at v2.6.31 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_RESERVE 3 42#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 43#define MIGRATE_TYPES 5 44 45#define for_each_migratetype_order(order, type) \ 46 for (order = 0; order < MAX_ORDER; order++) \ 47 for (type = 0; type < MIGRATE_TYPES; type++) 48 49extern int page_group_by_mobility_disabled; 50 51static inline int get_pageblock_migratetype(struct page *page) 52{ 53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 54} 55 56struct free_area { 57 struct list_head free_list[MIGRATE_TYPES]; 58 unsigned long nr_free; 59}; 60 61struct pglist_data; 62 63/* 64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 65 * So add a wild amount of padding here to ensure that they fall into separate 66 * cachelines. There are very few zone structures in the machine, so space 67 * consumption is not a concern here. 68 */ 69#if defined(CONFIG_SMP) 70struct zone_padding { 71 char x[0]; 72} ____cacheline_internodealigned_in_smp; 73#define ZONE_PADDING(name) struct zone_padding name; 74#else 75#define ZONE_PADDING(name) 76#endif 77 78enum zone_stat_item { 79 /* First 128 byte cacheline (assuming 64 bit words) */ 80 NR_FREE_PAGES, 81 NR_LRU_BASE, 82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 83 NR_ACTIVE_ANON, /* " " " " " */ 84 NR_INACTIVE_FILE, /* " " " " " */ 85 NR_ACTIVE_FILE, /* " " " " " */ 86 NR_UNEVICTABLE, /* " " " " " */ 87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 88 NR_ANON_PAGES, /* Mapped anonymous pages */ 89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 90 only modified from process context */ 91 NR_FILE_PAGES, 92 NR_FILE_DIRTY, 93 NR_WRITEBACK, 94 NR_SLAB_RECLAIMABLE, 95 NR_SLAB_UNRECLAIMABLE, 96 NR_PAGETABLE, /* used for pagetables */ 97 NR_UNSTABLE_NFS, /* NFS unstable pages */ 98 NR_BOUNCE, 99 NR_VMSCAN_WRITE, 100 /* Second 128 byte cacheline */ 101 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 102#ifdef CONFIG_NUMA 103 NUMA_HIT, /* allocated in intended node */ 104 NUMA_MISS, /* allocated in non intended node */ 105 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 106 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 107 NUMA_LOCAL, /* allocation from local node */ 108 NUMA_OTHER, /* allocation from other node */ 109#endif 110 NR_VM_ZONE_STAT_ITEMS }; 111 112/* 113 * We do arithmetic on the LRU lists in various places in the code, 114 * so it is important to keep the active lists LRU_ACTIVE higher in 115 * the array than the corresponding inactive lists, and to keep 116 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 117 * 118 * This has to be kept in sync with the statistics in zone_stat_item 119 * above and the descriptions in vmstat_text in mm/vmstat.c 120 */ 121#define LRU_BASE 0 122#define LRU_ACTIVE 1 123#define LRU_FILE 2 124 125enum lru_list { 126 LRU_INACTIVE_ANON = LRU_BASE, 127 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 128 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 129 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 130 LRU_UNEVICTABLE, 131 NR_LRU_LISTS 132}; 133 134#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 135 136#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 137 138static inline int is_file_lru(enum lru_list l) 139{ 140 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 141} 142 143static inline int is_active_lru(enum lru_list l) 144{ 145 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 146} 147 148static inline int is_unevictable_lru(enum lru_list l) 149{ 150 return (l == LRU_UNEVICTABLE); 151} 152 153enum zone_watermarks { 154 WMARK_MIN, 155 WMARK_LOW, 156 WMARK_HIGH, 157 NR_WMARK 158}; 159 160#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 161#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 162#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 163 164struct per_cpu_pages { 165 int count; /* number of pages in the list */ 166 int high; /* high watermark, emptying needed */ 167 int batch; /* chunk size for buddy add/remove */ 168 struct list_head list; /* the list of pages */ 169}; 170 171struct per_cpu_pageset { 172 struct per_cpu_pages pcp; 173#ifdef CONFIG_NUMA 174 s8 expire; 175#endif 176#ifdef CONFIG_SMP 177 s8 stat_threshold; 178 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 179#endif 180} ____cacheline_aligned_in_smp; 181 182#ifdef CONFIG_NUMA 183#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 184#else 185#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 186#endif 187 188#endif /* !__GENERATING_BOUNDS.H */ 189 190enum zone_type { 191#ifdef CONFIG_ZONE_DMA 192 /* 193 * ZONE_DMA is used when there are devices that are not able 194 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 195 * carve out the portion of memory that is needed for these devices. 196 * The range is arch specific. 197 * 198 * Some examples 199 * 200 * Architecture Limit 201 * --------------------------- 202 * parisc, ia64, sparc <4G 203 * s390 <2G 204 * arm Various 205 * alpha Unlimited or 0-16MB. 206 * 207 * i386, x86_64 and multiple other arches 208 * <16M. 209 */ 210 ZONE_DMA, 211#endif 212#ifdef CONFIG_ZONE_DMA32 213 /* 214 * x86_64 needs two ZONE_DMAs because it supports devices that are 215 * only able to do DMA to the lower 16M but also 32 bit devices that 216 * can only do DMA areas below 4G. 217 */ 218 ZONE_DMA32, 219#endif 220 /* 221 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 222 * performed on pages in ZONE_NORMAL if the DMA devices support 223 * transfers to all addressable memory. 224 */ 225 ZONE_NORMAL, 226#ifdef CONFIG_HIGHMEM 227 /* 228 * A memory area that is only addressable by the kernel through 229 * mapping portions into its own address space. This is for example 230 * used by i386 to allow the kernel to address the memory beyond 231 * 900MB. The kernel will set up special mappings (page 232 * table entries on i386) for each page that the kernel needs to 233 * access. 234 */ 235 ZONE_HIGHMEM, 236#endif 237 ZONE_MOVABLE, 238 __MAX_NR_ZONES 239}; 240 241#ifndef __GENERATING_BOUNDS_H 242 243/* 244 * When a memory allocation must conform to specific limitations (such 245 * as being suitable for DMA) the caller will pass in hints to the 246 * allocator in the gfp_mask, in the zone modifier bits. These bits 247 * are used to select a priority ordered list of memory zones which 248 * match the requested limits. See gfp_zone() in include/linux/gfp.h 249 */ 250 251#if MAX_NR_ZONES < 2 252#define ZONES_SHIFT 0 253#elif MAX_NR_ZONES <= 2 254#define ZONES_SHIFT 1 255#elif MAX_NR_ZONES <= 4 256#define ZONES_SHIFT 2 257#else 258#error ZONES_SHIFT -- too many zones configured adjust calculation 259#endif 260 261struct zone_reclaim_stat { 262 /* 263 * The pageout code in vmscan.c keeps track of how many of the 264 * mem/swap backed and file backed pages are refeferenced. 265 * The higher the rotated/scanned ratio, the more valuable 266 * that cache is. 267 * 268 * The anon LRU stats live in [0], file LRU stats in [1] 269 */ 270 unsigned long recent_rotated[2]; 271 unsigned long recent_scanned[2]; 272}; 273 274struct zone { 275 /* Fields commonly accessed by the page allocator */ 276 277 /* zone watermarks, access with *_wmark_pages(zone) macros */ 278 unsigned long watermark[NR_WMARK]; 279 280 /* 281 * We don't know if the memory that we're going to allocate will be freeable 282 * or/and it will be released eventually, so to avoid totally wasting several 283 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 284 * to run OOM on the lower zones despite there's tons of freeable ram 285 * on the higher zones). This array is recalculated at runtime if the 286 * sysctl_lowmem_reserve_ratio sysctl changes. 287 */ 288 unsigned long lowmem_reserve[MAX_NR_ZONES]; 289 290#ifdef CONFIG_NUMA 291 int node; 292 /* 293 * zone reclaim becomes active if more unmapped pages exist. 294 */ 295 unsigned long min_unmapped_pages; 296 unsigned long min_slab_pages; 297 struct per_cpu_pageset *pageset[NR_CPUS]; 298#else 299 struct per_cpu_pageset pageset[NR_CPUS]; 300#endif 301 /* 302 * free areas of different sizes 303 */ 304 spinlock_t lock; 305#ifdef CONFIG_MEMORY_HOTPLUG 306 /* see spanned/present_pages for more description */ 307 seqlock_t span_seqlock; 308#endif 309 struct free_area free_area[MAX_ORDER]; 310 311#ifndef CONFIG_SPARSEMEM 312 /* 313 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 314 * In SPARSEMEM, this map is stored in struct mem_section 315 */ 316 unsigned long *pageblock_flags; 317#endif /* CONFIG_SPARSEMEM */ 318 319 320 ZONE_PADDING(_pad1_) 321 322 /* Fields commonly accessed by the page reclaim scanner */ 323 spinlock_t lru_lock; 324 struct zone_lru { 325 struct list_head list; 326 unsigned long nr_saved_scan; /* accumulated for batching */ 327 } lru[NR_LRU_LISTS]; 328 329 struct zone_reclaim_stat reclaim_stat; 330 331 unsigned long pages_scanned; /* since last reclaim */ 332 unsigned long flags; /* zone flags, see below */ 333 334 /* Zone statistics */ 335 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 336 337 /* 338 * prev_priority holds the scanning priority for this zone. It is 339 * defined as the scanning priority at which we achieved our reclaim 340 * target at the previous try_to_free_pages() or balance_pgdat() 341 * invokation. 342 * 343 * We use prev_priority as a measure of how much stress page reclaim is 344 * under - it drives the swappiness decision: whether to unmap mapped 345 * pages. 346 * 347 * Access to both this field is quite racy even on uniprocessor. But 348 * it is expected to average out OK. 349 */ 350 int prev_priority; 351 352 /* 353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 354 * this zone's LRU. Maintained by the pageout code. 355 */ 356 unsigned int inactive_ratio; 357 358 359 ZONE_PADDING(_pad2_) 360 /* Rarely used or read-mostly fields */ 361 362 /* 363 * wait_table -- the array holding the hash table 364 * wait_table_hash_nr_entries -- the size of the hash table array 365 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 366 * 367 * The purpose of all these is to keep track of the people 368 * waiting for a page to become available and make them 369 * runnable again when possible. The trouble is that this 370 * consumes a lot of space, especially when so few things 371 * wait on pages at a given time. So instead of using 372 * per-page waitqueues, we use a waitqueue hash table. 373 * 374 * The bucket discipline is to sleep on the same queue when 375 * colliding and wake all in that wait queue when removing. 376 * When something wakes, it must check to be sure its page is 377 * truly available, a la thundering herd. The cost of a 378 * collision is great, but given the expected load of the 379 * table, they should be so rare as to be outweighed by the 380 * benefits from the saved space. 381 * 382 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 383 * primary users of these fields, and in mm/page_alloc.c 384 * free_area_init_core() performs the initialization of them. 385 */ 386 wait_queue_head_t * wait_table; 387 unsigned long wait_table_hash_nr_entries; 388 unsigned long wait_table_bits; 389 390 /* 391 * Discontig memory support fields. 392 */ 393 struct pglist_data *zone_pgdat; 394 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 395 unsigned long zone_start_pfn; 396 397 /* 398 * zone_start_pfn, spanned_pages and present_pages are all 399 * protected by span_seqlock. It is a seqlock because it has 400 * to be read outside of zone->lock, and it is done in the main 401 * allocator path. But, it is written quite infrequently. 402 * 403 * The lock is declared along with zone->lock because it is 404 * frequently read in proximity to zone->lock. It's good to 405 * give them a chance of being in the same cacheline. 406 */ 407 unsigned long spanned_pages; /* total size, including holes */ 408 unsigned long present_pages; /* amount of memory (excluding holes) */ 409 410 /* 411 * rarely used fields: 412 */ 413 const char *name; 414} ____cacheline_internodealigned_in_smp; 415 416typedef enum { 417 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 418 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 419 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 420} zone_flags_t; 421 422static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 423{ 424 set_bit(flag, &zone->flags); 425} 426 427static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 428{ 429 return test_and_set_bit(flag, &zone->flags); 430} 431 432static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 433{ 434 clear_bit(flag, &zone->flags); 435} 436 437static inline int zone_is_all_unreclaimable(const struct zone *zone) 438{ 439 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 440} 441 442static inline int zone_is_reclaim_locked(const struct zone *zone) 443{ 444 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 445} 446 447static inline int zone_is_oom_locked(const struct zone *zone) 448{ 449 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 450} 451 452/* 453 * The "priority" of VM scanning is how much of the queues we will scan in one 454 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 455 * queues ("queue_length >> 12") during an aging round. 456 */ 457#define DEF_PRIORITY 12 458 459/* Maximum number of zones on a zonelist */ 460#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 461 462#ifdef CONFIG_NUMA 463 464/* 465 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 466 * allocations to a single node for GFP_THISNODE. 467 * 468 * [0] : Zonelist with fallback 469 * [1] : No fallback (GFP_THISNODE) 470 */ 471#define MAX_ZONELISTS 2 472 473 474/* 475 * We cache key information from each zonelist for smaller cache 476 * footprint when scanning for free pages in get_page_from_freelist(). 477 * 478 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 479 * up short of free memory since the last time (last_fullzone_zap) 480 * we zero'd fullzones. 481 * 2) The array z_to_n[] maps each zone in the zonelist to its node 482 * id, so that we can efficiently evaluate whether that node is 483 * set in the current tasks mems_allowed. 484 * 485 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 486 * indexed by a zones offset in the zonelist zones[] array. 487 * 488 * The get_page_from_freelist() routine does two scans. During the 489 * first scan, we skip zones whose corresponding bit in 'fullzones' 490 * is set or whose corresponding node in current->mems_allowed (which 491 * comes from cpusets) is not set. During the second scan, we bypass 492 * this zonelist_cache, to ensure we look methodically at each zone. 493 * 494 * Once per second, we zero out (zap) fullzones, forcing us to 495 * reconsider nodes that might have regained more free memory. 496 * The field last_full_zap is the time we last zapped fullzones. 497 * 498 * This mechanism reduces the amount of time we waste repeatedly 499 * reexaming zones for free memory when they just came up low on 500 * memory momentarilly ago. 501 * 502 * The zonelist_cache struct members logically belong in struct 503 * zonelist. However, the mempolicy zonelists constructed for 504 * MPOL_BIND are intentionally variable length (and usually much 505 * shorter). A general purpose mechanism for handling structs with 506 * multiple variable length members is more mechanism than we want 507 * here. We resort to some special case hackery instead. 508 * 509 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 510 * part because they are shorter), so we put the fixed length stuff 511 * at the front of the zonelist struct, ending in a variable length 512 * zones[], as is needed by MPOL_BIND. 513 * 514 * Then we put the optional zonelist cache on the end of the zonelist 515 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 516 * the fixed length portion at the front of the struct. This pointer 517 * both enables us to find the zonelist cache, and in the case of 518 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 519 * to know that the zonelist cache is not there. 520 * 521 * The end result is that struct zonelists come in two flavors: 522 * 1) The full, fixed length version, shown below, and 523 * 2) The custom zonelists for MPOL_BIND. 524 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 525 * 526 * Even though there may be multiple CPU cores on a node modifying 527 * fullzones or last_full_zap in the same zonelist_cache at the same 528 * time, we don't lock it. This is just hint data - if it is wrong now 529 * and then, the allocator will still function, perhaps a bit slower. 530 */ 531 532 533struct zonelist_cache { 534 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 535 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 536 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 537}; 538#else 539#define MAX_ZONELISTS 1 540struct zonelist_cache; 541#endif 542 543/* 544 * This struct contains information about a zone in a zonelist. It is stored 545 * here to avoid dereferences into large structures and lookups of tables 546 */ 547struct zoneref { 548 struct zone *zone; /* Pointer to actual zone */ 549 int zone_idx; /* zone_idx(zoneref->zone) */ 550}; 551 552/* 553 * One allocation request operates on a zonelist. A zonelist 554 * is a list of zones, the first one is the 'goal' of the 555 * allocation, the other zones are fallback zones, in decreasing 556 * priority. 557 * 558 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 559 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 560 * * 561 * To speed the reading of the zonelist, the zonerefs contain the zone index 562 * of the entry being read. Helper functions to access information given 563 * a struct zoneref are 564 * 565 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 566 * zonelist_zone_idx() - Return the index of the zone for an entry 567 * zonelist_node_idx() - Return the index of the node for an entry 568 */ 569struct zonelist { 570 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 571 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 572#ifdef CONFIG_NUMA 573 struct zonelist_cache zlcache; // optional ... 574#endif 575}; 576 577#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 578struct node_active_region { 579 unsigned long start_pfn; 580 unsigned long end_pfn; 581 int nid; 582}; 583#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 584 585#ifndef CONFIG_DISCONTIGMEM 586/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 587extern struct page *mem_map; 588#endif 589 590/* 591 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 592 * (mostly NUMA machines?) to denote a higher-level memory zone than the 593 * zone denotes. 594 * 595 * On NUMA machines, each NUMA node would have a pg_data_t to describe 596 * it's memory layout. 597 * 598 * Memory statistics and page replacement data structures are maintained on a 599 * per-zone basis. 600 */ 601struct bootmem_data; 602typedef struct pglist_data { 603 struct zone node_zones[MAX_NR_ZONES]; 604 struct zonelist node_zonelists[MAX_ZONELISTS]; 605 int nr_zones; 606#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 607 struct page *node_mem_map; 608#ifdef CONFIG_CGROUP_MEM_RES_CTLR 609 struct page_cgroup *node_page_cgroup; 610#endif 611#endif 612 struct bootmem_data *bdata; 613#ifdef CONFIG_MEMORY_HOTPLUG 614 /* 615 * Must be held any time you expect node_start_pfn, node_present_pages 616 * or node_spanned_pages stay constant. Holding this will also 617 * guarantee that any pfn_valid() stays that way. 618 * 619 * Nests above zone->lock and zone->size_seqlock. 620 */ 621 spinlock_t node_size_lock; 622#endif 623 unsigned long node_start_pfn; 624 unsigned long node_present_pages; /* total number of physical pages */ 625 unsigned long node_spanned_pages; /* total size of physical page 626 range, including holes */ 627 int node_id; 628 wait_queue_head_t kswapd_wait; 629 struct task_struct *kswapd; 630 int kswapd_max_order; 631} pg_data_t; 632 633#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 634#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 635#ifdef CONFIG_FLAT_NODE_MEM_MAP 636#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 637#else 638#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 639#endif 640#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 641 642#include <linux/memory_hotplug.h> 643 644void get_zone_counts(unsigned long *active, unsigned long *inactive, 645 unsigned long *free); 646void build_all_zonelists(void); 647void wakeup_kswapd(struct zone *zone, int order); 648int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 649 int classzone_idx, int alloc_flags); 650enum memmap_context { 651 MEMMAP_EARLY, 652 MEMMAP_HOTPLUG, 653}; 654extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 655 unsigned long size, 656 enum memmap_context context); 657 658#ifdef CONFIG_HAVE_MEMORY_PRESENT 659void memory_present(int nid, unsigned long start, unsigned long end); 660#else 661static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 662#endif 663 664#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 665unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 666#endif 667 668/* 669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 670 */ 671#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 672 673static inline int populated_zone(struct zone *zone) 674{ 675 return (!!zone->present_pages); 676} 677 678extern int movable_zone; 679 680static inline int zone_movable_is_highmem(void) 681{ 682#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 683 return movable_zone == ZONE_HIGHMEM; 684#else 685 return 0; 686#endif 687} 688 689static inline int is_highmem_idx(enum zone_type idx) 690{ 691#ifdef CONFIG_HIGHMEM 692 return (idx == ZONE_HIGHMEM || 693 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 694#else 695 return 0; 696#endif 697} 698 699static inline int is_normal_idx(enum zone_type idx) 700{ 701 return (idx == ZONE_NORMAL); 702} 703 704/** 705 * is_highmem - helper function to quickly check if a struct zone is a 706 * highmem zone or not. This is an attempt to keep references 707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 708 * @zone - pointer to struct zone variable 709 */ 710static inline int is_highmem(struct zone *zone) 711{ 712#ifdef CONFIG_HIGHMEM 713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 715 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 716 zone_movable_is_highmem()); 717#else 718 return 0; 719#endif 720} 721 722static inline int is_normal(struct zone *zone) 723{ 724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 725} 726 727static inline int is_dma32(struct zone *zone) 728{ 729#ifdef CONFIG_ZONE_DMA32 730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 731#else 732 return 0; 733#endif 734} 735 736static inline int is_dma(struct zone *zone) 737{ 738#ifdef CONFIG_ZONE_DMA 739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 740#else 741 return 0; 742#endif 743} 744 745/* These two functions are used to setup the per zone pages min values */ 746struct ctl_table; 747struct file; 748int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 749 void __user *, size_t *, loff_t *); 750extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 751int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 752 void __user *, size_t *, loff_t *); 753int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 754 void __user *, size_t *, loff_t *); 755int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 756 struct file *, void __user *, size_t *, loff_t *); 757int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 758 struct file *, void __user *, size_t *, loff_t *); 759 760extern int numa_zonelist_order_handler(struct ctl_table *, int, 761 struct file *, void __user *, size_t *, loff_t *); 762extern char numa_zonelist_order[]; 763#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 764 765#ifndef CONFIG_NEED_MULTIPLE_NODES 766 767extern struct pglist_data contig_page_data; 768#define NODE_DATA(nid) (&contig_page_data) 769#define NODE_MEM_MAP(nid) mem_map 770 771#else /* CONFIG_NEED_MULTIPLE_NODES */ 772 773#include <asm/mmzone.h> 774 775#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 776 777extern struct pglist_data *first_online_pgdat(void); 778extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 779extern struct zone *next_zone(struct zone *zone); 780 781/** 782 * for_each_online_pgdat - helper macro to iterate over all online nodes 783 * @pgdat - pointer to a pg_data_t variable 784 */ 785#define for_each_online_pgdat(pgdat) \ 786 for (pgdat = first_online_pgdat(); \ 787 pgdat; \ 788 pgdat = next_online_pgdat(pgdat)) 789/** 790 * for_each_zone - helper macro to iterate over all memory zones 791 * @zone - pointer to struct zone variable 792 * 793 * The user only needs to declare the zone variable, for_each_zone 794 * fills it in. 795 */ 796#define for_each_zone(zone) \ 797 for (zone = (first_online_pgdat())->node_zones; \ 798 zone; \ 799 zone = next_zone(zone)) 800 801#define for_each_populated_zone(zone) \ 802 for (zone = (first_online_pgdat())->node_zones; \ 803 zone; \ 804 zone = next_zone(zone)) \ 805 if (!populated_zone(zone)) \ 806 ; /* do nothing */ \ 807 else 808 809static inline struct zone *zonelist_zone(struct zoneref *zoneref) 810{ 811 return zoneref->zone; 812} 813 814static inline int zonelist_zone_idx(struct zoneref *zoneref) 815{ 816 return zoneref->zone_idx; 817} 818 819static inline int zonelist_node_idx(struct zoneref *zoneref) 820{ 821#ifdef CONFIG_NUMA 822 /* zone_to_nid not available in this context */ 823 return zoneref->zone->node; 824#else 825 return 0; 826#endif /* CONFIG_NUMA */ 827} 828 829/** 830 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 831 * @z - The cursor used as a starting point for the search 832 * @highest_zoneidx - The zone index of the highest zone to return 833 * @nodes - An optional nodemask to filter the zonelist with 834 * @zone - The first suitable zone found is returned via this parameter 835 * 836 * This function returns the next zone at or below a given zone index that is 837 * within the allowed nodemask using a cursor as the starting point for the 838 * search. The zoneref returned is a cursor that represents the current zone 839 * being examined. It should be advanced by one before calling 840 * next_zones_zonelist again. 841 */ 842struct zoneref *next_zones_zonelist(struct zoneref *z, 843 enum zone_type highest_zoneidx, 844 nodemask_t *nodes, 845 struct zone **zone); 846 847/** 848 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 849 * @zonelist - The zonelist to search for a suitable zone 850 * @highest_zoneidx - The zone index of the highest zone to return 851 * @nodes - An optional nodemask to filter the zonelist with 852 * @zone - The first suitable zone found is returned via this parameter 853 * 854 * This function returns the first zone at or below a given zone index that is 855 * within the allowed nodemask. The zoneref returned is a cursor that can be 856 * used to iterate the zonelist with next_zones_zonelist by advancing it by 857 * one before calling. 858 */ 859static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 860 enum zone_type highest_zoneidx, 861 nodemask_t *nodes, 862 struct zone **zone) 863{ 864 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 865 zone); 866} 867 868/** 869 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 870 * @zone - The current zone in the iterator 871 * @z - The current pointer within zonelist->zones being iterated 872 * @zlist - The zonelist being iterated 873 * @highidx - The zone index of the highest zone to return 874 * @nodemask - Nodemask allowed by the allocator 875 * 876 * This iterator iterates though all zones at or below a given zone index and 877 * within a given nodemask 878 */ 879#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 880 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 881 zone; \ 882 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 883 884/** 885 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 886 * @zone - The current zone in the iterator 887 * @z - The current pointer within zonelist->zones being iterated 888 * @zlist - The zonelist being iterated 889 * @highidx - The zone index of the highest zone to return 890 * 891 * This iterator iterates though all zones at or below a given zone index. 892 */ 893#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 894 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 895 896#ifdef CONFIG_SPARSEMEM 897#include <asm/sparsemem.h> 898#endif 899 900#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 901 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 902static inline unsigned long early_pfn_to_nid(unsigned long pfn) 903{ 904 return 0; 905} 906#endif 907 908#ifdef CONFIG_FLATMEM 909#define pfn_to_nid(pfn) (0) 910#endif 911 912#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 913#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 914 915#ifdef CONFIG_SPARSEMEM 916 917/* 918 * SECTION_SHIFT #bits space required to store a section # 919 * 920 * PA_SECTION_SHIFT physical address to/from section number 921 * PFN_SECTION_SHIFT pfn to/from section number 922 */ 923#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 924 925#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 926#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 927 928#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 929 930#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 931#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 932 933#define SECTION_BLOCKFLAGS_BITS \ 934 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 935 936#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 937#error Allocator MAX_ORDER exceeds SECTION_SIZE 938#endif 939 940struct page; 941struct page_cgroup; 942struct mem_section { 943 /* 944 * This is, logically, a pointer to an array of struct 945 * pages. However, it is stored with some other magic. 946 * (see sparse.c::sparse_init_one_section()) 947 * 948 * Additionally during early boot we encode node id of 949 * the location of the section here to guide allocation. 950 * (see sparse.c::memory_present()) 951 * 952 * Making it a UL at least makes someone do a cast 953 * before using it wrong. 954 */ 955 unsigned long section_mem_map; 956 957 /* See declaration of similar field in struct zone */ 958 unsigned long *pageblock_flags; 959#ifdef CONFIG_CGROUP_MEM_RES_CTLR 960 /* 961 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 962 * section. (see memcontrol.h/page_cgroup.h about this.) 963 */ 964 struct page_cgroup *page_cgroup; 965 unsigned long pad; 966#endif 967}; 968 969#ifdef CONFIG_SPARSEMEM_EXTREME 970#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 971#else 972#define SECTIONS_PER_ROOT 1 973#endif 974 975#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 976#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 977#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 978 979#ifdef CONFIG_SPARSEMEM_EXTREME 980extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 981#else 982extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 983#endif 984 985static inline struct mem_section *__nr_to_section(unsigned long nr) 986{ 987 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 988 return NULL; 989 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 990} 991extern int __section_nr(struct mem_section* ms); 992extern unsigned long usemap_size(void); 993 994/* 995 * We use the lower bits of the mem_map pointer to store 996 * a little bit of information. There should be at least 997 * 3 bits here due to 32-bit alignment. 998 */ 999#define SECTION_MARKED_PRESENT (1UL<<0) 1000#define SECTION_HAS_MEM_MAP (1UL<<1) 1001#define SECTION_MAP_LAST_BIT (1UL<<2) 1002#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1003#define SECTION_NID_SHIFT 2 1004 1005static inline struct page *__section_mem_map_addr(struct mem_section *section) 1006{ 1007 unsigned long map = section->section_mem_map; 1008 map &= SECTION_MAP_MASK; 1009 return (struct page *)map; 1010} 1011 1012static inline int present_section(struct mem_section *section) 1013{ 1014 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1015} 1016 1017static inline int present_section_nr(unsigned long nr) 1018{ 1019 return present_section(__nr_to_section(nr)); 1020} 1021 1022static inline int valid_section(struct mem_section *section) 1023{ 1024 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1025} 1026 1027static inline int valid_section_nr(unsigned long nr) 1028{ 1029 return valid_section(__nr_to_section(nr)); 1030} 1031 1032static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1033{ 1034 return __nr_to_section(pfn_to_section_nr(pfn)); 1035} 1036 1037static inline int pfn_valid(unsigned long pfn) 1038{ 1039 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1040 return 0; 1041 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1042} 1043 1044static inline int pfn_present(unsigned long pfn) 1045{ 1046 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1047 return 0; 1048 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1049} 1050 1051/* 1052 * These are _only_ used during initialisation, therefore they 1053 * can use __initdata ... They could have names to indicate 1054 * this restriction. 1055 */ 1056#ifdef CONFIG_NUMA 1057#define pfn_to_nid(pfn) \ 1058({ \ 1059 unsigned long __pfn_to_nid_pfn = (pfn); \ 1060 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1061}) 1062#else 1063#define pfn_to_nid(pfn) (0) 1064#endif 1065 1066#define early_pfn_valid(pfn) pfn_valid(pfn) 1067void sparse_init(void); 1068#else 1069#define sparse_init() do {} while (0) 1070#define sparse_index_init(_sec, _nid) do {} while (0) 1071#endif /* CONFIG_SPARSEMEM */ 1072 1073#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1074bool early_pfn_in_nid(unsigned long pfn, int nid); 1075#else 1076#define early_pfn_in_nid(pfn, nid) (1) 1077#endif 1078 1079#ifndef early_pfn_valid 1080#define early_pfn_valid(pfn) (1) 1081#endif 1082 1083void memory_present(int nid, unsigned long start, unsigned long end); 1084unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1085 1086/* 1087 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1088 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1089 * pfn_valid_within() should be used in this case; we optimise this away 1090 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1091 */ 1092#ifdef CONFIG_HOLES_IN_ZONE 1093#define pfn_valid_within(pfn) pfn_valid(pfn) 1094#else 1095#define pfn_valid_within(pfn) (1) 1096#endif 1097 1098#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1099/* 1100 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1101 * associated with it or not. In FLATMEM, it is expected that holes always 1102 * have valid memmap as long as there is valid PFNs either side of the hole. 1103 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1104 * entire section. 1105 * 1106 * However, an ARM, and maybe other embedded architectures in the future 1107 * free memmap backing holes to save memory on the assumption the memmap is 1108 * never used. The page_zone linkages are then broken even though pfn_valid() 1109 * returns true. A walker of the full memmap must then do this additional 1110 * check to ensure the memmap they are looking at is sane by making sure 1111 * the zone and PFN linkages are still valid. This is expensive, but walkers 1112 * of the full memmap are extremely rare. 1113 */ 1114int memmap_valid_within(unsigned long pfn, 1115 struct page *page, struct zone *zone); 1116#else 1117static inline int memmap_valid_within(unsigned long pfn, 1118 struct page *page, struct zone *zone) 1119{ 1120 return 1; 1121} 1122#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1123 1124#endif /* !__GENERATING_BOUNDS.H */ 1125#endif /* !__ASSEMBLY__ */ 1126#endif /* _LINUX_MMZONE_H */