at v2.6.31 21 kB view raw
1/* 2 * 2.5 block I/O model 3 * 4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public Licens 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 19 */ 20#ifndef __LINUX_BIO_H 21#define __LINUX_BIO_H 22 23#include <linux/highmem.h> 24#include <linux/mempool.h> 25#include <linux/ioprio.h> 26 27#ifdef CONFIG_BLOCK 28 29#include <asm/io.h> 30 31#define BIO_DEBUG 32 33#ifdef BIO_DEBUG 34#define BIO_BUG_ON BUG_ON 35#else 36#define BIO_BUG_ON 37#endif 38 39#define BIO_MAX_PAGES 256 40#define BIO_MAX_SIZE (BIO_MAX_PAGES << PAGE_CACHE_SHIFT) 41#define BIO_MAX_SECTORS (BIO_MAX_SIZE >> 9) 42 43/* 44 * was unsigned short, but we might as well be ready for > 64kB I/O pages 45 */ 46struct bio_vec { 47 struct page *bv_page; 48 unsigned int bv_len; 49 unsigned int bv_offset; 50}; 51 52struct bio_set; 53struct bio; 54struct bio_integrity_payload; 55typedef void (bio_end_io_t) (struct bio *, int); 56typedef void (bio_destructor_t) (struct bio *); 57 58/* 59 * main unit of I/O for the block layer and lower layers (ie drivers and 60 * stacking drivers) 61 */ 62struct bio { 63 sector_t bi_sector; /* device address in 512 byte 64 sectors */ 65 struct bio *bi_next; /* request queue link */ 66 struct block_device *bi_bdev; 67 unsigned long bi_flags; /* status, command, etc */ 68 unsigned long bi_rw; /* bottom bits READ/WRITE, 69 * top bits priority 70 */ 71 72 unsigned short bi_vcnt; /* how many bio_vec's */ 73 unsigned short bi_idx; /* current index into bvl_vec */ 74 75 /* Number of segments in this BIO after 76 * physical address coalescing is performed. 77 */ 78 unsigned int bi_phys_segments; 79 80 unsigned int bi_size; /* residual I/O count */ 81 82 /* 83 * To keep track of the max segment size, we account for the 84 * sizes of the first and last mergeable segments in this bio. 85 */ 86 unsigned int bi_seg_front_size; 87 unsigned int bi_seg_back_size; 88 89 unsigned int bi_max_vecs; /* max bvl_vecs we can hold */ 90 91 unsigned int bi_comp_cpu; /* completion CPU */ 92 93 atomic_t bi_cnt; /* pin count */ 94 95 struct bio_vec *bi_io_vec; /* the actual vec list */ 96 97 bio_end_io_t *bi_end_io; 98 99 void *bi_private; 100#if defined(CONFIG_BLK_DEV_INTEGRITY) 101 struct bio_integrity_payload *bi_integrity; /* data integrity */ 102#endif 103 104 bio_destructor_t *bi_destructor; /* destructor */ 105 106 /* 107 * We can inline a number of vecs at the end of the bio, to avoid 108 * double allocations for a small number of bio_vecs. This member 109 * MUST obviously be kept at the very end of the bio. 110 */ 111 struct bio_vec bi_inline_vecs[0]; 112}; 113 114/* 115 * bio flags 116 */ 117#define BIO_UPTODATE 0 /* ok after I/O completion */ 118#define BIO_RW_BLOCK 1 /* RW_AHEAD set, and read/write would block */ 119#define BIO_EOF 2 /* out-out-bounds error */ 120#define BIO_SEG_VALID 3 /* bi_phys_segments valid */ 121#define BIO_CLONED 4 /* doesn't own data */ 122#define BIO_BOUNCED 5 /* bio is a bounce bio */ 123#define BIO_USER_MAPPED 6 /* contains user pages */ 124#define BIO_EOPNOTSUPP 7 /* not supported */ 125#define BIO_CPU_AFFINE 8 /* complete bio on same CPU as submitted */ 126#define BIO_NULL_MAPPED 9 /* contains invalid user pages */ 127#define BIO_FS_INTEGRITY 10 /* fs owns integrity data, not block layer */ 128#define BIO_QUIET 11 /* Make BIO Quiet */ 129#define bio_flagged(bio, flag) ((bio)->bi_flags & (1 << (flag))) 130 131/* 132 * top 4 bits of bio flags indicate the pool this bio came from 133 */ 134#define BIO_POOL_BITS (4) 135#define BIO_POOL_NONE ((1UL << BIO_POOL_BITS) - 1) 136#define BIO_POOL_OFFSET (BITS_PER_LONG - BIO_POOL_BITS) 137#define BIO_POOL_MASK (1UL << BIO_POOL_OFFSET) 138#define BIO_POOL_IDX(bio) ((bio)->bi_flags >> BIO_POOL_OFFSET) 139 140/* 141 * bio bi_rw flags 142 * 143 * bit 0 -- data direction 144 * If not set, bio is a read from device. If set, it's a write to device. 145 * bit 1 -- rw-ahead when set 146 * bit 2 -- barrier 147 * Insert a serialization point in the IO queue, forcing previously 148 * submitted IO to be completed before this one is issued. 149 * bit 3 -- synchronous I/O hint. 150 * bit 4 -- Unplug the device immediately after submitting this bio. 151 * bit 5 -- metadata request 152 * Used for tracing to differentiate metadata and data IO. May also 153 * get some preferential treatment in the IO scheduler 154 * bit 6 -- discard sectors 155 * Informs the lower level device that this range of sectors is no longer 156 * used by the file system and may thus be freed by the device. Used 157 * for flash based storage. 158 * bit 7 -- fail fast device errors 159 * bit 8 -- fail fast transport errors 160 * bit 9 -- fail fast driver errors 161 * Don't want driver retries for any fast fail whatever the reason. 162 * bit 10 -- Tell the IO scheduler not to wait for more requests after this 163 one has been submitted, even if it is a SYNC request. 164 */ 165#define BIO_RW 0 /* Must match RW in req flags (blkdev.h) */ 166#define BIO_RW_AHEAD 1 /* Must match FAILFAST in req flags */ 167#define BIO_RW_BARRIER 2 168#define BIO_RW_SYNCIO 3 169#define BIO_RW_UNPLUG 4 170#define BIO_RW_META 5 171#define BIO_RW_DISCARD 6 172#define BIO_RW_FAILFAST_DEV 7 173#define BIO_RW_FAILFAST_TRANSPORT 8 174#define BIO_RW_FAILFAST_DRIVER 9 175#define BIO_RW_NOIDLE 10 176 177#define bio_rw_flagged(bio, flag) ((bio)->bi_rw & (1 << (flag))) 178 179/* 180 * Old defines, these should eventually be replaced by direct usage of 181 * bio_rw_flagged() 182 */ 183#define bio_barrier(bio) bio_rw_flagged(bio, BIO_RW_BARRIER) 184#define bio_sync(bio) bio_rw_flagged(bio, BIO_RW_SYNCIO) 185#define bio_unplug(bio) bio_rw_flagged(bio, BIO_RW_UNPLUG) 186#define bio_failfast_dev(bio) bio_rw_flagged(bio, BIO_RW_FAILFAST_DEV) 187#define bio_failfast_transport(bio) \ 188 bio_rw_flagged(bio, BIO_RW_FAILFAST_TRANSPORT) 189#define bio_failfast_driver(bio) \ 190 bio_rw_flagged(bio, BIO_RW_FAILFAST_DRIVER) 191#define bio_rw_ahead(bio) bio_rw_flagged(bio, BIO_RW_AHEAD) 192#define bio_rw_meta(bio) bio_rw_flagged(bio, BIO_RW_META) 193#define bio_discard(bio) bio_rw_flagged(bio, BIO_RW_DISCARD) 194#define bio_noidle(bio) bio_rw_flagged(bio, BIO_RW_NOIDLE) 195 196/* 197 * upper 16 bits of bi_rw define the io priority of this bio 198 */ 199#define BIO_PRIO_SHIFT (8 * sizeof(unsigned long) - IOPRIO_BITS) 200#define bio_prio(bio) ((bio)->bi_rw >> BIO_PRIO_SHIFT) 201#define bio_prio_valid(bio) ioprio_valid(bio_prio(bio)) 202 203#define bio_set_prio(bio, prio) do { \ 204 WARN_ON(prio >= (1 << IOPRIO_BITS)); \ 205 (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1); \ 206 (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT); \ 207} while (0) 208 209/* 210 * various member access, note that bio_data should of course not be used 211 * on highmem page vectors 212 */ 213#define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)])) 214#define bio_iovec(bio) bio_iovec_idx((bio), (bio)->bi_idx) 215#define bio_page(bio) bio_iovec((bio))->bv_page 216#define bio_offset(bio) bio_iovec((bio))->bv_offset 217#define bio_segments(bio) ((bio)->bi_vcnt - (bio)->bi_idx) 218#define bio_sectors(bio) ((bio)->bi_size >> 9) 219#define bio_empty_barrier(bio) (bio_barrier(bio) && !bio_has_data(bio) && !bio_discard(bio)) 220 221static inline unsigned int bio_cur_bytes(struct bio *bio) 222{ 223 if (bio->bi_vcnt) 224 return bio_iovec(bio)->bv_len; 225 else /* dataless requests such as discard */ 226 return bio->bi_size; 227} 228 229static inline void *bio_data(struct bio *bio) 230{ 231 if (bio->bi_vcnt) 232 return page_address(bio_page(bio)) + bio_offset(bio); 233 234 return NULL; 235} 236 237static inline int bio_has_allocated_vec(struct bio *bio) 238{ 239 return bio->bi_io_vec && bio->bi_io_vec != bio->bi_inline_vecs; 240} 241 242/* 243 * will die 244 */ 245#define bio_to_phys(bio) (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio))) 246#define bvec_to_phys(bv) (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset) 247 248/* 249 * queues that have highmem support enabled may still need to revert to 250 * PIO transfers occasionally and thus map high pages temporarily. For 251 * permanent PIO fall back, user is probably better off disabling highmem 252 * I/O completely on that queue (see ide-dma for example) 253 */ 254#define __bio_kmap_atomic(bio, idx, kmtype) \ 255 (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page, kmtype) + \ 256 bio_iovec_idx((bio), (idx))->bv_offset) 257 258#define __bio_kunmap_atomic(addr, kmtype) kunmap_atomic(addr, kmtype) 259 260/* 261 * merge helpers etc 262 */ 263 264#define __BVEC_END(bio) bio_iovec_idx((bio), (bio)->bi_vcnt - 1) 265#define __BVEC_START(bio) bio_iovec_idx((bio), (bio)->bi_idx) 266 267/* Default implementation of BIOVEC_PHYS_MERGEABLE */ 268#define __BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 269 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) 270 271/* 272 * allow arch override, for eg virtualized architectures (put in asm/io.h) 273 */ 274#ifndef BIOVEC_PHYS_MERGEABLE 275#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 276 __BIOVEC_PHYS_MERGEABLE(vec1, vec2) 277#endif 278 279#define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \ 280 (((addr1) | (mask)) == (((addr2) - 1) | (mask))) 281#define BIOVEC_SEG_BOUNDARY(q, b1, b2) \ 282 __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, queue_segment_boundary((q))) 283#define BIO_SEG_BOUNDARY(q, b1, b2) \ 284 BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2))) 285 286#define bio_io_error(bio) bio_endio((bio), -EIO) 287 288/* 289 * drivers should not use the __ version unless they _really_ want to 290 * run through the entire bio and not just pending pieces 291 */ 292#define __bio_for_each_segment(bvl, bio, i, start_idx) \ 293 for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx); \ 294 i < (bio)->bi_vcnt; \ 295 bvl++, i++) 296 297#define bio_for_each_segment(bvl, bio, i) \ 298 __bio_for_each_segment(bvl, bio, i, (bio)->bi_idx) 299 300/* 301 * get a reference to a bio, so it won't disappear. the intended use is 302 * something like: 303 * 304 * bio_get(bio); 305 * submit_bio(rw, bio); 306 * if (bio->bi_flags ...) 307 * do_something 308 * bio_put(bio); 309 * 310 * without the bio_get(), it could potentially complete I/O before submit_bio 311 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 312 * runs 313 */ 314#define bio_get(bio) atomic_inc(&(bio)->bi_cnt) 315 316#if defined(CONFIG_BLK_DEV_INTEGRITY) 317/* 318 * bio integrity payload 319 */ 320struct bio_integrity_payload { 321 struct bio *bip_bio; /* parent bio */ 322 323 sector_t bip_sector; /* virtual start sector */ 324 325 void *bip_buf; /* generated integrity data */ 326 bio_end_io_t *bip_end_io; /* saved I/O completion fn */ 327 328 unsigned int bip_size; 329 330 unsigned short bip_slab; /* slab the bip came from */ 331 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 332 unsigned short bip_idx; /* current bip_vec index */ 333 334 struct work_struct bip_work; /* I/O completion */ 335 struct bio_vec bip_vec[0]; /* embedded bvec array */ 336}; 337#endif /* CONFIG_BLK_DEV_INTEGRITY */ 338 339/* 340 * A bio_pair is used when we need to split a bio. 341 * This can only happen for a bio that refers to just one 342 * page of data, and in the unusual situation when the 343 * page crosses a chunk/device boundary 344 * 345 * The address of the master bio is stored in bio1.bi_private 346 * The address of the pool the pair was allocated from is stored 347 * in bio2.bi_private 348 */ 349struct bio_pair { 350 struct bio bio1, bio2; 351 struct bio_vec bv1, bv2; 352#if defined(CONFIG_BLK_DEV_INTEGRITY) 353 struct bio_integrity_payload bip1, bip2; 354 struct bio_vec iv1, iv2; 355#endif 356 atomic_t cnt; 357 int error; 358}; 359extern struct bio_pair *bio_split(struct bio *bi, int first_sectors); 360extern void bio_pair_release(struct bio_pair *dbio); 361 362extern struct bio_set *bioset_create(unsigned int, unsigned int); 363extern void bioset_free(struct bio_set *); 364 365extern struct bio *bio_alloc(gfp_t, int); 366extern struct bio *bio_kmalloc(gfp_t, int); 367extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *); 368extern void bio_put(struct bio *); 369extern void bio_free(struct bio *, struct bio_set *); 370 371extern void bio_endio(struct bio *, int); 372struct request_queue; 373extern int bio_phys_segments(struct request_queue *, struct bio *); 374 375extern void __bio_clone(struct bio *, struct bio *); 376extern struct bio *bio_clone(struct bio *, gfp_t); 377 378extern void bio_init(struct bio *); 379 380extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); 381extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 382 unsigned int, unsigned int); 383extern int bio_get_nr_vecs(struct block_device *); 384extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int); 385extern struct bio *bio_map_user(struct request_queue *, struct block_device *, 386 unsigned long, unsigned int, int, gfp_t); 387struct sg_iovec; 388struct rq_map_data; 389extern struct bio *bio_map_user_iov(struct request_queue *, 390 struct block_device *, 391 struct sg_iovec *, int, int, gfp_t); 392extern void bio_unmap_user(struct bio *); 393extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int, 394 gfp_t); 395extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int, 396 gfp_t, int); 397extern void bio_set_pages_dirty(struct bio *bio); 398extern void bio_check_pages_dirty(struct bio *bio); 399extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *, 400 unsigned long, unsigned int, int, gfp_t); 401extern struct bio *bio_copy_user_iov(struct request_queue *, 402 struct rq_map_data *, struct sg_iovec *, 403 int, int, gfp_t); 404extern int bio_uncopy_user(struct bio *); 405void zero_fill_bio(struct bio *bio); 406extern struct bio_vec *bvec_alloc_bs(gfp_t, int, unsigned long *, struct bio_set *); 407extern void bvec_free_bs(struct bio_set *, struct bio_vec *, unsigned int); 408extern unsigned int bvec_nr_vecs(unsigned short idx); 409 410/* 411 * Allow queuer to specify a completion CPU for this bio 412 */ 413static inline void bio_set_completion_cpu(struct bio *bio, unsigned int cpu) 414{ 415 bio->bi_comp_cpu = cpu; 416} 417 418/* 419 * bio_set is used to allow other portions of the IO system to 420 * allocate their own private memory pools for bio and iovec structures. 421 * These memory pools in turn all allocate from the bio_slab 422 * and the bvec_slabs[]. 423 */ 424#define BIO_POOL_SIZE 2 425#define BIOVEC_NR_POOLS 6 426#define BIOVEC_MAX_IDX (BIOVEC_NR_POOLS - 1) 427 428struct bio_set { 429 struct kmem_cache *bio_slab; 430 unsigned int front_pad; 431 432 mempool_t *bio_pool; 433#if defined(CONFIG_BLK_DEV_INTEGRITY) 434 mempool_t *bio_integrity_pool; 435#endif 436 mempool_t *bvec_pool; 437}; 438 439struct biovec_slab { 440 int nr_vecs; 441 char *name; 442 struct kmem_cache *slab; 443}; 444 445extern struct bio_set *fs_bio_set; 446extern struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly; 447 448/* 449 * a small number of entries is fine, not going to be performance critical. 450 * basically we just need to survive 451 */ 452#define BIO_SPLIT_ENTRIES 2 453 454#ifdef CONFIG_HIGHMEM 455/* 456 * remember never ever reenable interrupts between a bvec_kmap_irq and 457 * bvec_kunmap_irq! 458 * 459 * This function MUST be inlined - it plays with the CPU interrupt flags. 460 */ 461static __always_inline char *bvec_kmap_irq(struct bio_vec *bvec, 462 unsigned long *flags) 463{ 464 unsigned long addr; 465 466 /* 467 * might not be a highmem page, but the preempt/irq count 468 * balancing is a lot nicer this way 469 */ 470 local_irq_save(*flags); 471 addr = (unsigned long) kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ); 472 473 BUG_ON(addr & ~PAGE_MASK); 474 475 return (char *) addr + bvec->bv_offset; 476} 477 478static __always_inline void bvec_kunmap_irq(char *buffer, 479 unsigned long *flags) 480{ 481 unsigned long ptr = (unsigned long) buffer & PAGE_MASK; 482 483 kunmap_atomic((void *) ptr, KM_BIO_SRC_IRQ); 484 local_irq_restore(*flags); 485} 486 487#else 488#define bvec_kmap_irq(bvec, flags) (page_address((bvec)->bv_page) + (bvec)->bv_offset) 489#define bvec_kunmap_irq(buf, flags) do { *(flags) = 0; } while (0) 490#endif 491 492static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx, 493 unsigned long *flags) 494{ 495 return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags); 496} 497#define __bio_kunmap_irq(buf, flags) bvec_kunmap_irq(buf, flags) 498 499#define bio_kmap_irq(bio, flags) \ 500 __bio_kmap_irq((bio), (bio)->bi_idx, (flags)) 501#define bio_kunmap_irq(buf,flags) __bio_kunmap_irq(buf, flags) 502 503/* 504 * Check whether this bio carries any data or not. A NULL bio is allowed. 505 */ 506static inline int bio_has_data(struct bio *bio) 507{ 508 return bio && bio->bi_io_vec != NULL; 509} 510 511/* 512 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 513 * 514 * A bio_list anchors a singly-linked list of bios chained through the bi_next 515 * member of the bio. The bio_list also caches the last list member to allow 516 * fast access to the tail. 517 */ 518struct bio_list { 519 struct bio *head; 520 struct bio *tail; 521}; 522 523static inline int bio_list_empty(const struct bio_list *bl) 524{ 525 return bl->head == NULL; 526} 527 528static inline void bio_list_init(struct bio_list *bl) 529{ 530 bl->head = bl->tail = NULL; 531} 532 533#define bio_list_for_each(bio, bl) \ 534 for (bio = (bl)->head; bio; bio = bio->bi_next) 535 536static inline unsigned bio_list_size(const struct bio_list *bl) 537{ 538 unsigned sz = 0; 539 struct bio *bio; 540 541 bio_list_for_each(bio, bl) 542 sz++; 543 544 return sz; 545} 546 547static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 548{ 549 bio->bi_next = NULL; 550 551 if (bl->tail) 552 bl->tail->bi_next = bio; 553 else 554 bl->head = bio; 555 556 bl->tail = bio; 557} 558 559static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 560{ 561 bio->bi_next = bl->head; 562 563 bl->head = bio; 564 565 if (!bl->tail) 566 bl->tail = bio; 567} 568 569static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 570{ 571 if (!bl2->head) 572 return; 573 574 if (bl->tail) 575 bl->tail->bi_next = bl2->head; 576 else 577 bl->head = bl2->head; 578 579 bl->tail = bl2->tail; 580} 581 582static inline void bio_list_merge_head(struct bio_list *bl, 583 struct bio_list *bl2) 584{ 585 if (!bl2->head) 586 return; 587 588 if (bl->head) 589 bl2->tail->bi_next = bl->head; 590 else 591 bl->tail = bl2->tail; 592 593 bl->head = bl2->head; 594} 595 596static inline struct bio *bio_list_peek(struct bio_list *bl) 597{ 598 return bl->head; 599} 600 601static inline struct bio *bio_list_pop(struct bio_list *bl) 602{ 603 struct bio *bio = bl->head; 604 605 if (bio) { 606 bl->head = bl->head->bi_next; 607 if (!bl->head) 608 bl->tail = NULL; 609 610 bio->bi_next = NULL; 611 } 612 613 return bio; 614} 615 616static inline struct bio *bio_list_get(struct bio_list *bl) 617{ 618 struct bio *bio = bl->head; 619 620 bl->head = bl->tail = NULL; 621 622 return bio; 623} 624 625#if defined(CONFIG_BLK_DEV_INTEGRITY) 626 627#define bip_vec_idx(bip, idx) (&(bip->bip_vec[(idx)])) 628#define bip_vec(bip) bip_vec_idx(bip, 0) 629 630#define __bip_for_each_vec(bvl, bip, i, start_idx) \ 631 for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx); \ 632 i < (bip)->bip_vcnt; \ 633 bvl++, i++) 634 635#define bip_for_each_vec(bvl, bip, i) \ 636 __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx) 637 638#define bio_integrity(bio) (bio->bi_integrity != NULL) 639 640extern struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *, gfp_t, unsigned int, struct bio_set *); 641extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 642extern void bio_integrity_free(struct bio *, struct bio_set *); 643extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 644extern int bio_integrity_enabled(struct bio *bio); 645extern int bio_integrity_set_tag(struct bio *, void *, unsigned int); 646extern int bio_integrity_get_tag(struct bio *, void *, unsigned int); 647extern int bio_integrity_prep(struct bio *); 648extern void bio_integrity_endio(struct bio *, int); 649extern void bio_integrity_advance(struct bio *, unsigned int); 650extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int); 651extern void bio_integrity_split(struct bio *, struct bio_pair *, int); 652extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t, struct bio_set *); 653extern int bioset_integrity_create(struct bio_set *, int); 654extern void bioset_integrity_free(struct bio_set *); 655extern void bio_integrity_init(void); 656 657#else /* CONFIG_BLK_DEV_INTEGRITY */ 658 659#define bio_integrity(a) (0) 660#define bioset_integrity_create(a, b) (0) 661#define bio_integrity_prep(a) (0) 662#define bio_integrity_enabled(a) (0) 663#define bio_integrity_clone(a, b, c, d) (0) 664#define bioset_integrity_free(a) do { } while (0) 665#define bio_integrity_free(a, b) do { } while (0) 666#define bio_integrity_endio(a, b) do { } while (0) 667#define bio_integrity_advance(a, b) do { } while (0) 668#define bio_integrity_trim(a, b, c) do { } while (0) 669#define bio_integrity_split(a, b, c) do { } while (0) 670#define bio_integrity_set_tag(a, b, c) do { } while (0) 671#define bio_integrity_get_tag(a, b, c) do { } while (0) 672#define bio_integrity_init(a) do { } while (0) 673 674#endif /* CONFIG_BLK_DEV_INTEGRITY */ 675 676#endif /* CONFIG_BLOCK */ 677#endif /* __LINUX_BIO_H */