at v2.6.31-rc2 2361 lines 63 kB view raw
1/* 2 * drivers/net/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * 12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc. 13 * Copyright (c) 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64#include <linux/kernel.h> 65#include <linux/string.h> 66#include <linux/errno.h> 67#include <linux/unistd.h> 68#include <linux/slab.h> 69#include <linux/interrupt.h> 70#include <linux/init.h> 71#include <linux/delay.h> 72#include <linux/netdevice.h> 73#include <linux/etherdevice.h> 74#include <linux/skbuff.h> 75#include <linux/if_vlan.h> 76#include <linux/spinlock.h> 77#include <linux/mm.h> 78#include <linux/of_mdio.h> 79#include <linux/of_platform.h> 80#include <linux/ip.h> 81#include <linux/tcp.h> 82#include <linux/udp.h> 83#include <linux/in.h> 84 85#include <asm/io.h> 86#include <asm/irq.h> 87#include <asm/uaccess.h> 88#include <linux/module.h> 89#include <linux/dma-mapping.h> 90#include <linux/crc32.h> 91#include <linux/mii.h> 92#include <linux/phy.h> 93#include <linux/phy_fixed.h> 94#include <linux/of.h> 95 96#include "gianfar.h" 97#include "fsl_pq_mdio.h" 98 99#define TX_TIMEOUT (1*HZ) 100#undef BRIEF_GFAR_ERRORS 101#undef VERBOSE_GFAR_ERRORS 102 103const char gfar_driver_name[] = "Gianfar Ethernet"; 104const char gfar_driver_version[] = "1.3"; 105 106static int gfar_enet_open(struct net_device *dev); 107static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 108static void gfar_reset_task(struct work_struct *work); 109static void gfar_timeout(struct net_device *dev); 110static int gfar_close(struct net_device *dev); 111struct sk_buff *gfar_new_skb(struct net_device *dev); 112static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp, 113 struct sk_buff *skb); 114static int gfar_set_mac_address(struct net_device *dev); 115static int gfar_change_mtu(struct net_device *dev, int new_mtu); 116static irqreturn_t gfar_error(int irq, void *dev_id); 117static irqreturn_t gfar_transmit(int irq, void *dev_id); 118static irqreturn_t gfar_interrupt(int irq, void *dev_id); 119static void adjust_link(struct net_device *dev); 120static void init_registers(struct net_device *dev); 121static int init_phy(struct net_device *dev); 122static int gfar_probe(struct of_device *ofdev, 123 const struct of_device_id *match); 124static int gfar_remove(struct of_device *ofdev); 125static void free_skb_resources(struct gfar_private *priv); 126static void gfar_set_multi(struct net_device *dev); 127static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 128static void gfar_configure_serdes(struct net_device *dev); 129static int gfar_poll(struct napi_struct *napi, int budget); 130#ifdef CONFIG_NET_POLL_CONTROLLER 131static void gfar_netpoll(struct net_device *dev); 132#endif 133int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); 134static int gfar_clean_tx_ring(struct net_device *dev); 135static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 136 int amount_pull); 137static void gfar_vlan_rx_register(struct net_device *netdev, 138 struct vlan_group *grp); 139void gfar_halt(struct net_device *dev); 140static void gfar_halt_nodisable(struct net_device *dev); 141void gfar_start(struct net_device *dev); 142static void gfar_clear_exact_match(struct net_device *dev); 143static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); 144static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 145 146MODULE_AUTHOR("Freescale Semiconductor, Inc"); 147MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 148MODULE_LICENSE("GPL"); 149 150static const struct net_device_ops gfar_netdev_ops = { 151 .ndo_open = gfar_enet_open, 152 .ndo_start_xmit = gfar_start_xmit, 153 .ndo_stop = gfar_close, 154 .ndo_change_mtu = gfar_change_mtu, 155 .ndo_set_multicast_list = gfar_set_multi, 156 .ndo_tx_timeout = gfar_timeout, 157 .ndo_do_ioctl = gfar_ioctl, 158 .ndo_vlan_rx_register = gfar_vlan_rx_register, 159#ifdef CONFIG_NET_POLL_CONTROLLER 160 .ndo_poll_controller = gfar_netpoll, 161#endif 162}; 163 164/* Returns 1 if incoming frames use an FCB */ 165static inline int gfar_uses_fcb(struct gfar_private *priv) 166{ 167 return priv->vlgrp || priv->rx_csum_enable; 168} 169 170static int gfar_of_init(struct net_device *dev) 171{ 172 const char *model; 173 const char *ctype; 174 const void *mac_addr; 175 u64 addr, size; 176 int err = 0; 177 struct gfar_private *priv = netdev_priv(dev); 178 struct device_node *np = priv->node; 179 const u32 *stash; 180 const u32 *stash_len; 181 const u32 *stash_idx; 182 183 if (!np || !of_device_is_available(np)) 184 return -ENODEV; 185 186 /* get a pointer to the register memory */ 187 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL)); 188 priv->regs = ioremap(addr, size); 189 190 if (priv->regs == NULL) 191 return -ENOMEM; 192 193 priv->interruptTransmit = irq_of_parse_and_map(np, 0); 194 195 model = of_get_property(np, "model", NULL); 196 197 /* If we aren't the FEC we have multiple interrupts */ 198 if (model && strcasecmp(model, "FEC")) { 199 priv->interruptReceive = irq_of_parse_and_map(np, 1); 200 201 priv->interruptError = irq_of_parse_and_map(np, 2); 202 203 if (priv->interruptTransmit < 0 || 204 priv->interruptReceive < 0 || 205 priv->interruptError < 0) { 206 err = -EINVAL; 207 goto err_out; 208 } 209 } 210 211 stash = of_get_property(np, "bd-stash", NULL); 212 213 if(stash) { 214 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 215 priv->bd_stash_en = 1; 216 } 217 218 stash_len = of_get_property(np, "rx-stash-len", NULL); 219 220 if (stash_len) 221 priv->rx_stash_size = *stash_len; 222 223 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 224 225 if (stash_idx) 226 priv->rx_stash_index = *stash_idx; 227 228 if (stash_len || stash_idx) 229 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 230 231 mac_addr = of_get_mac_address(np); 232 if (mac_addr) 233 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN); 234 235 if (model && !strcasecmp(model, "TSEC")) 236 priv->device_flags = 237 FSL_GIANFAR_DEV_HAS_GIGABIT | 238 FSL_GIANFAR_DEV_HAS_COALESCE | 239 FSL_GIANFAR_DEV_HAS_RMON | 240 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 241 if (model && !strcasecmp(model, "eTSEC")) 242 priv->device_flags = 243 FSL_GIANFAR_DEV_HAS_GIGABIT | 244 FSL_GIANFAR_DEV_HAS_COALESCE | 245 FSL_GIANFAR_DEV_HAS_RMON | 246 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 247 FSL_GIANFAR_DEV_HAS_PADDING | 248 FSL_GIANFAR_DEV_HAS_CSUM | 249 FSL_GIANFAR_DEV_HAS_VLAN | 250 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 251 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH; 252 253 ctype = of_get_property(np, "phy-connection-type", NULL); 254 255 /* We only care about rgmii-id. The rest are autodetected */ 256 if (ctype && !strcmp(ctype, "rgmii-id")) 257 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 258 else 259 priv->interface = PHY_INTERFACE_MODE_MII; 260 261 if (of_get_property(np, "fsl,magic-packet", NULL)) 262 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 263 264 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 265 if (!priv->phy_node) { 266 u32 *fixed_link; 267 268 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL); 269 if (!fixed_link) { 270 err = -ENODEV; 271 goto err_out; 272 } 273 } 274 275 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 276 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 277 278 return 0; 279 280err_out: 281 iounmap(priv->regs); 282 return err; 283} 284 285/* Ioctl MII Interface */ 286static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 287{ 288 struct gfar_private *priv = netdev_priv(dev); 289 290 if (!netif_running(dev)) 291 return -EINVAL; 292 293 if (!priv->phydev) 294 return -ENODEV; 295 296 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd); 297} 298 299/* Set up the ethernet device structure, private data, 300 * and anything else we need before we start */ 301static int gfar_probe(struct of_device *ofdev, 302 const struct of_device_id *match) 303{ 304 u32 tempval; 305 struct net_device *dev = NULL; 306 struct gfar_private *priv = NULL; 307 DECLARE_MAC_BUF(mac); 308 int err = 0; 309 int len_devname; 310 311 /* Create an ethernet device instance */ 312 dev = alloc_etherdev(sizeof (*priv)); 313 314 if (NULL == dev) 315 return -ENOMEM; 316 317 priv = netdev_priv(dev); 318 priv->ndev = dev; 319 priv->ofdev = ofdev; 320 priv->node = ofdev->node; 321 SET_NETDEV_DEV(dev, &ofdev->dev); 322 323 err = gfar_of_init(dev); 324 325 if (err) 326 goto regs_fail; 327 328 spin_lock_init(&priv->txlock); 329 spin_lock_init(&priv->rxlock); 330 spin_lock_init(&priv->bflock); 331 INIT_WORK(&priv->reset_task, gfar_reset_task); 332 333 dev_set_drvdata(&ofdev->dev, priv); 334 335 /* Stop the DMA engine now, in case it was running before */ 336 /* (The firmware could have used it, and left it running). */ 337 gfar_halt(dev); 338 339 /* Reset MAC layer */ 340 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); 341 342 /* We need to delay at least 3 TX clocks */ 343 udelay(2); 344 345 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 346 gfar_write(&priv->regs->maccfg1, tempval); 347 348 /* Initialize MACCFG2. */ 349 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); 350 351 /* Initialize ECNTRL */ 352 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); 353 354 /* Set the dev->base_addr to the gfar reg region */ 355 dev->base_addr = (unsigned long) (priv->regs); 356 357 SET_NETDEV_DEV(dev, &ofdev->dev); 358 359 /* Fill in the dev structure */ 360 dev->watchdog_timeo = TX_TIMEOUT; 361 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT); 362 dev->mtu = 1500; 363 364 dev->netdev_ops = &gfar_netdev_ops; 365 dev->ethtool_ops = &gfar_ethtool_ops; 366 367 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 368 priv->rx_csum_enable = 1; 369 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA; 370 } else 371 priv->rx_csum_enable = 0; 372 373 priv->vlgrp = NULL; 374 375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) 376 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 377 378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 379 priv->extended_hash = 1; 380 priv->hash_width = 9; 381 382 priv->hash_regs[0] = &priv->regs->igaddr0; 383 priv->hash_regs[1] = &priv->regs->igaddr1; 384 priv->hash_regs[2] = &priv->regs->igaddr2; 385 priv->hash_regs[3] = &priv->regs->igaddr3; 386 priv->hash_regs[4] = &priv->regs->igaddr4; 387 priv->hash_regs[5] = &priv->regs->igaddr5; 388 priv->hash_regs[6] = &priv->regs->igaddr6; 389 priv->hash_regs[7] = &priv->regs->igaddr7; 390 priv->hash_regs[8] = &priv->regs->gaddr0; 391 priv->hash_regs[9] = &priv->regs->gaddr1; 392 priv->hash_regs[10] = &priv->regs->gaddr2; 393 priv->hash_regs[11] = &priv->regs->gaddr3; 394 priv->hash_regs[12] = &priv->regs->gaddr4; 395 priv->hash_regs[13] = &priv->regs->gaddr5; 396 priv->hash_regs[14] = &priv->regs->gaddr6; 397 priv->hash_regs[15] = &priv->regs->gaddr7; 398 399 } else { 400 priv->extended_hash = 0; 401 priv->hash_width = 8; 402 403 priv->hash_regs[0] = &priv->regs->gaddr0; 404 priv->hash_regs[1] = &priv->regs->gaddr1; 405 priv->hash_regs[2] = &priv->regs->gaddr2; 406 priv->hash_regs[3] = &priv->regs->gaddr3; 407 priv->hash_regs[4] = &priv->regs->gaddr4; 408 priv->hash_regs[5] = &priv->regs->gaddr5; 409 priv->hash_regs[6] = &priv->regs->gaddr6; 410 priv->hash_regs[7] = &priv->regs->gaddr7; 411 } 412 413 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) 414 priv->padding = DEFAULT_PADDING; 415 else 416 priv->padding = 0; 417 418 if (dev->features & NETIF_F_IP_CSUM) 419 dev->hard_header_len += GMAC_FCB_LEN; 420 421 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 422 priv->tx_ring_size = DEFAULT_TX_RING_SIZE; 423 priv->rx_ring_size = DEFAULT_RX_RING_SIZE; 424 priv->num_txbdfree = DEFAULT_TX_RING_SIZE; 425 426 priv->txcoalescing = DEFAULT_TX_COALESCE; 427 priv->txic = DEFAULT_TXIC; 428 priv->rxcoalescing = DEFAULT_RX_COALESCE; 429 priv->rxic = DEFAULT_RXIC; 430 431 /* Enable most messages by default */ 432 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 433 434 /* Carrier starts down, phylib will bring it up */ 435 netif_carrier_off(dev); 436 437 err = register_netdev(dev); 438 439 if (err) { 440 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 441 dev->name); 442 goto register_fail; 443 } 444 445 device_init_wakeup(&dev->dev, 446 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 447 448 /* fill out IRQ number and name fields */ 449 len_devname = strlen(dev->name); 450 strncpy(&priv->int_name_tx[0], dev->name, len_devname); 451 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 452 strncpy(&priv->int_name_tx[len_devname], 453 "_tx", sizeof("_tx") + 1); 454 455 strncpy(&priv->int_name_rx[0], dev->name, len_devname); 456 strncpy(&priv->int_name_rx[len_devname], 457 "_rx", sizeof("_rx") + 1); 458 459 strncpy(&priv->int_name_er[0], dev->name, len_devname); 460 strncpy(&priv->int_name_er[len_devname], 461 "_er", sizeof("_er") + 1); 462 } else 463 priv->int_name_tx[len_devname] = '\0'; 464 465 /* Create all the sysfs files */ 466 gfar_init_sysfs(dev); 467 468 /* Print out the device info */ 469 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr); 470 471 /* Even more device info helps when determining which kernel */ 472 /* provided which set of benchmarks. */ 473 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); 474 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", 475 dev->name, priv->rx_ring_size, priv->tx_ring_size); 476 477 return 0; 478 479register_fail: 480 iounmap(priv->regs); 481regs_fail: 482 if (priv->phy_node) 483 of_node_put(priv->phy_node); 484 if (priv->tbi_node) 485 of_node_put(priv->tbi_node); 486 free_netdev(dev); 487 return err; 488} 489 490static int gfar_remove(struct of_device *ofdev) 491{ 492 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); 493 494 if (priv->phy_node) 495 of_node_put(priv->phy_node); 496 if (priv->tbi_node) 497 of_node_put(priv->tbi_node); 498 499 dev_set_drvdata(&ofdev->dev, NULL); 500 501 iounmap(priv->regs); 502 free_netdev(priv->ndev); 503 504 return 0; 505} 506 507#ifdef CONFIG_PM 508static int gfar_suspend(struct of_device *ofdev, pm_message_t state) 509{ 510 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); 511 struct net_device *dev = priv->ndev; 512 unsigned long flags; 513 u32 tempval; 514 515 int magic_packet = priv->wol_en && 516 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 517 518 netif_device_detach(dev); 519 520 if (netif_running(dev)) { 521 spin_lock_irqsave(&priv->txlock, flags); 522 spin_lock(&priv->rxlock); 523 524 gfar_halt_nodisable(dev); 525 526 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 527 tempval = gfar_read(&priv->regs->maccfg1); 528 529 tempval &= ~MACCFG1_TX_EN; 530 531 if (!magic_packet) 532 tempval &= ~MACCFG1_RX_EN; 533 534 gfar_write(&priv->regs->maccfg1, tempval); 535 536 spin_unlock(&priv->rxlock); 537 spin_unlock_irqrestore(&priv->txlock, flags); 538 539 napi_disable(&priv->napi); 540 541 if (magic_packet) { 542 /* Enable interrupt on Magic Packet */ 543 gfar_write(&priv->regs->imask, IMASK_MAG); 544 545 /* Enable Magic Packet mode */ 546 tempval = gfar_read(&priv->regs->maccfg2); 547 tempval |= MACCFG2_MPEN; 548 gfar_write(&priv->regs->maccfg2, tempval); 549 } else { 550 phy_stop(priv->phydev); 551 } 552 } 553 554 return 0; 555} 556 557static int gfar_resume(struct of_device *ofdev) 558{ 559 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); 560 struct net_device *dev = priv->ndev; 561 unsigned long flags; 562 u32 tempval; 563 int magic_packet = priv->wol_en && 564 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 565 566 if (!netif_running(dev)) { 567 netif_device_attach(dev); 568 return 0; 569 } 570 571 if (!magic_packet && priv->phydev) 572 phy_start(priv->phydev); 573 574 /* Disable Magic Packet mode, in case something 575 * else woke us up. 576 */ 577 578 spin_lock_irqsave(&priv->txlock, flags); 579 spin_lock(&priv->rxlock); 580 581 tempval = gfar_read(&priv->regs->maccfg2); 582 tempval &= ~MACCFG2_MPEN; 583 gfar_write(&priv->regs->maccfg2, tempval); 584 585 gfar_start(dev); 586 587 spin_unlock(&priv->rxlock); 588 spin_unlock_irqrestore(&priv->txlock, flags); 589 590 netif_device_attach(dev); 591 592 napi_enable(&priv->napi); 593 594 return 0; 595} 596#else 597#define gfar_suspend NULL 598#define gfar_resume NULL 599#endif 600 601/* Reads the controller's registers to determine what interface 602 * connects it to the PHY. 603 */ 604static phy_interface_t gfar_get_interface(struct net_device *dev) 605{ 606 struct gfar_private *priv = netdev_priv(dev); 607 u32 ecntrl = gfar_read(&priv->regs->ecntrl); 608 609 if (ecntrl & ECNTRL_SGMII_MODE) 610 return PHY_INTERFACE_MODE_SGMII; 611 612 if (ecntrl & ECNTRL_TBI_MODE) { 613 if (ecntrl & ECNTRL_REDUCED_MODE) 614 return PHY_INTERFACE_MODE_RTBI; 615 else 616 return PHY_INTERFACE_MODE_TBI; 617 } 618 619 if (ecntrl & ECNTRL_REDUCED_MODE) { 620 if (ecntrl & ECNTRL_REDUCED_MII_MODE) 621 return PHY_INTERFACE_MODE_RMII; 622 else { 623 phy_interface_t interface = priv->interface; 624 625 /* 626 * This isn't autodetected right now, so it must 627 * be set by the device tree or platform code. 628 */ 629 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 630 return PHY_INTERFACE_MODE_RGMII_ID; 631 632 return PHY_INTERFACE_MODE_RGMII; 633 } 634 } 635 636 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 637 return PHY_INTERFACE_MODE_GMII; 638 639 return PHY_INTERFACE_MODE_MII; 640} 641 642 643/* Initializes driver's PHY state, and attaches to the PHY. 644 * Returns 0 on success. 645 */ 646static int init_phy(struct net_device *dev) 647{ 648 struct gfar_private *priv = netdev_priv(dev); 649 uint gigabit_support = 650 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 651 SUPPORTED_1000baseT_Full : 0; 652 phy_interface_t interface; 653 654 priv->oldlink = 0; 655 priv->oldspeed = 0; 656 priv->oldduplex = -1; 657 658 interface = gfar_get_interface(dev); 659 660 if (priv->phy_node) { 661 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 662 0, interface); 663 if (!priv->phydev) { 664 dev_err(&dev->dev, "error: Could not attach to PHY\n"); 665 return -ENODEV; 666 } 667 } 668 669 if (interface == PHY_INTERFACE_MODE_SGMII) 670 gfar_configure_serdes(dev); 671 672 /* Remove any features not supported by the controller */ 673 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 674 priv->phydev->advertising = priv->phydev->supported; 675 676 return 0; 677} 678 679/* 680 * Initialize TBI PHY interface for communicating with the 681 * SERDES lynx PHY on the chip. We communicate with this PHY 682 * through the MDIO bus on each controller, treating it as a 683 * "normal" PHY at the address found in the TBIPA register. We assume 684 * that the TBIPA register is valid. Either the MDIO bus code will set 685 * it to a value that doesn't conflict with other PHYs on the bus, or the 686 * value doesn't matter, as there are no other PHYs on the bus. 687 */ 688static void gfar_configure_serdes(struct net_device *dev) 689{ 690 struct gfar_private *priv = netdev_priv(dev); 691 struct phy_device *tbiphy; 692 693 if (!priv->tbi_node) { 694 dev_warn(&dev->dev, "error: SGMII mode requires that the " 695 "device tree specify a tbi-handle\n"); 696 return; 697 } 698 699 tbiphy = of_phy_find_device(priv->tbi_node); 700 if (!tbiphy) { 701 dev_err(&dev->dev, "error: Could not get TBI device\n"); 702 return; 703 } 704 705 /* 706 * If the link is already up, we must already be ok, and don't need to 707 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 708 * everything for us? Resetting it takes the link down and requires 709 * several seconds for it to come back. 710 */ 711 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 712 return; 713 714 /* Single clk mode, mii mode off(for serdes communication) */ 715 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 716 717 phy_write(tbiphy, MII_ADVERTISE, 718 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 719 ADVERTISE_1000XPSE_ASYM); 720 721 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | 722 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); 723} 724 725static void init_registers(struct net_device *dev) 726{ 727 struct gfar_private *priv = netdev_priv(dev); 728 729 /* Clear IEVENT */ 730 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); 731 732 /* Initialize IMASK */ 733 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); 734 735 /* Init hash registers to zero */ 736 gfar_write(&priv->regs->igaddr0, 0); 737 gfar_write(&priv->regs->igaddr1, 0); 738 gfar_write(&priv->regs->igaddr2, 0); 739 gfar_write(&priv->regs->igaddr3, 0); 740 gfar_write(&priv->regs->igaddr4, 0); 741 gfar_write(&priv->regs->igaddr5, 0); 742 gfar_write(&priv->regs->igaddr6, 0); 743 gfar_write(&priv->regs->igaddr7, 0); 744 745 gfar_write(&priv->regs->gaddr0, 0); 746 gfar_write(&priv->regs->gaddr1, 0); 747 gfar_write(&priv->regs->gaddr2, 0); 748 gfar_write(&priv->regs->gaddr3, 0); 749 gfar_write(&priv->regs->gaddr4, 0); 750 gfar_write(&priv->regs->gaddr5, 0); 751 gfar_write(&priv->regs->gaddr6, 0); 752 gfar_write(&priv->regs->gaddr7, 0); 753 754 /* Zero out the rmon mib registers if it has them */ 755 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 756 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib)); 757 758 /* Mask off the CAM interrupts */ 759 gfar_write(&priv->regs->rmon.cam1, 0xffffffff); 760 gfar_write(&priv->regs->rmon.cam2, 0xffffffff); 761 } 762 763 /* Initialize the max receive buffer length */ 764 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); 765 766 /* Initialize the Minimum Frame Length Register */ 767 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); 768} 769 770 771/* Halt the receive and transmit queues */ 772static void gfar_halt_nodisable(struct net_device *dev) 773{ 774 struct gfar_private *priv = netdev_priv(dev); 775 struct gfar __iomem *regs = priv->regs; 776 u32 tempval; 777 778 /* Mask all interrupts */ 779 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 780 781 /* Clear all interrupts */ 782 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR); 783 784 /* Stop the DMA, and wait for it to stop */ 785 tempval = gfar_read(&priv->regs->dmactrl); 786 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) 787 != (DMACTRL_GRS | DMACTRL_GTS)) { 788 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 789 gfar_write(&priv->regs->dmactrl, tempval); 790 791 while (!(gfar_read(&priv->regs->ievent) & 792 (IEVENT_GRSC | IEVENT_GTSC))) 793 cpu_relax(); 794 } 795} 796 797/* Halt the receive and transmit queues */ 798void gfar_halt(struct net_device *dev) 799{ 800 struct gfar_private *priv = netdev_priv(dev); 801 struct gfar __iomem *regs = priv->regs; 802 u32 tempval; 803 804 gfar_halt_nodisable(dev); 805 806 /* Disable Rx and Tx */ 807 tempval = gfar_read(&regs->maccfg1); 808 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 809 gfar_write(&regs->maccfg1, tempval); 810} 811 812void stop_gfar(struct net_device *dev) 813{ 814 struct gfar_private *priv = netdev_priv(dev); 815 struct gfar __iomem *regs = priv->regs; 816 unsigned long flags; 817 818 phy_stop(priv->phydev); 819 820 /* Lock it down */ 821 spin_lock_irqsave(&priv->txlock, flags); 822 spin_lock(&priv->rxlock); 823 824 gfar_halt(dev); 825 826 spin_unlock(&priv->rxlock); 827 spin_unlock_irqrestore(&priv->txlock, flags); 828 829 /* Free the IRQs */ 830 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 831 free_irq(priv->interruptError, dev); 832 free_irq(priv->interruptTransmit, dev); 833 free_irq(priv->interruptReceive, dev); 834 } else { 835 free_irq(priv->interruptTransmit, dev); 836 } 837 838 free_skb_resources(priv); 839 840 dma_free_coherent(&priv->ofdev->dev, 841 sizeof(struct txbd8)*priv->tx_ring_size 842 + sizeof(struct rxbd8)*priv->rx_ring_size, 843 priv->tx_bd_base, 844 gfar_read(&regs->tbase0)); 845} 846 847/* If there are any tx skbs or rx skbs still around, free them. 848 * Then free tx_skbuff and rx_skbuff */ 849static void free_skb_resources(struct gfar_private *priv) 850{ 851 struct rxbd8 *rxbdp; 852 struct txbd8 *txbdp; 853 int i, j; 854 855 /* Go through all the buffer descriptors and free their data buffers */ 856 txbdp = priv->tx_bd_base; 857 858 for (i = 0; i < priv->tx_ring_size; i++) { 859 if (!priv->tx_skbuff[i]) 860 continue; 861 862 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr, 863 txbdp->length, DMA_TO_DEVICE); 864 txbdp->lstatus = 0; 865 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) { 866 txbdp++; 867 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr, 868 txbdp->length, DMA_TO_DEVICE); 869 } 870 txbdp++; 871 dev_kfree_skb_any(priv->tx_skbuff[i]); 872 priv->tx_skbuff[i] = NULL; 873 } 874 875 kfree(priv->tx_skbuff); 876 877 rxbdp = priv->rx_bd_base; 878 879 /* rx_skbuff is not guaranteed to be allocated, so only 880 * free it and its contents if it is allocated */ 881 if(priv->rx_skbuff != NULL) { 882 for (i = 0; i < priv->rx_ring_size; i++) { 883 if (priv->rx_skbuff[i]) { 884 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr, 885 priv->rx_buffer_size, 886 DMA_FROM_DEVICE); 887 888 dev_kfree_skb_any(priv->rx_skbuff[i]); 889 priv->rx_skbuff[i] = NULL; 890 } 891 892 rxbdp->lstatus = 0; 893 rxbdp->bufPtr = 0; 894 895 rxbdp++; 896 } 897 898 kfree(priv->rx_skbuff); 899 } 900} 901 902void gfar_start(struct net_device *dev) 903{ 904 struct gfar_private *priv = netdev_priv(dev); 905 struct gfar __iomem *regs = priv->regs; 906 u32 tempval; 907 908 /* Enable Rx and Tx in MACCFG1 */ 909 tempval = gfar_read(&regs->maccfg1); 910 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 911 gfar_write(&regs->maccfg1, tempval); 912 913 /* Initialize DMACTRL to have WWR and WOP */ 914 tempval = gfar_read(&priv->regs->dmactrl); 915 tempval |= DMACTRL_INIT_SETTINGS; 916 gfar_write(&priv->regs->dmactrl, tempval); 917 918 /* Make sure we aren't stopped */ 919 tempval = gfar_read(&priv->regs->dmactrl); 920 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 921 gfar_write(&priv->regs->dmactrl, tempval); 922 923 /* Clear THLT/RHLT, so that the DMA starts polling now */ 924 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT); 925 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT); 926 927 /* Unmask the interrupts we look for */ 928 gfar_write(&regs->imask, IMASK_DEFAULT); 929 930 dev->trans_start = jiffies; 931} 932 933/* Bring the controller up and running */ 934int startup_gfar(struct net_device *dev) 935{ 936 struct txbd8 *txbdp; 937 struct rxbd8 *rxbdp; 938 dma_addr_t addr = 0; 939 unsigned long vaddr; 940 int i; 941 struct gfar_private *priv = netdev_priv(dev); 942 struct gfar __iomem *regs = priv->regs; 943 int err = 0; 944 u32 rctrl = 0; 945 u32 attrs = 0; 946 947 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 948 949 /* Allocate memory for the buffer descriptors */ 950 vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev, 951 sizeof (struct txbd8) * priv->tx_ring_size + 952 sizeof (struct rxbd8) * priv->rx_ring_size, 953 &addr, GFP_KERNEL); 954 955 if (vaddr == 0) { 956 if (netif_msg_ifup(priv)) 957 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", 958 dev->name); 959 return -ENOMEM; 960 } 961 962 priv->tx_bd_base = (struct txbd8 *) vaddr; 963 964 /* enet DMA only understands physical addresses */ 965 gfar_write(&regs->tbase0, addr); 966 967 /* Start the rx descriptor ring where the tx ring leaves off */ 968 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; 969 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; 970 priv->rx_bd_base = (struct rxbd8 *) vaddr; 971 gfar_write(&regs->rbase0, addr); 972 973 /* Setup the skbuff rings */ 974 priv->tx_skbuff = 975 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * 976 priv->tx_ring_size, GFP_KERNEL); 977 978 if (NULL == priv->tx_skbuff) { 979 if (netif_msg_ifup(priv)) 980 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", 981 dev->name); 982 err = -ENOMEM; 983 goto tx_skb_fail; 984 } 985 986 for (i = 0; i < priv->tx_ring_size; i++) 987 priv->tx_skbuff[i] = NULL; 988 989 priv->rx_skbuff = 990 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * 991 priv->rx_ring_size, GFP_KERNEL); 992 993 if (NULL == priv->rx_skbuff) { 994 if (netif_msg_ifup(priv)) 995 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", 996 dev->name); 997 err = -ENOMEM; 998 goto rx_skb_fail; 999 } 1000 1001 for (i = 0; i < priv->rx_ring_size; i++) 1002 priv->rx_skbuff[i] = NULL; 1003 1004 /* Initialize some variables in our dev structure */ 1005 priv->num_txbdfree = priv->tx_ring_size; 1006 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; 1007 priv->cur_rx = priv->rx_bd_base; 1008 priv->skb_curtx = priv->skb_dirtytx = 0; 1009 priv->skb_currx = 0; 1010 1011 /* Initialize Transmit Descriptor Ring */ 1012 txbdp = priv->tx_bd_base; 1013 for (i = 0; i < priv->tx_ring_size; i++) { 1014 txbdp->lstatus = 0; 1015 txbdp->bufPtr = 0; 1016 txbdp++; 1017 } 1018 1019 /* Set the last descriptor in the ring to indicate wrap */ 1020 txbdp--; 1021 txbdp->status |= TXBD_WRAP; 1022 1023 rxbdp = priv->rx_bd_base; 1024 for (i = 0; i < priv->rx_ring_size; i++) { 1025 struct sk_buff *skb; 1026 1027 skb = gfar_new_skb(dev); 1028 1029 if (!skb) { 1030 printk(KERN_ERR "%s: Can't allocate RX buffers\n", 1031 dev->name); 1032 1033 goto err_rxalloc_fail; 1034 } 1035 1036 priv->rx_skbuff[i] = skb; 1037 1038 gfar_new_rxbdp(dev, rxbdp, skb); 1039 1040 rxbdp++; 1041 } 1042 1043 /* Set the last descriptor in the ring to wrap */ 1044 rxbdp--; 1045 rxbdp->status |= RXBD_WRAP; 1046 1047 /* If the device has multiple interrupts, register for 1048 * them. Otherwise, only register for the one */ 1049 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1050 /* Install our interrupt handlers for Error, 1051 * Transmit, and Receive */ 1052 if (request_irq(priv->interruptError, gfar_error, 1053 0, priv->int_name_er, dev) < 0) { 1054 if (netif_msg_intr(priv)) 1055 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1056 dev->name, priv->interruptError); 1057 1058 err = -1; 1059 goto err_irq_fail; 1060 } 1061 1062 if (request_irq(priv->interruptTransmit, gfar_transmit, 1063 0, priv->int_name_tx, dev) < 0) { 1064 if (netif_msg_intr(priv)) 1065 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1066 dev->name, priv->interruptTransmit); 1067 1068 err = -1; 1069 1070 goto tx_irq_fail; 1071 } 1072 1073 if (request_irq(priv->interruptReceive, gfar_receive, 1074 0, priv->int_name_rx, dev) < 0) { 1075 if (netif_msg_intr(priv)) 1076 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", 1077 dev->name, priv->interruptReceive); 1078 1079 err = -1; 1080 goto rx_irq_fail; 1081 } 1082 } else { 1083 if (request_irq(priv->interruptTransmit, gfar_interrupt, 1084 0, priv->int_name_tx, dev) < 0) { 1085 if (netif_msg_intr(priv)) 1086 printk(KERN_ERR "%s: Can't get IRQ %d\n", 1087 dev->name, priv->interruptTransmit); 1088 1089 err = -1; 1090 goto err_irq_fail; 1091 } 1092 } 1093 1094 phy_start(priv->phydev); 1095 1096 /* Configure the coalescing support */ 1097 gfar_write(&regs->txic, 0); 1098 if (priv->txcoalescing) 1099 gfar_write(&regs->txic, priv->txic); 1100 1101 gfar_write(&regs->rxic, 0); 1102 if (priv->rxcoalescing) 1103 gfar_write(&regs->rxic, priv->rxic); 1104 1105 if (priv->rx_csum_enable) 1106 rctrl |= RCTRL_CHECKSUMMING; 1107 1108 if (priv->extended_hash) { 1109 rctrl |= RCTRL_EXTHASH; 1110 1111 gfar_clear_exact_match(dev); 1112 rctrl |= RCTRL_EMEN; 1113 } 1114 1115 if (priv->padding) { 1116 rctrl &= ~RCTRL_PAL_MASK; 1117 rctrl |= RCTRL_PADDING(priv->padding); 1118 } 1119 1120 /* Init rctrl based on our settings */ 1121 gfar_write(&priv->regs->rctrl, rctrl); 1122 1123 if (dev->features & NETIF_F_IP_CSUM) 1124 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM); 1125 1126 /* Set the extraction length and index */ 1127 attrs = ATTRELI_EL(priv->rx_stash_size) | 1128 ATTRELI_EI(priv->rx_stash_index); 1129 1130 gfar_write(&priv->regs->attreli, attrs); 1131 1132 /* Start with defaults, and add stashing or locking 1133 * depending on the approprate variables */ 1134 attrs = ATTR_INIT_SETTINGS; 1135 1136 if (priv->bd_stash_en) 1137 attrs |= ATTR_BDSTASH; 1138 1139 if (priv->rx_stash_size != 0) 1140 attrs |= ATTR_BUFSTASH; 1141 1142 gfar_write(&priv->regs->attr, attrs); 1143 1144 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold); 1145 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve); 1146 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off); 1147 1148 /* Start the controller */ 1149 gfar_start(dev); 1150 1151 return 0; 1152 1153rx_irq_fail: 1154 free_irq(priv->interruptTransmit, dev); 1155tx_irq_fail: 1156 free_irq(priv->interruptError, dev); 1157err_irq_fail: 1158err_rxalloc_fail: 1159rx_skb_fail: 1160 free_skb_resources(priv); 1161tx_skb_fail: 1162 dma_free_coherent(&priv->ofdev->dev, 1163 sizeof(struct txbd8)*priv->tx_ring_size 1164 + sizeof(struct rxbd8)*priv->rx_ring_size, 1165 priv->tx_bd_base, 1166 gfar_read(&regs->tbase0)); 1167 1168 return err; 1169} 1170 1171/* Called when something needs to use the ethernet device */ 1172/* Returns 0 for success. */ 1173static int gfar_enet_open(struct net_device *dev) 1174{ 1175 struct gfar_private *priv = netdev_priv(dev); 1176 int err; 1177 1178 napi_enable(&priv->napi); 1179 1180 skb_queue_head_init(&priv->rx_recycle); 1181 1182 /* Initialize a bunch of registers */ 1183 init_registers(dev); 1184 1185 gfar_set_mac_address(dev); 1186 1187 err = init_phy(dev); 1188 1189 if(err) { 1190 napi_disable(&priv->napi); 1191 return err; 1192 } 1193 1194 err = startup_gfar(dev); 1195 if (err) { 1196 napi_disable(&priv->napi); 1197 return err; 1198 } 1199 1200 netif_start_queue(dev); 1201 1202 device_set_wakeup_enable(&dev->dev, priv->wol_en); 1203 1204 return err; 1205} 1206 1207static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1208{ 1209 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 1210 1211 memset(fcb, 0, GMAC_FCB_LEN); 1212 1213 return fcb; 1214} 1215 1216static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) 1217{ 1218 u8 flags = 0; 1219 1220 /* If we're here, it's a IP packet with a TCP or UDP 1221 * payload. We set it to checksum, using a pseudo-header 1222 * we provide 1223 */ 1224 flags = TXFCB_DEFAULT; 1225 1226 /* Tell the controller what the protocol is */ 1227 /* And provide the already calculated phcs */ 1228 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1229 flags |= TXFCB_UDP; 1230 fcb->phcs = udp_hdr(skb)->check; 1231 } else 1232 fcb->phcs = tcp_hdr(skb)->check; 1233 1234 /* l3os is the distance between the start of the 1235 * frame (skb->data) and the start of the IP hdr. 1236 * l4os is the distance between the start of the 1237 * l3 hdr and the l4 hdr */ 1238 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); 1239 fcb->l4os = skb_network_header_len(skb); 1240 1241 fcb->flags = flags; 1242} 1243 1244void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1245{ 1246 fcb->flags |= TXFCB_VLN; 1247 fcb->vlctl = vlan_tx_tag_get(skb); 1248} 1249 1250static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1251 struct txbd8 *base, int ring_size) 1252{ 1253 struct txbd8 *new_bd = bdp + stride; 1254 1255 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1256} 1257 1258static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1259 int ring_size) 1260{ 1261 return skip_txbd(bdp, 1, base, ring_size); 1262} 1263 1264/* This is called by the kernel when a frame is ready for transmission. */ 1265/* It is pointed to by the dev->hard_start_xmit function pointer */ 1266static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1267{ 1268 struct gfar_private *priv = netdev_priv(dev); 1269 struct txfcb *fcb = NULL; 1270 struct txbd8 *txbdp, *txbdp_start, *base; 1271 u32 lstatus; 1272 int i; 1273 u32 bufaddr; 1274 unsigned long flags; 1275 unsigned int nr_frags, length; 1276 1277 base = priv->tx_bd_base; 1278 1279 /* make space for additional header when fcb is needed */ 1280 if (((skb->ip_summed == CHECKSUM_PARTIAL) || 1281 (priv->vlgrp && vlan_tx_tag_present(skb))) && 1282 (skb_headroom(skb) < GMAC_FCB_LEN)) { 1283 struct sk_buff *skb_new; 1284 1285 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN); 1286 if (!skb_new) { 1287 dev->stats.tx_errors++; 1288 kfree_skb(skb); 1289 return NETDEV_TX_OK; 1290 } 1291 kfree_skb(skb); 1292 skb = skb_new; 1293 } 1294 1295 /* total number of fragments in the SKB */ 1296 nr_frags = skb_shinfo(skb)->nr_frags; 1297 1298 spin_lock_irqsave(&priv->txlock, flags); 1299 1300 /* check if there is space to queue this packet */ 1301 if ((nr_frags+1) > priv->num_txbdfree) { 1302 /* no space, stop the queue */ 1303 netif_stop_queue(dev); 1304 dev->stats.tx_fifo_errors++; 1305 spin_unlock_irqrestore(&priv->txlock, flags); 1306 return NETDEV_TX_BUSY; 1307 } 1308 1309 /* Update transmit stats */ 1310 dev->stats.tx_bytes += skb->len; 1311 1312 txbdp = txbdp_start = priv->cur_tx; 1313 1314 if (nr_frags == 0) { 1315 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1316 } else { 1317 /* Place the fragment addresses and lengths into the TxBDs */ 1318 for (i = 0; i < nr_frags; i++) { 1319 /* Point at the next BD, wrapping as needed */ 1320 txbdp = next_txbd(txbdp, base, priv->tx_ring_size); 1321 1322 length = skb_shinfo(skb)->frags[i].size; 1323 1324 lstatus = txbdp->lstatus | length | 1325 BD_LFLAG(TXBD_READY); 1326 1327 /* Handle the last BD specially */ 1328 if (i == nr_frags - 1) 1329 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1330 1331 bufaddr = dma_map_page(&priv->ofdev->dev, 1332 skb_shinfo(skb)->frags[i].page, 1333 skb_shinfo(skb)->frags[i].page_offset, 1334 length, 1335 DMA_TO_DEVICE); 1336 1337 /* set the TxBD length and buffer pointer */ 1338 txbdp->bufPtr = bufaddr; 1339 txbdp->lstatus = lstatus; 1340 } 1341 1342 lstatus = txbdp_start->lstatus; 1343 } 1344 1345 /* Set up checksumming */ 1346 if (CHECKSUM_PARTIAL == skb->ip_summed) { 1347 fcb = gfar_add_fcb(skb); 1348 lstatus |= BD_LFLAG(TXBD_TOE); 1349 gfar_tx_checksum(skb, fcb); 1350 } 1351 1352 if (priv->vlgrp && vlan_tx_tag_present(skb)) { 1353 if (unlikely(NULL == fcb)) { 1354 fcb = gfar_add_fcb(skb); 1355 lstatus |= BD_LFLAG(TXBD_TOE); 1356 } 1357 1358 gfar_tx_vlan(skb, fcb); 1359 } 1360 1361 /* setup the TxBD length and buffer pointer for the first BD */ 1362 priv->tx_skbuff[priv->skb_curtx] = skb; 1363 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, 1364 skb_headlen(skb), DMA_TO_DEVICE); 1365 1366 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1367 1368 /* 1369 * The powerpc-specific eieio() is used, as wmb() has too strong 1370 * semantics (it requires synchronization between cacheable and 1371 * uncacheable mappings, which eieio doesn't provide and which we 1372 * don't need), thus requiring a more expensive sync instruction. At 1373 * some point, the set of architecture-independent barrier functions 1374 * should be expanded to include weaker barriers. 1375 */ 1376 eieio(); 1377 1378 txbdp_start->lstatus = lstatus; 1379 1380 /* Update the current skb pointer to the next entry we will use 1381 * (wrapping if necessary) */ 1382 priv->skb_curtx = (priv->skb_curtx + 1) & 1383 TX_RING_MOD_MASK(priv->tx_ring_size); 1384 1385 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size); 1386 1387 /* reduce TxBD free count */ 1388 priv->num_txbdfree -= (nr_frags + 1); 1389 1390 dev->trans_start = jiffies; 1391 1392 /* If the next BD still needs to be cleaned up, then the bds 1393 are full. We need to tell the kernel to stop sending us stuff. */ 1394 if (!priv->num_txbdfree) { 1395 netif_stop_queue(dev); 1396 1397 dev->stats.tx_fifo_errors++; 1398 } 1399 1400 /* Tell the DMA to go go go */ 1401 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); 1402 1403 /* Unlock priv */ 1404 spin_unlock_irqrestore(&priv->txlock, flags); 1405 1406 return NETDEV_TX_OK; 1407} 1408 1409/* Stops the kernel queue, and halts the controller */ 1410static int gfar_close(struct net_device *dev) 1411{ 1412 struct gfar_private *priv = netdev_priv(dev); 1413 1414 napi_disable(&priv->napi); 1415 1416 skb_queue_purge(&priv->rx_recycle); 1417 cancel_work_sync(&priv->reset_task); 1418 stop_gfar(dev); 1419 1420 /* Disconnect from the PHY */ 1421 phy_disconnect(priv->phydev); 1422 priv->phydev = NULL; 1423 1424 netif_stop_queue(dev); 1425 1426 return 0; 1427} 1428 1429/* Changes the mac address if the controller is not running. */ 1430static int gfar_set_mac_address(struct net_device *dev) 1431{ 1432 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 1433 1434 return 0; 1435} 1436 1437 1438/* Enables and disables VLAN insertion/extraction */ 1439static void gfar_vlan_rx_register(struct net_device *dev, 1440 struct vlan_group *grp) 1441{ 1442 struct gfar_private *priv = netdev_priv(dev); 1443 unsigned long flags; 1444 u32 tempval; 1445 1446 spin_lock_irqsave(&priv->rxlock, flags); 1447 1448 priv->vlgrp = grp; 1449 1450 if (grp) { 1451 /* Enable VLAN tag insertion */ 1452 tempval = gfar_read(&priv->regs->tctrl); 1453 tempval |= TCTRL_VLINS; 1454 1455 gfar_write(&priv->regs->tctrl, tempval); 1456 1457 /* Enable VLAN tag extraction */ 1458 tempval = gfar_read(&priv->regs->rctrl); 1459 tempval |= RCTRL_VLEX; 1460 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT); 1461 gfar_write(&priv->regs->rctrl, tempval); 1462 } else { 1463 /* Disable VLAN tag insertion */ 1464 tempval = gfar_read(&priv->regs->tctrl); 1465 tempval &= ~TCTRL_VLINS; 1466 gfar_write(&priv->regs->tctrl, tempval); 1467 1468 /* Disable VLAN tag extraction */ 1469 tempval = gfar_read(&priv->regs->rctrl); 1470 tempval &= ~RCTRL_VLEX; 1471 /* If parse is no longer required, then disable parser */ 1472 if (tempval & RCTRL_REQ_PARSER) 1473 tempval |= RCTRL_PRSDEP_INIT; 1474 else 1475 tempval &= ~RCTRL_PRSDEP_INIT; 1476 gfar_write(&priv->regs->rctrl, tempval); 1477 } 1478 1479 gfar_change_mtu(dev, dev->mtu); 1480 1481 spin_unlock_irqrestore(&priv->rxlock, flags); 1482} 1483 1484static int gfar_change_mtu(struct net_device *dev, int new_mtu) 1485{ 1486 int tempsize, tempval; 1487 struct gfar_private *priv = netdev_priv(dev); 1488 int oldsize = priv->rx_buffer_size; 1489 int frame_size = new_mtu + ETH_HLEN; 1490 1491 if (priv->vlgrp) 1492 frame_size += VLAN_HLEN; 1493 1494 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 1495 if (netif_msg_drv(priv)) 1496 printk(KERN_ERR "%s: Invalid MTU setting\n", 1497 dev->name); 1498 return -EINVAL; 1499 } 1500 1501 if (gfar_uses_fcb(priv)) 1502 frame_size += GMAC_FCB_LEN; 1503 1504 frame_size += priv->padding; 1505 1506 tempsize = 1507 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 1508 INCREMENTAL_BUFFER_SIZE; 1509 1510 /* Only stop and start the controller if it isn't already 1511 * stopped, and we changed something */ 1512 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 1513 stop_gfar(dev); 1514 1515 priv->rx_buffer_size = tempsize; 1516 1517 dev->mtu = new_mtu; 1518 1519 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); 1520 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); 1521 1522 /* If the mtu is larger than the max size for standard 1523 * ethernet frames (ie, a jumbo frame), then set maccfg2 1524 * to allow huge frames, and to check the length */ 1525 tempval = gfar_read(&priv->regs->maccfg2); 1526 1527 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) 1528 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 1529 else 1530 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 1531 1532 gfar_write(&priv->regs->maccfg2, tempval); 1533 1534 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 1535 startup_gfar(dev); 1536 1537 return 0; 1538} 1539 1540/* gfar_reset_task gets scheduled when a packet has not been 1541 * transmitted after a set amount of time. 1542 * For now, assume that clearing out all the structures, and 1543 * starting over will fix the problem. 1544 */ 1545static void gfar_reset_task(struct work_struct *work) 1546{ 1547 struct gfar_private *priv = container_of(work, struct gfar_private, 1548 reset_task); 1549 struct net_device *dev = priv->ndev; 1550 1551 if (dev->flags & IFF_UP) { 1552 netif_stop_queue(dev); 1553 stop_gfar(dev); 1554 startup_gfar(dev); 1555 netif_start_queue(dev); 1556 } 1557 1558 netif_tx_schedule_all(dev); 1559} 1560 1561static void gfar_timeout(struct net_device *dev) 1562{ 1563 struct gfar_private *priv = netdev_priv(dev); 1564 1565 dev->stats.tx_errors++; 1566 schedule_work(&priv->reset_task); 1567} 1568 1569/* Interrupt Handler for Transmit complete */ 1570static int gfar_clean_tx_ring(struct net_device *dev) 1571{ 1572 struct gfar_private *priv = netdev_priv(dev); 1573 struct txbd8 *bdp; 1574 struct txbd8 *lbdp = NULL; 1575 struct txbd8 *base = priv->tx_bd_base; 1576 struct sk_buff *skb; 1577 int skb_dirtytx; 1578 int tx_ring_size = priv->tx_ring_size; 1579 int frags = 0; 1580 int i; 1581 int howmany = 0; 1582 u32 lstatus; 1583 1584 bdp = priv->dirty_tx; 1585 skb_dirtytx = priv->skb_dirtytx; 1586 1587 while ((skb = priv->tx_skbuff[skb_dirtytx])) { 1588 frags = skb_shinfo(skb)->nr_frags; 1589 lbdp = skip_txbd(bdp, frags, base, tx_ring_size); 1590 1591 lstatus = lbdp->lstatus; 1592 1593 /* Only clean completed frames */ 1594 if ((lstatus & BD_LFLAG(TXBD_READY)) && 1595 (lstatus & BD_LENGTH_MASK)) 1596 break; 1597 1598 dma_unmap_single(&priv->ofdev->dev, 1599 bdp->bufPtr, 1600 bdp->length, 1601 DMA_TO_DEVICE); 1602 1603 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 1604 bdp = next_txbd(bdp, base, tx_ring_size); 1605 1606 for (i = 0; i < frags; i++) { 1607 dma_unmap_page(&priv->ofdev->dev, 1608 bdp->bufPtr, 1609 bdp->length, 1610 DMA_TO_DEVICE); 1611 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 1612 bdp = next_txbd(bdp, base, tx_ring_size); 1613 } 1614 1615 /* 1616 * If there's room in the queue (limit it to rx_buffer_size) 1617 * we add this skb back into the pool, if it's the right size 1618 */ 1619 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size && 1620 skb_recycle_check(skb, priv->rx_buffer_size + 1621 RXBUF_ALIGNMENT)) 1622 __skb_queue_head(&priv->rx_recycle, skb); 1623 else 1624 dev_kfree_skb_any(skb); 1625 1626 priv->tx_skbuff[skb_dirtytx] = NULL; 1627 1628 skb_dirtytx = (skb_dirtytx + 1) & 1629 TX_RING_MOD_MASK(tx_ring_size); 1630 1631 howmany++; 1632 priv->num_txbdfree += frags + 1; 1633 } 1634 1635 /* If we freed a buffer, we can restart transmission, if necessary */ 1636 if (netif_queue_stopped(dev) && priv->num_txbdfree) 1637 netif_wake_queue(dev); 1638 1639 /* Update dirty indicators */ 1640 priv->skb_dirtytx = skb_dirtytx; 1641 priv->dirty_tx = bdp; 1642 1643 dev->stats.tx_packets += howmany; 1644 1645 return howmany; 1646} 1647 1648static void gfar_schedule_cleanup(struct net_device *dev) 1649{ 1650 struct gfar_private *priv = netdev_priv(dev); 1651 unsigned long flags; 1652 1653 spin_lock_irqsave(&priv->txlock, flags); 1654 spin_lock(&priv->rxlock); 1655 1656 if (napi_schedule_prep(&priv->napi)) { 1657 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED); 1658 __napi_schedule(&priv->napi); 1659 } else { 1660 /* 1661 * Clear IEVENT, so interrupts aren't called again 1662 * because of the packets that have already arrived. 1663 */ 1664 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK); 1665 } 1666 1667 spin_unlock(&priv->rxlock); 1668 spin_unlock_irqrestore(&priv->txlock, flags); 1669} 1670 1671/* Interrupt Handler for Transmit complete */ 1672static irqreturn_t gfar_transmit(int irq, void *dev_id) 1673{ 1674 gfar_schedule_cleanup((struct net_device *)dev_id); 1675 return IRQ_HANDLED; 1676} 1677 1678static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp, 1679 struct sk_buff *skb) 1680{ 1681 struct gfar_private *priv = netdev_priv(dev); 1682 u32 lstatus; 1683 1684 bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, 1685 priv->rx_buffer_size, DMA_FROM_DEVICE); 1686 1687 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 1688 1689 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1) 1690 lstatus |= BD_LFLAG(RXBD_WRAP); 1691 1692 eieio(); 1693 1694 bdp->lstatus = lstatus; 1695} 1696 1697 1698struct sk_buff * gfar_new_skb(struct net_device *dev) 1699{ 1700 unsigned int alignamount; 1701 struct gfar_private *priv = netdev_priv(dev); 1702 struct sk_buff *skb = NULL; 1703 1704 skb = __skb_dequeue(&priv->rx_recycle); 1705 if (!skb) 1706 skb = netdev_alloc_skb(dev, 1707 priv->rx_buffer_size + RXBUF_ALIGNMENT); 1708 1709 if (!skb) 1710 return NULL; 1711 1712 alignamount = RXBUF_ALIGNMENT - 1713 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)); 1714 1715 /* We need the data buffer to be aligned properly. We will reserve 1716 * as many bytes as needed to align the data properly 1717 */ 1718 skb_reserve(skb, alignamount); 1719 1720 return skb; 1721} 1722 1723static inline void count_errors(unsigned short status, struct net_device *dev) 1724{ 1725 struct gfar_private *priv = netdev_priv(dev); 1726 struct net_device_stats *stats = &dev->stats; 1727 struct gfar_extra_stats *estats = &priv->extra_stats; 1728 1729 /* If the packet was truncated, none of the other errors 1730 * matter */ 1731 if (status & RXBD_TRUNCATED) { 1732 stats->rx_length_errors++; 1733 1734 estats->rx_trunc++; 1735 1736 return; 1737 } 1738 /* Count the errors, if there were any */ 1739 if (status & (RXBD_LARGE | RXBD_SHORT)) { 1740 stats->rx_length_errors++; 1741 1742 if (status & RXBD_LARGE) 1743 estats->rx_large++; 1744 else 1745 estats->rx_short++; 1746 } 1747 if (status & RXBD_NONOCTET) { 1748 stats->rx_frame_errors++; 1749 estats->rx_nonoctet++; 1750 } 1751 if (status & RXBD_CRCERR) { 1752 estats->rx_crcerr++; 1753 stats->rx_crc_errors++; 1754 } 1755 if (status & RXBD_OVERRUN) { 1756 estats->rx_overrun++; 1757 stats->rx_crc_errors++; 1758 } 1759} 1760 1761irqreturn_t gfar_receive(int irq, void *dev_id) 1762{ 1763 gfar_schedule_cleanup((struct net_device *)dev_id); 1764 return IRQ_HANDLED; 1765} 1766 1767static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 1768{ 1769 /* If valid headers were found, and valid sums 1770 * were verified, then we tell the kernel that no 1771 * checksumming is necessary. Otherwise, it is */ 1772 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 1773 skb->ip_summed = CHECKSUM_UNNECESSARY; 1774 else 1775 skb->ip_summed = CHECKSUM_NONE; 1776} 1777 1778 1779/* gfar_process_frame() -- handle one incoming packet if skb 1780 * isn't NULL. */ 1781static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 1782 int amount_pull) 1783{ 1784 struct gfar_private *priv = netdev_priv(dev); 1785 struct rxfcb *fcb = NULL; 1786 1787 int ret; 1788 1789 /* fcb is at the beginning if exists */ 1790 fcb = (struct rxfcb *)skb->data; 1791 1792 /* Remove the FCB from the skb */ 1793 /* Remove the padded bytes, if there are any */ 1794 if (amount_pull) 1795 skb_pull(skb, amount_pull); 1796 1797 if (priv->rx_csum_enable) 1798 gfar_rx_checksum(skb, fcb); 1799 1800 /* Tell the skb what kind of packet this is */ 1801 skb->protocol = eth_type_trans(skb, dev); 1802 1803 /* Send the packet up the stack */ 1804 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) 1805 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl); 1806 else 1807 ret = netif_receive_skb(skb); 1808 1809 if (NET_RX_DROP == ret) 1810 priv->extra_stats.kernel_dropped++; 1811 1812 return 0; 1813} 1814 1815/* gfar_clean_rx_ring() -- Processes each frame in the rx ring 1816 * until the budget/quota has been reached. Returns the number 1817 * of frames handled 1818 */ 1819int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) 1820{ 1821 struct rxbd8 *bdp, *base; 1822 struct sk_buff *skb; 1823 int pkt_len; 1824 int amount_pull; 1825 int howmany = 0; 1826 struct gfar_private *priv = netdev_priv(dev); 1827 1828 /* Get the first full descriptor */ 1829 bdp = priv->cur_rx; 1830 base = priv->rx_bd_base; 1831 1832 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) + 1833 priv->padding; 1834 1835 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 1836 struct sk_buff *newskb; 1837 rmb(); 1838 1839 /* Add another skb for the future */ 1840 newskb = gfar_new_skb(dev); 1841 1842 skb = priv->rx_skbuff[priv->skb_currx]; 1843 1844 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, 1845 priv->rx_buffer_size, DMA_FROM_DEVICE); 1846 1847 /* We drop the frame if we failed to allocate a new buffer */ 1848 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 1849 bdp->status & RXBD_ERR)) { 1850 count_errors(bdp->status, dev); 1851 1852 if (unlikely(!newskb)) 1853 newskb = skb; 1854 else if (skb) { 1855 /* 1856 * We need to reset ->data to what it 1857 * was before gfar_new_skb() re-aligned 1858 * it to an RXBUF_ALIGNMENT boundary 1859 * before we put the skb back on the 1860 * recycle list. 1861 */ 1862 skb->data = skb->head + NET_SKB_PAD; 1863 __skb_queue_head(&priv->rx_recycle, skb); 1864 } 1865 } else { 1866 /* Increment the number of packets */ 1867 dev->stats.rx_packets++; 1868 howmany++; 1869 1870 if (likely(skb)) { 1871 pkt_len = bdp->length - ETH_FCS_LEN; 1872 /* Remove the FCS from the packet length */ 1873 skb_put(skb, pkt_len); 1874 dev->stats.rx_bytes += pkt_len; 1875 1876 if (in_irq() || irqs_disabled()) 1877 printk("Interrupt problem!\n"); 1878 gfar_process_frame(dev, skb, amount_pull); 1879 1880 } else { 1881 if (netif_msg_rx_err(priv)) 1882 printk(KERN_WARNING 1883 "%s: Missing skb!\n", dev->name); 1884 dev->stats.rx_dropped++; 1885 priv->extra_stats.rx_skbmissing++; 1886 } 1887 1888 } 1889 1890 priv->rx_skbuff[priv->skb_currx] = newskb; 1891 1892 /* Setup the new bdp */ 1893 gfar_new_rxbdp(dev, bdp, newskb); 1894 1895 /* Update to the next pointer */ 1896 bdp = next_bd(bdp, base, priv->rx_ring_size); 1897 1898 /* update to point at the next skb */ 1899 priv->skb_currx = 1900 (priv->skb_currx + 1) & 1901 RX_RING_MOD_MASK(priv->rx_ring_size); 1902 } 1903 1904 /* Update the current rxbd pointer to be the next one */ 1905 priv->cur_rx = bdp; 1906 1907 return howmany; 1908} 1909 1910static int gfar_poll(struct napi_struct *napi, int budget) 1911{ 1912 struct gfar_private *priv = container_of(napi, struct gfar_private, napi); 1913 struct net_device *dev = priv->ndev; 1914 int tx_cleaned = 0; 1915 int rx_cleaned = 0; 1916 unsigned long flags; 1917 1918 /* Clear IEVENT, so interrupts aren't called again 1919 * because of the packets that have already arrived */ 1920 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK); 1921 1922 /* If we fail to get the lock, don't bother with the TX BDs */ 1923 if (spin_trylock_irqsave(&priv->txlock, flags)) { 1924 tx_cleaned = gfar_clean_tx_ring(dev); 1925 spin_unlock_irqrestore(&priv->txlock, flags); 1926 } 1927 1928 rx_cleaned = gfar_clean_rx_ring(dev, budget); 1929 1930 if (tx_cleaned) 1931 return budget; 1932 1933 if (rx_cleaned < budget) { 1934 napi_complete(napi); 1935 1936 /* Clear the halt bit in RSTAT */ 1937 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); 1938 1939 gfar_write(&priv->regs->imask, IMASK_DEFAULT); 1940 1941 /* If we are coalescing interrupts, update the timer */ 1942 /* Otherwise, clear it */ 1943 if (likely(priv->rxcoalescing)) { 1944 gfar_write(&priv->regs->rxic, 0); 1945 gfar_write(&priv->regs->rxic, priv->rxic); 1946 } 1947 if (likely(priv->txcoalescing)) { 1948 gfar_write(&priv->regs->txic, 0); 1949 gfar_write(&priv->regs->txic, priv->txic); 1950 } 1951 } 1952 1953 return rx_cleaned; 1954} 1955 1956#ifdef CONFIG_NET_POLL_CONTROLLER 1957/* 1958 * Polling 'interrupt' - used by things like netconsole to send skbs 1959 * without having to re-enable interrupts. It's not called while 1960 * the interrupt routine is executing. 1961 */ 1962static void gfar_netpoll(struct net_device *dev) 1963{ 1964 struct gfar_private *priv = netdev_priv(dev); 1965 1966 /* If the device has multiple interrupts, run tx/rx */ 1967 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1968 disable_irq(priv->interruptTransmit); 1969 disable_irq(priv->interruptReceive); 1970 disable_irq(priv->interruptError); 1971 gfar_interrupt(priv->interruptTransmit, dev); 1972 enable_irq(priv->interruptError); 1973 enable_irq(priv->interruptReceive); 1974 enable_irq(priv->interruptTransmit); 1975 } else { 1976 disable_irq(priv->interruptTransmit); 1977 gfar_interrupt(priv->interruptTransmit, dev); 1978 enable_irq(priv->interruptTransmit); 1979 } 1980} 1981#endif 1982 1983/* The interrupt handler for devices with one interrupt */ 1984static irqreturn_t gfar_interrupt(int irq, void *dev_id) 1985{ 1986 struct net_device *dev = dev_id; 1987 struct gfar_private *priv = netdev_priv(dev); 1988 1989 /* Save ievent for future reference */ 1990 u32 events = gfar_read(&priv->regs->ievent); 1991 1992 /* Check for reception */ 1993 if (events & IEVENT_RX_MASK) 1994 gfar_receive(irq, dev_id); 1995 1996 /* Check for transmit completion */ 1997 if (events & IEVENT_TX_MASK) 1998 gfar_transmit(irq, dev_id); 1999 2000 /* Check for errors */ 2001 if (events & IEVENT_ERR_MASK) 2002 gfar_error(irq, dev_id); 2003 2004 return IRQ_HANDLED; 2005} 2006 2007/* Called every time the controller might need to be made 2008 * aware of new link state. The PHY code conveys this 2009 * information through variables in the phydev structure, and this 2010 * function converts those variables into the appropriate 2011 * register values, and can bring down the device if needed. 2012 */ 2013static void adjust_link(struct net_device *dev) 2014{ 2015 struct gfar_private *priv = netdev_priv(dev); 2016 struct gfar __iomem *regs = priv->regs; 2017 unsigned long flags; 2018 struct phy_device *phydev = priv->phydev; 2019 int new_state = 0; 2020 2021 spin_lock_irqsave(&priv->txlock, flags); 2022 if (phydev->link) { 2023 u32 tempval = gfar_read(&regs->maccfg2); 2024 u32 ecntrl = gfar_read(&regs->ecntrl); 2025 2026 /* Now we make sure that we can be in full duplex mode. 2027 * If not, we operate in half-duplex mode. */ 2028 if (phydev->duplex != priv->oldduplex) { 2029 new_state = 1; 2030 if (!(phydev->duplex)) 2031 tempval &= ~(MACCFG2_FULL_DUPLEX); 2032 else 2033 tempval |= MACCFG2_FULL_DUPLEX; 2034 2035 priv->oldduplex = phydev->duplex; 2036 } 2037 2038 if (phydev->speed != priv->oldspeed) { 2039 new_state = 1; 2040 switch (phydev->speed) { 2041 case 1000: 2042 tempval = 2043 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 2044 2045 ecntrl &= ~(ECNTRL_R100); 2046 break; 2047 case 100: 2048 case 10: 2049 tempval = 2050 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 2051 2052 /* Reduced mode distinguishes 2053 * between 10 and 100 */ 2054 if (phydev->speed == SPEED_100) 2055 ecntrl |= ECNTRL_R100; 2056 else 2057 ecntrl &= ~(ECNTRL_R100); 2058 break; 2059 default: 2060 if (netif_msg_link(priv)) 2061 printk(KERN_WARNING 2062 "%s: Ack! Speed (%d) is not 10/100/1000!\n", 2063 dev->name, phydev->speed); 2064 break; 2065 } 2066 2067 priv->oldspeed = phydev->speed; 2068 } 2069 2070 gfar_write(&regs->maccfg2, tempval); 2071 gfar_write(&regs->ecntrl, ecntrl); 2072 2073 if (!priv->oldlink) { 2074 new_state = 1; 2075 priv->oldlink = 1; 2076 } 2077 } else if (priv->oldlink) { 2078 new_state = 1; 2079 priv->oldlink = 0; 2080 priv->oldspeed = 0; 2081 priv->oldduplex = -1; 2082 } 2083 2084 if (new_state && netif_msg_link(priv)) 2085 phy_print_status(phydev); 2086 2087 spin_unlock_irqrestore(&priv->txlock, flags); 2088} 2089 2090/* Update the hash table based on the current list of multicast 2091 * addresses we subscribe to. Also, change the promiscuity of 2092 * the device based on the flags (this function is called 2093 * whenever dev->flags is changed */ 2094static void gfar_set_multi(struct net_device *dev) 2095{ 2096 struct dev_mc_list *mc_ptr; 2097 struct gfar_private *priv = netdev_priv(dev); 2098 struct gfar __iomem *regs = priv->regs; 2099 u32 tempval; 2100 2101 if(dev->flags & IFF_PROMISC) { 2102 /* Set RCTRL to PROM */ 2103 tempval = gfar_read(&regs->rctrl); 2104 tempval |= RCTRL_PROM; 2105 gfar_write(&regs->rctrl, tempval); 2106 } else { 2107 /* Set RCTRL to not PROM */ 2108 tempval = gfar_read(&regs->rctrl); 2109 tempval &= ~(RCTRL_PROM); 2110 gfar_write(&regs->rctrl, tempval); 2111 } 2112 2113 if(dev->flags & IFF_ALLMULTI) { 2114 /* Set the hash to rx all multicast frames */ 2115 gfar_write(&regs->igaddr0, 0xffffffff); 2116 gfar_write(&regs->igaddr1, 0xffffffff); 2117 gfar_write(&regs->igaddr2, 0xffffffff); 2118 gfar_write(&regs->igaddr3, 0xffffffff); 2119 gfar_write(&regs->igaddr4, 0xffffffff); 2120 gfar_write(&regs->igaddr5, 0xffffffff); 2121 gfar_write(&regs->igaddr6, 0xffffffff); 2122 gfar_write(&regs->igaddr7, 0xffffffff); 2123 gfar_write(&regs->gaddr0, 0xffffffff); 2124 gfar_write(&regs->gaddr1, 0xffffffff); 2125 gfar_write(&regs->gaddr2, 0xffffffff); 2126 gfar_write(&regs->gaddr3, 0xffffffff); 2127 gfar_write(&regs->gaddr4, 0xffffffff); 2128 gfar_write(&regs->gaddr5, 0xffffffff); 2129 gfar_write(&regs->gaddr6, 0xffffffff); 2130 gfar_write(&regs->gaddr7, 0xffffffff); 2131 } else { 2132 int em_num; 2133 int idx; 2134 2135 /* zero out the hash */ 2136 gfar_write(&regs->igaddr0, 0x0); 2137 gfar_write(&regs->igaddr1, 0x0); 2138 gfar_write(&regs->igaddr2, 0x0); 2139 gfar_write(&regs->igaddr3, 0x0); 2140 gfar_write(&regs->igaddr4, 0x0); 2141 gfar_write(&regs->igaddr5, 0x0); 2142 gfar_write(&regs->igaddr6, 0x0); 2143 gfar_write(&regs->igaddr7, 0x0); 2144 gfar_write(&regs->gaddr0, 0x0); 2145 gfar_write(&regs->gaddr1, 0x0); 2146 gfar_write(&regs->gaddr2, 0x0); 2147 gfar_write(&regs->gaddr3, 0x0); 2148 gfar_write(&regs->gaddr4, 0x0); 2149 gfar_write(&regs->gaddr5, 0x0); 2150 gfar_write(&regs->gaddr6, 0x0); 2151 gfar_write(&regs->gaddr7, 0x0); 2152 2153 /* If we have extended hash tables, we need to 2154 * clear the exact match registers to prepare for 2155 * setting them */ 2156 if (priv->extended_hash) { 2157 em_num = GFAR_EM_NUM + 1; 2158 gfar_clear_exact_match(dev); 2159 idx = 1; 2160 } else { 2161 idx = 0; 2162 em_num = 0; 2163 } 2164 2165 if(dev->mc_count == 0) 2166 return; 2167 2168 /* Parse the list, and set the appropriate bits */ 2169 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { 2170 if (idx < em_num) { 2171 gfar_set_mac_for_addr(dev, idx, 2172 mc_ptr->dmi_addr); 2173 idx++; 2174 } else 2175 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); 2176 } 2177 } 2178 2179 return; 2180} 2181 2182 2183/* Clears each of the exact match registers to zero, so they 2184 * don't interfere with normal reception */ 2185static void gfar_clear_exact_match(struct net_device *dev) 2186{ 2187 int idx; 2188 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; 2189 2190 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) 2191 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); 2192} 2193 2194/* Set the appropriate hash bit for the given addr */ 2195/* The algorithm works like so: 2196 * 1) Take the Destination Address (ie the multicast address), and 2197 * do a CRC on it (little endian), and reverse the bits of the 2198 * result. 2199 * 2) Use the 8 most significant bits as a hash into a 256-entry 2200 * table. The table is controlled through 8 32-bit registers: 2201 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 2202 * gaddr7. This means that the 3 most significant bits in the 2203 * hash index which gaddr register to use, and the 5 other bits 2204 * indicate which bit (assuming an IBM numbering scheme, which 2205 * for PowerPC (tm) is usually the case) in the register holds 2206 * the entry. */ 2207static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 2208{ 2209 u32 tempval; 2210 struct gfar_private *priv = netdev_priv(dev); 2211 u32 result = ether_crc(MAC_ADDR_LEN, addr); 2212 int width = priv->hash_width; 2213 u8 whichbit = (result >> (32 - width)) & 0x1f; 2214 u8 whichreg = result >> (32 - width + 5); 2215 u32 value = (1 << (31-whichbit)); 2216 2217 tempval = gfar_read(priv->hash_regs[whichreg]); 2218 tempval |= value; 2219 gfar_write(priv->hash_regs[whichreg], tempval); 2220 2221 return; 2222} 2223 2224 2225/* There are multiple MAC Address register pairs on some controllers 2226 * This function sets the numth pair to a given address 2227 */ 2228static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) 2229{ 2230 struct gfar_private *priv = netdev_priv(dev); 2231 int idx; 2232 char tmpbuf[MAC_ADDR_LEN]; 2233 u32 tempval; 2234 u32 __iomem *macptr = &priv->regs->macstnaddr1; 2235 2236 macptr += num*2; 2237 2238 /* Now copy it into the mac registers backwards, cuz */ 2239 /* little endian is silly */ 2240 for (idx = 0; idx < MAC_ADDR_LEN; idx++) 2241 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; 2242 2243 gfar_write(macptr, *((u32 *) (tmpbuf))); 2244 2245 tempval = *((u32 *) (tmpbuf + 4)); 2246 2247 gfar_write(macptr+1, tempval); 2248} 2249 2250/* GFAR error interrupt handler */ 2251static irqreturn_t gfar_error(int irq, void *dev_id) 2252{ 2253 struct net_device *dev = dev_id; 2254 struct gfar_private *priv = netdev_priv(dev); 2255 2256 /* Save ievent for future reference */ 2257 u32 events = gfar_read(&priv->regs->ievent); 2258 2259 /* Clear IEVENT */ 2260 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK); 2261 2262 /* Magic Packet is not an error. */ 2263 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2264 (events & IEVENT_MAG)) 2265 events &= ~IEVENT_MAG; 2266 2267 /* Hmm... */ 2268 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2269 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", 2270 dev->name, events, gfar_read(&priv->regs->imask)); 2271 2272 /* Update the error counters */ 2273 if (events & IEVENT_TXE) { 2274 dev->stats.tx_errors++; 2275 2276 if (events & IEVENT_LC) 2277 dev->stats.tx_window_errors++; 2278 if (events & IEVENT_CRL) 2279 dev->stats.tx_aborted_errors++; 2280 if (events & IEVENT_XFUN) { 2281 if (netif_msg_tx_err(priv)) 2282 printk(KERN_DEBUG "%s: TX FIFO underrun, " 2283 "packet dropped.\n", dev->name); 2284 dev->stats.tx_dropped++; 2285 priv->extra_stats.tx_underrun++; 2286 2287 /* Reactivate the Tx Queues */ 2288 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); 2289 } 2290 if (netif_msg_tx_err(priv)) 2291 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); 2292 } 2293 if (events & IEVENT_BSY) { 2294 dev->stats.rx_errors++; 2295 priv->extra_stats.rx_bsy++; 2296 2297 gfar_receive(irq, dev_id); 2298 2299 if (netif_msg_rx_err(priv)) 2300 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", 2301 dev->name, gfar_read(&priv->regs->rstat)); 2302 } 2303 if (events & IEVENT_BABR) { 2304 dev->stats.rx_errors++; 2305 priv->extra_stats.rx_babr++; 2306 2307 if (netif_msg_rx_err(priv)) 2308 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); 2309 } 2310 if (events & IEVENT_EBERR) { 2311 priv->extra_stats.eberr++; 2312 if (netif_msg_rx_err(priv)) 2313 printk(KERN_DEBUG "%s: bus error\n", dev->name); 2314 } 2315 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) 2316 printk(KERN_DEBUG "%s: control frame\n", dev->name); 2317 2318 if (events & IEVENT_BABT) { 2319 priv->extra_stats.tx_babt++; 2320 if (netif_msg_tx_err(priv)) 2321 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); 2322 } 2323 return IRQ_HANDLED; 2324} 2325 2326/* work with hotplug and coldplug */ 2327MODULE_ALIAS("platform:fsl-gianfar"); 2328 2329static struct of_device_id gfar_match[] = 2330{ 2331 { 2332 .type = "network", 2333 .compatible = "gianfar", 2334 }, 2335 {}, 2336}; 2337 2338/* Structure for a device driver */ 2339static struct of_platform_driver gfar_driver = { 2340 .name = "fsl-gianfar", 2341 .match_table = gfar_match, 2342 2343 .probe = gfar_probe, 2344 .remove = gfar_remove, 2345 .suspend = gfar_suspend, 2346 .resume = gfar_resume, 2347}; 2348 2349static int __init gfar_init(void) 2350{ 2351 return of_register_platform_driver(&gfar_driver); 2352} 2353 2354static void __exit gfar_exit(void) 2355{ 2356 of_unregister_platform_driver(&gfar_driver); 2357} 2358 2359module_init(gfar_init); 2360module_exit(gfar_exit); 2361