at v2.6.31 16 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/dma-mapping.h> 27 28/** 29 * typedef dma_cookie_t - an opaque DMA cookie 30 * 31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 32 */ 33typedef s32 dma_cookie_t; 34 35#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 36 37/** 38 * enum dma_status - DMA transaction status 39 * @DMA_SUCCESS: transaction completed successfully 40 * @DMA_IN_PROGRESS: transaction not yet processed 41 * @DMA_ERROR: transaction failed 42 */ 43enum dma_status { 44 DMA_SUCCESS, 45 DMA_IN_PROGRESS, 46 DMA_ERROR, 47}; 48 49/** 50 * enum dma_transaction_type - DMA transaction types/indexes 51 */ 52enum dma_transaction_type { 53 DMA_MEMCPY, 54 DMA_XOR, 55 DMA_PQ_XOR, 56 DMA_DUAL_XOR, 57 DMA_PQ_UPDATE, 58 DMA_ZERO_SUM, 59 DMA_PQ_ZERO_SUM, 60 DMA_MEMSET, 61 DMA_MEMCPY_CRC32C, 62 DMA_INTERRUPT, 63 DMA_PRIVATE, 64 DMA_SLAVE, 65}; 66 67/* last transaction type for creation of the capabilities mask */ 68#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 69 70 71/** 72 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 73 * control completion, and communicate status. 74 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 75 * this transaction 76 * @DMA_CTRL_ACK - the descriptor cannot be reused until the client 77 * acknowledges receipt, i.e. has has a chance to establish any 78 * dependency chains 79 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 80 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 81 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 82 * (if not set, do the source dma-unmapping as page) 83 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 84 * (if not set, do the destination dma-unmapping as page) 85 */ 86enum dma_ctrl_flags { 87 DMA_PREP_INTERRUPT = (1 << 0), 88 DMA_CTRL_ACK = (1 << 1), 89 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 90 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 91 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 92 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 93}; 94 95/** 96 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 97 * See linux/cpumask.h 98 */ 99typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 100 101/** 102 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 103 * @memcpy_count: transaction counter 104 * @bytes_transferred: byte counter 105 */ 106 107struct dma_chan_percpu { 108 /* stats */ 109 unsigned long memcpy_count; 110 unsigned long bytes_transferred; 111}; 112 113/** 114 * struct dma_chan - devices supply DMA channels, clients use them 115 * @device: ptr to the dma device who supplies this channel, always !%NULL 116 * @cookie: last cookie value returned to client 117 * @chan_id: channel ID for sysfs 118 * @dev: class device for sysfs 119 * @device_node: used to add this to the device chan list 120 * @local: per-cpu pointer to a struct dma_chan_percpu 121 * @client-count: how many clients are using this channel 122 * @table_count: number of appearances in the mem-to-mem allocation table 123 * @private: private data for certain client-channel associations 124 */ 125struct dma_chan { 126 struct dma_device *device; 127 dma_cookie_t cookie; 128 129 /* sysfs */ 130 int chan_id; 131 struct dma_chan_dev *dev; 132 133 struct list_head device_node; 134 struct dma_chan_percpu *local; 135 int client_count; 136 int table_count; 137 void *private; 138}; 139 140/** 141 * struct dma_chan_dev - relate sysfs device node to backing channel device 142 * @chan - driver channel device 143 * @device - sysfs device 144 * @dev_id - parent dma_device dev_id 145 * @idr_ref - reference count to gate release of dma_device dev_id 146 */ 147struct dma_chan_dev { 148 struct dma_chan *chan; 149 struct device device; 150 int dev_id; 151 atomic_t *idr_ref; 152}; 153 154static inline const char *dma_chan_name(struct dma_chan *chan) 155{ 156 return dev_name(&chan->dev->device); 157} 158 159void dma_chan_cleanup(struct kref *kref); 160 161/** 162 * typedef dma_filter_fn - callback filter for dma_request_channel 163 * @chan: channel to be reviewed 164 * @filter_param: opaque parameter passed through dma_request_channel 165 * 166 * When this optional parameter is specified in a call to dma_request_channel a 167 * suitable channel is passed to this routine for further dispositioning before 168 * being returned. Where 'suitable' indicates a non-busy channel that 169 * satisfies the given capability mask. It returns 'true' to indicate that the 170 * channel is suitable. 171 */ 172typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 173 174typedef void (*dma_async_tx_callback)(void *dma_async_param); 175/** 176 * struct dma_async_tx_descriptor - async transaction descriptor 177 * ---dma generic offload fields--- 178 * @cookie: tracking cookie for this transaction, set to -EBUSY if 179 * this tx is sitting on a dependency list 180 * @flags: flags to augment operation preparation, control completion, and 181 * communicate status 182 * @phys: physical address of the descriptor 183 * @tx_list: driver common field for operations that require multiple 184 * descriptors 185 * @chan: target channel for this operation 186 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 187 * @callback: routine to call after this operation is complete 188 * @callback_param: general parameter to pass to the callback routine 189 * ---async_tx api specific fields--- 190 * @next: at completion submit this descriptor 191 * @parent: pointer to the next level up in the dependency chain 192 * @lock: protect the parent and next pointers 193 */ 194struct dma_async_tx_descriptor { 195 dma_cookie_t cookie; 196 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 197 dma_addr_t phys; 198 struct list_head tx_list; 199 struct dma_chan *chan; 200 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 201 dma_async_tx_callback callback; 202 void *callback_param; 203 struct dma_async_tx_descriptor *next; 204 struct dma_async_tx_descriptor *parent; 205 spinlock_t lock; 206}; 207 208/** 209 * struct dma_device - info on the entity supplying DMA services 210 * @chancnt: how many DMA channels are supported 211 * @privatecnt: how many DMA channels are requested by dma_request_channel 212 * @channels: the list of struct dma_chan 213 * @global_node: list_head for global dma_device_list 214 * @cap_mask: one or more dma_capability flags 215 * @max_xor: maximum number of xor sources, 0 if no capability 216 * @dev_id: unique device ID 217 * @dev: struct device reference for dma mapping api 218 * @device_alloc_chan_resources: allocate resources and return the 219 * number of allocated descriptors 220 * @device_free_chan_resources: release DMA channel's resources 221 * @device_prep_dma_memcpy: prepares a memcpy operation 222 * @device_prep_dma_xor: prepares a xor operation 223 * @device_prep_dma_zero_sum: prepares a zero_sum operation 224 * @device_prep_dma_memset: prepares a memset operation 225 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 226 * @device_prep_slave_sg: prepares a slave dma operation 227 * @device_terminate_all: terminate all pending operations 228 * @device_is_tx_complete: poll for transaction completion 229 * @device_issue_pending: push pending transactions to hardware 230 */ 231struct dma_device { 232 233 unsigned int chancnt; 234 unsigned int privatecnt; 235 struct list_head channels; 236 struct list_head global_node; 237 dma_cap_mask_t cap_mask; 238 int max_xor; 239 240 int dev_id; 241 struct device *dev; 242 243 int (*device_alloc_chan_resources)(struct dma_chan *chan); 244 void (*device_free_chan_resources)(struct dma_chan *chan); 245 246 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 247 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 248 size_t len, unsigned long flags); 249 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 250 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 251 unsigned int src_cnt, size_t len, unsigned long flags); 252 struct dma_async_tx_descriptor *(*device_prep_dma_zero_sum)( 253 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 254 size_t len, u32 *result, unsigned long flags); 255 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 256 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 257 unsigned long flags); 258 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 259 struct dma_chan *chan, unsigned long flags); 260 261 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 262 struct dma_chan *chan, struct scatterlist *sgl, 263 unsigned int sg_len, enum dma_data_direction direction, 264 unsigned long flags); 265 void (*device_terminate_all)(struct dma_chan *chan); 266 267 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, 268 dma_cookie_t cookie, dma_cookie_t *last, 269 dma_cookie_t *used); 270 void (*device_issue_pending)(struct dma_chan *chan); 271}; 272 273/* --- public DMA engine API --- */ 274 275#ifdef CONFIG_DMA_ENGINE 276void dmaengine_get(void); 277void dmaengine_put(void); 278#else 279static inline void dmaengine_get(void) 280{ 281} 282static inline void dmaengine_put(void) 283{ 284} 285#endif 286 287#ifdef CONFIG_NET_DMA 288#define net_dmaengine_get() dmaengine_get() 289#define net_dmaengine_put() dmaengine_put() 290#else 291static inline void net_dmaengine_get(void) 292{ 293} 294static inline void net_dmaengine_put(void) 295{ 296} 297#endif 298 299#ifdef CONFIG_ASYNC_TX_DMA 300#define async_dmaengine_get() dmaengine_get() 301#define async_dmaengine_put() dmaengine_put() 302#define async_dma_find_channel(type) dma_find_channel(type) 303#else 304static inline void async_dmaengine_get(void) 305{ 306} 307static inline void async_dmaengine_put(void) 308{ 309} 310static inline struct dma_chan * 311async_dma_find_channel(enum dma_transaction_type type) 312{ 313 return NULL; 314} 315#endif 316 317dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 318 void *dest, void *src, size_t len); 319dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 320 struct page *page, unsigned int offset, void *kdata, size_t len); 321dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 322 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 323 unsigned int src_off, size_t len); 324void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 325 struct dma_chan *chan); 326 327static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 328{ 329 tx->flags |= DMA_CTRL_ACK; 330} 331 332static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 333{ 334 tx->flags &= ~DMA_CTRL_ACK; 335} 336 337static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 338{ 339 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 340} 341 342#define first_dma_cap(mask) __first_dma_cap(&(mask)) 343static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 344{ 345 return min_t(int, DMA_TX_TYPE_END, 346 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 347} 348 349#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 350static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 351{ 352 return min_t(int, DMA_TX_TYPE_END, 353 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 354} 355 356#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 357static inline void 358__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 359{ 360 set_bit(tx_type, dstp->bits); 361} 362 363#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 364static inline void 365__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 366{ 367 clear_bit(tx_type, dstp->bits); 368} 369 370#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 371static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 372{ 373 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 374} 375 376#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 377static inline int 378__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 379{ 380 return test_bit(tx_type, srcp->bits); 381} 382 383#define for_each_dma_cap_mask(cap, mask) \ 384 for ((cap) = first_dma_cap(mask); \ 385 (cap) < DMA_TX_TYPE_END; \ 386 (cap) = next_dma_cap((cap), (mask))) 387 388/** 389 * dma_async_issue_pending - flush pending transactions to HW 390 * @chan: target DMA channel 391 * 392 * This allows drivers to push copies to HW in batches, 393 * reducing MMIO writes where possible. 394 */ 395static inline void dma_async_issue_pending(struct dma_chan *chan) 396{ 397 chan->device->device_issue_pending(chan); 398} 399 400#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 401 402/** 403 * dma_async_is_tx_complete - poll for transaction completion 404 * @chan: DMA channel 405 * @cookie: transaction identifier to check status of 406 * @last: returns last completed cookie, can be NULL 407 * @used: returns last issued cookie, can be NULL 408 * 409 * If @last and @used are passed in, upon return they reflect the driver 410 * internal state and can be used with dma_async_is_complete() to check 411 * the status of multiple cookies without re-checking hardware state. 412 */ 413static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 414 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 415{ 416 return chan->device->device_is_tx_complete(chan, cookie, last, used); 417} 418 419#define dma_async_memcpy_complete(chan, cookie, last, used)\ 420 dma_async_is_tx_complete(chan, cookie, last, used) 421 422/** 423 * dma_async_is_complete - test a cookie against chan state 424 * @cookie: transaction identifier to test status of 425 * @last_complete: last know completed transaction 426 * @last_used: last cookie value handed out 427 * 428 * dma_async_is_complete() is used in dma_async_memcpy_complete() 429 * the test logic is separated for lightweight testing of multiple cookies 430 */ 431static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 432 dma_cookie_t last_complete, dma_cookie_t last_used) 433{ 434 if (last_complete <= last_used) { 435 if ((cookie <= last_complete) || (cookie > last_used)) 436 return DMA_SUCCESS; 437 } else { 438 if ((cookie <= last_complete) && (cookie > last_used)) 439 return DMA_SUCCESS; 440 } 441 return DMA_IN_PROGRESS; 442} 443 444enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 445#ifdef CONFIG_DMA_ENGINE 446enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 447void dma_issue_pending_all(void); 448#else 449static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 450{ 451 return DMA_SUCCESS; 452} 453static inline void dma_issue_pending_all(void) 454{ 455 do { } while (0); 456} 457#endif 458 459/* --- DMA device --- */ 460 461int dma_async_device_register(struct dma_device *device); 462void dma_async_device_unregister(struct dma_device *device); 463void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 464struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 465#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 466struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 467void dma_release_channel(struct dma_chan *chan); 468 469/* --- Helper iov-locking functions --- */ 470 471struct dma_page_list { 472 char __user *base_address; 473 int nr_pages; 474 struct page **pages; 475}; 476 477struct dma_pinned_list { 478 int nr_iovecs; 479 struct dma_page_list page_list[0]; 480}; 481 482struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 483void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 484 485dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 486 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 487dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 488 struct dma_pinned_list *pinned_list, struct page *page, 489 unsigned int offset, size_t len); 490 491#endif /* DMAENGINE_H */