at v2.6.31-rc2 2339 lines 62 kB view raw
1/* 2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter 3 * 4 * Copyright (C) 2003, 2007 IC Plus Corp 5 * 6 * Original Author: 7 * 8 * Craig Rich 9 * Sundance Technology, Inc. 10 * www.sundanceti.com 11 * craig_rich@sundanceti.com 12 * 13 * Current Maintainer: 14 * 15 * Sorbica Shieh. 16 * http://www.icplus.com.tw 17 * sorbica@icplus.com.tw 18 * 19 * Jesse Huang 20 * http://www.icplus.com.tw 21 * jesse@icplus.com.tw 22 */ 23#include <linux/crc32.h> 24#include <linux/ethtool.h> 25#include <linux/mii.h> 26#include <linux/mutex.h> 27 28#include <asm/div64.h> 29 30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) 31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) 32#define IPG_RESET_MASK \ 33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ 34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ 35 IPG_AC_AUTO_INIT) 36 37#define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) 38#define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) 39#define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) 40 41#define ipg_r32(reg) ioread32(ioaddr + (reg)) 42#define ipg_r16(reg) ioread16(ioaddr + (reg)) 43#define ipg_r8(reg) ioread8(ioaddr + (reg)) 44 45enum { 46 netdev_io_size = 128 47}; 48 49#include "ipg.h" 50#define DRV_NAME "ipg" 51 52MODULE_AUTHOR("IC Plus Corp. 2003"); 53MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); 54MODULE_LICENSE("GPL"); 55 56/* 57 * Defaults 58 */ 59#define IPG_MAX_RXFRAME_SIZE 0x0600 60#define IPG_RXFRAG_SIZE 0x0600 61#define IPG_RXSUPPORT_SIZE 0x0600 62#define IPG_IS_JUMBO false 63 64/* 65 * Variable record -- index by leading revision/length 66 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN 67 */ 68static unsigned short DefaultPhyParam[] = { 69 /* 11/12/03 IP1000A v1-3 rev=0x40 */ 70 /*-------------------------------------------------------------------------- 71 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 72 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 73 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, 74 --------------------------------------------------------------------------*/ 75 /* 12/17/03 IP1000A v1-4 rev=0x40 */ 76 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 77 0x0000, 78 30, 0x005e, 9, 0x0700, 79 /* 01/09/04 IP1000A v1-5 rev=0x41 */ 80 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 81 0x0000, 82 30, 0x005e, 9, 0x0700, 83 0x0000 84}; 85 86static const char *ipg_brand_name[] = { 87 "IC PLUS IP1000 1000/100/10 based NIC", 88 "Sundance Technology ST2021 based NIC", 89 "Tamarack Microelectronics TC9020/9021 based NIC", 90 "Tamarack Microelectronics TC9020/9021 based NIC", 91 "D-Link NIC", 92 "D-Link NIC IP1000A" 93}; 94 95static struct pci_device_id ipg_pci_tbl[] __devinitdata = { 96 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, 97 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, 98 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, 99 { PCI_VDEVICE(DLINK, 0x9021), 3 }, 100 { PCI_VDEVICE(DLINK, 0x4000), 4 }, 101 { PCI_VDEVICE(DLINK, 0x4020), 5 }, 102 { 0, } 103}; 104 105MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); 106 107static inline void __iomem *ipg_ioaddr(struct net_device *dev) 108{ 109 struct ipg_nic_private *sp = netdev_priv(dev); 110 return sp->ioaddr; 111} 112 113#ifdef IPG_DEBUG 114static void ipg_dump_rfdlist(struct net_device *dev) 115{ 116 struct ipg_nic_private *sp = netdev_priv(dev); 117 void __iomem *ioaddr = sp->ioaddr; 118 unsigned int i; 119 u32 offset; 120 121 IPG_DEBUG_MSG("_dump_rfdlist\n"); 122 123 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); 124 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); 125 printk(KERN_INFO "RFDList start address = %16.16lx\n", 126 (unsigned long) sp->rxd_map); 127 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", 128 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); 129 130 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 131 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; 132 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, 133 offset, (unsigned long) sp->rxd[i].next_desc); 134 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; 135 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, 136 offset, (unsigned long) sp->rxd[i].rfs); 137 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; 138 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 139 offset, (unsigned long) sp->rxd[i].frag_info); 140 } 141} 142 143static void ipg_dump_tfdlist(struct net_device *dev) 144{ 145 struct ipg_nic_private *sp = netdev_priv(dev); 146 void __iomem *ioaddr = sp->ioaddr; 147 unsigned int i; 148 u32 offset; 149 150 IPG_DEBUG_MSG("_dump_tfdlist\n"); 151 152 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); 153 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); 154 printk(KERN_INFO "TFDList start address = %16.16lx\n", 155 (unsigned long) sp->txd_map); 156 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", 157 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); 158 159 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 160 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; 161 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, 162 offset, (unsigned long) sp->txd[i].next_desc); 163 164 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; 165 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, 166 offset, (unsigned long) sp->txd[i].tfc); 167 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; 168 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 169 offset, (unsigned long) sp->txd[i].frag_info); 170 } 171} 172#endif 173 174static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) 175{ 176 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); 177 ndelay(IPG_PC_PHYCTRLWAIT_NS); 178} 179 180static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) 181{ 182 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); 183 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); 184} 185 186static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) 187{ 188 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; 189 190 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); 191} 192 193static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) 194{ 195 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | 196 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); 197} 198 199static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) 200{ 201 u16 bit_data; 202 203 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); 204 205 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; 206 207 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); 208 209 return bit_data; 210} 211 212/* 213 * Read a register from the Physical Layer device located 214 * on the IPG NIC, using the IPG PHYCTRL register. 215 */ 216static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) 217{ 218 void __iomem *ioaddr = ipg_ioaddr(dev); 219 /* 220 * The GMII mangement frame structure for a read is as follows: 221 * 222 * |Preamble|st|op|phyad|regad|ta| data |idle| 223 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 224 * 225 * <32 1s> = 32 consecutive logic 1 values 226 * A = bit of Physical Layer device address (MSB first) 227 * R = bit of register address (MSB first) 228 * z = High impedance state 229 * D = bit of read data (MSB first) 230 * 231 * Transmission order is 'Preamble' field first, bits transmitted 232 * left to right (first to last). 233 */ 234 struct { 235 u32 field; 236 unsigned int len; 237 } p[] = { 238 { GMII_PREAMBLE, 32 }, /* Preamble */ 239 { GMII_ST, 2 }, /* ST */ 240 { GMII_READ, 2 }, /* OP */ 241 { phy_id, 5 }, /* PHYAD */ 242 { phy_reg, 5 }, /* REGAD */ 243 { 0x0000, 2 }, /* TA */ 244 { 0x0000, 16 }, /* DATA */ 245 { 0x0000, 1 } /* IDLE */ 246 }; 247 unsigned int i, j; 248 u8 polarity, data; 249 250 polarity = ipg_r8(PHY_CTRL); 251 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 252 253 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 254 for (j = 0; j < 5; j++) { 255 for (i = 0; i < p[j].len; i++) { 256 /* For each variable length field, the MSB must be 257 * transmitted first. Rotate through the field bits, 258 * starting with the MSB, and move each bit into the 259 * the 1st (2^1) bit position (this is the bit position 260 * corresponding to the MgmtData bit of the PhyCtrl 261 * register for the IPG). 262 * 263 * Example: ST = 01; 264 * 265 * First write a '0' to bit 1 of the PhyCtrl 266 * register, then write a '1' to bit 1 of the 267 * PhyCtrl register. 268 * 269 * To do this, right shift the MSB of ST by the value: 270 * [field length - 1 - #ST bits already written] 271 * then left shift this result by 1. 272 */ 273 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 274 data &= IPG_PC_MGMTDATA; 275 data |= polarity | IPG_PC_MGMTDIR; 276 277 ipg_drive_phy_ctl_low_high(ioaddr, data); 278 } 279 } 280 281 send_three_state(ioaddr, polarity); 282 283 read_phy_bit(ioaddr, polarity); 284 285 /* 286 * For a read cycle, the bits for the next two fields (TA and 287 * DATA) are driven by the PHY (the IPG reads these bits). 288 */ 289 for (i = 0; i < p[6].len; i++) { 290 p[6].field |= 291 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); 292 } 293 294 send_three_state(ioaddr, polarity); 295 send_three_state(ioaddr, polarity); 296 send_three_state(ioaddr, polarity); 297 send_end(ioaddr, polarity); 298 299 /* Return the value of the DATA field. */ 300 return p[6].field; 301} 302 303/* 304 * Write to a register from the Physical Layer device located 305 * on the IPG NIC, using the IPG PHYCTRL register. 306 */ 307static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) 308{ 309 void __iomem *ioaddr = ipg_ioaddr(dev); 310 /* 311 * The GMII mangement frame structure for a read is as follows: 312 * 313 * |Preamble|st|op|phyad|regad|ta| data |idle| 314 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 315 * 316 * <32 1s> = 32 consecutive logic 1 values 317 * A = bit of Physical Layer device address (MSB first) 318 * R = bit of register address (MSB first) 319 * z = High impedance state 320 * D = bit of write data (MSB first) 321 * 322 * Transmission order is 'Preamble' field first, bits transmitted 323 * left to right (first to last). 324 */ 325 struct { 326 u32 field; 327 unsigned int len; 328 } p[] = { 329 { GMII_PREAMBLE, 32 }, /* Preamble */ 330 { GMII_ST, 2 }, /* ST */ 331 { GMII_WRITE, 2 }, /* OP */ 332 { phy_id, 5 }, /* PHYAD */ 333 { phy_reg, 5 }, /* REGAD */ 334 { 0x0002, 2 }, /* TA */ 335 { val & 0xffff, 16 }, /* DATA */ 336 { 0x0000, 1 } /* IDLE */ 337 }; 338 unsigned int i, j; 339 u8 polarity, data; 340 341 polarity = ipg_r8(PHY_CTRL); 342 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 343 344 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 345 for (j = 0; j < 7; j++) { 346 for (i = 0; i < p[j].len; i++) { 347 /* For each variable length field, the MSB must be 348 * transmitted first. Rotate through the field bits, 349 * starting with the MSB, and move each bit into the 350 * the 1st (2^1) bit position (this is the bit position 351 * corresponding to the MgmtData bit of the PhyCtrl 352 * register for the IPG). 353 * 354 * Example: ST = 01; 355 * 356 * First write a '0' to bit 1 of the PhyCtrl 357 * register, then write a '1' to bit 1 of the 358 * PhyCtrl register. 359 * 360 * To do this, right shift the MSB of ST by the value: 361 * [field length - 1 - #ST bits already written] 362 * then left shift this result by 1. 363 */ 364 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 365 data &= IPG_PC_MGMTDATA; 366 data |= polarity | IPG_PC_MGMTDIR; 367 368 ipg_drive_phy_ctl_low_high(ioaddr, data); 369 } 370 } 371 372 /* The last cycle is a tri-state, so read from the PHY. */ 373 for (j = 7; j < 8; j++) { 374 for (i = 0; i < p[j].len; i++) { 375 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); 376 377 p[j].field |= ((ipg_r8(PHY_CTRL) & 378 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); 379 380 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); 381 } 382 } 383} 384 385static void ipg_set_led_mode(struct net_device *dev) 386{ 387 struct ipg_nic_private *sp = netdev_priv(dev); 388 void __iomem *ioaddr = sp->ioaddr; 389 u32 mode; 390 391 mode = ipg_r32(ASIC_CTRL); 392 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 393 394 if ((sp->led_mode & 0x03) > 1) 395 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ 396 397 if ((sp->led_mode & 0x01) == 1) 398 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ 399 400 if ((sp->led_mode & 0x08) == 8) 401 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ 402 403 ipg_w32(mode, ASIC_CTRL); 404} 405 406static void ipg_set_phy_set(struct net_device *dev) 407{ 408 struct ipg_nic_private *sp = netdev_priv(dev); 409 void __iomem *ioaddr = sp->ioaddr; 410 int physet; 411 412 physet = ipg_r8(PHY_SET); 413 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); 414 physet |= ((sp->led_mode & 0x70) >> 4); 415 ipg_w8(physet, PHY_SET); 416} 417 418static int ipg_reset(struct net_device *dev, u32 resetflags) 419{ 420 /* Assert functional resets via the IPG AsicCtrl 421 * register as specified by the 'resetflags' input 422 * parameter. 423 */ 424 void __iomem *ioaddr = ipg_ioaddr(dev); 425 unsigned int timeout_count = 0; 426 427 IPG_DEBUG_MSG("_reset\n"); 428 429 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); 430 431 /* Delay added to account for problem with 10Mbps reset. */ 432 mdelay(IPG_AC_RESETWAIT); 433 434 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { 435 mdelay(IPG_AC_RESETWAIT); 436 if (++timeout_count > IPG_AC_RESET_TIMEOUT) 437 return -ETIME; 438 } 439 /* Set LED Mode in Asic Control */ 440 ipg_set_led_mode(dev); 441 442 /* Set PHYSet Register Value */ 443 ipg_set_phy_set(dev); 444 return 0; 445} 446 447/* Find the GMII PHY address. */ 448static int ipg_find_phyaddr(struct net_device *dev) 449{ 450 unsigned int phyaddr, i; 451 452 for (i = 0; i < 32; i++) { 453 u32 status; 454 455 /* Search for the correct PHY address among 32 possible. */ 456 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; 457 458 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to 459 GMII_PHY_ID1 460 */ 461 462 status = mdio_read(dev, phyaddr, MII_BMSR); 463 464 if ((status != 0xFFFF) && (status != 0)) 465 return phyaddr; 466 } 467 468 return 0x1f; 469} 470 471/* 472 * Configure IPG based on result of IEEE 802.3 PHY 473 * auto-negotiation. 474 */ 475static int ipg_config_autoneg(struct net_device *dev) 476{ 477 struct ipg_nic_private *sp = netdev_priv(dev); 478 void __iomem *ioaddr = sp->ioaddr; 479 unsigned int txflowcontrol; 480 unsigned int rxflowcontrol; 481 unsigned int fullduplex; 482 u32 mac_ctrl_val; 483 u32 asicctrl; 484 u8 phyctrl; 485 486 IPG_DEBUG_MSG("_config_autoneg\n"); 487 488 asicctrl = ipg_r32(ASIC_CTRL); 489 phyctrl = ipg_r8(PHY_CTRL); 490 mac_ctrl_val = ipg_r32(MAC_CTRL); 491 492 /* Set flags for use in resolving auto-negotation, assuming 493 * non-1000Mbps, half duplex, no flow control. 494 */ 495 fullduplex = 0; 496 txflowcontrol = 0; 497 rxflowcontrol = 0; 498 499 /* To accomodate a problem in 10Mbps operation, 500 * set a global flag if PHY running in 10Mbps mode. 501 */ 502 sp->tenmbpsmode = 0; 503 504 printk(KERN_INFO "%s: Link speed = ", dev->name); 505 506 /* Determine actual speed of operation. */ 507 switch (phyctrl & IPG_PC_LINK_SPEED) { 508 case IPG_PC_LINK_SPEED_10MBPS: 509 printk("10Mbps.\n"); 510 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", 511 dev->name); 512 sp->tenmbpsmode = 1; 513 break; 514 case IPG_PC_LINK_SPEED_100MBPS: 515 printk("100Mbps.\n"); 516 break; 517 case IPG_PC_LINK_SPEED_1000MBPS: 518 printk("1000Mbps.\n"); 519 break; 520 default: 521 printk("undefined!\n"); 522 return 0; 523 } 524 525 if (phyctrl & IPG_PC_DUPLEX_STATUS) { 526 fullduplex = 1; 527 txflowcontrol = 1; 528 rxflowcontrol = 1; 529 } 530 531 /* Configure full duplex, and flow control. */ 532 if (fullduplex == 1) { 533 /* Configure IPG for full duplex operation. */ 534 printk(KERN_INFO "%s: setting full duplex, ", dev->name); 535 536 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; 537 538 if (txflowcontrol == 1) { 539 printk("TX flow control"); 540 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; 541 } else { 542 printk("no TX flow control"); 543 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; 544 } 545 546 if (rxflowcontrol == 1) { 547 printk(", RX flow control."); 548 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; 549 } else { 550 printk(", no RX flow control."); 551 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 552 } 553 554 printk("\n"); 555 } else { 556 /* Configure IPG for half duplex operation. */ 557 printk(KERN_INFO "%s: setting half duplex, " 558 "no TX flow control, no RX flow control.\n", dev->name); 559 560 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & 561 ~IPG_MC_TX_FLOW_CONTROL_ENABLE & 562 ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 563 } 564 ipg_w32(mac_ctrl_val, MAC_CTRL); 565 return 0; 566} 567 568/* Determine and configure multicast operation and set 569 * receive mode for IPG. 570 */ 571static void ipg_nic_set_multicast_list(struct net_device *dev) 572{ 573 void __iomem *ioaddr = ipg_ioaddr(dev); 574 struct dev_mc_list *mc_list_ptr; 575 unsigned int hashindex; 576 u32 hashtable[2]; 577 u8 receivemode; 578 579 IPG_DEBUG_MSG("_nic_set_multicast_list\n"); 580 581 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; 582 583 if (dev->flags & IFF_PROMISC) { 584 /* NIC to be configured in promiscuous mode. */ 585 receivemode = IPG_RM_RECEIVEALLFRAMES; 586 } else if ((dev->flags & IFF_ALLMULTI) || 587 ((dev->flags & IFF_MULTICAST) && 588 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { 589 /* NIC to be configured to receive all multicast 590 * frames. */ 591 receivemode |= IPG_RM_RECEIVEMULTICAST; 592 } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) { 593 /* NIC to be configured to receive selected 594 * multicast addresses. */ 595 receivemode |= IPG_RM_RECEIVEMULTICASTHASH; 596 } 597 598 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. 599 * The IPG applies a cyclic-redundancy-check (the same CRC 600 * used to calculate the frame data FCS) to the destination 601 * address all incoming multicast frames whose destination 602 * address has the multicast bit set. The least significant 603 * 6 bits of the CRC result are used as an addressing index 604 * into the hash table. If the value of the bit addressed by 605 * this index is a 1, the frame is passed to the host system. 606 */ 607 608 /* Clear hashtable. */ 609 hashtable[0] = 0x00000000; 610 hashtable[1] = 0x00000000; 611 612 /* Cycle through all multicast addresses to filter. */ 613 for (mc_list_ptr = dev->mc_list; 614 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { 615 /* Calculate CRC result for each multicast address. */ 616 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, 617 ETH_ALEN); 618 619 /* Use only the least significant 6 bits. */ 620 hashindex = hashindex & 0x3F; 621 622 /* Within "hashtable", set bit number "hashindex" 623 * to a logic 1. 624 */ 625 set_bit(hashindex, (void *)hashtable); 626 } 627 628 /* Write the value of the hashtable, to the 4, 16 bit 629 * HASHTABLE IPG registers. 630 */ 631 ipg_w32(hashtable[0], HASHTABLE_0); 632 ipg_w32(hashtable[1], HASHTABLE_1); 633 634 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); 635 636 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); 637} 638 639static int ipg_io_config(struct net_device *dev) 640{ 641 struct ipg_nic_private *sp = netdev_priv(dev); 642 void __iomem *ioaddr = ipg_ioaddr(dev); 643 u32 origmacctrl; 644 u32 restoremacctrl; 645 646 IPG_DEBUG_MSG("_io_config\n"); 647 648 origmacctrl = ipg_r32(MAC_CTRL); 649 650 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; 651 652 /* Based on compilation option, determine if FCS is to be 653 * stripped on receive frames by IPG. 654 */ 655 if (!IPG_STRIP_FCS_ON_RX) 656 restoremacctrl |= IPG_MC_RCV_FCS; 657 658 /* Determine if transmitter and/or receiver are 659 * enabled so we may restore MACCTRL correctly. 660 */ 661 if (origmacctrl & IPG_MC_TX_ENABLED) 662 restoremacctrl |= IPG_MC_TX_ENABLE; 663 664 if (origmacctrl & IPG_MC_RX_ENABLED) 665 restoremacctrl |= IPG_MC_RX_ENABLE; 666 667 /* Transmitter and receiver must be disabled before setting 668 * IFSSelect. 669 */ 670 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & 671 IPG_MC_RSVD_MASK, MAC_CTRL); 672 673 /* Now that transmitter and receiver are disabled, write 674 * to IFSSelect. 675 */ 676 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); 677 678 /* Set RECEIVEMODE register. */ 679 ipg_nic_set_multicast_list(dev); 680 681 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); 682 683 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); 684 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); 685 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); 686 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); 687 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); 688 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); 689 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | 690 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | 691 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | 692 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); 693 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); 694 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); 695 696 /* IPG multi-frag frame bug workaround. 697 * Per silicon revision B3 eratta. 698 */ 699 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); 700 701 /* IPG TX poll now bug workaround. 702 * Per silicon revision B3 eratta. 703 */ 704 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); 705 706 /* IPG RX poll now bug workaround. 707 * Per silicon revision B3 eratta. 708 */ 709 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); 710 711 /* Now restore MACCTRL to original setting. */ 712 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); 713 714 /* Disable unused RMON statistics. */ 715 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); 716 717 /* Disable unused MIB statistics. */ 718 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | 719 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | 720 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | 721 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | 722 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | 723 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); 724 725 return 0; 726} 727 728/* 729 * Create a receive buffer within system memory and update 730 * NIC private structure appropriately. 731 */ 732static int ipg_get_rxbuff(struct net_device *dev, int entry) 733{ 734 struct ipg_nic_private *sp = netdev_priv(dev); 735 struct ipg_rx *rxfd = sp->rxd + entry; 736 struct sk_buff *skb; 737 u64 rxfragsize; 738 739 IPG_DEBUG_MSG("_get_rxbuff\n"); 740 741 skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN); 742 if (!skb) { 743 sp->rx_buff[entry] = NULL; 744 return -ENOMEM; 745 } 746 747 /* Adjust the data start location within the buffer to 748 * align IP address field to a 16 byte boundary. 749 */ 750 skb_reserve(skb, NET_IP_ALIGN); 751 752 /* Associate the receive buffer with the IPG NIC. */ 753 skb->dev = dev; 754 755 /* Save the address of the sk_buff structure. */ 756 sp->rx_buff[entry] = skb; 757 758 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 759 sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 760 761 /* Set the RFD fragment length. */ 762 rxfragsize = sp->rxfrag_size; 763 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); 764 765 return 0; 766} 767 768static int init_rfdlist(struct net_device *dev) 769{ 770 struct ipg_nic_private *sp = netdev_priv(dev); 771 void __iomem *ioaddr = sp->ioaddr; 772 unsigned int i; 773 774 IPG_DEBUG_MSG("_init_rfdlist\n"); 775 776 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 777 struct ipg_rx *rxfd = sp->rxd + i; 778 779 if (sp->rx_buff[i]) { 780 pci_unmap_single(sp->pdev, 781 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 782 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 783 dev_kfree_skb_irq(sp->rx_buff[i]); 784 sp->rx_buff[i] = NULL; 785 } 786 787 /* Clear out the RFS field. */ 788 rxfd->rfs = 0x0000000000000000; 789 790 if (ipg_get_rxbuff(dev, i) < 0) { 791 /* 792 * A receive buffer was not ready, break the 793 * RFD list here. 794 */ 795 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); 796 797 /* Just in case we cannot allocate a single RFD. 798 * Should not occur. 799 */ 800 if (i == 0) { 801 printk(KERN_ERR "%s: No memory available" 802 " for RFD list.\n", dev->name); 803 return -ENOMEM; 804 } 805 } 806 807 rxfd->next_desc = cpu_to_le64(sp->rxd_map + 808 sizeof(struct ipg_rx)*(i + 1)); 809 } 810 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); 811 812 sp->rx_current = 0; 813 sp->rx_dirty = 0; 814 815 /* Write the location of the RFDList to the IPG. */ 816 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); 817 ipg_w32(0x00000000, RFD_LIST_PTR_1); 818 819 return 0; 820} 821 822static void init_tfdlist(struct net_device *dev) 823{ 824 struct ipg_nic_private *sp = netdev_priv(dev); 825 void __iomem *ioaddr = sp->ioaddr; 826 unsigned int i; 827 828 IPG_DEBUG_MSG("_init_tfdlist\n"); 829 830 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 831 struct ipg_tx *txfd = sp->txd + i; 832 833 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 834 835 if (sp->tx_buff[i]) { 836 dev_kfree_skb_irq(sp->tx_buff[i]); 837 sp->tx_buff[i] = NULL; 838 } 839 840 txfd->next_desc = cpu_to_le64(sp->txd_map + 841 sizeof(struct ipg_tx)*(i + 1)); 842 } 843 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); 844 845 sp->tx_current = 0; 846 sp->tx_dirty = 0; 847 848 /* Write the location of the TFDList to the IPG. */ 849 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", 850 (u32) sp->txd_map); 851 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); 852 ipg_w32(0x00000000, TFD_LIST_PTR_1); 853 854 sp->reset_current_tfd = 1; 855} 856 857/* 858 * Free all transmit buffers which have already been transfered 859 * via DMA to the IPG. 860 */ 861static void ipg_nic_txfree(struct net_device *dev) 862{ 863 struct ipg_nic_private *sp = netdev_priv(dev); 864 unsigned int released, pending, dirty; 865 866 IPG_DEBUG_MSG("_nic_txfree\n"); 867 868 pending = sp->tx_current - sp->tx_dirty; 869 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; 870 871 for (released = 0; released < pending; released++) { 872 struct sk_buff *skb = sp->tx_buff[dirty]; 873 struct ipg_tx *txfd = sp->txd + dirty; 874 875 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); 876 877 /* Look at each TFD's TFC field beginning 878 * at the last freed TFD up to the current TFD. 879 * If the TFDDone bit is set, free the associated 880 * buffer. 881 */ 882 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) 883 break; 884 885 /* Free the transmit buffer. */ 886 if (skb) { 887 pci_unmap_single(sp->pdev, 888 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 889 skb->len, PCI_DMA_TODEVICE); 890 891 dev_kfree_skb_irq(skb); 892 893 sp->tx_buff[dirty] = NULL; 894 } 895 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; 896 } 897 898 sp->tx_dirty += released; 899 900 if (netif_queue_stopped(dev) && 901 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { 902 netif_wake_queue(dev); 903 } 904} 905 906static void ipg_tx_timeout(struct net_device *dev) 907{ 908 struct ipg_nic_private *sp = netdev_priv(dev); 909 void __iomem *ioaddr = sp->ioaddr; 910 911 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | 912 IPG_AC_FIFO); 913 914 spin_lock_irq(&sp->lock); 915 916 /* Re-configure after DMA reset. */ 917 if (ipg_io_config(dev) < 0) { 918 printk(KERN_INFO "%s: Error during re-configuration.\n", 919 dev->name); 920 } 921 922 init_tfdlist(dev); 923 924 spin_unlock_irq(&sp->lock); 925 926 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, 927 MAC_CTRL); 928} 929 930/* 931 * For TxComplete interrupts, free all transmit 932 * buffers which have already been transfered via DMA 933 * to the IPG. 934 */ 935static void ipg_nic_txcleanup(struct net_device *dev) 936{ 937 struct ipg_nic_private *sp = netdev_priv(dev); 938 void __iomem *ioaddr = sp->ioaddr; 939 unsigned int i; 940 941 IPG_DEBUG_MSG("_nic_txcleanup\n"); 942 943 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 944 /* Reading the TXSTATUS register clears the 945 * TX_COMPLETE interrupt. 946 */ 947 u32 txstatusdword = ipg_r32(TX_STATUS); 948 949 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); 950 951 /* Check for Transmit errors. Error bits only valid if 952 * TX_COMPLETE bit in the TXSTATUS register is a 1. 953 */ 954 if (!(txstatusdword & IPG_TS_TX_COMPLETE)) 955 break; 956 957 /* If in 10Mbps mode, indicate transmit is ready. */ 958 if (sp->tenmbpsmode) { 959 netif_wake_queue(dev); 960 } 961 962 /* Transmit error, increment stat counters. */ 963 if (txstatusdword & IPG_TS_TX_ERROR) { 964 IPG_DEBUG_MSG("Transmit error.\n"); 965 sp->stats.tx_errors++; 966 } 967 968 /* Late collision, re-enable transmitter. */ 969 if (txstatusdword & IPG_TS_LATE_COLLISION) { 970 IPG_DEBUG_MSG("Late collision on transmit.\n"); 971 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 972 IPG_MC_RSVD_MASK, MAC_CTRL); 973 } 974 975 /* Maximum collisions, re-enable transmitter. */ 976 if (txstatusdword & IPG_TS_TX_MAX_COLL) { 977 IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); 978 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 979 IPG_MC_RSVD_MASK, MAC_CTRL); 980 } 981 982 /* Transmit underrun, reset and re-enable 983 * transmitter. 984 */ 985 if (txstatusdword & IPG_TS_TX_UNDERRUN) { 986 IPG_DEBUG_MSG("Transmitter underrun.\n"); 987 sp->stats.tx_fifo_errors++; 988 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | 989 IPG_AC_NETWORK | IPG_AC_FIFO); 990 991 /* Re-configure after DMA reset. */ 992 if (ipg_io_config(dev) < 0) { 993 printk(KERN_INFO 994 "%s: Error during re-configuration.\n", 995 dev->name); 996 } 997 init_tfdlist(dev); 998 999 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 1000 IPG_MC_RSVD_MASK, MAC_CTRL); 1001 } 1002 } 1003 1004 ipg_nic_txfree(dev); 1005} 1006 1007/* Provides statistical information about the IPG NIC. */ 1008static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) 1009{ 1010 struct ipg_nic_private *sp = netdev_priv(dev); 1011 void __iomem *ioaddr = sp->ioaddr; 1012 u16 temp1; 1013 u16 temp2; 1014 1015 IPG_DEBUG_MSG("_nic_get_stats\n"); 1016 1017 /* Check to see if the NIC has been initialized via nic_open, 1018 * before trying to read statistic registers. 1019 */ 1020 if (!test_bit(__LINK_STATE_START, &dev->state)) 1021 return &sp->stats; 1022 1023 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); 1024 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); 1025 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); 1026 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); 1027 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); 1028 sp->stats.rx_errors += temp1; 1029 sp->stats.rx_missed_errors += temp1; 1030 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + 1031 ipg_r32(IPG_LATECOLLISIONS); 1032 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); 1033 sp->stats.collisions += temp1; 1034 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); 1035 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + 1036 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; 1037 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); 1038 1039 /* detailed tx_errors */ 1040 sp->stats.tx_carrier_errors += temp2; 1041 1042 /* detailed rx_errors */ 1043 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + 1044 ipg_r16(IPG_FRAMETOOLONGERRRORS); 1045 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); 1046 1047 /* Unutilized IPG statistic registers. */ 1048 ipg_r32(IPG_MCSTFRAMESRCVDOK); 1049 1050 return &sp->stats; 1051} 1052 1053/* Restore used receive buffers. */ 1054static int ipg_nic_rxrestore(struct net_device *dev) 1055{ 1056 struct ipg_nic_private *sp = netdev_priv(dev); 1057 const unsigned int curr = sp->rx_current; 1058 unsigned int dirty = sp->rx_dirty; 1059 1060 IPG_DEBUG_MSG("_nic_rxrestore\n"); 1061 1062 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { 1063 unsigned int entry = dirty % IPG_RFDLIST_LENGTH; 1064 1065 /* rx_copybreak may poke hole here and there. */ 1066 if (sp->rx_buff[entry]) 1067 continue; 1068 1069 /* Generate a new receive buffer to replace the 1070 * current buffer (which will be released by the 1071 * Linux system). 1072 */ 1073 if (ipg_get_rxbuff(dev, entry) < 0) { 1074 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); 1075 1076 break; 1077 } 1078 1079 /* Reset the RFS field. */ 1080 sp->rxd[entry].rfs = 0x0000000000000000; 1081 } 1082 sp->rx_dirty = dirty; 1083 1084 return 0; 1085} 1086 1087/* use jumboindex and jumbosize to control jumbo frame status 1088 * initial status is jumboindex=-1 and jumbosize=0 1089 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. 1090 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving 1091 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump 1092 * previous receiving and need to continue dumping the current one 1093 */ 1094enum { 1095 NORMAL_PACKET, 1096 ERROR_PACKET 1097}; 1098 1099enum { 1100 FRAME_NO_START_NO_END = 0, 1101 FRAME_WITH_START = 1, 1102 FRAME_WITH_END = 10, 1103 FRAME_WITH_START_WITH_END = 11 1104}; 1105 1106static void ipg_nic_rx_free_skb(struct net_device *dev) 1107{ 1108 struct ipg_nic_private *sp = netdev_priv(dev); 1109 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1110 1111 if (sp->rx_buff[entry]) { 1112 struct ipg_rx *rxfd = sp->rxd + entry; 1113 1114 pci_unmap_single(sp->pdev, 1115 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1116 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1117 dev_kfree_skb_irq(sp->rx_buff[entry]); 1118 sp->rx_buff[entry] = NULL; 1119 } 1120} 1121 1122static int ipg_nic_rx_check_frame_type(struct net_device *dev) 1123{ 1124 struct ipg_nic_private *sp = netdev_priv(dev); 1125 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); 1126 int type = FRAME_NO_START_NO_END; 1127 1128 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) 1129 type += FRAME_WITH_START; 1130 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) 1131 type += FRAME_WITH_END; 1132 return type; 1133} 1134 1135static int ipg_nic_rx_check_error(struct net_device *dev) 1136{ 1137 struct ipg_nic_private *sp = netdev_priv(dev); 1138 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1139 struct ipg_rx *rxfd = sp->rxd + entry; 1140 1141 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1142 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1143 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1144 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { 1145 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1146 (unsigned long) rxfd->rfs); 1147 1148 /* Increment general receive error statistic. */ 1149 sp->stats.rx_errors++; 1150 1151 /* Increment detailed receive error statistics. */ 1152 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1153 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1154 1155 sp->stats.rx_fifo_errors++; 1156 } 1157 1158 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1159 IPG_DEBUG_MSG("RX runt occured.\n"); 1160 sp->stats.rx_length_errors++; 1161 } 1162 1163 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, 1164 * error count handled by a IPG statistic register. 1165 */ 1166 1167 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1168 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1169 sp->stats.rx_frame_errors++; 1170 } 1171 1172 /* Do nothing for IPG_RFS_RXFCSERROR, error count 1173 * handled by a IPG statistic register. 1174 */ 1175 1176 /* Free the memory associated with the RX 1177 * buffer since it is erroneous and we will 1178 * not pass it to higher layer processes. 1179 */ 1180 if (sp->rx_buff[entry]) { 1181 pci_unmap_single(sp->pdev, 1182 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1183 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1184 1185 dev_kfree_skb_irq(sp->rx_buff[entry]); 1186 sp->rx_buff[entry] = NULL; 1187 } 1188 return ERROR_PACKET; 1189 } 1190 return NORMAL_PACKET; 1191} 1192 1193static void ipg_nic_rx_with_start_and_end(struct net_device *dev, 1194 struct ipg_nic_private *sp, 1195 struct ipg_rx *rxfd, unsigned entry) 1196{ 1197 struct ipg_jumbo *jumbo = &sp->jumbo; 1198 struct sk_buff *skb; 1199 int framelen; 1200 1201 if (jumbo->found_start) { 1202 dev_kfree_skb_irq(jumbo->skb); 1203 jumbo->found_start = 0; 1204 jumbo->current_size = 0; 1205 jumbo->skb = NULL; 1206 } 1207 1208 /* 1: found error, 0 no error */ 1209 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1210 return; 1211 1212 skb = sp->rx_buff[entry]; 1213 if (!skb) 1214 return; 1215 1216 /* accept this frame and send to upper layer */ 1217 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1218 if (framelen > sp->rxfrag_size) 1219 framelen = sp->rxfrag_size; 1220 1221 skb_put(skb, framelen); 1222 skb->protocol = eth_type_trans(skb, dev); 1223 skb->ip_summed = CHECKSUM_NONE; 1224 netif_rx(skb); 1225 sp->rx_buff[entry] = NULL; 1226} 1227 1228static void ipg_nic_rx_with_start(struct net_device *dev, 1229 struct ipg_nic_private *sp, 1230 struct ipg_rx *rxfd, unsigned entry) 1231{ 1232 struct ipg_jumbo *jumbo = &sp->jumbo; 1233 struct pci_dev *pdev = sp->pdev; 1234 struct sk_buff *skb; 1235 1236 /* 1: found error, 0 no error */ 1237 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1238 return; 1239 1240 /* accept this frame and send to upper layer */ 1241 skb = sp->rx_buff[entry]; 1242 if (!skb) 1243 return; 1244 1245 if (jumbo->found_start) 1246 dev_kfree_skb_irq(jumbo->skb); 1247 1248 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1249 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1250 1251 skb_put(skb, sp->rxfrag_size); 1252 1253 jumbo->found_start = 1; 1254 jumbo->current_size = sp->rxfrag_size; 1255 jumbo->skb = skb; 1256 1257 sp->rx_buff[entry] = NULL; 1258} 1259 1260static void ipg_nic_rx_with_end(struct net_device *dev, 1261 struct ipg_nic_private *sp, 1262 struct ipg_rx *rxfd, unsigned entry) 1263{ 1264 struct ipg_jumbo *jumbo = &sp->jumbo; 1265 1266 /* 1: found error, 0 no error */ 1267 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1268 struct sk_buff *skb = sp->rx_buff[entry]; 1269 1270 if (!skb) 1271 return; 1272 1273 if (jumbo->found_start) { 1274 int framelen, endframelen; 1275 1276 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1277 1278 endframelen = framelen - jumbo->current_size; 1279 if (framelen > sp->rxsupport_size) 1280 dev_kfree_skb_irq(jumbo->skb); 1281 else { 1282 memcpy(skb_put(jumbo->skb, endframelen), 1283 skb->data, endframelen); 1284 1285 jumbo->skb->protocol = 1286 eth_type_trans(jumbo->skb, dev); 1287 1288 jumbo->skb->ip_summed = CHECKSUM_NONE; 1289 netif_rx(jumbo->skb); 1290 } 1291 } 1292 1293 jumbo->found_start = 0; 1294 jumbo->current_size = 0; 1295 jumbo->skb = NULL; 1296 1297 ipg_nic_rx_free_skb(dev); 1298 } else { 1299 dev_kfree_skb_irq(jumbo->skb); 1300 jumbo->found_start = 0; 1301 jumbo->current_size = 0; 1302 jumbo->skb = NULL; 1303 } 1304} 1305 1306static void ipg_nic_rx_no_start_no_end(struct net_device *dev, 1307 struct ipg_nic_private *sp, 1308 struct ipg_rx *rxfd, unsigned entry) 1309{ 1310 struct ipg_jumbo *jumbo = &sp->jumbo; 1311 1312 /* 1: found error, 0 no error */ 1313 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1314 struct sk_buff *skb = sp->rx_buff[entry]; 1315 1316 if (skb) { 1317 if (jumbo->found_start) { 1318 jumbo->current_size += sp->rxfrag_size; 1319 if (jumbo->current_size <= sp->rxsupport_size) { 1320 memcpy(skb_put(jumbo->skb, 1321 sp->rxfrag_size), 1322 skb->data, sp->rxfrag_size); 1323 } 1324 } 1325 ipg_nic_rx_free_skb(dev); 1326 } 1327 } else { 1328 dev_kfree_skb_irq(jumbo->skb); 1329 jumbo->found_start = 0; 1330 jumbo->current_size = 0; 1331 jumbo->skb = NULL; 1332 } 1333} 1334 1335static int ipg_nic_rx_jumbo(struct net_device *dev) 1336{ 1337 struct ipg_nic_private *sp = netdev_priv(dev); 1338 unsigned int curr = sp->rx_current; 1339 void __iomem *ioaddr = sp->ioaddr; 1340 unsigned int i; 1341 1342 IPG_DEBUG_MSG("_nic_rx\n"); 1343 1344 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1345 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1346 struct ipg_rx *rxfd = sp->rxd + entry; 1347 1348 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE))) 1349 break; 1350 1351 switch (ipg_nic_rx_check_frame_type(dev)) { 1352 case FRAME_WITH_START_WITH_END: 1353 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); 1354 break; 1355 case FRAME_WITH_START: 1356 ipg_nic_rx_with_start(dev, sp, rxfd, entry); 1357 break; 1358 case FRAME_WITH_END: 1359 ipg_nic_rx_with_end(dev, sp, rxfd, entry); 1360 break; 1361 case FRAME_NO_START_NO_END: 1362 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); 1363 break; 1364 } 1365 } 1366 1367 sp->rx_current = curr; 1368 1369 if (i == IPG_MAXRFDPROCESS_COUNT) { 1370 /* There are more RFDs to process, however the 1371 * allocated amount of RFD processing time has 1372 * expired. Assert Interrupt Requested to make 1373 * sure we come back to process the remaining RFDs. 1374 */ 1375 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1376 } 1377 1378 ipg_nic_rxrestore(dev); 1379 1380 return 0; 1381} 1382 1383static int ipg_nic_rx(struct net_device *dev) 1384{ 1385 /* Transfer received Ethernet frames to higher network layers. */ 1386 struct ipg_nic_private *sp = netdev_priv(dev); 1387 unsigned int curr = sp->rx_current; 1388 void __iomem *ioaddr = sp->ioaddr; 1389 struct ipg_rx *rxfd; 1390 unsigned int i; 1391 1392 IPG_DEBUG_MSG("_nic_rx\n"); 1393 1394#define __RFS_MASK \ 1395 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) 1396 1397 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1398 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1399 struct sk_buff *skb = sp->rx_buff[entry]; 1400 unsigned int framelen; 1401 1402 rxfd = sp->rxd + entry; 1403 1404 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) 1405 break; 1406 1407 /* Get received frame length. */ 1408 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1409 1410 /* Check for jumbo frame arrival with too small 1411 * RXFRAG_SIZE. 1412 */ 1413 if (framelen > sp->rxfrag_size) { 1414 IPG_DEBUG_MSG 1415 ("RFS FrameLen > allocated fragment size.\n"); 1416 1417 framelen = sp->rxfrag_size; 1418 } 1419 1420 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1421 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1422 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1423 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { 1424 1425 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1426 (unsigned long int) rxfd->rfs); 1427 1428 /* Increment general receive error statistic. */ 1429 sp->stats.rx_errors++; 1430 1431 /* Increment detailed receive error statistics. */ 1432 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1433 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1434 sp->stats.rx_fifo_errors++; 1435 } 1436 1437 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1438 IPG_DEBUG_MSG("RX runt occured.\n"); 1439 sp->stats.rx_length_errors++; 1440 } 1441 1442 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; 1443 /* Do nothing, error count handled by a IPG 1444 * statistic register. 1445 */ 1446 1447 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1448 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1449 sp->stats.rx_frame_errors++; 1450 } 1451 1452 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; 1453 /* Do nothing, error count handled by a IPG 1454 * statistic register. 1455 */ 1456 1457 /* Free the memory associated with the RX 1458 * buffer since it is erroneous and we will 1459 * not pass it to higher layer processes. 1460 */ 1461 if (skb) { 1462 __le64 info = rxfd->frag_info; 1463 1464 pci_unmap_single(sp->pdev, 1465 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, 1466 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1467 1468 dev_kfree_skb_irq(skb); 1469 } 1470 } else { 1471 1472 /* Adjust the new buffer length to accomodate the size 1473 * of the received frame. 1474 */ 1475 skb_put(skb, framelen); 1476 1477 /* Set the buffer's protocol field to Ethernet. */ 1478 skb->protocol = eth_type_trans(skb, dev); 1479 1480 /* The IPG encountered an error with (or 1481 * there were no) IP/TCP/UDP checksums. 1482 * This may or may not indicate an invalid 1483 * IP/TCP/UDP frame was received. Let the 1484 * upper layer decide. 1485 */ 1486 skb->ip_summed = CHECKSUM_NONE; 1487 1488 /* Hand off frame for higher layer processing. 1489 * The function netif_rx() releases the sk_buff 1490 * when processing completes. 1491 */ 1492 netif_rx(skb); 1493 } 1494 1495 /* Assure RX buffer is not reused by IPG. */ 1496 sp->rx_buff[entry] = NULL; 1497 } 1498 1499 /* 1500 * If there are more RFDs to proces and the allocated amount of RFD 1501 * processing time has expired, assert Interrupt Requested to make 1502 * sure we come back to process the remaining RFDs. 1503 */ 1504 if (i == IPG_MAXRFDPROCESS_COUNT) 1505 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1506 1507#ifdef IPG_DEBUG 1508 /* Check if the RFD list contained no receive frame data. */ 1509 if (!i) 1510 sp->EmptyRFDListCount++; 1511#endif 1512 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && 1513 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && 1514 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { 1515 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; 1516 1517 rxfd = sp->rxd + entry; 1518 1519 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); 1520 1521 /* An unexpected event, additional code needed to handle 1522 * properly. So for the time being, just disregard the 1523 * frame. 1524 */ 1525 1526 /* Free the memory associated with the RX 1527 * buffer since it is erroneous and we will 1528 * not pass it to higher layer processes. 1529 */ 1530 if (sp->rx_buff[entry]) { 1531 pci_unmap_single(sp->pdev, 1532 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1533 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1534 dev_kfree_skb_irq(sp->rx_buff[entry]); 1535 } 1536 1537 /* Assure RX buffer is not reused by IPG. */ 1538 sp->rx_buff[entry] = NULL; 1539 } 1540 1541 sp->rx_current = curr; 1542 1543 /* Check to see if there are a minimum number of used 1544 * RFDs before restoring any (should improve performance.) 1545 */ 1546 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) 1547 ipg_nic_rxrestore(dev); 1548 1549 return 0; 1550} 1551 1552static void ipg_reset_after_host_error(struct work_struct *work) 1553{ 1554 struct ipg_nic_private *sp = 1555 container_of(work, struct ipg_nic_private, task.work); 1556 struct net_device *dev = sp->dev; 1557 1558 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); 1559 1560 /* 1561 * Acknowledge HostError interrupt by resetting 1562 * IPG DMA and HOST. 1563 */ 1564 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1565 1566 init_rfdlist(dev); 1567 init_tfdlist(dev); 1568 1569 if (ipg_io_config(dev) < 0) { 1570 printk(KERN_INFO "%s: Cannot recover from PCI error.\n", 1571 dev->name); 1572 schedule_delayed_work(&sp->task, HZ); 1573 } 1574} 1575 1576static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) 1577{ 1578 struct net_device *dev = dev_inst; 1579 struct ipg_nic_private *sp = netdev_priv(dev); 1580 void __iomem *ioaddr = sp->ioaddr; 1581 unsigned int handled = 0; 1582 u16 status; 1583 1584 IPG_DEBUG_MSG("_interrupt_handler\n"); 1585 1586 if (sp->is_jumbo) 1587 ipg_nic_rxrestore(dev); 1588 1589 spin_lock(&sp->lock); 1590 1591 /* Get interrupt source information, and acknowledge 1592 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, 1593 * IntRequested, MacControlFrame, LinkEvent) interrupts 1594 * if issued. Also, all IPG interrupts are disabled by 1595 * reading IntStatusAck. 1596 */ 1597 status = ipg_r16(INT_STATUS_ACK); 1598 1599 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); 1600 1601 /* Shared IRQ of remove event. */ 1602 if (!(status & IPG_IS_RSVD_MASK)) 1603 goto out_enable; 1604 1605 handled = 1; 1606 1607 if (unlikely(!netif_running(dev))) 1608 goto out_unlock; 1609 1610 /* If RFDListEnd interrupt, restore all used RFDs. */ 1611 if (status & IPG_IS_RFD_LIST_END) { 1612 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); 1613 1614 /* The RFD list end indicates an RFD was encountered 1615 * with a 0 NextPtr, or with an RFDDone bit set to 1 1616 * (indicating the RFD is not read for use by the 1617 * IPG.) Try to restore all RFDs. 1618 */ 1619 ipg_nic_rxrestore(dev); 1620 1621#ifdef IPG_DEBUG 1622 /* Increment the RFDlistendCount counter. */ 1623 sp->RFDlistendCount++; 1624#endif 1625 } 1626 1627 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or 1628 * IntRequested interrupt, process received frames. */ 1629 if ((status & IPG_IS_RX_DMA_PRIORITY) || 1630 (status & IPG_IS_RFD_LIST_END) || 1631 (status & IPG_IS_RX_DMA_COMPLETE) || 1632 (status & IPG_IS_INT_REQUESTED)) { 1633#ifdef IPG_DEBUG 1634 /* Increment the RFD list checked counter if interrupted 1635 * only to check the RFD list. */ 1636 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | 1637 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & 1638 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | 1639 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | 1640 IPG_IS_UPDATE_STATS))) 1641 sp->RFDListCheckedCount++; 1642#endif 1643 1644 if (sp->is_jumbo) 1645 ipg_nic_rx_jumbo(dev); 1646 else 1647 ipg_nic_rx(dev); 1648 } 1649 1650 /* If TxDMAComplete interrupt, free used TFDs. */ 1651 if (status & IPG_IS_TX_DMA_COMPLETE) 1652 ipg_nic_txfree(dev); 1653 1654 /* TxComplete interrupts indicate one of numerous actions. 1655 * Determine what action to take based on TXSTATUS register. 1656 */ 1657 if (status & IPG_IS_TX_COMPLETE) 1658 ipg_nic_txcleanup(dev); 1659 1660 /* If UpdateStats interrupt, update Linux Ethernet statistics */ 1661 if (status & IPG_IS_UPDATE_STATS) 1662 ipg_nic_get_stats(dev); 1663 1664 /* If HostError interrupt, reset IPG. */ 1665 if (status & IPG_IS_HOST_ERROR) { 1666 IPG_DDEBUG_MSG("HostError Interrupt\n"); 1667 1668 schedule_delayed_work(&sp->task, 0); 1669 } 1670 1671 /* If LinkEvent interrupt, resolve autonegotiation. */ 1672 if (status & IPG_IS_LINK_EVENT) { 1673 if (ipg_config_autoneg(dev) < 0) 1674 printk(KERN_INFO "%s: Auto-negotiation error.\n", 1675 dev->name); 1676 } 1677 1678 /* If MACCtrlFrame interrupt, do nothing. */ 1679 if (status & IPG_IS_MAC_CTRL_FRAME) 1680 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); 1681 1682 /* If RxComplete interrupt, do nothing. */ 1683 if (status & IPG_IS_RX_COMPLETE) 1684 IPG_DEBUG_MSG("RxComplete interrupt.\n"); 1685 1686 /* If RxEarly interrupt, do nothing. */ 1687 if (status & IPG_IS_RX_EARLY) 1688 IPG_DEBUG_MSG("RxEarly interrupt.\n"); 1689 1690out_enable: 1691 /* Re-enable IPG interrupts. */ 1692 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | 1693 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | 1694 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); 1695out_unlock: 1696 spin_unlock(&sp->lock); 1697 1698 return IRQ_RETVAL(handled); 1699} 1700 1701static void ipg_rx_clear(struct ipg_nic_private *sp) 1702{ 1703 unsigned int i; 1704 1705 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 1706 if (sp->rx_buff[i]) { 1707 struct ipg_rx *rxfd = sp->rxd + i; 1708 1709 dev_kfree_skb_irq(sp->rx_buff[i]); 1710 sp->rx_buff[i] = NULL; 1711 pci_unmap_single(sp->pdev, 1712 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1713 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1714 } 1715 } 1716} 1717 1718static void ipg_tx_clear(struct ipg_nic_private *sp) 1719{ 1720 unsigned int i; 1721 1722 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 1723 if (sp->tx_buff[i]) { 1724 struct ipg_tx *txfd = sp->txd + i; 1725 1726 pci_unmap_single(sp->pdev, 1727 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 1728 sp->tx_buff[i]->len, PCI_DMA_TODEVICE); 1729 1730 dev_kfree_skb_irq(sp->tx_buff[i]); 1731 1732 sp->tx_buff[i] = NULL; 1733 } 1734 } 1735} 1736 1737static int ipg_nic_open(struct net_device *dev) 1738{ 1739 struct ipg_nic_private *sp = netdev_priv(dev); 1740 void __iomem *ioaddr = sp->ioaddr; 1741 struct pci_dev *pdev = sp->pdev; 1742 int rc; 1743 1744 IPG_DEBUG_MSG("_nic_open\n"); 1745 1746 sp->rx_buf_sz = sp->rxsupport_size; 1747 1748 /* Check for interrupt line conflicts, and request interrupt 1749 * line for IPG. 1750 * 1751 * IMPORTANT: Disable IPG interrupts prior to registering 1752 * IRQ. 1753 */ 1754 ipg_w16(0x0000, INT_ENABLE); 1755 1756 /* Register the interrupt line to be used by the IPG within 1757 * the Linux system. 1758 */ 1759 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, 1760 dev->name, dev); 1761 if (rc < 0) { 1762 printk(KERN_INFO "%s: Error when requesting interrupt.\n", 1763 dev->name); 1764 goto out; 1765 } 1766 1767 dev->irq = pdev->irq; 1768 1769 rc = -ENOMEM; 1770 1771 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, 1772 &sp->rxd_map, GFP_KERNEL); 1773 if (!sp->rxd) 1774 goto err_free_irq_0; 1775 1776 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, 1777 &sp->txd_map, GFP_KERNEL); 1778 if (!sp->txd) 1779 goto err_free_rx_1; 1780 1781 rc = init_rfdlist(dev); 1782 if (rc < 0) { 1783 printk(KERN_INFO "%s: Error during configuration.\n", 1784 dev->name); 1785 goto err_free_tx_2; 1786 } 1787 1788 init_tfdlist(dev); 1789 1790 rc = ipg_io_config(dev); 1791 if (rc < 0) { 1792 printk(KERN_INFO "%s: Error during configuration.\n", 1793 dev->name); 1794 goto err_release_tfdlist_3; 1795 } 1796 1797 /* Resolve autonegotiation. */ 1798 if (ipg_config_autoneg(dev) < 0) 1799 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); 1800 1801 /* initialize JUMBO Frame control variable */ 1802 sp->jumbo.found_start = 0; 1803 sp->jumbo.current_size = 0; 1804 sp->jumbo.skb = NULL; 1805 1806 /* Enable transmit and receive operation of the IPG. */ 1807 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & 1808 IPG_MC_RSVD_MASK, MAC_CTRL); 1809 1810 netif_start_queue(dev); 1811out: 1812 return rc; 1813 1814err_release_tfdlist_3: 1815 ipg_tx_clear(sp); 1816 ipg_rx_clear(sp); 1817err_free_tx_2: 1818 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1819err_free_rx_1: 1820 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1821err_free_irq_0: 1822 free_irq(pdev->irq, dev); 1823 goto out; 1824} 1825 1826static int ipg_nic_stop(struct net_device *dev) 1827{ 1828 struct ipg_nic_private *sp = netdev_priv(dev); 1829 void __iomem *ioaddr = sp->ioaddr; 1830 struct pci_dev *pdev = sp->pdev; 1831 1832 IPG_DEBUG_MSG("_nic_stop\n"); 1833 1834 netif_stop_queue(dev); 1835 1836 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); 1837 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); 1838 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); 1839 IPG_DUMPTFDLIST(dev); 1840 1841 do { 1842 (void) ipg_r16(INT_STATUS_ACK); 1843 1844 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1845 1846 synchronize_irq(pdev->irq); 1847 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); 1848 1849 ipg_rx_clear(sp); 1850 1851 ipg_tx_clear(sp); 1852 1853 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1854 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1855 1856 free_irq(pdev->irq, dev); 1857 1858 return 0; 1859} 1860 1861static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1862{ 1863 struct ipg_nic_private *sp = netdev_priv(dev); 1864 void __iomem *ioaddr = sp->ioaddr; 1865 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; 1866 unsigned long flags; 1867 struct ipg_tx *txfd; 1868 1869 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); 1870 1871 /* If in 10Mbps mode, stop the transmit queue so 1872 * no more transmit frames are accepted. 1873 */ 1874 if (sp->tenmbpsmode) 1875 netif_stop_queue(dev); 1876 1877 if (sp->reset_current_tfd) { 1878 sp->reset_current_tfd = 0; 1879 entry = 0; 1880 } 1881 1882 txfd = sp->txd + entry; 1883 1884 sp->tx_buff[entry] = skb; 1885 1886 /* Clear all TFC fields, except TFDDONE. */ 1887 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 1888 1889 /* Specify the TFC field within the TFD. */ 1890 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | 1891 (IPG_TFC_FRAMEID & sp->tx_current) | 1892 (IPG_TFC_FRAGCOUNT & (1 << 24))); 1893 /* 1894 * 16--17 (WordAlign) <- 3 (disable), 1895 * 0--15 (FrameId) <- sp->tx_current, 1896 * 24--27 (FragCount) <- 1 1897 */ 1898 1899 /* Request TxComplete interrupts at an interval defined 1900 * by the constant IPG_FRAMESBETWEENTXCOMPLETES. 1901 * Request TxComplete interrupt for every frame 1902 * if in 10Mbps mode to accomodate problem with 10Mbps 1903 * processing. 1904 */ 1905 if (sp->tenmbpsmode) 1906 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); 1907 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); 1908 /* Based on compilation option, determine if FCS is to be 1909 * appended to transmit frame by IPG. 1910 */ 1911 if (!(IPG_APPEND_FCS_ON_TX)) 1912 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); 1913 1914 /* Based on compilation option, determine if IP, TCP and/or 1915 * UDP checksums are to be added to transmit frame by IPG. 1916 */ 1917 if (IPG_ADD_IPCHECKSUM_ON_TX) 1918 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); 1919 1920 if (IPG_ADD_TCPCHECKSUM_ON_TX) 1921 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); 1922 1923 if (IPG_ADD_UDPCHECKSUM_ON_TX) 1924 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); 1925 1926 /* Based on compilation option, determine if VLAN tag info is to be 1927 * inserted into transmit frame by IPG. 1928 */ 1929 if (IPG_INSERT_MANUAL_VLAN_TAG) { 1930 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | 1931 ((u64) IPG_MANUAL_VLAN_VID << 32) | 1932 ((u64) IPG_MANUAL_VLAN_CFI << 44) | 1933 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); 1934 } 1935 1936 /* The fragment start location within system memory is defined 1937 * by the sk_buff structure's data field. The physical address 1938 * of this location within the system's virtual memory space 1939 * is determined using the IPG_HOST2BUS_MAP function. 1940 */ 1941 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 1942 skb->len, PCI_DMA_TODEVICE)); 1943 1944 /* The length of the fragment within system memory is defined by 1945 * the sk_buff structure's len field. 1946 */ 1947 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & 1948 ((u64) (skb->len & 0xffff) << 48)); 1949 1950 /* Clear the TFDDone bit last to indicate the TFD is ready 1951 * for transfer to the IPG. 1952 */ 1953 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); 1954 1955 spin_lock_irqsave(&sp->lock, flags); 1956 1957 sp->tx_current++; 1958 1959 mmiowb(); 1960 1961 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); 1962 1963 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) 1964 netif_stop_queue(dev); 1965 1966 spin_unlock_irqrestore(&sp->lock, flags); 1967 1968 return NETDEV_TX_OK; 1969} 1970 1971static void ipg_set_phy_default_param(unsigned char rev, 1972 struct net_device *dev, int phy_address) 1973{ 1974 unsigned short length; 1975 unsigned char revision; 1976 unsigned short *phy_param; 1977 unsigned short address, value; 1978 1979 phy_param = &DefaultPhyParam[0]; 1980 length = *phy_param & 0x00FF; 1981 revision = (unsigned char)((*phy_param) >> 8); 1982 phy_param++; 1983 while (length != 0) { 1984 if (rev == revision) { 1985 while (length > 1) { 1986 address = *phy_param; 1987 value = *(phy_param + 1); 1988 phy_param += 2; 1989 mdio_write(dev, phy_address, address, value); 1990 length -= 4; 1991 } 1992 break; 1993 } else { 1994 phy_param += length / 2; 1995 length = *phy_param & 0x00FF; 1996 revision = (unsigned char)((*phy_param) >> 8); 1997 phy_param++; 1998 } 1999 } 2000} 2001 2002static int read_eeprom(struct net_device *dev, int eep_addr) 2003{ 2004 void __iomem *ioaddr = ipg_ioaddr(dev); 2005 unsigned int i; 2006 int ret = 0; 2007 u16 value; 2008 2009 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); 2010 ipg_w16(value, EEPROM_CTRL); 2011 2012 for (i = 0; i < 1000; i++) { 2013 u16 data; 2014 2015 mdelay(10); 2016 data = ipg_r16(EEPROM_CTRL); 2017 if (!(data & IPG_EC_EEPROM_BUSY)) { 2018 ret = ipg_r16(EEPROM_DATA); 2019 break; 2020 } 2021 } 2022 return ret; 2023} 2024 2025static void ipg_init_mii(struct net_device *dev) 2026{ 2027 struct ipg_nic_private *sp = netdev_priv(dev); 2028 struct mii_if_info *mii_if = &sp->mii_if; 2029 int phyaddr; 2030 2031 mii_if->dev = dev; 2032 mii_if->mdio_read = mdio_read; 2033 mii_if->mdio_write = mdio_write; 2034 mii_if->phy_id_mask = 0x1f; 2035 mii_if->reg_num_mask = 0x1f; 2036 2037 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); 2038 2039 if (phyaddr != 0x1f) { 2040 u16 mii_phyctrl, mii_1000cr; 2041 u8 revisionid = 0; 2042 2043 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); 2044 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | 2045 GMII_PHY_1000BASETCONTROL_PreferMaster; 2046 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); 2047 2048 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); 2049 2050 /* Set default phyparam */ 2051 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); 2052 ipg_set_phy_default_param(revisionid, dev, phyaddr); 2053 2054 /* Reset PHY */ 2055 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; 2056 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); 2057 2058 } 2059} 2060 2061static int ipg_hw_init(struct net_device *dev) 2062{ 2063 struct ipg_nic_private *sp = netdev_priv(dev); 2064 void __iomem *ioaddr = sp->ioaddr; 2065 unsigned int i; 2066 int rc; 2067 2068 /* Read/Write and Reset EEPROM Value */ 2069 /* Read LED Mode Configuration from EEPROM */ 2070 sp->led_mode = read_eeprom(dev, 6); 2071 2072 /* Reset all functions within the IPG. Do not assert 2073 * RST_OUT as not compatible with some PHYs. 2074 */ 2075 rc = ipg_reset(dev, IPG_RESET_MASK); 2076 if (rc < 0) 2077 goto out; 2078 2079 ipg_init_mii(dev); 2080 2081 /* Read MAC Address from EEPROM */ 2082 for (i = 0; i < 3; i++) 2083 sp->station_addr[i] = read_eeprom(dev, 16 + i); 2084 2085 for (i = 0; i < 3; i++) 2086 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); 2087 2088 /* Set station address in ethernet_device structure. */ 2089 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; 2090 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; 2091 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; 2092 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; 2093 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; 2094 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; 2095out: 2096 return rc; 2097} 2098 2099static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2100{ 2101 struct ipg_nic_private *sp = netdev_priv(dev); 2102 int rc; 2103 2104 mutex_lock(&sp->mii_mutex); 2105 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); 2106 mutex_unlock(&sp->mii_mutex); 2107 2108 return rc; 2109} 2110 2111static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) 2112{ 2113 struct ipg_nic_private *sp = netdev_priv(dev); 2114 int err; 2115 2116 /* Function to accomodate changes to Maximum Transfer Unit 2117 * (or MTU) of IPG NIC. Cannot use default function since 2118 * the default will not allow for MTU > 1500 bytes. 2119 */ 2120 2121 IPG_DEBUG_MSG("_nic_change_mtu\n"); 2122 2123 /* 2124 * Check that the new MTU value is between 68 (14 byte header, 46 byte 2125 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. 2126 */ 2127 if (new_mtu < 68 || new_mtu > 10240) 2128 return -EINVAL; 2129 2130 err = ipg_nic_stop(dev); 2131 if (err) 2132 return err; 2133 2134 dev->mtu = new_mtu; 2135 2136 sp->max_rxframe_size = new_mtu; 2137 2138 sp->rxfrag_size = new_mtu; 2139 if (sp->rxfrag_size > 4088) 2140 sp->rxfrag_size = 4088; 2141 2142 sp->rxsupport_size = sp->max_rxframe_size; 2143 2144 if (new_mtu > 0x0600) 2145 sp->is_jumbo = true; 2146 else 2147 sp->is_jumbo = false; 2148 2149 return ipg_nic_open(dev); 2150} 2151 2152static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2153{ 2154 struct ipg_nic_private *sp = netdev_priv(dev); 2155 int rc; 2156 2157 mutex_lock(&sp->mii_mutex); 2158 rc = mii_ethtool_gset(&sp->mii_if, cmd); 2159 mutex_unlock(&sp->mii_mutex); 2160 2161 return rc; 2162} 2163 2164static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2165{ 2166 struct ipg_nic_private *sp = netdev_priv(dev); 2167 int rc; 2168 2169 mutex_lock(&sp->mii_mutex); 2170 rc = mii_ethtool_sset(&sp->mii_if, cmd); 2171 mutex_unlock(&sp->mii_mutex); 2172 2173 return rc; 2174} 2175 2176static int ipg_nway_reset(struct net_device *dev) 2177{ 2178 struct ipg_nic_private *sp = netdev_priv(dev); 2179 int rc; 2180 2181 mutex_lock(&sp->mii_mutex); 2182 rc = mii_nway_restart(&sp->mii_if); 2183 mutex_unlock(&sp->mii_mutex); 2184 2185 return rc; 2186} 2187 2188static struct ethtool_ops ipg_ethtool_ops = { 2189 .get_settings = ipg_get_settings, 2190 .set_settings = ipg_set_settings, 2191 .nway_reset = ipg_nway_reset, 2192}; 2193 2194static void __devexit ipg_remove(struct pci_dev *pdev) 2195{ 2196 struct net_device *dev = pci_get_drvdata(pdev); 2197 struct ipg_nic_private *sp = netdev_priv(dev); 2198 2199 IPG_DEBUG_MSG("_remove\n"); 2200 2201 /* Un-register Ethernet device. */ 2202 unregister_netdev(dev); 2203 2204 pci_iounmap(pdev, sp->ioaddr); 2205 2206 pci_release_regions(pdev); 2207 2208 free_netdev(dev); 2209 pci_disable_device(pdev); 2210 pci_set_drvdata(pdev, NULL); 2211} 2212 2213static const struct net_device_ops ipg_netdev_ops = { 2214 .ndo_open = ipg_nic_open, 2215 .ndo_stop = ipg_nic_stop, 2216 .ndo_start_xmit = ipg_nic_hard_start_xmit, 2217 .ndo_get_stats = ipg_nic_get_stats, 2218 .ndo_set_multicast_list = ipg_nic_set_multicast_list, 2219 .ndo_do_ioctl = ipg_ioctl, 2220 .ndo_tx_timeout = ipg_tx_timeout, 2221 .ndo_change_mtu = ipg_nic_change_mtu, 2222 .ndo_set_mac_address = eth_mac_addr, 2223 .ndo_validate_addr = eth_validate_addr, 2224}; 2225 2226static int __devinit ipg_probe(struct pci_dev *pdev, 2227 const struct pci_device_id *id) 2228{ 2229 unsigned int i = id->driver_data; 2230 struct ipg_nic_private *sp; 2231 struct net_device *dev; 2232 void __iomem *ioaddr; 2233 int rc; 2234 2235 rc = pci_enable_device(pdev); 2236 if (rc < 0) 2237 goto out; 2238 2239 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); 2240 2241 pci_set_master(pdev); 2242 2243 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 2244 if (rc < 0) { 2245 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2246 if (rc < 0) { 2247 printk(KERN_ERR "%s: DMA config failed.\n", 2248 pci_name(pdev)); 2249 goto err_disable_0; 2250 } 2251 } 2252 2253 /* 2254 * Initialize net device. 2255 */ 2256 dev = alloc_etherdev(sizeof(struct ipg_nic_private)); 2257 if (!dev) { 2258 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); 2259 rc = -ENOMEM; 2260 goto err_disable_0; 2261 } 2262 2263 sp = netdev_priv(dev); 2264 spin_lock_init(&sp->lock); 2265 mutex_init(&sp->mii_mutex); 2266 2267 sp->is_jumbo = IPG_IS_JUMBO; 2268 sp->rxfrag_size = IPG_RXFRAG_SIZE; 2269 sp->rxsupport_size = IPG_RXSUPPORT_SIZE; 2270 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; 2271 2272 /* Declare IPG NIC functions for Ethernet device methods. 2273 */ 2274 dev->netdev_ops = &ipg_netdev_ops; 2275 SET_NETDEV_DEV(dev, &pdev->dev); 2276 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); 2277 2278 rc = pci_request_regions(pdev, DRV_NAME); 2279 if (rc) 2280 goto err_free_dev_1; 2281 2282 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); 2283 if (!ioaddr) { 2284 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); 2285 rc = -EIO; 2286 goto err_release_regions_2; 2287 } 2288 2289 /* Save the pointer to the PCI device information. */ 2290 sp->ioaddr = ioaddr; 2291 sp->pdev = pdev; 2292 sp->dev = dev; 2293 2294 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); 2295 2296 pci_set_drvdata(pdev, dev); 2297 2298 rc = ipg_hw_init(dev); 2299 if (rc < 0) 2300 goto err_unmap_3; 2301 2302 rc = register_netdev(dev); 2303 if (rc < 0) 2304 goto err_unmap_3; 2305 2306 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); 2307out: 2308 return rc; 2309 2310err_unmap_3: 2311 pci_iounmap(pdev, ioaddr); 2312err_release_regions_2: 2313 pci_release_regions(pdev); 2314err_free_dev_1: 2315 free_netdev(dev); 2316err_disable_0: 2317 pci_disable_device(pdev); 2318 goto out; 2319} 2320 2321static struct pci_driver ipg_pci_driver = { 2322 .name = IPG_DRIVER_NAME, 2323 .id_table = ipg_pci_tbl, 2324 .probe = ipg_probe, 2325 .remove = __devexit_p(ipg_remove), 2326}; 2327 2328static int __init ipg_init_module(void) 2329{ 2330 return pci_register_driver(&ipg_pci_driver); 2331} 2332 2333static void __exit ipg_exit_module(void) 2334{ 2335 pci_unregister_driver(&ipg_pci_driver); 2336} 2337 2338module_init(ipg_init_module); 2339module_exit(ipg_exit_module);