at v2.6.31-rc7 8.0 kB view raw
1/* 2 * Flexible array managed in PAGE_SIZE parts 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2009 19 * 20 * Author: Dave Hansen <dave@linux.vnet.ibm.com> 21 */ 22 23#include <linux/flex_array.h> 24#include <linux/slab.h> 25#include <linux/stddef.h> 26 27struct flex_array_part { 28 char elements[FLEX_ARRAY_PART_SIZE]; 29}; 30 31static inline int __elements_per_part(int element_size) 32{ 33 return FLEX_ARRAY_PART_SIZE / element_size; 34} 35 36static inline int bytes_left_in_base(void) 37{ 38 int element_offset = offsetof(struct flex_array, parts); 39 int bytes_left = FLEX_ARRAY_BASE_SIZE - element_offset; 40 return bytes_left; 41} 42 43static inline int nr_base_part_ptrs(void) 44{ 45 return bytes_left_in_base() / sizeof(struct flex_array_part *); 46} 47 48/* 49 * If a user requests an allocation which is small 50 * enough, we may simply use the space in the 51 * flex_array->parts[] array to store the user 52 * data. 53 */ 54static inline int elements_fit_in_base(struct flex_array *fa) 55{ 56 int data_size = fa->element_size * fa->total_nr_elements; 57 if (data_size <= bytes_left_in_base()) 58 return 1; 59 return 0; 60} 61 62/** 63 * flex_array_alloc - allocate a new flexible array 64 * @element_size: the size of individual elements in the array 65 * @total: total number of elements that this should hold 66 * 67 * Note: all locking must be provided by the caller. 68 * 69 * @total is used to size internal structures. If the user ever 70 * accesses any array indexes >=@total, it will produce errors. 71 * 72 * The maximum number of elements is defined as: the number of 73 * elements that can be stored in a page times the number of 74 * page pointers that we can fit in the base structure or (using 75 * integer math): 76 * 77 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *) 78 * 79 * Here's a table showing example capacities. Note that the maximum 80 * index that the get/put() functions is just nr_objects-1. This 81 * basically means that you get 4MB of storage on 32-bit and 2MB on 82 * 64-bit. 83 * 84 * 85 * Element size | Objects | Objects | 86 * PAGE_SIZE=4k | 32-bit | 64-bit | 87 * ---------------------------------| 88 * 1 bytes | 4186112 | 2093056 | 89 * 2 bytes | 2093056 | 1046528 | 90 * 3 bytes | 1395030 | 697515 | 91 * 4 bytes | 1046528 | 523264 | 92 * 32 bytes | 130816 | 65408 | 93 * 33 bytes | 126728 | 63364 | 94 * 2048 bytes | 2044 | 1022 | 95 * 2049 bytes | 1022 | 511 | 96 * void * | 1046528 | 261632 | 97 * 98 * Since 64-bit pointers are twice the size, we lose half the 99 * capacity in the base structure. Also note that no effort is made 100 * to efficiently pack objects across page boundaries. 101 */ 102struct flex_array *flex_array_alloc(int element_size, int total, gfp_t flags) 103{ 104 struct flex_array *ret; 105 int max_size = nr_base_part_ptrs() * __elements_per_part(element_size); 106 107 /* max_size will end up 0 if element_size > PAGE_SIZE */ 108 if (total > max_size) 109 return NULL; 110 ret = kzalloc(sizeof(struct flex_array), flags); 111 if (!ret) 112 return NULL; 113 ret->element_size = element_size; 114 ret->total_nr_elements = total; 115 return ret; 116} 117 118static int fa_element_to_part_nr(struct flex_array *fa, int element_nr) 119{ 120 return element_nr / __elements_per_part(fa->element_size); 121} 122 123/** 124 * flex_array_free_parts - just free the second-level pages 125 * @src: address of data to copy into the array 126 * @element_nr: index of the position in which to insert 127 * the new element. 128 * 129 * This is to be used in cases where the base 'struct flex_array' 130 * has been statically allocated and should not be free. 131 */ 132void flex_array_free_parts(struct flex_array *fa) 133{ 134 int part_nr; 135 int max_part = nr_base_part_ptrs(); 136 137 if (elements_fit_in_base(fa)) 138 return; 139 for (part_nr = 0; part_nr < max_part; part_nr++) 140 kfree(fa->parts[part_nr]); 141} 142 143void flex_array_free(struct flex_array *fa) 144{ 145 flex_array_free_parts(fa); 146 kfree(fa); 147} 148 149static int fa_index_inside_part(struct flex_array *fa, int element_nr) 150{ 151 return element_nr % __elements_per_part(fa->element_size); 152} 153 154static int index_inside_part(struct flex_array *fa, int element_nr) 155{ 156 int part_offset = fa_index_inside_part(fa, element_nr); 157 return part_offset * fa->element_size; 158} 159 160static struct flex_array_part * 161__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags) 162{ 163 struct flex_array_part *part = fa->parts[part_nr]; 164 if (!part) { 165 /* 166 * This leaves the part pages uninitialized 167 * and with potentially random data, just 168 * as if the user had kmalloc()'d the whole. 169 * __GFP_ZERO can be used to zero it. 170 */ 171 part = kmalloc(FLEX_ARRAY_PART_SIZE, flags); 172 if (!part) 173 return NULL; 174 fa->parts[part_nr] = part; 175 } 176 return part; 177} 178 179/** 180 * flex_array_put - copy data into the array at @element_nr 181 * @src: address of data to copy into the array 182 * @element_nr: index of the position in which to insert 183 * the new element. 184 * 185 * Note that this *copies* the contents of @src into 186 * the array. If you are trying to store an array of 187 * pointers, make sure to pass in &ptr instead of ptr. 188 * 189 * Locking must be provided by the caller. 190 */ 191int flex_array_put(struct flex_array *fa, int element_nr, void *src, gfp_t flags) 192{ 193 int part_nr = fa_element_to_part_nr(fa, element_nr); 194 struct flex_array_part *part; 195 void *dst; 196 197 if (element_nr >= fa->total_nr_elements) 198 return -ENOSPC; 199 if (elements_fit_in_base(fa)) 200 part = (struct flex_array_part *)&fa->parts[0]; 201 else 202 part = __fa_get_part(fa, part_nr, flags); 203 if (!part) 204 return -ENOMEM; 205 dst = &part->elements[index_inside_part(fa, element_nr)]; 206 memcpy(dst, src, fa->element_size); 207 return 0; 208} 209 210/** 211 * flex_array_prealloc - guarantee that array space exists 212 * @start: index of first array element for which space is allocated 213 * @end: index of last (inclusive) element for which space is allocated 214 * 215 * This will guarantee that no future calls to flex_array_put() 216 * will allocate memory. It can be used if you are expecting to 217 * be holding a lock or in some atomic context while writing 218 * data into the array. 219 * 220 * Locking must be provided by the caller. 221 */ 222int flex_array_prealloc(struct flex_array *fa, int start, int end, gfp_t flags) 223{ 224 int start_part; 225 int end_part; 226 int part_nr; 227 struct flex_array_part *part; 228 229 if (start >= fa->total_nr_elements || end >= fa->total_nr_elements) 230 return -ENOSPC; 231 if (elements_fit_in_base(fa)) 232 return 0; 233 start_part = fa_element_to_part_nr(fa, start); 234 end_part = fa_element_to_part_nr(fa, end); 235 for (part_nr = start_part; part_nr <= end_part; part_nr++) { 236 part = __fa_get_part(fa, part_nr, flags); 237 if (!part) 238 return -ENOMEM; 239 } 240 return 0; 241} 242 243/** 244 * flex_array_get - pull data back out of the array 245 * @element_nr: index of the element to fetch from the array 246 * 247 * Returns a pointer to the data at index @element_nr. Note 248 * that this is a copy of the data that was passed in. If you 249 * are using this to store pointers, you'll get back &ptr. 250 * 251 * Locking must be provided by the caller. 252 */ 253void *flex_array_get(struct flex_array *fa, int element_nr) 254{ 255 int part_nr = fa_element_to_part_nr(fa, element_nr); 256 struct flex_array_part *part; 257 258 if (element_nr >= fa->total_nr_elements) 259 return NULL; 260 if (!fa->parts[part_nr]) 261 return NULL; 262 if (elements_fit_in_base(fa)) 263 part = (struct flex_array_part *)&fa->parts[0]; 264 else 265 part = fa->parts[part_nr]; 266 return &part->elements[index_inside_part(fa, element_nr)]; 267}