi-interface device registration */ 598extern int usb_driver_claim_interface(struct usb_driver *driver, 599 struct usb_interface *iface, void *priv); 600 601/** 602 * usb_interface_claimed - returns true iff an interface is claimed 603 * @iface: the interface being checked 604 * 605 * Returns true (nonzero) iff the interface is claimed, else false (zero). 606 * Callers must own the driver model's usb bus readlock. So driver 607 * probe() entries don't need extra locking, but other call contexts 608 * may need to explicitly claim that lock. 609 * 610 */ 611static inline int usb_interface_claimed(struct usb_interface *iface) 612{ 613 return (iface->dev.driver != NULL); 614} 615 616extern void usb_driver_release_interface(struct usb_driver *driver, 617 struct usb_interface *iface); 618const struct usb_device_id *usb_match_id(struct usb_interface *interface, 619 const struct usb_device_id *id); 620extern int usb_match_one_id(struct usb_interface *interface, 621 const struct usb_device_id *id); 622 623extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 624 int minor); 625extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 626 unsigned ifnum); 627extern struct usb_host_interface *usb_altnum_to_altsetting( 628 const struct usb_interface *intf, unsigned int altnum); 629 630 631/** 632 * usb_make_path - returns stable device path in the usb tree 633 * @dev: the device whose path is being constructed 634 * @buf: where to put the string 635 * @size: how big is "buf"? 636 * 637 * Returns length of the string (> 0) or negative if size was too small. 638 * 639 * This identifier is intended to be "stable", reflecting physical paths in 640 * hardware such as physical bus addresses for host controllers or ports on 641 * USB hubs. That makes it stay the same until systems are physically 642 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 643 * controllers. Adding and removing devices, including virtual root hubs 644 * in host controller driver modules, does not change these path identifers; 645 * neither does rebooting or re-enumerating. These are more useful identifiers 646 * than changeable ("unstable") ones like bus numbers or device addresses. 647 * 648 * With a partial exception for devices connected to USB 2.0 root hubs, these 649 * identifiers are also predictable. So long as the device tree isn't changed, 650 * plugging any USB device into a given hub port always gives it the same path. 651 * Because of the use of "companion" controllers, devices connected to ports on 652 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 653 * high speed, and a different one if they are full or low speed. 654 */ 655static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 656{ 657 int actual; 658 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 659 dev->devpath); 660 return (actual >= (int)size) ? -1 : actual; 661} 662 663/*-------------------------------------------------------------------------*/ 664 665#define USB_DEVICE_ID_MATCH_DEVICE \ 666 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 667#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 668 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 669#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 670 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 671#define USB_DEVICE_ID_MATCH_DEV_INFO \ 672 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 673 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 674 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 675#define USB_DEVICE_ID_MATCH_INT_INFO \ 676 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 677 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 678 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 679 680/** 681 * USB_DEVICE - macro used to describe a specific usb device 682 * @vend: the 16 bit USB Vendor ID 683 * @prod: the 16 bit USB Product ID 684 * 685 * This macro is used to create a struct usb_device_id that matches a 686 * specific device. 687 */ 688#define USB_DEVICE(vend,prod) \ 689 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 690 .idVendor = (vend), \ 691 .idProduct = (prod) 692/** 693 * USB_DEVICE_VER - describe a specific usb device with a version range 694 * @vend: the 16 bit USB Vendor ID 695 * @prod: the 16 bit USB Product ID 696 * @lo: the bcdDevice_lo value 697 * @hi: the bcdDevice_hi value 698 * 699 * This macro is used to create a struct usb_device_id that matches a 700 * specific device, with a version range. 701 */ 702#define USB_DEVICE_VER(vend, prod, lo, hi) \ 703 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 704 .idVendor = (vend), \ 705 .idProduct = (prod), \ 706 .bcdDevice_lo = (lo), \ 707 .bcdDevice_hi = (hi) 708 709/** 710 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 711 * @vend: the 16 bit USB Vendor ID 712 * @prod: the 16 bit USB Product ID 713 * @pr: bInterfaceProtocol value 714 * 715 * This macro is used to create a struct usb_device_id that matches a 716 * specific interface protocol of devices. 717 */ 718#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 719 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 720 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 721 .idVendor = (vend), \ 722 .idProduct = (prod), \ 723 .bInterfaceProtocol = (pr) 724 725/** 726 * USB_DEVICE_INFO - macro used to describe a class of usb devices 727 * @cl: bDeviceClass value 728 * @sc: bDeviceSubClass value 729 * @pr: bDeviceProtocol value 730 * 731 * This macro is used to create a struct usb_device_id that matches a 732 * specific class of devices. 733 */ 734#define USB_DEVICE_INFO(cl, sc, pr) \ 735 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 736 .bDeviceClass = (cl), \ 737 .bDeviceSubClass = (sc), \ 738 .bDeviceProtocol = (pr) 739 740/** 741 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 742 * @cl: bInterfaceClass value 743 * @sc: bInterfaceSubClass value 744 * @pr: bInterfaceProtocol value 745 * 746 * This macro is used to create a struct usb_device_id that matches a 747 * specific class of interfaces. 748 */ 749#define USB_INTERFACE_INFO(cl, sc, pr) \ 750 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 751 .bInterfaceClass = (cl), \ 752 .bInterfaceSubClass = (sc), \ 753 .bInterfaceProtocol = (pr) 754 755/** 756 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 757 * @vend: the 16 bit USB Vendor ID 758 * @prod: the 16 bit USB Product ID 759 * @cl: bInterfaceClass value 760 * @sc: bInterfaceSubClass value 761 * @pr: bInterfaceProtocol value 762 * 763 * This macro is used to create a struct usb_device_id that matches a 764 * specific device with a specific class of interfaces. 765 * 766 * This is especially useful when explicitly matching devices that have 767 * vendor specific bDeviceClass values, but standards-compliant interfaces. 768 */ 769#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 770 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 771 | USB_DEVICE_ID_MATCH_DEVICE, \ 772 .idVendor = (vend), \ 773 .idProduct = (prod), \ 774 .bInterfaceClass = (cl), \ 775 .bInterfaceSubClass = (sc), \ 776 .bInterfaceProtocol = (pr) 777 778/* ----------------------------------------------------------------------- */ 779 780/* Stuff for dynamic usb ids */ 781struct usb_dynids { 782 spinlock_t lock; 783 struct list_head list; 784}; 785 786struct usb_dynid { 787 struct list_head node; 788 struct usb_device_id id; 789}; 790 791extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 792 struct device_driver *driver, 793 const char *buf, size_t count); 794 795/** 796 * struct usbdrv_wrap - wrapper for driver-model structure 797 * @driver: The driver-model core driver structure. 798 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 799 */ 800struct usbdrv_wrap { 801 struct device_driver driver; 802 int for_devices; 803}; 804 805/** 806 * struct usb_driver - identifies USB interface driver to usbcore 807 * @name: The driver name should be unique among USB drivers, 808 * and should normally be the same as the module name. 809 * @probe: Called to see if the driver is willing to manage a particular 810 * interface on a device. If it is, probe returns zero and uses 811 * usb_set_intfdata() to associate driver-specific data with the 812 * interface. It may also use usb_set_interface() to specify the 813 * appropriate altsetting. If unwilling to manage the interface, 814 * return -ENODEV, if genuine IO errors occured, an appropriate 815 * negative errno value. 816 * @disconnect: Called when the interface is no longer accessible, usually 817 * because its device has been (or is being) disconnected or the 818 * driver module is being unloaded. 819 * @ioctl: Used for drivers that want to talk to userspace through 820 * the "usbfs" filesystem. This lets devices provide ways to 821 * expose information to user space regardless of where they 822 * do (or don't) show up otherwise in the filesystem. 823 * @suspend: Called when the device is going to be suspended by the system. 824 * @resume: Called when the device is being resumed by the system. 825 * @reset_resume: Called when the suspended device has been reset instead 826 * of being resumed. 827 * @pre_reset: Called by usb_reset_device() when the device 828 * is about to be reset. 829 * @post_reset: Called by usb_reset_device() after the device 830 * has been reset 831 * @id_table: USB drivers use ID table to support hotplugging. 832 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 833 * or your driver's probe function will never get called. 834 * @dynids: used internally to hold the list of dynamically added device 835 * ids for this driver. 836 * @drvwrap: Driver-model core structure wrapper. 837 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 838 * added to this driver by preventing the sysfs file from being created. 839 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 840 * for interfaces bound to this driver. 841 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 842 * endpoints before calling the driver's disconnect method. 843 * 844 * USB interface drivers must provide a name, probe() and disconnect() 845 * methods, and an id_table. Other driver fields are optional. 846 * 847 * The id_table is used in hotplugging. It holds a set of descriptors, 848 * and specialized data may be associated with each entry. That table 849 * is used by both user and kernel mode hotplugging support. 850 * 851 * The probe() and disconnect() methods are called in a context where 852 * they can sleep, but they should avoid abusing the privilege. Most 853 * work to connect to a device should be done when the device is opened, 854 * and undone at the last close. The disconnect code needs to address 855 * concurrency issues with respect to open() and close() methods, as 856 * well as forcing all pending I/O requests to complete (by unlinking 857 * them as necessary, and blocking until the unlinks complete). 858 */ 859struct usb_driver { 860 const char *name; 861 862 int (*probe) (struct usb_interface *intf, 863 const struct usb_device_id *id); 864 865 void (*disconnect) (struct usb_interface *intf); 866 867 int (*ioctl) (struct usb_interface *intf, unsigned int code, 868 void *buf); 869 870 int (*suspend) (struct usb_interface *intf, pm_message_t message); 871 int (*resume) (struct usb_interface *intf); 872 int (*reset_resume)(struct usb_interface *intf); 873 874 int (*pre_reset)(struct usb_interface *intf); 875 int (*post_reset)(struct usb_interface *intf); 876 877 const struct usb_device_id *id_table; 878 879 struct usb_dynids dynids; 880 struct usbdrv_wrap drvwrap; 881 unsigned int no_dynamic_id:1; 882 unsigned int supports_autosuspend:1; 883 unsigned int soft_unbind:1; 884}; 885#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 886 887/** 888 * struct usb_device_driver - identifies USB device driver to usbcore 889 * @name: The driver name should be unique among USB drivers, 890 * and should normally be the same as the module name. 891 * @probe: Called to see if the driver is willing to manage a particular 892 * device. If it is, probe returns zero and uses dev_set_drvdata() 893 * to associate driver-specific data with the device. If unwilling 894 * to manage the device, return a negative errno value. 895 * @disconnect: Called when the device is no longer accessible, usually 896 * because it has been (or is being) disconnected or the driver's 897 * module is being unloaded. 898 * @suspend: Called when the device is going to be suspended by the system. 899 * @resume: Called when the device is being resumed by the system. 900 * @drvwrap: Driver-model core structure wrapper. 901 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 902 * for devices bound to this driver. 903 * 904 * USB drivers must provide all the fields listed above except drvwrap. 905 */ 906struct usb_device_driver { 907 const char *name; 908 909 int (*probe) (struct usb_device *udev); 910 void (*disconnect) (struct usb_device *udev); 911 912 int (*suspend) (struct usb_device *udev, pm_message_t message); 913 int (*resume) (struct usb_device *udev, pm_message_t message); 914 struct usbdrv_wrap drvwrap; 915 unsigned int supports_autosuspend:1; 916}; 917#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 918 drvwrap.driver) 919 920extern struct bus_type usb_bus_type; 921 922/** 923 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 924 * @name: the usb class device name for this driver. Will show up in sysfs. 925 * @nodename: Callback to provide a naming hint for a possible 926 * device node to create. 927 * @fops: pointer to the struct file_operations of this driver. 928 * @minor_base: the start of the minor range for this driver. 929 * 930 * This structure is used for the usb_register_dev() and 931 * usb_unregister_dev() functions, to consolidate a number of the 932 * parameters used for them. 933 */ 934struct usb_class_driver { 935 char *name; 936 char *(*nodename)(struct device *dev); 937 const struct file_operations *fops; 938 int minor_base; 939}; 940 941/* 942 * use these in module_init()/module_exit() 943 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 944 */ 945extern int usb_register_driver(struct usb_driver *, struct module *, 946 const char *); 947static inline int usb_register(struct usb_driver *driver) 948{ 949 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 950} 951extern void usb_deregister(struct usb_driver *); 952 953extern int usb_register_device_driver(struct usb_device_driver *, 954 struct module *); 955extern void usb_deregister_device_driver(struct usb_device_driver *); 956 957extern int usb_register_dev(struct usb_interface *intf, 958 struct usb_class_driver *class_driver); 959extern void usb_deregister_dev(struct usb_interface *intf, 960 struct usb_class_driver *class_driver); 961 962extern int usb_disabled(void); 963 964/* ----------------------------------------------------------------------- */ 965 966/* 967 * URB support, for asynchronous request completions 968 */ 969 970/* 971 * urb->transfer_flags: 972 * 973 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 974 */ 975#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 976#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 977 * ignored */ 978#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 979#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 980#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 981#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 982#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 983 * needed */ 984#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 985 986#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 987#define URB_DIR_OUT 0 988#define URB_DIR_MASK URB_DIR_IN 989 990struct usb_iso_packet_descriptor { 991 unsigned int offset; 992 unsigned int length; /* expected length */ 993 unsigned int actual_length; 994 int status; 995}; 996 997struct urb; 998 999struct usb_anchor { 1000 struct list_head urb_list; 1001 wait_queue_head_t wait; 1002 spinlock_t lock; 1003 unsigned int poisoned:1; 1004}; 1005 1006static inline void init_usb_anchor(struct usb_anchor *anchor) 1007{ 1008 INIT_LIST_HEAD(&anchor->urb_list); 1009 init_waitqueue_head(&anchor->wait); 1010 spin_lock_init(&anchor->lock); 1011} 1012 1013typedef void (*usb_complete_t)(struct urb *); 1014 1015/** 1016 * struct urb - USB Request Block 1017 * @urb_list: For use by current owner of the URB. 1018 * @anchor_list: membership in the list of an anchor 1019 * @anchor: to anchor URBs to a common mooring 1020 * @ep: Points to the endpoint's data structure. Will eventually 1021 * replace @pipe. 1022 * @pipe: Holds endpoint number, direction, type, and more. 1023 * Create these values with the eight macros available; 1024 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1025 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1026 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1027 * numbers range from zero to fifteen. Note that "in" endpoint two 1028 * is a different endpoint (and pipe) from "out" endpoint two. 1029 * The current configuration controls the existence, type, and 1030 * maximum packet size of any given endpoint. 1031 * @dev: Identifies the USB device to perform the request. 1032 * @status: This is read in non-iso completion functions to get the 1033 * status of the particular request. ISO requests only use it 1034 * to tell whether the URB was unlinked; detailed status for 1035 * each frame is in the fields of the iso_frame-desc. 1036 * @transfer_flags: A variety of flags may be used to affect how URB 1037 * submission, unlinking, or operation are handled. Different 1038 * kinds of URB can use different flags. 1039 * @transfer_buffer: This identifies the buffer to (or from) which 1040 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1041 * is set). This buffer must be suitable for DMA; allocate it with 1042 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1043 * of this buffer will be modified. This buffer is used for the data 1044 * stage of control transfers. 1045 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1046 * the device driver is saying that it provided this DMA address, 1047 * which the host controller driver should use in preference to the 1048 * transfer_buffer. 1049 * @sg: scatter gather buffer list 1050 * @num_sgs: number of entries in the sg list 1051 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1052 * be broken up into chunks according to the current maximum packet 1053 * size for the endpoint, which is a function of the configuration 1054 * and is encoded in the pipe. When the length is zero, neither 1055 * transfer_buffer nor transfer_dma is used. 1056 * @actual_length: This is read in non-iso completion functions, and 1057 * it tells how many bytes (out of transfer_buffer_length) were 1058 * transferred. It will normally be the same as requested, unless 1059 * either an error was reported or a short read was performed. 1060 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1061 * short reads be reported as errors. 1062 * @setup_packet: Only used for control transfers, this points to eight bytes 1063 * of setup data. Control transfers always start by sending this data 1064 * to the device. Then transfer_buffer is read or written, if needed. 1065 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1066 * device driver has provided this DMA address for the setup packet. 1067 * The host controller driver should use this in preference to 1068 * setup_packet, but the HCD may chose to ignore the address if it must 1069 * copy the setup packet into internal structures. Therefore, setup_packet 1070 * must always point to a valid buffer. 1071 * @start_frame: Returns the initial frame for isochronous transfers. 1072 * @number_of_packets: Lists the number of ISO transfer buffers. 1073 * @interval: Specifies the polling interval for interrupt or isochronous 1074 * transfers. The units are frames (milliseconds) for for full and low 1075 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1076 * @error_count: Returns the number of ISO transfers that reported errors. 1077 * @context: For use in completion functions. This normally points to 1078 * request-specific driver context. 1079 * @complete: Completion handler. This URB is passed as the parameter to the 1080 * completion function. The completion function may then do what 1081 * it likes with the URB, including resubmitting or freeing it. 1082 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1083 * collect the transfer status for each buffer. 1084 * 1085 * This structure identifies USB transfer requests. URBs must be allocated by 1086 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1087 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1088 * are submitted using usb_submit_urb(), and pending requests may be canceled 1089 * using usb_unlink_urb() or usb_kill_urb(). 1090 * 1091 * Data Transfer Buffers: 1092 * 1093 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1094 * taken from the general page pool. That is provided by transfer_buffer 1095 * (control requests also use setup_packet), and host controller drivers 1096 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1097 * mapping operations can be expensive on some platforms (perhaps using a dma 1098 * bounce buffer or talking to an IOMMU), 1099 * although they're cheap on commodity x86 and ppc hardware. 1100 * 1101 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1102 * which tell the host controller driver that no such mapping is needed since 1103 * the device driver is DMA-aware. For example, a device driver might 1104 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1105 * When these transfer flags are provided, host controller drivers will 1106 * attempt to use the dma addresses found in the transfer_dma and/or 1107 * setup_dma fields rather than determining a dma address themselves. (Note 1108 * that transfer_buffer and setup_packet must still be set because not all 1109 * host controllers use DMA, nor do virtual root hubs). 1110 * 1111 * Initialization: 1112 * 1113 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1114 * zero), and complete fields. All URBs must also initialize 1115 * transfer_buffer and transfer_buffer_length. They may provide the 1116 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1117 * to be treated as errors; that flag is invalid for write requests. 1118 * 1119 * Bulk URBs may 1120 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1121 * should always terminate with a short packet, even if it means adding an 1122 * extra zero length packet. 1123 * 1124 * Control URBs must provide a setup_packet. The setup_packet and 1125 * transfer_buffer may each be mapped for DMA or not, independently of 1126 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1127 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1128 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1129 * 1130 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1131 * or, for highspeed devices, 125 microsecond units) 1132 * to poll for transfers. After the URB has been submitted, the interval 1133 * field reflects how the transfer was actually scheduled. 1134 * The polling interval may be more frequent than requested. 1135 * For example, some controllers have a maximum interval of 32 milliseconds, 1136 * while others support intervals of up to 1024 milliseconds. 1137 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1138 * endpoints, as well as high speed interrupt endpoints, the encoding of 1139 * the transfer interval in the endpoint descriptor is logarithmic. 1140 * Device drivers must convert that value to linear units themselves.) 1141 * 1142 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1143 * the host controller to schedule the transfer as soon as bandwidth 1144 * utilization allows, and then set start_frame to reflect the actual frame 1145 * selected during submission. Otherwise drivers must specify the start_frame 1146 * and handle the case where the transfer can't begin then. However, drivers 1147 * won't know how bandwidth is currently allocated, and while they can 1148 * find the current frame using usb_get_current_frame_number () they can't 1149 * know the range for that frame number. (Ranges for frame counter values 1150 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1151 * 1152 * Isochronous URBs have a different data transfer model, in part because 1153 * the quality of service is only "best effort". Callers provide specially 1154 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1155 * at the end. Each such packet is an individual ISO transfer. Isochronous 1156 * URBs are normally queued, submitted by drivers to arrange that 1157 * transfers are at least double buffered, and then explicitly resubmitted 1158 * in completion handlers, so 1159 * that data (such as audio or video) streams at as constant a rate as the 1160 * host controller scheduler can support. 1161 * 1162 * Completion Callbacks: 1163 * 1164 * The completion callback is made in_interrupt(), and one of the first 1165 * things that a completion handler should do is check the status field. 1166 * The status field is provided for all URBs. It is used to report 1167 * unlinked URBs, and status for all non-ISO transfers. It should not 1168 * be examined before the URB is returned to the completion handler. 1169 * 1170 * The context field is normally used to link URBs back to the relevant 1171 * driver or request state. 1172 * 1173 * When the completion callback is invoked for non-isochronous URBs, the 1174 * actual_length field tells how many bytes were transferred. This field 1175 * is updated even when the URB terminated with an error or was unlinked. 1176 * 1177 * ISO transfer status is reported in the status and actual_length fields 1178 * of the iso_frame_desc array, and the number of errors is reported in 1179 * error_count. Completion callbacks for ISO transfers will normally 1180 * (re)submit URBs to ensure a constant transfer rate. 1181 * 1182 * Note that even fields marked "public" should not be touched by the driver 1183 * when the urb is owned by the hcd, that is, since the call to 1184 * usb_submit_urb() till the entry into the completion routine. 1185 */ 1186struct urb { 1187 /* private: usb core and host controller only fields in the urb */ 1188 struct kref kref; /* reference count of the URB */ 1189 void *hcpriv; /* private data for host controller */ 1190 atomic_t use_count; /* concurrent submissions counter */ 1191 atomic_t reject; /* submissions will fail */ 1192 int unlinked; /* unlink error code */ 1193 1194 /* public: documented fields in the urb that can be used by drivers */ 1195 struct list_head urb_list; /* list head for use by the urb's 1196 * current owner */ 1197 struct list_head anchor_list; /* the URB may be anchored */ 1198 struct usb_anchor *anchor; 1199 struct usb_device *dev; /* (in) pointer to associated device */ 1200 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1201 unsigned int pipe; /* (in) pipe information */ 1202 int status; /* (return) non-ISO status */ 1203 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1204 void *transfer_buffer; /* (in) associated data buffer */ 1205 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1206 struct usb_sg_request *sg; /* (in) scatter gather buffer list */ 1207 int num_sgs; /* (in) number of entries in the sg list */ 1208 u32 transfer_buffer_length; /* (in) data buffer length */ 1209 u32 actual_length; /* (return) actual transfer length */ 1210 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1211 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1212 int start_frame; /* (modify) start frame (ISO) */ 1213 int number_of_packets; /* (in) number of ISO packets */ 1214 int interval; /* (modify) transfer interval 1215 * (INT/ISO) */ 1216 int error_count; /* (return) number of ISO errors */ 1217 void *context; /* (in) context for completion */ 1218 usb_complete_t complete; /* (in) completion routine */ 1219 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1220 /* (in) ISO ONLY */ 1221}; 1222 1223/* ----------------------------------------------------------------------- */ 1224 1225/** 1226 * usb_fill_control_urb - initializes a control urb 1227 * @urb: pointer to the urb to initialize. 1228 * @dev: pointer to the struct usb_device for this urb. 1229 * @pipe: the endpoint pipe 1230 * @setup_packet: pointer to the setup_packet buffer 1231 * @transfer_buffer: pointer to the transfer buffer 1232 * @buffer_length: length of the transfer buffer 1233 * @complete_fn: pointer to the usb_complete_t function 1234 * @context: what to set the urb context to. 1235 * 1236 * Initializes a control urb with the proper information needed to submit 1237 * it to a device. 1238 */ 1239static inline void usb_fill_control_urb(struct urb *urb, 1240 struct usb_device *dev, 1241 unsigned int pipe, 1242 unsigned char *setup_packet, 1243 void *transfer_buffer, 1244 int buffer_length, 1245 usb_complete_t complete_fn, 1246 void *context) 1247{ 1248 urb->dev = dev; 1249 urb->pipe = pipe; 1250 urb->setup_packet = setup_packet; 1251 urb->transfer_buffer = transfer_buffer; 1252 urb->transfer_buffer_length = buffer_length; 1253 urb->complete = complete_fn; 1254 urb->context = context; 1255} 1256 1257/** 1258 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1259 * @urb: pointer to the urb to initialize. 1260 * @dev: pointer to the struct usb_device for this urb. 1261 * @pipe: the endpoint pipe 1262 * @transfer_buffer: pointer to the transfer buffer 1263 * @buffer_length: length of the transfer buffer 1264 * @complete_fn: pointer to the usb_complete_t function 1265 * @context: what to set the urb context to. 1266 * 1267 * Initializes a bulk urb with the proper information needed to submit it 1268 * to a device. 1269 */ 1270static inline void usb_fill_bulk_urb(struct urb *urb, 1271 struct usb_device *dev, 1272 unsigned int pipe, 1273 void *transfer_buffer, 1274 int buffer_length, 1275 usb_complete_t complete_fn, 1276 void *context) 1277{ 1278 urb->dev = dev; 1279 urb->pipe = pipe; 1280 urb->transfer_buffer = transfer_buffer; 1281 urb->transfer_buffer_length = buffer_length; 1282 urb->complete = complete_fn; 1283 urb->context = context; 1284} 1285 1286/** 1287 * usb_fill_int_urb - macro to help initialize a interrupt urb 1288 * @urb: pointer to the urb to initialize. 1289 * @dev: pointer to the struct usb_device for this urb. 1290 * @pipe: the endpoint pipe 1291 * @transfer_buffer: pointer to the transfer buffer 1292 * @buffer_length: length of the transfer buffer 1293 * @complete_fn: pointer to the usb_complete_t function 1294 * @context: what to set the urb context to. 1295 * @interval: what to set the urb interval to, encoded like 1296 * the endpoint descriptor's bInterval value. 1297 * 1298 * Initializes a interrupt urb with the proper information needed to submit 1299 * it to a device. 1300 * Note that high speed interrupt endpoints use a logarithmic encoding of 1301 * the endpoint interval, and express polling intervals in microframes 1302 * (eight per millisecond) rather than in frames (one per millisecond). 1303 */ 1304static inline void usb_fill_int_urb(struct urb *urb, 1305 struct usb_device *dev, 1306 unsigned int pipe, 1307 void *transfer_buffer, 1308 int buffer_length, 1309 usb_complete_t complete_fn, 1310 void *context, 1311 int interval) 1312{ 1313 urb->dev = dev; 1314 urb->pipe = pipe; 1315 urb->transfer_buffer = transfer_buffer; 1316 urb->transfer_buffer_length = buffer_length; 1317 urb->complete = complete_fn; 1318 urb->context = context; 1319 if (dev->speed == USB_SPEED_HIGH) 1320 urb->interval = 1 << (interval - 1); 1321 else 1322 urb->interval = interval; 1323 urb->start_frame = -1; 1324} 1325 1326extern void usb_init_urb(struct urb *urb); 1327extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1328extern void usb_free_urb(struct urb *urb); 1329#define usb_put_urb usb_free_urb 1330extern struct urb *usb_get_urb(struct urb *urb); 1331extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1332extern int usb_unlink_urb(struct urb *urb); 1333extern void usb_kill_urb(struct urb *urb); 1334extern void usb_poison_urb(struct urb *urb); 1335extern void usb_unpoison_urb(struct urb *urb); 1336extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1337extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1338extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1339extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1340extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1341extern void usb_unanchor_urb(struct urb *urb); 1342extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1343 unsigned int timeout); 1344extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1345extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1346extern int usb_anchor_empty(struct usb_anchor *anchor); 1347 1348/** 1349 * usb_urb_dir_in - check if an URB describes an IN transfer 1350 * @urb: URB to be checked 1351 * 1352 * Returns 1 if @urb describes an IN transfer (device-to-host), 1353 * otherwise 0. 1354 */ 1355static inline int usb_urb_dir_in(struct urb *urb) 1356{ 1357 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1358} 1359 1360/** 1361 * usb_urb_dir_out - check if an URB describes an OUT transfer 1362 * @urb: URB to be checked 1363 * 1364 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1365 * otherwise 0. 1366 */ 1367static inline int usb_urb_dir_out(struct urb *urb) 1368{ 1369 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1370} 1371 1372void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1373 gfp_t mem_flags, dma_addr_t *dma); 1374void usb_buffer_free(struct usb_device *dev, size_t size, 1375 void *addr, dma_addr_t dma); 1376 1377#if 0 1378struct urb *usb_buffer_map(struct urb *urb); 1379void usb_buffer_dmasync(struct urb *urb); 1380void usb_buffer_unmap(struct urb *urb); 1381#endif 1382 1383struct scatterlist; 1384int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1385 struct scatterlist *sg, int nents); 1386#if 0 1387void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1388 struct scatterlist *sg, int n_hw_ents); 1389#endif 1390void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1391 struct scatterlist *sg, int n_hw_ents); 1392 1393/*-------------------------------------------------------------------* 1394 * SYNCHRONOUS CALL SUPPORT * 1395 *-------------------------------------------------------------------*/ 1396 1397extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1398 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1399 void *data, __u16 size, int timeout); 1400extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1401 void *data, int len, int *actual_length, int timeout); 1402extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1403 void *data, int len, int *actual_length, 1404 int timeout); 1405 1406/* wrappers around usb_control_msg() for the most common standard requests */ 1407extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1408 unsigned char descindex, void *buf, int size); 1409extern int usb_get_status(struct usb_device *dev, 1410 int type, int target, void *data); 1411extern int usb_string(struct usb_device *dev, int index, 1412 char *buf, size_t size); 1413 1414/* wrappers that also update important state inside usbcore */ 1415extern int usb_clear_halt(struct usb_device *dev, int pipe); 1416extern int usb_reset_configuration(struct usb_device *dev); 1417extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1418extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1419 1420/* this request isn't really synchronous, but it belongs with the others */ 1421extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1422 1423/* 1424 * timeouts, in milliseconds, used for sending/receiving control messages 1425 * they typically complete within a few frames (msec) after they're issued 1426 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1427 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1428 */ 1429#define USB_CTRL_GET_TIMEOUT 5000 1430#define USB_CTRL_SET_TIMEOUT 5000 1431 1432 1433/** 1434 * struct usb_sg_request - support for scatter/gather I/O 1435 * @status: zero indicates success, else negative errno 1436 * @bytes: counts bytes transferred. 1437 * 1438 * These requests are initialized using usb_sg_init(), and then are used 1439 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1440 * members of the request object aren't for driver access. 1441 * 1442 * The status and bytecount values are valid only after usb_sg_wait() 1443 * returns. If the status is zero, then the bytecount matches the total 1444 * from the request. 1445 * 1446 * After an error completion, drivers may need to clear a halt condition 1447 * on the endpoint. 1448 */ 1449struct usb_sg_request { 1450 int status; 1451 size_t bytes; 1452 1453 /* private: 1454 * members below are private to usbcore, 1455 * and are not provided for driver access! 1456 */ 1457 spinlock_t lock; 1458 1459 struct usb_device *dev; 1460 int pipe; 1461 struct scatterlist *sg; 1462 int nents; 1463 1464 int entries; 1465 struct urb **urbs; 1466 1467 int count; 1468 struct completion complete; 1469}; 1470 1471int usb_sg_init( 1472 struct usb_sg_request *io, 1473 struct usb_device *dev, 1474 unsigned pipe, 1475 unsigned period, 1476 struct scatterlist *sg, 1477 int nents, 1478 size_t length, 1479 gfp_t mem_flags 1480); 1481void usb_sg_cancel(struct usb_sg_request *io); 1482void usb_sg_wait(struct usb_sg_request *io); 1483 1484 1485/* ----------------------------------------------------------------------- */ 1486 1487/* 1488 * For various legacy reasons, Linux has a small cookie that's paired with 1489 * a struct usb_device to identify an endpoint queue. Queue characteristics 1490 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1491 * an unsigned int encoded as: 1492 * 1493 * - direction: bit 7 (0 = Host-to-Device [Out], 1494 * 1 = Device-to-Host [In] ... 1495 * like endpoint bEndpointAddress) 1496 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1497 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1498 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1499 * 10 = control, 11 = bulk) 1500 * 1501 * Given the device address and endpoint descriptor, pipes are redundant. 1502 */ 1503 1504/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1505/* (yet ... they're the values used by usbfs) */ 1506#define PIPE_ISOCHRONOUS 0 1507#define PIPE_INTERRUPT 1 1508#define PIPE_CONTROL 2 1509#define PIPE_BULK 3 1510 1511#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1512#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1513 1514#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1515#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1516 1517#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1518#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1519#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1520#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1521#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1522 1523static inline unsigned int __create_pipe(struct usb_device *dev, 1524 unsigned int endpoint) 1525{ 1526 return (dev->devnum << 8) | (endpoint << 15); 1527} 1528 1529/* Create various pipes... */ 1530#define usb_sndctrlpipe(dev,endpoint) \ 1531 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1532#define usb_rcvctrlpipe(dev,endpoint) \ 1533 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1534#define usb_sndisocpipe(dev,endpoint) \ 1535 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1536#define usb_rcvisocpipe(dev,endpoint) \ 1537 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1538#define usb_sndbulkpipe(dev,endpoint) \ 1539 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1540#define usb_rcvbulkpipe(dev,endpoint) \ 1541 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1542#define usb_sndintpipe(dev,endpoint) \ 1543 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1544#define usb_rcvintpipe(dev,endpoint) \ 1545 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1546 1547/*-------------------------------------------------------------------------*/ 1548 1549static inline __u16 1550usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1551{ 1552 struct usb_host_endpoint *ep; 1553 unsigned epnum = usb_pipeendpoint(pipe); 1554 1555 if (is_out) { 1556 WARN_ON(usb_pipein(pipe)); 1557 ep = udev->ep_out[epnum]; 1558 } else { 1559 WARN_ON(usb_pipeout(pipe)); 1560 ep = udev->ep_in[epnum]; 1561 } 1562 if (!ep) 1563 return 0; 1564 1565 /* NOTE: only 0x07ff bits are for packet size... */ 1566 return le16_to_cpu(ep->desc.wMaxPacketSize); 1567} 1568 1569/* ----------------------------------------------------------------------- */ 1570 1571/* Events from the usb core */ 1572#define USB_DEVICE_ADD 0x0001 1573#define USB_DEVICE_REMOVE 0x0002 1574#define USB_BUS_ADD 0x0003 1575#define USB_BUS_REMOVE 0x0004 1576extern void usb_register_notify(struct notifier_block *nb); 1577extern void usb_unregister_notify(struct notifier_block *nb); 1578 1579#ifdef DEBUG 1580#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1581 __FILE__ , ## arg) 1582#else 1583#define dbg(format, arg...) do {} while (0) 1584#endif 1585 1586#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1587 format "\n" , ## arg) 1588 1589/* debugfs stuff */ 1590extern struct dentry *usb_debug_root; 1591 1592#endif /* __KERNEL__ */ 1593 1594#endif