at v2.6.31 592 lines 19 kB view raw
1/* 2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2008-2009 PetaLogix 4 * Copyright (C) 2006 Atmark Techno, Inc. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 11#ifndef _ASM_MICROBLAZE_PGTABLE_H 12#define _ASM_MICROBLAZE_PGTABLE_H 13 14#include <asm/setup.h> 15 16#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 17 remap_pfn_range(vma, vaddr, pfn, size, prot) 18 19#ifndef CONFIG_MMU 20 21#define pgd_present(pgd) (1) /* pages are always present on non MMU */ 22#define pgd_none(pgd) (0) 23#define pgd_bad(pgd) (0) 24#define pgd_clear(pgdp) 25#define kern_addr_valid(addr) (1) 26#define pmd_offset(a, b) ((void *) 0) 27 28#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ 29#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ 30#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ 31#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ 32#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ 33 34#define pgprot_noncached(x) (x) 35 36#define __swp_type(x) (0) 37#define __swp_offset(x) (0) 38#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 39#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 40#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 41 42#ifndef __ASSEMBLY__ 43static inline int pte_file(pte_t pte) { return 0; } 44#endif /* __ASSEMBLY__ */ 45 46#define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 47 48#define swapper_pg_dir ((pgd_t *) NULL) 49 50#define pgtable_cache_init() do {} while (0) 51 52#define arch_enter_lazy_cpu_mode() do {} while (0) 53 54#else /* CONFIG_MMU */ 55 56#include <asm-generic/4level-fixup.h> 57 58#ifdef __KERNEL__ 59#ifndef __ASSEMBLY__ 60 61#include <linux/sched.h> 62#include <linux/threads.h> 63#include <asm/processor.h> /* For TASK_SIZE */ 64#include <asm/mmu.h> 65#include <asm/page.h> 66 67#define FIRST_USER_ADDRESS 0 68 69extern unsigned long va_to_phys(unsigned long address); 70extern pte_t *va_to_pte(unsigned long address); 71extern unsigned long ioremap_bot, ioremap_base; 72 73/* 74 * The following only work if pte_present() is true. 75 * Undefined behaviour if not.. 76 */ 77 78static inline int pte_special(pte_t pte) { return 0; } 79 80static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 81 82/* Start and end of the vmalloc area. */ 83/* Make sure to map the vmalloc area above the pinned kernel memory area 84 of 32Mb. */ 85#define VMALLOC_START (CONFIG_KERNEL_START + \ 86 max(32 * 1024 * 1024UL, memory_size)) 87#define VMALLOC_END ioremap_bot 88#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 89 90#endif /* __ASSEMBLY__ */ 91 92/* 93 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 94 * table containing PTEs, together with a set of 16 segment registers, to 95 * define the virtual to physical address mapping. 96 * 97 * We use the hash table as an extended TLB, i.e. a cache of currently 98 * active mappings. We maintain a two-level page table tree, much 99 * like that used by the i386, for the sake of the Linux memory 100 * management code. Low-level assembler code in hashtable.S 101 * (procedure hash_page) is responsible for extracting ptes from the 102 * tree and putting them into the hash table when necessary, and 103 * updating the accessed and modified bits in the page table tree. 104 */ 105 106/* 107 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 108 * instruction and data sides share a unified, 64-entry, semi-associative 109 * TLB which is maintained totally under software control. In addition, the 110 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 111 * TLB which serves as a first level to the shared TLB. These two TLBs are 112 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 113 */ 114 115/* 116 * The normal case is that PTEs are 32-bits and we have a 1-page 117 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 118 * 119 */ 120 121/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 122#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 123#define PMD_SIZE (1UL << PMD_SHIFT) 124#define PMD_MASK (~(PMD_SIZE-1)) 125 126/* PGDIR_SHIFT determines what a top-level page table entry can map */ 127#define PGDIR_SHIFT PMD_SHIFT 128#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 129#define PGDIR_MASK (~(PGDIR_SIZE-1)) 130 131/* 132 * entries per page directory level: our page-table tree is two-level, so 133 * we don't really have any PMD directory. 134 */ 135#define PTRS_PER_PTE (1 << PTE_SHIFT) 136#define PTRS_PER_PMD 1 137#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 138 139#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 140#define FIRST_USER_PGD_NR 0 141 142#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 143#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 144 145#define pte_ERROR(e) \ 146 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 147 __FILE__, __LINE__, pte_val(e)) 148#define pmd_ERROR(e) \ 149 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \ 150 __FILE__, __LINE__, pmd_val(e)) 151#define pgd_ERROR(e) \ 152 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 153 __FILE__, __LINE__, pgd_val(e)) 154 155/* 156 * Bits in a linux-style PTE. These match the bits in the 157 * (hardware-defined) PTE as closely as possible. 158 */ 159 160/* There are several potential gotchas here. The hardware TLBLO 161 * field looks like this: 162 * 163 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 164 * RPN..................... 0 0 EX WR ZSEL....... W I M G 165 * 166 * Where possible we make the Linux PTE bits match up with this 167 * 168 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 169 * support down to 1k pages), this is done in the TLBMiss exception 170 * handler. 171 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 172 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 173 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 174 * zone. 175 * - PRESENT *must* be in the bottom two bits because swap cache 176 * entries use the top 30 bits. Because 4xx doesn't support SMP 177 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 178 * is cleared in the TLB miss handler before the TLB entry is loaded. 179 * - All other bits of the PTE are loaded into TLBLO without 180 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 181 * software PTE bits. We actually use use bits 21, 24, 25, and 182 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 183 * PRESENT. 184 */ 185 186/* Definitions for MicroBlaze. */ 187#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 188#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ 189#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 190#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 191#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 192#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 193#define _PAGE_RW 0x040 /* software: Writes permitted */ 194#define _PAGE_DIRTY 0x080 /* software: dirty page */ 195#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 196#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 197#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 198#define _PMD_PRESENT PAGE_MASK 199 200/* 201 * Some bits are unused... 202 */ 203#ifndef _PAGE_HASHPTE 204#define _PAGE_HASHPTE 0 205#endif 206#ifndef _PTE_NONE_MASK 207#define _PTE_NONE_MASK 0 208#endif 209#ifndef _PAGE_SHARED 210#define _PAGE_SHARED 0 211#endif 212#ifndef _PAGE_HWWRITE 213#define _PAGE_HWWRITE 0 214#endif 215#ifndef _PAGE_HWEXEC 216#define _PAGE_HWEXEC 0 217#endif 218#ifndef _PAGE_EXEC 219#define _PAGE_EXEC 0 220#endif 221 222#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 223 224/* 225 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 226 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 227 * to have it in the Linux PTE, and in fact the bit could be reused for 228 * another purpose. -- paulus. 229 */ 230#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 231#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 232 233#define _PAGE_KERNEL \ 234 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 235 236#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 237 238#define PAGE_NONE __pgprot(_PAGE_BASE) 239#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 240#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 241#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 242#define PAGE_SHARED_X \ 243 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 244#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 245#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 246 247#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 248#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 249#define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 250 251/* 252 * We consider execute permission the same as read. 253 * Also, write permissions imply read permissions. 254 */ 255#define __P000 PAGE_NONE 256#define __P001 PAGE_READONLY_X 257#define __P010 PAGE_COPY 258#define __P011 PAGE_COPY_X 259#define __P100 PAGE_READONLY 260#define __P101 PAGE_READONLY_X 261#define __P110 PAGE_COPY 262#define __P111 PAGE_COPY_X 263 264#define __S000 PAGE_NONE 265#define __S001 PAGE_READONLY_X 266#define __S010 PAGE_SHARED 267#define __S011 PAGE_SHARED_X 268#define __S100 PAGE_READONLY 269#define __S101 PAGE_READONLY_X 270#define __S110 PAGE_SHARED 271#define __S111 PAGE_SHARED_X 272 273#ifndef __ASSEMBLY__ 274/* 275 * ZERO_PAGE is a global shared page that is always zero: used 276 * for zero-mapped memory areas etc.. 277 */ 278extern unsigned long empty_zero_page[1024]; 279#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 280 281#endif /* __ASSEMBLY__ */ 282 283#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 284#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 285#define pte_clear(mm, addr, ptep) \ 286 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 287 288#define pmd_none(pmd) (!pmd_val(pmd)) 289#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 290#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 291#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 292 293#define pte_page(x) (mem_map + (unsigned long) \ 294 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 295#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 296 297#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 298 299#define pfn_pte(pfn, prot) \ 300 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 301 302#ifndef __ASSEMBLY__ 303/* 304 * The "pgd_xxx()" functions here are trivial for a folded two-level 305 * setup: the pgd is never bad, and a pmd always exists (as it's folded 306 * into the pgd entry) 307 */ 308static inline int pgd_none(pgd_t pgd) { return 0; } 309static inline int pgd_bad(pgd_t pgd) { return 0; } 310static inline int pgd_present(pgd_t pgd) { return 1; } 311#define pgd_clear(xp) do { } while (0) 312#define pgd_page(pgd) \ 313 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 314 315/* 316 * The following only work if pte_present() is true. 317 * Undefined behaviour if not.. 318 */ 319static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 320static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 321static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 322static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 323static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 324static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 325 326static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 327static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 328 329static inline pte_t pte_rdprotect(pte_t pte) \ 330 { pte_val(pte) &= ~_PAGE_USER; return pte; } 331static inline pte_t pte_wrprotect(pte_t pte) \ 332 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 333static inline pte_t pte_exprotect(pte_t pte) \ 334 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 335static inline pte_t pte_mkclean(pte_t pte) \ 336 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 337static inline pte_t pte_mkold(pte_t pte) \ 338 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 339 340static inline pte_t pte_mkread(pte_t pte) \ 341 { pte_val(pte) |= _PAGE_USER; return pte; } 342static inline pte_t pte_mkexec(pte_t pte) \ 343 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 344static inline pte_t pte_mkwrite(pte_t pte) \ 345 { pte_val(pte) |= _PAGE_RW; return pte; } 346static inline pte_t pte_mkdirty(pte_t pte) \ 347 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 348static inline pte_t pte_mkyoung(pte_t pte) \ 349 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 350 351/* 352 * Conversion functions: convert a page and protection to a page entry, 353 * and a page entry and page directory to the page they refer to. 354 */ 355 356static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 357{ 358 pte_t pte; 359 pte_val(pte) = physpage | pgprot_val(pgprot); 360 return pte; 361} 362 363#define mk_pte(page, pgprot) \ 364({ \ 365 pte_t pte; \ 366 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 367 pgprot_val(pgprot); \ 368 pte; \ 369}) 370 371static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 372{ 373 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 374 return pte; 375} 376 377/* 378 * Atomic PTE updates. 379 * 380 * pte_update clears and sets bit atomically, and returns 381 * the old pte value. 382 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 383 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 384 */ 385static inline unsigned long pte_update(pte_t *p, unsigned long clr, 386 unsigned long set) 387{ 388 unsigned long old, tmp, msr; 389 390 __asm__ __volatile__("\ 391 msrclr %2, 0x2\n\ 392 nop\n\ 393 lw %0, %4, r0\n\ 394 andn %1, %0, %5\n\ 395 or %1, %1, %6\n\ 396 sw %1, %4, r0\n\ 397 mts rmsr, %2\n\ 398 nop" 399 : "=&r" (old), "=&r" (tmp), "=&r" (msr), "=m" (*p) 400 : "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p) 401 : "cc"); 402 403 return old; 404} 405 406/* 407 * set_pte stores a linux PTE into the linux page table. 408 */ 409static inline void set_pte(struct mm_struct *mm, unsigned long addr, 410 pte_t *ptep, pte_t pte) 411{ 412 *ptep = pte; 413} 414 415static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 416 pte_t *ptep, pte_t pte) 417{ 418 *ptep = pte; 419} 420 421static inline int ptep_test_and_clear_young(struct mm_struct *mm, 422 unsigned long addr, pte_t *ptep) 423{ 424 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 425} 426 427static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 428 unsigned long addr, pte_t *ptep) 429{ 430 return (pte_update(ptep, \ 431 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 432} 433 434static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 435 unsigned long addr, pte_t *ptep) 436{ 437 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 438} 439 440/*static inline void ptep_set_wrprotect(struct mm_struct *mm, 441 unsigned long addr, pte_t *ptep) 442{ 443 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 444}*/ 445 446static inline void ptep_mkdirty(struct mm_struct *mm, 447 unsigned long addr, pte_t *ptep) 448{ 449 pte_update(ptep, 0, _PAGE_DIRTY); 450} 451 452/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 453 454/* Convert pmd entry to page */ 455/* our pmd entry is an effective address of pte table*/ 456/* returns effective address of the pmd entry*/ 457#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 458 459/* returns struct *page of the pmd entry*/ 460#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 461 462/* to find an entry in a kernel page-table-directory */ 463#define pgd_offset_k(address) pgd_offset(&init_mm, address) 464 465/* to find an entry in a page-table-directory */ 466#define pgd_index(address) ((address) >> PGDIR_SHIFT) 467#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 468 469/* Find an entry in the second-level page table.. */ 470static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) 471{ 472 return (pmd_t *) dir; 473} 474 475/* Find an entry in the third-level page table.. */ 476#define pte_index(address) \ 477 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 478#define pte_offset_kernel(dir, addr) \ 479 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 480#define pte_offset_map(dir, addr) \ 481 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) 482#define pte_offset_map_nested(dir, addr) \ 483 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) 484 485#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 486#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) 487 488/* Encode and decode a nonlinear file mapping entry */ 489#define PTE_FILE_MAX_BITS 29 490#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 491#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 492 493extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 494 495/* 496 * When flushing the tlb entry for a page, we also need to flush the hash 497 * table entry. flush_hash_page is assembler (for speed) in hashtable.S. 498 */ 499extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep); 500 501/* Add an HPTE to the hash table */ 502extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep); 503 504/* 505 * Encode and decode a swap entry. 506 * Note that the bits we use in a PTE for representing a swap entry 507 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 508 * (if used). -- paulus 509 */ 510#define __swp_type(entry) ((entry).val & 0x3f) 511#define __swp_offset(entry) ((entry).val >> 6) 512#define __swp_entry(type, offset) \ 513 ((swp_entry_t) { (type) | ((offset) << 6) }) 514#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 515#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 516 517 518/* CONFIG_APUS */ 519/* For virtual address to physical address conversion */ 520extern void cache_clear(__u32 addr, int length); 521extern void cache_push(__u32 addr, int length); 522extern int mm_end_of_chunk(unsigned long addr, int len); 523extern unsigned long iopa(unsigned long addr); 524/* extern unsigned long mm_ptov(unsigned long addr) \ 525 __attribute__ ((const)); TBD */ 526 527/* Values for nocacheflag and cmode */ 528/* These are not used by the APUS kernel_map, but prevents 529 * compilation errors. 530 */ 531#define IOMAP_FULL_CACHING 0 532#define IOMAP_NOCACHE_SER 1 533#define IOMAP_NOCACHE_NONSER 2 534#define IOMAP_NO_COPYBACK 3 535 536/* 537 * Map some physical address range into the kernel address space. 538 */ 539extern unsigned long kernel_map(unsigned long paddr, unsigned long size, 540 int nocacheflag, unsigned long *memavailp); 541 542/* 543 * Set cache mode of (kernel space) address range. 544 */ 545extern void kernel_set_cachemode(unsigned long address, unsigned long size, 546 unsigned int cmode); 547 548/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 549#define kern_addr_valid(addr) (1) 550 551#define io_remap_page_range remap_page_range 552 553/* 554 * No page table caches to initialise 555 */ 556#define pgtable_cache_init() do { } while (0) 557 558void do_page_fault(struct pt_regs *regs, unsigned long address, 559 unsigned long error_code); 560 561void __init io_block_mapping(unsigned long virt, phys_addr_t phys, 562 unsigned int size, int flags); 563 564void __init adjust_total_lowmem(void); 565void mapin_ram(void); 566int map_page(unsigned long va, phys_addr_t pa, int flags); 567 568extern int mem_init_done; 569extern unsigned long ioremap_base; 570extern unsigned long ioremap_bot; 571 572asmlinkage void __init mmu_init(void); 573 574void __init *early_get_page(void); 575 576void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle); 577void consistent_free(void *vaddr); 578void consistent_sync(void *vaddr, size_t size, int direction); 579void consistent_sync_page(struct page *page, unsigned long offset, 580 size_t size, int direction); 581#endif /* __ASSEMBLY__ */ 582#endif /* __KERNEL__ */ 583 584#endif /* CONFIG_MMU */ 585 586#ifndef __ASSEMBLY__ 587#include <asm-generic/pgtable.h> 588 589void setup_memory(void); 590#endif /* __ASSEMBLY__ */ 591 592#endif /* _ASM_MICROBLAZE_PGTABLE_H */