at v2.6.31-rc2 824 lines 19 kB view raw
1/* 2 * Driver for the Macintosh 68K onboard MACE controller with PSC 3 * driven DMA. The MACE driver code is derived from mace.c. The 4 * Mac68k theory of operation is courtesy of the MacBSD wizards. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * Copyright (C) 1996 Paul Mackerras. 12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> 13 * 14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver 15 * 16 * Copyright (C) 2007 Finn Thain 17 * 18 * Converted to DMA API, converted to unified driver model, 19 * sync'd some routines with mace.c and fixed various bugs. 20 */ 21 22 23#include <linux/kernel.h> 24#include <linux/module.h> 25#include <linux/netdevice.h> 26#include <linux/etherdevice.h> 27#include <linux/delay.h> 28#include <linux/string.h> 29#include <linux/crc32.h> 30#include <linux/bitrev.h> 31#include <linux/dma-mapping.h> 32#include <linux/platform_device.h> 33#include <asm/io.h> 34#include <asm/irq.h> 35#include <asm/macintosh.h> 36#include <asm/macints.h> 37#include <asm/mac_psc.h> 38#include <asm/page.h> 39#include "mace.h" 40 41static char mac_mace_string[] = "macmace"; 42static struct platform_device *mac_mace_device; 43 44#define N_TX_BUFF_ORDER 0 45#define N_TX_RING (1 << N_TX_BUFF_ORDER) 46#define N_RX_BUFF_ORDER 3 47#define N_RX_RING (1 << N_RX_BUFF_ORDER) 48 49#define TX_TIMEOUT HZ 50 51#define MACE_BUFF_SIZE 0x800 52 53/* Chip rev needs workaround on HW & multicast addr change */ 54#define BROKEN_ADDRCHG_REV 0x0941 55 56/* The MACE is simply wired down on a Mac68K box */ 57 58#define MACE_BASE (void *)(0x50F1C000) 59#define MACE_PROM (void *)(0x50F08001) 60 61struct mace_data { 62 volatile struct mace *mace; 63 unsigned char *tx_ring; 64 dma_addr_t tx_ring_phys; 65 unsigned char *rx_ring; 66 dma_addr_t rx_ring_phys; 67 int dma_intr; 68 int rx_slot, rx_tail; 69 int tx_slot, tx_sloti, tx_count; 70 int chipid; 71 struct device *device; 72}; 73 74struct mace_frame { 75 u8 rcvcnt; 76 u8 pad1; 77 u8 rcvsts; 78 u8 pad2; 79 u8 rntpc; 80 u8 pad3; 81 u8 rcvcc; 82 u8 pad4; 83 u32 pad5; 84 u32 pad6; 85 u8 data[1]; 86 /* And frame continues.. */ 87}; 88 89#define PRIV_BYTES sizeof(struct mace_data) 90 91static int mace_open(struct net_device *dev); 92static int mace_close(struct net_device *dev); 93static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); 94static void mace_set_multicast(struct net_device *dev); 95static int mace_set_address(struct net_device *dev, void *addr); 96static void mace_reset(struct net_device *dev); 97static irqreturn_t mace_interrupt(int irq, void *dev_id); 98static irqreturn_t mace_dma_intr(int irq, void *dev_id); 99static void mace_tx_timeout(struct net_device *dev); 100static void __mace_set_address(struct net_device *dev, void *addr); 101 102/* 103 * Load a receive DMA channel with a base address and ring length 104 */ 105 106static void mace_load_rxdma_base(struct net_device *dev, int set) 107{ 108 struct mace_data *mp = netdev_priv(dev); 109 110 psc_write_word(PSC_ENETRD_CMD + set, 0x0100); 111 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); 112 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); 113 psc_write_word(PSC_ENETRD_CMD + set, 0x9800); 114 mp->rx_tail = 0; 115} 116 117/* 118 * Reset the receive DMA subsystem 119 */ 120 121static void mace_rxdma_reset(struct net_device *dev) 122{ 123 struct mace_data *mp = netdev_priv(dev); 124 volatile struct mace *mace = mp->mace; 125 u8 maccc = mace->maccc; 126 127 mace->maccc = maccc & ~ENRCV; 128 129 psc_write_word(PSC_ENETRD_CTL, 0x8800); 130 mace_load_rxdma_base(dev, 0x00); 131 psc_write_word(PSC_ENETRD_CTL, 0x0400); 132 133 psc_write_word(PSC_ENETRD_CTL, 0x8800); 134 mace_load_rxdma_base(dev, 0x10); 135 psc_write_word(PSC_ENETRD_CTL, 0x0400); 136 137 mace->maccc = maccc; 138 mp->rx_slot = 0; 139 140 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); 141 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); 142} 143 144/* 145 * Reset the transmit DMA subsystem 146 */ 147 148static void mace_txdma_reset(struct net_device *dev) 149{ 150 struct mace_data *mp = netdev_priv(dev); 151 volatile struct mace *mace = mp->mace; 152 u8 maccc; 153 154 psc_write_word(PSC_ENETWR_CTL, 0x8800); 155 156 maccc = mace->maccc; 157 mace->maccc = maccc & ~ENXMT; 158 159 mp->tx_slot = mp->tx_sloti = 0; 160 mp->tx_count = N_TX_RING; 161 162 psc_write_word(PSC_ENETWR_CTL, 0x0400); 163 mace->maccc = maccc; 164} 165 166/* 167 * Disable DMA 168 */ 169 170static void mace_dma_off(struct net_device *dev) 171{ 172 psc_write_word(PSC_ENETRD_CTL, 0x8800); 173 psc_write_word(PSC_ENETRD_CTL, 0x1000); 174 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); 175 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); 176 177 psc_write_word(PSC_ENETWR_CTL, 0x8800); 178 psc_write_word(PSC_ENETWR_CTL, 0x1000); 179 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); 180 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); 181} 182 183static const struct net_device_ops mace_netdev_ops = { 184 .ndo_open = mace_open, 185 .ndo_stop = mace_close, 186 .ndo_start_xmit = mace_xmit_start, 187 .ndo_tx_timeout = mace_tx_timeout, 188 .ndo_set_multicast_list = mace_set_multicast, 189 .ndo_set_mac_address = mace_set_address, 190 .ndo_change_mtu = eth_change_mtu, 191 .ndo_validate_addr = eth_validate_addr, 192}; 193 194/* 195 * Not really much of a probe. The hardware table tells us if this 196 * model of Macintrash has a MACE (AV macintoshes) 197 */ 198 199static int __devinit mace_probe(struct platform_device *pdev) 200{ 201 int j; 202 struct mace_data *mp; 203 unsigned char *addr; 204 struct net_device *dev; 205 unsigned char checksum = 0; 206 static int found = 0; 207 int err; 208 209 if (found || macintosh_config->ether_type != MAC_ETHER_MACE) 210 return -ENODEV; 211 212 found = 1; /* prevent 'finding' one on every device probe */ 213 214 dev = alloc_etherdev(PRIV_BYTES); 215 if (!dev) 216 return -ENOMEM; 217 218 mp = netdev_priv(dev); 219 220 mp->device = &pdev->dev; 221 SET_NETDEV_DEV(dev, &pdev->dev); 222 223 dev->base_addr = (u32)MACE_BASE; 224 mp->mace = (volatile struct mace *) MACE_BASE; 225 226 dev->irq = IRQ_MAC_MACE; 227 mp->dma_intr = IRQ_MAC_MACE_DMA; 228 229 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo; 230 231 /* 232 * The PROM contains 8 bytes which total 0xFF when XOR'd 233 * together. Due to the usual peculiar apple brain damage 234 * the bytes are spaced out in a strange boundary and the 235 * bits are reversed. 236 */ 237 238 addr = (void *)MACE_PROM; 239 240 for (j = 0; j < 6; ++j) { 241 u8 v = bitrev8(addr[j<<4]); 242 checksum ^= v; 243 dev->dev_addr[j] = v; 244 } 245 for (; j < 8; ++j) { 246 checksum ^= bitrev8(addr[j<<4]); 247 } 248 249 if (checksum != 0xFF) { 250 free_netdev(dev); 251 return -ENODEV; 252 } 253 254 dev->netdev_ops = &mace_netdev_ops; 255 dev->watchdog_timeo = TX_TIMEOUT; 256 257 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n", 258 dev->name, dev->dev_addr); 259 260 err = register_netdev(dev); 261 if (!err) 262 return 0; 263 264 free_netdev(dev); 265 return err; 266} 267 268/* 269 * Reset the chip. 270 */ 271 272static void mace_reset(struct net_device *dev) 273{ 274 struct mace_data *mp = netdev_priv(dev); 275 volatile struct mace *mb = mp->mace; 276 int i; 277 278 /* soft-reset the chip */ 279 i = 200; 280 while (--i) { 281 mb->biucc = SWRST; 282 if (mb->biucc & SWRST) { 283 udelay(10); 284 continue; 285 } 286 break; 287 } 288 if (!i) { 289 printk(KERN_ERR "macmace: cannot reset chip!\n"); 290 return; 291 } 292 293 mb->maccc = 0; /* turn off tx, rx */ 294 mb->imr = 0xFF; /* disable all intrs for now */ 295 i = mb->ir; 296 297 mb->biucc = XMTSP_64; 298 mb->utr = RTRD; 299 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU; 300 301 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ 302 mb->rcvfc = 0; 303 304 /* load up the hardware address */ 305 __mace_set_address(dev, dev->dev_addr); 306 307 /* clear the multicast filter */ 308 if (mp->chipid == BROKEN_ADDRCHG_REV) 309 mb->iac = LOGADDR; 310 else { 311 mb->iac = ADDRCHG | LOGADDR; 312 while ((mb->iac & ADDRCHG) != 0) 313 ; 314 } 315 for (i = 0; i < 8; ++i) 316 mb->ladrf = 0; 317 318 /* done changing address */ 319 if (mp->chipid != BROKEN_ADDRCHG_REV) 320 mb->iac = 0; 321 322 mb->plscc = PORTSEL_AUI; 323} 324 325/* 326 * Load the address on a mace controller. 327 */ 328 329static void __mace_set_address(struct net_device *dev, void *addr) 330{ 331 struct mace_data *mp = netdev_priv(dev); 332 volatile struct mace *mb = mp->mace; 333 unsigned char *p = addr; 334 int i; 335 336 /* load up the hardware address */ 337 if (mp->chipid == BROKEN_ADDRCHG_REV) 338 mb->iac = PHYADDR; 339 else { 340 mb->iac = ADDRCHG | PHYADDR; 341 while ((mb->iac & ADDRCHG) != 0) 342 ; 343 } 344 for (i = 0; i < 6; ++i) 345 mb->padr = dev->dev_addr[i] = p[i]; 346 if (mp->chipid != BROKEN_ADDRCHG_REV) 347 mb->iac = 0; 348} 349 350static int mace_set_address(struct net_device *dev, void *addr) 351{ 352 struct mace_data *mp = netdev_priv(dev); 353 volatile struct mace *mb = mp->mace; 354 unsigned long flags; 355 u8 maccc; 356 357 local_irq_save(flags); 358 359 maccc = mb->maccc; 360 361 __mace_set_address(dev, addr); 362 363 mb->maccc = maccc; 364 365 local_irq_restore(flags); 366 367 return 0; 368} 369 370/* 371 * Open the Macintosh MACE. Most of this is playing with the DMA 372 * engine. The ethernet chip is quite friendly. 373 */ 374 375static int mace_open(struct net_device *dev) 376{ 377 struct mace_data *mp = netdev_priv(dev); 378 volatile struct mace *mb = mp->mace; 379 380 /* reset the chip */ 381 mace_reset(dev); 382 383 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { 384 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); 385 return -EAGAIN; 386 } 387 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { 388 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); 389 free_irq(dev->irq, dev); 390 return -EAGAIN; 391 } 392 393 /* Allocate the DMA ring buffers */ 394 395 mp->tx_ring = dma_alloc_coherent(mp->device, 396 N_TX_RING * MACE_BUFF_SIZE, 397 &mp->tx_ring_phys, GFP_KERNEL); 398 if (mp->tx_ring == NULL) { 399 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name); 400 goto out1; 401 } 402 403 mp->rx_ring = dma_alloc_coherent(mp->device, 404 N_RX_RING * MACE_BUFF_SIZE, 405 &mp->rx_ring_phys, GFP_KERNEL); 406 if (mp->rx_ring == NULL) { 407 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name); 408 goto out2; 409 } 410 411 mace_dma_off(dev); 412 413 /* Not sure what these do */ 414 415 psc_write_word(PSC_ENETWR_CTL, 0x9000); 416 psc_write_word(PSC_ENETRD_CTL, 0x9000); 417 psc_write_word(PSC_ENETWR_CTL, 0x0400); 418 psc_write_word(PSC_ENETRD_CTL, 0x0400); 419 420 mace_rxdma_reset(dev); 421 mace_txdma_reset(dev); 422 423 /* turn it on! */ 424 mb->maccc = ENXMT | ENRCV; 425 /* enable all interrupts except receive interrupts */ 426 mb->imr = RCVINT; 427 return 0; 428 429out2: 430 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, 431 mp->tx_ring, mp->tx_ring_phys); 432out1: 433 free_irq(dev->irq, dev); 434 free_irq(mp->dma_intr, dev); 435 return -ENOMEM; 436} 437 438/* 439 * Shut down the mace and its interrupt channel 440 */ 441 442static int mace_close(struct net_device *dev) 443{ 444 struct mace_data *mp = netdev_priv(dev); 445 volatile struct mace *mb = mp->mace; 446 447 mb->maccc = 0; /* disable rx and tx */ 448 mb->imr = 0xFF; /* disable all irqs */ 449 mace_dma_off(dev); /* disable rx and tx dma */ 450 451 return 0; 452} 453 454/* 455 * Transmit a frame 456 */ 457 458static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) 459{ 460 struct mace_data *mp = netdev_priv(dev); 461 unsigned long flags; 462 463 /* Stop the queue since there's only the one buffer */ 464 465 local_irq_save(flags); 466 netif_stop_queue(dev); 467 if (!mp->tx_count) { 468 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n"); 469 local_irq_restore(flags); 470 return NETDEV_TX_BUSY; 471 } 472 mp->tx_count--; 473 local_irq_restore(flags); 474 475 dev->stats.tx_packets++; 476 dev->stats.tx_bytes += skb->len; 477 478 /* We need to copy into our xmit buffer to take care of alignment and caching issues */ 479 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len); 480 481 /* load the Tx DMA and fire it off */ 482 483 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys); 484 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); 485 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); 486 487 mp->tx_slot ^= 0x10; 488 489 dev_kfree_skb(skb); 490 491 dev->trans_start = jiffies; 492 return NETDEV_TX_OK; 493} 494 495static void mace_set_multicast(struct net_device *dev) 496{ 497 struct mace_data *mp = netdev_priv(dev); 498 volatile struct mace *mb = mp->mace; 499 int i, j; 500 u32 crc; 501 u8 maccc; 502 unsigned long flags; 503 504 local_irq_save(flags); 505 maccc = mb->maccc; 506 mb->maccc &= ~PROM; 507 508 if (dev->flags & IFF_PROMISC) { 509 mb->maccc |= PROM; 510 } else { 511 unsigned char multicast_filter[8]; 512 struct dev_mc_list *dmi = dev->mc_list; 513 514 if (dev->flags & IFF_ALLMULTI) { 515 for (i = 0; i < 8; i++) { 516 multicast_filter[i] = 0xFF; 517 } 518 } else { 519 for (i = 0; i < 8; i++) 520 multicast_filter[i] = 0; 521 for (i = 0; i < dev->mc_count; i++) { 522 crc = ether_crc_le(6, dmi->dmi_addr); 523 j = crc >> 26; /* bit number in multicast_filter */ 524 multicast_filter[j >> 3] |= 1 << (j & 7); 525 dmi = dmi->next; 526 } 527 } 528 529 if (mp->chipid == BROKEN_ADDRCHG_REV) 530 mb->iac = LOGADDR; 531 else { 532 mb->iac = ADDRCHG | LOGADDR; 533 while ((mb->iac & ADDRCHG) != 0) 534 ; 535 } 536 for (i = 0; i < 8; ++i) 537 mb->ladrf = multicast_filter[i]; 538 if (mp->chipid != BROKEN_ADDRCHG_REV) 539 mb->iac = 0; 540 } 541 542 mb->maccc = maccc; 543 local_irq_restore(flags); 544} 545 546static void mace_handle_misc_intrs(struct net_device *dev, int intr) 547{ 548 struct mace_data *mp = netdev_priv(dev); 549 volatile struct mace *mb = mp->mace; 550 static int mace_babbles, mace_jabbers; 551 552 if (intr & MPCO) 553 dev->stats.rx_missed_errors += 256; 554 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */ 555 if (intr & RNTPCO) 556 dev->stats.rx_length_errors += 256; 557 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */ 558 if (intr & CERR) 559 ++dev->stats.tx_heartbeat_errors; 560 if (intr & BABBLE) 561 if (mace_babbles++ < 4) 562 printk(KERN_DEBUG "macmace: babbling transmitter\n"); 563 if (intr & JABBER) 564 if (mace_jabbers++ < 4) 565 printk(KERN_DEBUG "macmace: jabbering transceiver\n"); 566} 567 568static irqreturn_t mace_interrupt(int irq, void *dev_id) 569{ 570 struct net_device *dev = (struct net_device *) dev_id; 571 struct mace_data *mp = netdev_priv(dev); 572 volatile struct mace *mb = mp->mace; 573 int intr, fs; 574 unsigned long flags; 575 576 /* don't want the dma interrupt handler to fire */ 577 local_irq_save(flags); 578 579 intr = mb->ir; /* read interrupt register */ 580 mace_handle_misc_intrs(dev, intr); 581 582 if (intr & XMTINT) { 583 fs = mb->xmtfs; 584 if ((fs & XMTSV) == 0) { 585 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs); 586 mace_reset(dev); 587 /* 588 * XXX mace likes to hang the machine after a xmtfs error. 589 * This is hard to reproduce, reseting *may* help 590 */ 591 } 592 /* dma should have finished */ 593 if (!mp->tx_count) { 594 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs); 595 } 596 /* Update stats */ 597 if (fs & (UFLO|LCOL|LCAR|RTRY)) { 598 ++dev->stats.tx_errors; 599 if (fs & LCAR) 600 ++dev->stats.tx_carrier_errors; 601 else if (fs & (UFLO|LCOL|RTRY)) { 602 ++dev->stats.tx_aborted_errors; 603 if (mb->xmtfs & UFLO) { 604 printk(KERN_ERR "%s: DMA underrun.\n", dev->name); 605 dev->stats.tx_fifo_errors++; 606 mace_txdma_reset(dev); 607 } 608 } 609 } 610 } 611 612 if (mp->tx_count) 613 netif_wake_queue(dev); 614 615 local_irq_restore(flags); 616 617 return IRQ_HANDLED; 618} 619 620static void mace_tx_timeout(struct net_device *dev) 621{ 622 struct mace_data *mp = netdev_priv(dev); 623 volatile struct mace *mb = mp->mace; 624 unsigned long flags; 625 626 local_irq_save(flags); 627 628 /* turn off both tx and rx and reset the chip */ 629 mb->maccc = 0; 630 printk(KERN_ERR "macmace: transmit timeout - resetting\n"); 631 mace_txdma_reset(dev); 632 mace_reset(dev); 633 634 /* restart rx dma */ 635 mace_rxdma_reset(dev); 636 637 mp->tx_count = N_TX_RING; 638 netif_wake_queue(dev); 639 640 /* turn it on! */ 641 mb->maccc = ENXMT | ENRCV; 642 /* enable all interrupts except receive interrupts */ 643 mb->imr = RCVINT; 644 645 local_irq_restore(flags); 646} 647 648/* 649 * Handle a newly arrived frame 650 */ 651 652static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) 653{ 654 struct sk_buff *skb; 655 unsigned int frame_status = mf->rcvsts; 656 657 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) { 658 dev->stats.rx_errors++; 659 if (frame_status & RS_OFLO) { 660 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name); 661 dev->stats.rx_fifo_errors++; 662 } 663 if (frame_status & RS_CLSN) 664 dev->stats.collisions++; 665 if (frame_status & RS_FRAMERR) 666 dev->stats.rx_frame_errors++; 667 if (frame_status & RS_FCSERR) 668 dev->stats.rx_crc_errors++; 669 } else { 670 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 ); 671 672 skb = dev_alloc_skb(frame_length + 2); 673 if (!skb) { 674 dev->stats.rx_dropped++; 675 return; 676 } 677 skb_reserve(skb, 2); 678 memcpy(skb_put(skb, frame_length), mf->data, frame_length); 679 680 skb->protocol = eth_type_trans(skb, dev); 681 netif_rx(skb); 682 dev->stats.rx_packets++; 683 dev->stats.rx_bytes += frame_length; 684 } 685} 686 687/* 688 * The PSC has passed us a DMA interrupt event. 689 */ 690 691static irqreturn_t mace_dma_intr(int irq, void *dev_id) 692{ 693 struct net_device *dev = (struct net_device *) dev_id; 694 struct mace_data *mp = netdev_priv(dev); 695 int left, head; 696 u16 status; 697 u32 baka; 698 699 /* Not sure what this does */ 700 701 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); 702 if (!(baka & 0x60000000)) return IRQ_NONE; 703 704 /* 705 * Process the read queue 706 */ 707 708 status = psc_read_word(PSC_ENETRD_CTL); 709 710 if (status & 0x2000) { 711 mace_rxdma_reset(dev); 712 } else if (status & 0x0100) { 713 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); 714 715 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); 716 head = N_RX_RING - left; 717 718 /* Loop through the ring buffer and process new packages */ 719 720 while (mp->rx_tail < head) { 721 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring 722 + (mp->rx_tail * MACE_BUFF_SIZE))); 723 mp->rx_tail++; 724 } 725 726 /* If we're out of buffers in this ring then switch to */ 727 /* the other set, otherwise just reactivate this one. */ 728 729 if (!left) { 730 mace_load_rxdma_base(dev, mp->rx_slot); 731 mp->rx_slot ^= 0x10; 732 } else { 733 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); 734 } 735 } 736 737 /* 738 * Process the write queue 739 */ 740 741 status = psc_read_word(PSC_ENETWR_CTL); 742 743 if (status & 0x2000) { 744 mace_txdma_reset(dev); 745 } else if (status & 0x0100) { 746 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); 747 mp->tx_sloti ^= 0x10; 748 mp->tx_count++; 749 } 750 return IRQ_HANDLED; 751} 752 753MODULE_LICENSE("GPL"); 754MODULE_DESCRIPTION("Macintosh MACE ethernet driver"); 755 756static int __devexit mac_mace_device_remove (struct platform_device *pdev) 757{ 758 struct net_device *dev = platform_get_drvdata(pdev); 759 struct mace_data *mp = netdev_priv(dev); 760 761 unregister_netdev(dev); 762 763 free_irq(dev->irq, dev); 764 free_irq(IRQ_MAC_MACE_DMA, dev); 765 766 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE, 767 mp->rx_ring, mp->rx_ring_phys); 768 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, 769 mp->tx_ring, mp->tx_ring_phys); 770 771 free_netdev(dev); 772 773 return 0; 774} 775 776static struct platform_driver mac_mace_driver = { 777 .probe = mace_probe, 778 .remove = __devexit_p(mac_mace_device_remove), 779 .driver = { 780 .name = mac_mace_string, 781 }, 782}; 783 784static int __init mac_mace_init_module(void) 785{ 786 int err; 787 788 if (!MACH_IS_MAC) 789 return -ENODEV; 790 791 if ((err = platform_driver_register(&mac_mace_driver))) { 792 printk(KERN_ERR "Driver registration failed\n"); 793 return err; 794 } 795 796 mac_mace_device = platform_device_alloc(mac_mace_string, 0); 797 if (!mac_mace_device) 798 goto out_unregister; 799 800 if (platform_device_add(mac_mace_device)) { 801 platform_device_put(mac_mace_device); 802 mac_mace_device = NULL; 803 } 804 805 return 0; 806 807out_unregister: 808 platform_driver_unregister(&mac_mace_driver); 809 810 return -ENOMEM; 811} 812 813static void __exit mac_mace_cleanup_module(void) 814{ 815 platform_driver_unregister(&mac_mace_driver); 816 817 if (mac_mace_device) { 818 platform_device_unregister(mac_mace_device); 819 mac_mace_device = NULL; 820 } 821} 822 823module_init(mac_mace_init_module); 824module_exit(mac_mace_cleanup_module);